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Abstract. We give an algorithmic solution in a simple combinatorial data of Birkhoff′s type
problem studied in [14], for the category repft(I, K[t]/(tm)) of filtered I-chains of modules over
the K-algebra K[t]/(tm), where m ≥ 2, I is a finite poset with a unique maximal element, and
K is an algebraically closed field.

1. Introduction

Throughout we denote by K an algebraically closed field, and by mod(R) the category
of finitely generated unitary right R-modules, where R is a ring with an identity element.
We assume that

I ≡ (I,�)

is a finite poset (that is, partially ordered set) with a unique maximal element ∗, called a
peak of I. We fix an integer m ≥ 1 and consider the K-algebra

Fm = K[t]/(tm).

Obviously Fm is a uniserial algebra of K-dimension m, and Fm = K, for m = 1. Following
Gabriel [7], we study the additive category repft(I, Fm) of filtered Fm-representations of
I (or filtered I-chains of Fm-modules) whose objects are systems U = (Uj)j∈I of finitely
generated Fm-modules Uj ⊆ U∗ such that Us ⊆ Uj ⊆ U∗, if s � j in I, see also [11] and
[12]. In case the poset I is the chain 1→ ∗, the category repft(I, Fm) is just the category
C(2, Fm) of 2-chains C = (C1 ⊆ C∗) of Fm-modules studied in [13]. Following Birkhoff
[4], the problem of determining the indecomposable objects and the representation type
of the category C(2, Fm) is called the Birkhoff problem, see [14]. One of the aims of
this paper is to get an algorithmic solution of a more general problem, called Birkhoff
type problem [14], that is, the problem of determining the indecomposable objects and
the representation type (finite, tame, or wild) of the category repft(I, Fm) of I-chains,
for an arbitrary poset I with a unique maximal element. We do it in Sections 2 and 3
by proving Theorems 2.4 and 2.5 that, in view of the results of [14], reduce the problem
to a combinatorial one. Moreover, the proof given in Section 3 provides with algorithms
and computer accessible procedures that construct the list of pairs (I, m) satisfying the
conditions required in Theorems 2.4 and 2.5.

In case m = 1, the algebra Fm is the field K and repft(I, Fm) = repft(I, K) is the
category of I\{∗}-spaces in the sense of Gabriel [7], and the solution of the problem is given
in [8], see also [11, Chapter 15]. For m ≥ 2, the problem is studied by Plohotnik in [9] and by
Simson in [12] and [13], where a characterization of finite type is presented. A classification
of the pairs (I, m) such that the category repft(I, Fm) is of finite representation type is
given in [13, Theorem 3.4]. Here we present similar criteria for repft(I, Fm) to be wild
representation type or tame representation type.
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The main results of the present paper (Theorems 2.4 and 2.5) provide with a combi-
natorial characterization of the Birkhoff type problems that are of wilde type and of tame
type, for arbitrary I and m ≥ 2, because it is shown in [14] that, given m ≥ 2,
• the category repft(I, Fm) is of tame represaentation type (see [11, Chapter 14] for

details) and admits a classification of indecomposable objects if and only if the statement
(i) of Theorem 2.5 holds, and
• the category repft(I, Fm) is of wild represaentation type (see [11, Chapter 14] for

details) and does not admit a classification of indecomposable objects if and only if the
statement (i) of Theorem 2.4 holds.

It follows from [14, 2.3 and 5.3] that, for arbitrary I and m ≥ 1, the categories
repft(I, Fm) provide an important class of bimodule matrix problems in the sense of Drozd
[5] and [6].

Except of the motivation presented above, one of our main motivalions for the study is
the fact that the category repft(I, Fm) is playing an important role in the representation
theory of finite dimensional algebras (see [11]), in the study of lattices over orders (see [11,
Chapter 13], [12], [15]) and in the investigation of categories of abelian groups (see [1], [10]).
Some application of the results presented here are given in the recent papers [2] and [3].

2. A formulation of main results

In the formulation of the main results of the paper we use the following six hypercritical
posets of Nazarova [8] (see also [11])

N1 = (1, 1, 1, 1, 1) = (• • • • •),
•
↑

N2 = (1, 1, 1, 2) = (• • • •),

•
↑

• • •
↑ ↑ ↑

N3 = (2, 2, 3) = (• • •),
(2.0) • •

↑ ↑
N4 = (1, 3, 4) = (• • •),

↑ ↑
• •
↑
•

• • •
↑ ↖ ↑ ↑

N5 = (N, 5) = (• • •),
↑
•
↑
•
↑
•

• •
↑ ↑

N6 = (1, 2, 6) = ( • • • )
↑
•
↑
•
↑
•
↑
•

Following [13], given a pair (I, m), where I ≡ (I,�) is a finite poset with a unique
maximal element ∗ and m ≥ 1 is an integer, we define the infinite poset Îm with a Z-action
to be the infinite poset

(2.1) Îm =
⋃
s∈Z

I × {s}

with the partial order relation � defined by the formulae:

(i) (u, s) � (v, s) ⇔ u � v ∈ I,
(ii) (i, t) ≺ (i, s) for all s < t in Z and i ∈ I,
(iii) (j, t) ≺ (i, t + m), for all j 6� i in I and t ∈ Z.

This means that the poset I × {s} is isomorphic to I and Îm is a disjoint union of
countably many copies of the poset I ∼= I × {s}, s ∈ Z, with the relations (ii) and
(iii). We view Îm as follows (compare with the poset of Zavadskij-Kirichenko in [15]):

,,
,,

,,
,,

,,
,,

,, -------------- ++
++

++
++

++
++

++ -------------- ++
++

++
++

++
++

++ ..............

... // (i,0) // (i,1) // ... // (i,m) // ...

... // (j,0) // (j,1) // ... // (j,m) // ...

I×{0} I×{1} I×{m}
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where we draw the skew arrow from (j, r) to (i, r + m), if j 6� i in I. The infinite cyclic
group Z acts on Îm by shift in a natural way.

An important role is also played in this paper by the following two finite subposets of
the infinite poset Îm

(2.2) Î[0,m] =
m⋃

s=0

I × {s} ⊇ Î[1,m] =
m⋃

s=1

I × {s}.

The following important result was established in [13] and [14].

Proposition 2.3. Assume that I is a finite poset with a unique maximal element ∗,
m ≥ 2 is an integer and Îm is the infinite poset ,(2.1) associated to I and m.

The infinite poset Îm contains any of the six hypercritical posets (1, 1, 1, 1, 1), (1, 1, 1, 2),
(2, 2, 3), (1, 3, 4), (N, 5) and (1, 2, 6) of Nazarova if and only if the finite subposet Î[0,m] (2.2)

of Îm contains, as a subposet, any of the six hypercritical posets of Nazarova.

The proposition can be also proved by applying the technique we use in the proof of
our main results of this paper, that is, the following two theorems and a corollary proved
in Section 3.

Theorem 2.4. Assume that m ≥ 2 is an integer, I is a finite poset with a unique
maximal element ∗, and Î[1,m] ⊆ Î[0,m] are the finite posets (2.2) associated to I and m.
Then the following three conditions are equivalent.

(i) The finite subposet Î[0,m] (2.2) of Îm contains, as a subposet, any of the six
hypercritical posets of Nazarova (2.0).

(ii) Either m ≥ 3 and the finite subposet Î[1,m] (2.2) of Îm contains, as a subpo-
set, any of the six hypercritical posets of Nazarova, or else 1 ≤ m ≤ 2 and
the finite subposet Î[0,m] (2.2) of Îm contains, as a subposet, any of the six
hypercritical posets of Nazarova (2.0).

(iii) The poset I is a chain and the pair (I, m) satisfies any of the following four
conditions:
(W01) m ≥ 7 and |I| ≥ 3, (W03) m ≥ 4 and |I| ≥ 5, or
(W02) m ≥ 5 and |I| ≥ 4, (W04) m ≥ 3 and |I| ≥ 7,
or else the poset I is not a chain and any of the following conditions is satisfied:
(W2) m ≥ 2 and I contains, as a peak subposet, one of the 36?? minimal

hypercritical posets of Table 2.6 below
(W3) m ≥ 3 and I contains, as a peak subposet, one of the posets:

I ′1 :
•

↗ ↘
• → • → • → ∗ I ′′1 :

•
↗ ↘

• → • → • → ∗ I ′′′1 :
•
↘

• → • → • → ∗ I2 :
•
↘

• → • → ∗
•
↘

I3 : • → ∗
↗•

• → •
I14 : ↗↘ ↘

• → • → ∗,

(W4) m ≥ 4 and I contains, as a peak subposet, one of the posets:

I1 :
•

↗ ↘
• → • → ∗ I•1 :

•
↘

• → • → ∗,

(W5) m ≥ 5 and I contains, as a peak subposet, the poset F0 :
•
↘
•→∗.

Theorem 2.5. Assume that m ≥ 2 is an integer, I is a finite poset with a unique
maximal element ∗, and Î[0,m] is the finite poset (2.2) associated to I and m. Then the
following two conditions are equivalent.

(i) The finite subposet Î[0,m] of Îm does not contain any of the six hypercritical
posets of Nazarova (2.0).

(ii) The poset I is a chain and (|I|, m) is one of the pairs
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• (1, m), (2, m), with m ≥ 2,
• (3, 3), (3, 4), (3, 5), (3, 6),
• (4, 3), (4, 4),
• (5, 3), (6, 3),
• (|I|, 2), with |I| ≥ 3; or else
the poset I is not a chain and any of the following conditions is satisfied:

(t4) m = 4 and I is the poset F0 :
•
↘
•→∗,

(t3) m = 3 and I is any of the posets

I1 :
•

↗ ↘
• → • → ∗ I•1 :

•
↘

• → • → ∗ F0 :
•
↘
•→∗

(t2) m = 2 and I is a peak subposet of one of the 18 tame posets listed in
Table 2.7 below, or I is a peak subposet of the poset

F0,s :

•
↗ ↘

•→•→. . .→•→•→•→ •→•→. . .→•→∗ , s + 1 points, s ≥ 3,

Table 2.6. Minimal hypercritical wild posets, for m = 2
•

��/
//

//
//

•

��<
<<

<

D∗
4 : • // ∗

•

@@����

•

��;
;;

;

Î1
3 : • // • // ∗

•

AA����

•

��;
;;

;

Î2
3 : • //

��;
;;

; • // ∗

•

AA����

•
↗ ↘

Î3
3 : • → • → ∗

↘ ↗•

•
↘

Î4
3 : • → • → ∗

↗•

•
↘

Î5
3 : • → • → ∗

↗•
• //

��<
<<

< •

��<
<<

<

I′4: • // • //

@@����
• // ∗

• //

��<
<<

< •

&&MMMMMMM

I′′4 : • //

@@����
• // • // ∗

• //

��<
<<

< •

��<
<<

<

I′′′4 : • //

88qqqqqqq • // • // ∗
• // •

��>
>>>

W0: • // • //

@@����
• // ∗

• //

��<
<<

< •

&&NNNNNNN

W •
0 : • // • // • // ∗

• //

��>
>>>
•

��>
>>>

W1: • // • // • // ∗

• // •

&&NNNNNNN

W •
1 : • //

@@����
• // • // ∗

• → •
W2 : ↗ ↘

• → • → • → • → • → • → ∗

• → •
W •

2 : ↗ ↗ ↘
• → • → • → • → • → • → ∗

• → •
W3 : ↗ ↗ ↘

• → • → • → • → • → • → ∗

• → •
W •

3 : ↗ ↗ ↘
• → • → • → • → • → • → ∗

• → •
W4 : ↗ ↗ ↘

• → • → • → • → • → • → ∗
•→•

W5 : ↘
•→•→•→∗

•→•
W6 : ↘

•→•→•→•→∗

•→•
W •

6 : ↗ ↘
•→•→•→•→∗

•→•
W7 : ↗ ↘

•→•→•→ •→∗
•

W8 : ↘
•→•→•→•→•→∗

•

++WWWWWWWWWWWWWWW

W9: • //

@@����
• // • // • // • // • // ∗

•

��>
>>>

W10: • // • // • // • // • // • // ∗

•

��<
<<

<

W •
10: • // • //

33hhhhhhhhhhhhhhh • // • // • // • // ∗
•

��>
>>>

W11: • // • // • //

55jjjjjjjjjjj • // • // • // ∗

•

��<
<<

<

W •
11: • // • // • // • // • // • // ∗

•

��>
>>>

W12: • //

55jjjjjjjjjjj • // • // • // • // • // ∗

•

��<
<<

<

W •
12: • // • //

55kkkkkkkkkkk • // • // • // • // ∗
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•

↗↘
W13 : •→•→•→•→•→• →•→∗

•
↘

W •
13 : •→•→• →•→•→•→•→∗

•

↗↘
W14 : •→•→ •→• →•→•→•→∗

•

↗↘
W •

14 : •→•→•→• →•→•→•→∗
•

↗↘
W15 : •→•→• →•→•→•→•→∗

•

↗↘
W •

15 : •→•→•→•→ •→• →•→∗

Table 2.7. Maximal tame posets, for m = 2
•
↘

I3 : • →∗
↗
•

•

��>
>>>

I5: • // • // • // • // • // ∗

•

��<
<<

<

I•5 : • //

33hhhhhhhhhhhhhhh • // • // • // • // ∗

•

��>
>>>

I6: • // • //

55jjjjjjjjjjj • // • // • // ∗

•

��<
<<

<

I•6 : • // • // • // • // • // ∗

•

��>
>>>

I7: • //

55jjjjjjjjjjj • // • // • // • // ∗

•

↗ ↘
I8 : •−→•−→•−→•−→•−→•−→∗

•
↘

I•8 : •→•→•→•→•→•→∗
•

↗ ↘
I9 : •−→•−→•−→•−→•−→•−→∗

•

↗ ↘
I•9 : •−→•−→•−→•−→•−→•−→∗

•

↗ ↘
I10 : •→•−→•−→•−→•−→•−→∗

•→• →∗
↗ ↗ ↗

I11 : •→•→•→•→•

•→• →•→•→•→∗
↗ ↗

I•11 : •→•
•→• →•→∗

↗ ↗ ↗
I12 : •→•→•→•

•→• →•→•→∗
↗ ↗ ↗

I•12 : •→•→•
•→•→•→∗

↗
I13 : •→•

•→•→∗
↗ ↗

I•13 : •→•→•

Gn : •↗↘
• → •− · · · → • → •
↗↘ ↗↘ ↗↘

• → •− · · · → • → •
↘
↗∗ (2n + 2 points, n ≥ 2).

The posets I3-I•13 of Table 2.7 (different from the garland Gn) are called maximal tame
posets. In Tables 2.6 and 2.7 we follow the notation introduced in [14].

3. Proof of the main results

Consider the set

(3.1) X = {(I, m); I is a poset and m ≥ 2}
consisting of all pairs (I, m), where m ≥ 2 an integer and I ≡ (I,�) is a finite poset with
a unique maximal element ∗, called the peak of I. We say that I is a peak subposet of
I ′ ≡ (I ′,�′) if I ⊆ I ′, the inclusion preserves the partial order relations, and ∗ = ∗′.

We equip the set X with a partial order relation � defined by the formula
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(I, m) � (I ′, m′) ⇔ I is a peak subposet of I ′ and m ≤ m′,

for any pair of elements (I, m) and (I ′, m′) of X . We view the poset X as a disjoint union

X = X`in ∪ X2 ∪ X3 ∪ X4 ∪ . . . ∪ Xm ∪ . . .

of subposets, where
• X`in consists of the pair (I, s) ∈ X such that I is linearly ordered and s ≥ 2,
• given m ≥ 2, Xm is the set of pair (I, m) ∈ X such that I is not linearly ordered.
We denote by W ⊇ W̌ the subposets of X consisting of all pairs (I, m) ∈ X such that

the finite subposet Î[0,m] (2.2) of Îm (resp. the finite subposet Î[1,m] of Î[0,m]) contains, as a
subposet, some of the six hypercritical posets of Nazarova (2.0).

It follows that the subset minW of all minimal elements in the posets W is a disjoint
union

(3.2) minW =W∨
`in ∪W∨

2 ∪W∨
3 ∪W∨

4 ∪ . . . ∪W∨
m ∪ . . . ,

where W∨
`in = X`in ∩minW and W∨

m = Xm ∩minW , for each m ≥ 2.

Proof of Theorem 2.4. Consider the subposet W� of X consisting of all pairs (I,m)
satisfying any of the conditions (W01)-(W04), (W2), (W3), (W4), and (W5).

First we prove the equivalence (i)⇔(iii). Note that (i)⇔(iii) holds if and only if

(3.3) W� =W .

To prove the equality (3.3), we consider the subset W• =W•
`in ∪W•

2 ∪W•
3 ∪W•

4 ∪W•
5 of

W�, where
1◦ W•

5 = {(F0, 5),
2◦ W•

4 = {(I1, 4), (I•1 , 4),
3◦ W•

3 = {(I ′1, 3), (I ′′1 , 3), (I ′′′1 , 3), (I2, 3), (I3, 3), (I14, 3),
4◦ W•

2 = {(I, 2), where I is any of the poset of Table 2.6}, and
5◦ W•

`in = {(C3, 7), (C4, 5), (C5, 4), (C7, 3)},
and Cs : ◦→◦→. . .→◦→◦→∗ is a chain with s ≥ 2 vertices.

Step A We show that W• ⊆ W and the inclusions 1◦-5◦ hold, by proving that

(A1) W•
`in ∪W•

3 ∪W•
4 ∪W•

5 ⊆ W̌ ⊆ W ,
(A2) W•

2 ⊆ W , and
First we prove (A1). To show that W•

5 ⊆ W , we note that if I = F0 is the poset

F0 :
◦
↘
◦→∗ then the finite poset Î[1,5] has the form

◦→◦→•→•→•
↓ ↓ ↓ ↓ ↓
•→•→∗→∗→∗
↑ ↑ ↑ ↑ ↑
◦→◦→•→•→•

and contains the subposet of the hypercritical type (2, 3, 3) marked by the bullet points.
It follows that (F0, 5) ∈ W , that is, W•

5 = {(F0, 5)} ⊆ W . The inclusion W•
3 ∪W•

4 ⊆ W
follows in a similar way.

For the proof of the inclusion W•
`in ⊆ W , we only show that the pair (C5, 4) ∈ W•

`in

belongs to W , because the proof for the remaining pairs of W•
`in is analogous. Suppose

that m = 4 and I is the chain C5 : ◦→◦→◦→◦→∗. Then the finite subposet Î[1,4] of the

infinite poset Î4 associated to the pair (I, 4) = (C5, 4) ∈ W•
`in has the form
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Î[1,4] :

◦→◦→◦→•
↓ ↓ ↓ ↓
◦→◦→•→◦
↓ ↓ ↓ ↓
◦→•→◦→◦
↓ ↓ ↓ ↓
•→◦→◦→◦
↓ ↓ ↓ ↓
•→∗→∗→∗

and contains a subposet of the hypercritical type (2, 1, 1, 1) marked by the bullet points.
It follows that the pair (C5, 4) ∈ W•

`in belongs to W ∩ X`in. This completes the proof of
(A1).

For the proof of the inclusionW•
2 ⊆ W in (A2), we only show that the pair (Î3

3 , 2) ∈ W•
2

belongs to (W ∩ X2) \ W̌ , because the proof for the remaining pairs of W•
2 is analogous.

Suppose that m = 2 and I is the poset
◦

↗ ↘
I = Î3

3 : ◦ → ◦ → ∗.
↘ ↗◦

Then the poset Î[0,2] associated with the pair (I, 2) = (Î3
3 , 2) ∈ W•

2 has the form
◦ //

��~~
~

��

��)
))

))
))

))
))

) ◦ //

��~~
~

��

��)
))

))
))

))
))

) •
~~||

|

��

��)
))

))
))

))
))

)

◦ //

��)
))

))
))

))
))

) • //

��)
))

))
))

))
))

) ◦

��)
))

))
))

))
))

)

Î[0,2]: ◦ //

��

• //

��

◦

��
◦ //

��~~
~

• //

��~~
~

◦
~~||

|

• // ∗ // ∗.

Since the subposet N of Î[0,2] marked by the five bullet points is a hypercritical poset

of Nazarova of type (1, 1, 1, 2) then the pair (I, 2) = (Î3
3 , 2) belongs to W•

2 . Since the
subposet Î[1,2] of Î[0,2] does not contain any of the hypercritical posets of Nazarova then the

pair (I, 2) = (Î3
3 , 2) does not belong to W̌ .

For the sake of completeness of the proof of the inclusion(A2), we apply the following
simple algorithm.

Algorithm W.1. Input: The set W•
2 .

1. begin
2. twr ← true;
3. for (each pair (I, m) from W•

2 ) do
4. if (the poset Î[0,m] does not contain any Nazarowa posets)
5. then
6. twr ← false;
7. break;
8. if (twr = true) then
9. print(W•

2 is contained in W∨
2 );

10. else
11. print(W•

2 is not contained in W∨
2 );

12. end

The algorithm verifies that the inclusion W•
2 ⊆ W∨

2 holds by showing that, given a pair
(I, 2) ∈ W•

2 , the finite poset Î[0,2] (2.2) contains any of the hypercritical posets of Nazarova
(2.0). The algorithm uses:
• the function Imm(I, m) (4.4) described in Section 4 that constructs the finite poset

Î[0,m] (2.2), for a positive integer m ≥ 2 and a finite poset I with a unique maximal element,
and
• the function pswild(p) (4.5) of the package CREP that checks whether or not, for a

poset I, the finite poset p = Î[0,m] contains any of the hypercritical posets of Nazarova, see
Section 4 for more details.
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This finishes the proof of (A2).
Step B Recall that W� is the subposet of X consisting of all pairs (I, m) satisfying

any of the conditions (W01)-(W04), (W2), (W3), (W4), and (W5). We show that
(B1) the union W• = W•

`in ∪W•
2 ∪W•

3 ∪W•
4 ∪W•

5 is the set of all minimal elements
(I, m) in the poset W� and

(B2) W� ⊆ W .
We prove (B1), by showing that
• X`in ∩minW� =W•

`in,
• Xm ∩minW� =W•

m, for m = 2, 3, 4, 5, and
• the set Xm ∩minW� is empty, for all m ≥ 6.

Assume that (I ′, m′) � (I, m), the pairs (I ′, m′), (I, m) belong to W�, and (I, m) ∈
minW�.

If I is linearly ordered then (I, m) satisfies any of the conditions (W01)-(W04). Hence,
obviously, I ′ is linearly ordered and (I ′, m′) also satisfies any of the conditions (W01)-(W04).
Hence easily follows that (I ′, m′) = (I, m) and therefore, given a linearly ordered poset I,
(I,m) ∈ minW� if and only if (I, m) ∈ W•

`in. Consequently, we get X`in∩minW� =W•
`in.

Assume now that I is not linearly ordered. If m = 2 then m′ = 2, by our assumption,
and I ′ is a subposet of I. It follows that I ′ is not linearly ordered, because otherwise
(I ′, 2) ∈ minW� ∩ X`in = W•

`in and we get a contradiction. Then, by the definition of
W�, I ′ satisfies (W2), that is, I ′ contains, as a peak subposet, one of the hypercritical
wild posets listed in Table 2.6. Hence easily follows that I ′ = I is one of the hypercritical
wild posets listed in Table 2.6 and, consequently, we get X2 ∩minW� =W•

2 . The equality
Xm ∩minW� =W•

m, for m = 3, 4, 5, follows in a similar way, by consulting Table 2.6 and
the posets listed in (W3), (W4), and (W5) of Theorem 2.4.

Assume that m ≥ 6. To prove that the set Xm ∩ minW� is empty, assume that
there exists (I, m) ∈ Xm ∩ minW�. By the definition of W�, I contains, as a peak
subposet, one of the posets listed in Table 2.6 or one of the posets listed in (W3), (W4),
and (W5) of Theorem 2.4. It follows that I contains, as a peak subposet, the poset
F0 and, consequently, (F0, 5) ≺ (I, m). This contradicts the relation (I,m) ∈ minW�,
because (F0, 5) ∈ W•

5 ⊆ minW�, and finishes the proof of (B1).
To prove (B2), we note that if (I ′m′) � (I, m) and (I ′, m′) ∈ W then (I, m′ ∈ W . Since

W• = minW� ⊆ W , by (B1) and Step A, then W� ⊆ W and (B2) follows. This finishes
the proof of Step B.

Step C It follows from Step B that, to prove the equivalence (i)⇔(iii), it is sufficient
to show that

minW =W•
`in ∪W•

2 ∪W•
3 ∪W•

4 ∪W•
5 ,

or equivalently, that the following equalities hold:
(a) the set W∨

m is empty, for all m ≥ 6,
(b) W∨

5 =W•
5 ,

(c) W∨
4 =W•

4 ,
(d) W∨

3 =W•
3 ,

(e) W∨
2 =W•

2 , and
(f) W∨

`in =W•
`in.

To prove (a)-(f), we need to show that the inclusion W∨ ⊆ W• holds, because the
inverse inclusion was established above.

First we prove (f) by showing that the inclusion W∨
`in ⊆ W•

`in holds. Assume that
(I, m) ∈ W is a minimal element of W , m ≥ 2, and I = Cs is a chain, with s ≥ 1. Note
that (I ′, m′) ≺ (I, m), where (I ′, m′) is any of the pairs (C3, 6), (C4, 4), and (C6, 3), because
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the finite poset Î ′[0,m′] contains one of the Nazarova′s hypercitical poset (2.0), if (I ′, m′) ∈
{(C3, 6), (C4, 4), (C6, 3)}. Since, by (A1), we haveW•

`in = {(C3, 7), (C4, 5), (C5, 4), (C7, 3)} ⊆
W and (I, m) is a minimal element of W then (I, m) is one of the pairs listed in W•

`in, and
(f) follows.

To prove (a)-(e), assume that (I, m) ∈ W is a minimal element of W , m ≥ 2, and I is
not a chain, that is, I contains, as a peak subposet, the poset

F0 :
•
↘
•→∗.

Hence (F0, m) � (I, m). Since we have shown earlier that (F0, 5) ∈ W then the set W∨
m is

empty, for all m ≥ 6, and W∨
5 = {(F0, 5)}. Hence (a) and (b) follow.

(c) Assume that m = 4 and (I, 4) is a minimal element of W . Since I contains, as a
peak subposet, the poset F0 and a direct checking shows that (F0, 4) 6∈ W then the peak
poset embedding F0 ↪→ I is proper and we need to describe all such posets I with a unique
maximal element and with four vertices. It is clear that they are just the following four
posets

I1 :
•

↗ ↘
a → • → ∗, I•1 :

•
↘

• → a → ∗, I2 :
•
↘

• → a → ∗,

•
↘

I3 : • → ∗
↗

a

presented in (W3) and (W4) of Theorem 2.4, and I contains as a peak subposet one of
them. Since (I2, 3), (I3, 3) ∈ W•

3 and (I, 4) is chosen to be minimal then (I, 4) is one of the
pairs (I1, 4), (I•1 , 4). This shows the inclusion W∨

4 = {(I1, 4), (I•1 , 4)} ⊆ W•
4 and finishes

the proof of (c).
(d) Assume that m = 3 and (I, 3) is a minimal element of W . First we show by a

direct calculation that none of the pairs (I1, 3), (I•1 , 3), (I2, 2), (I3, 2) belongs toW . Since
(I2, 3), (I3, 3) ∈ W•

3 then they are minimal. It follows that I contains, as a proper peak
subposet, any the posets I1, I•1 and we need to describe all such posets I with a unique
maximal element and with five vertices. It is clear that such enlargements I of I1 are just
the following five posets

I ′1 :
•

↗ ↘
• → • → • → ∗ I ′′1 :

•
↗ ↘

• → • → • → ∗, I14 :
•→•
↗↘ ↘
•→•→∗ I15 :

•→•
↘ ↘
•→•→∗

•
↘

Î3
3 : • → • → ∗,

↘ ↗•

and such enlargements I of I•1 are just the following five posets

I ′′′1 :
•
↘

• → • → • → ∗ I ′′′′1 :
•
↘

• → • → • → ∗ I ′1 :
•

↗ ↘
• → • → • → ∗

•
↘

Î4
3 : • → • → ∗

↗•

•
↘

Î5
3 : • → • → ∗.

↗•

It is easy to check that
• the pairs (I ′1, 2), (I ′′′1 , 2), (I ′′′′1 , 2), and (I14, 2) do not belong to W , whereas
• each of the pairs (I15, 2), (Î4

3 , 2), (Î5
3 , 2), (Î3

3 , 2), (I ′′′′1 , 2) belongs to W .
Hence we easily conclude that the minimal pair (I, 3) is one of the pairs listed inW•. This
finishes the proof of (d).

(e) Assume that m = 2. Because of a high combinatorial complexity of the problem,
we list the minimal elements (I, 2) ofW by applying the Algorithm W.2 defined as follows.

Input: the set W•
3 =W∨

3 = {(I ′1, 3), (I ′′1 , 3), (I ′′′1 , 3), (I2, 3), (I3, 3), (I14, 3)}.
W.2.1. Given a finite poset I, with a unique maximal element, we denote by EI the

set of all poset J , with a unique maximal element, such that |J | = 1 + |I| and I is a peak
subposet of J . For each I such that (I, 3) ∈ W•

3 , we construct the set EI .
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W.2.2. For each I of W.2.2, we find a disjoint union decomposition EI = I1
I ∪I2

I , where
E1

I consists of the posets J ∈ EI such that (J, 2) ∈ W , and we set E2
I = EI \ E1

I
2. We do it

by applying the procedure Imm(J, 2) and ext(p), see Section 4.

W.2.3. For each I of W.2.1, we list the pairs (J, 2) ∈ X , with J ∈ I1
I , that are minimal

in W , by applying the procedure mini(L), see Section 4.

W.2.4. For each I of W.2.1 and for each (L, 2) ∈ X such that L ∈ E2
I , we find the finite

set EL and apply the steps W.2.2 and W.2.3, with I and L interchanged.

W.2.5. As an output we get the list W∨
2 of the minimal pairs (I, 2) in W . It turns out

that the set W∨
2 consists of the following pairs

(Î2
3 , 2), (Î4

3 , 2), (Î5
3 , 2), (W•

1 , 2), (Î1
3 , 2), (W5, 2), (I ′′4 , 2), (W•

6 , 2), (W7, 2), (W6, 2), (I ′′′4 , 2), (W•
0 , 2),

(W13, 2), (W•
15, 2), (W14, 2), (W•

14, 2), (W15, 2), (W1, 2), (W•
2 , 2), (W•

3 , 2), (W4, 2), (W3, 2), (W0, 2),
(W2, 2), (CW11, 2), (W•

12, 2), (W12, 2), (W•
10, 2), (W9, 2), (W8, 2), (W10, 2), (W•

11, 2), (W•
13, 2), (Î3

3 , 2),
(D∗4, 2), (Î ′4, 2).

Obviously, this is just the list W• given in 4◦, and hence we get the equality (e).

The above description leads to the following recursion procedure used in the algorithm.

1. Procedure(I)
2. construct the set EI
3. for(each poset J from EI) do
4. if(Ĵ[1,2] contains one of the posets N1, . . . ,N6) then
5. search the pairs (J, 2) that are minimal in W,
6. else
7. Procedure(J);
8. end

The following easy modification of the above description leads to the following more
general algorithm that determines the setW∨

2 , and the setsW∨
3 , W∨

4 , W∨
5 we have already

described above.
Algorithm W.2. Input: The poset F0.
Pass:

• Global variables: W∨
2 , W∨

3 , W∨
4 , W∨

5 , KW , G, m, MAX ;
• Local variables: n, I;
• Meaning of particular variables:

– W∨
2 , W∨

3 , W∨
4 , W∨

5 - lists of pairs (J, j) ∈ W∨
j , for j = 2 . . . 5,

that are minimal in W.
– KW - list of pairs (J, j) that do not belong to any of the sets
W∨

2 , W∨
3 , W∨

4 , W∨
5 .

– m = 2..5.
– MAX - constant that determines the number of maximal ele-

ments of posets.
– G - the garland Gr, with r ≥ 2.

1. begin
2. enroll the pair (F0, 5) in W∨

5 ;

3. for m := 4 to 2 do
4. for k := 1 to length(W∨

m+1) do
5. WProcedure(W∨

m+1[k]);
6. end

Output: the set KW and the set W∨
2 ∪W∨

3 ∪W∨
4 ∪W∨

5 of all minimal elements in W.

The algorithm uses the following procedure that modifies the previous one.

Procedure W.2a.

2tego nie ma w procedurach???
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1. WProcedure(J)

2. if(|J | ≤MAX) then
3. construct the set EJ ;

4. for (each poset I from EJ) do
5. begin
6. Min := false;

7. if(Î[0,m] contains one of the posets N1, N2, N3, N4, N5, N6)

8. then
9. for n := m− 1 to 1 do

10. begin
11. if (any of N1,. . . ,N6 is not a subposet of Î[0,n])

12. then
13. Min := true;

14. break;

15. end
16. if (Min = true) then
17. if (W∨

n+1 does not contain any pair (I ′, n + 1),
18. with I ′ a peak subposet of I) then
19. if (I is not a peak subposet of any J ,

20. with (J, n + 1) from the list W∨
n+1) then

21. enroll (I, n + 1) in W∨
n+1;

22. else
23. enroll (I, n + 1) in W∨

n+1 instead of the pair (I ′, n + 1),
24. with I ′ containing I as a peak subposet.

25. else
26. WProcedure(I);
27. end
28. else
29. if (J is not a subposet of G) then
30. enroll (J, n) in KW ;

31. end
(i)⇔(ii) The implication (i)⇐(ii) is obvious. To prove the inverse implication (i)⇒(ii)

it is sufficient to show that (iii) implies (i), because of the equivalence (i)⇔(iii) proved
earlier. But this follows from the fact thatW• = minW� is the set of all minimal elements
(I, m) in the poset X satisfying any of the conditions (W01)-(W04), (W2), (W3), (W4),
and (W5), proved in Step B, and the inclusion W•

`in ∪W•
3 ∪W•

4 ∪W•
5 ⊆ W̌ , proved above.

This finishes the proof of Theorem 2.4. �

Proof of Theorem 2.5. Consider the following subposet T = X \W of the poset X ,
and note that T consists of all pairs (I, m) in X such that the finite subposet Î[0,m] (2.2) of

Îm does not contain, as a subposet, any of the six hypercritical posets of Nazarova (2.0).
Note that the subset max T of all maximal elements in the posets T is a disjoint union

(3.4) max T = T ∨`in ∪ T ∨2 ∪ T ∨3 ∪ T ∨4 ∪ . . . ∪ T ∨m ∪ . . . ,

where T ∨`in = X`in ∩max T and T ∨m = Xm ∩max T , for each m ≥ 2.
Consider the subposet T � of X consisting of all pairs (I, m) ∈ X satisfying any of the

conditions listed in the statement (ii) of Theorem 2.5
First we prove the equivalence (i)⇔(ii). Note that (i)⇔(ii) holds if and only if
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(3.5) T � = T .

To prove the equality (3.5), we consider the subposet T • = T •`in ∪ T •2 ∪ T •3 ∪ T •4 of T �,
where
• T •`in = {(C3, 6), (C4, 4), (C6, 3)} and Cs means a chain with s ≥ 3 vertices,
• T •2 = {(I, 2); I is one of the posets of Table 2.7 different from the garland Gn},
• T •3 = {(I1, 3), (I•1 , 3)},
• T •4 = {(F0, 4)},

and F0, I1, and I•1 are as in Theorem 2.5.
Now we prove the following four statements:
(A) T • = max T � is the set of all maximal elements in T �.
(B) T � ⊆ T ,
(C) T • = max T is the subset all maximal elements in the poset T , and
(D) Given a pair (I,m) ∈ T , there is no (I ′, m′) ∈ max T such that (I, m) ≺ (I ′, m′) if

and only if m = 2 and I is a peak subposet of a garland Gn of Table 2.7, with n ≥ 2, or
there is an m ≥ 3 such that (I, m) = (C1, m) or (I, m) = (C2, m).

The equality (A) easily follows by a case by case inspection of the posets in the finite
set T •. The details are left to the reader.

To prove (B), first we note (by looking at the set T �) that a pair (I,m) ∈ T � has no
(I ′, m′) ∈ max T � if and only if m = 2 and I is a peak subposet of a garland Gn of Table
2.7, with n ≥ 2, or there is an m ≥ 3 such that (I, m) = (C1, m) or (I, m) = (C2, m). It
is easy to check, by applying the definition of the poset Î[0,m], that (Gn, 2) ∈ T , for n ≥ 2,
and (C1, m), (C2, m) ∈ T , for each m ≥ 2.

Next we note that if (I, m) ≺ (I ′, m′) and (I ′, m′) ∈ T then (I, m) ∈ T . Hence, in view
of (A) and the remark above, the inclusion T � ⊆ T holds if T • = max T � is a subset of T .
To prove it, assume that (I,m) lies in T •, and recall from (3.3) and Step B of the proof of
Theorem 2.4 that W = W� and minW = W•. It follows that (I, m) does not belongs to
W (that is, (I, m) belongs to T = X \W and, consequently, the inclusion T � ⊆ T holds),
because a case by case inspection of the elements (I, m) ∈ T • and (I ′′, m′′) ∈ W• shows
that, given (I, m) ∈ T •, there is no (I ′′, m′′) ∈ minW = W• such that (I ′′, m′′) � (I,m),
or equivalently, (I, m) 6∈ W , that is, (I, m) ∈ T .

If (I, m) ∈ T •`in = {(C3, 6), (C4, 4), (C6, 3)}, or (I, m) = (Cs, 2) and s ≥ 2, then one
easily shows that the poset Î[0,m] does not contain any of hypercitical posets of Nazarova
(2.0). Hence, to finish the proof, it remains to show that T •2 ∪ T •3 ∪ T •4 ⊂ T . We do it by
applying the following algorithm.

Algorithm T.1. Input: The sets T •2 , T •3 , T •4 .

1. begin
2. twr ← true;
3. for (each pair (I, m) belongs to T •2 ∪ T •3 ∪ T •4 ) do
4. if (the poset Î[0,m] contains one of Nazarova′s posets)
5. then
6. twr ← false;
7. break;
8. if (twr = true) then
9. print(T •2 ∪ T •3 ∪ T •4 is contained in T );

10. else
11. print(T •2 ∪ T •3 ∪ T •4 is not contained in T );
12. end

This finishes the proof of (B).
Finally, we prove the statements (C) and (D). We show that
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• the set Tm = Xm ∩ T is empty, for all m ≥ 5, and
• T ∨`in = T •`in, T ∨2 = T •2 , T ∨3 = T •3 , and T ∨4 = T •4 .

Assume, to the contrary, that m ≥ 5 and Tm is not empty. Then there is an (I, m) ∈ Tm

and I is not a chain, that is, I contains, as a peak subposet, the poset

F0 :
•
↘
•→∗.

Hence (F0, m) � (I,m). Since (F0, 5) ∈ W• = minW then (I, m) ∈ W ∩ T = ∅ and we
get a contradiction. It follows that Tm is empty, for all m ≥ 5.

To prove the equality T ∨`in = T •`in, we note that the inclusion T ∨`in ⊇ T •`in follows, because
given a relation (I,m) ≺ (I ′, m′), with (I, m) ∈ T •`in, the pair (I ′, m′) belongs to W� =W ,
by (3.3). To prove the inverse inclusion T ∨`in ⊆ T •`in, assume that (I,m) ∈ T`in = T ∩ X`in,
that is, I = Cs is a chain with s ≥ 1 vertices.

We recall from the proof of (B) that if s = 1 or s = 2, then (I,m) = (Cs, m) ∈ T , for
each m ≥ 2.

Assume that s ≥ 3 and (I,m) = (Cs, m) ∈ T . It follows that m ≤ 6, because otherwise
(C3, 7) � (I,m) and, hence, (I, m) ∈ W� ∩ T = W ∩ T = ∅; a contradiction. This shows
that if (I, m) = (Cs, m) ∈ T and s ≥ 3 then m ∈ {3, 4, 5, 6}. Hence easily follows that
(I, m) = (Cs, m) ∈ T •`in, because W ∩ T = ∅ and, by 5◦ in the proof of Theorem 2.4, we
have W∨

`in = W•
`in = {(C3, 7), (C4, 5), (C5, 4), (C7, 3)} ⊆ W . Then the inclusion inclusion

T ∨`in ⊆ T •`in follows.
Assume that (I,m) ∈ T , m ≥ 2, and I is not linearly ordered, that is, the poset

F0 :
•
↘
•→∗

is a peak subposet of I. Since the set Tm is empty, for all m ≥ 5, then m ≤ 4, that is,
m ∈ {2, 3, 4}.

Since I contains F0 then either I = F0, or |I| ≥ 4, there is a non-maximal element
a ∈ I \ F0 and one can show that I contains as a peak subposet any of the following four
posets

I1 :
•

↗ ↘
a → • → ∗, I•1 :

•
↘

• → a → ∗, I2 :
•
↘

• → a → ∗,

•
↘

I3 : • → ∗
↗

a

presented in (W3) and (W4) of Theorem 2.4.
Assume that m = 4. It follows that I = F0, because otherwise (I ′, 4) � (I, 4), for some

I ′ ∈ {I1, I•1 , I2, I3}, and we get the contradiction (I ′, 4) ∈ W ∩ T = ∅. This shows that
(I, 4) = (F0, 4) and T ∨4 = T •4 .

Assume that m = 3 and (I, 3) ∈ max T . By applying the poset extension type argu-
ments as for m = 4, we show that (I, 3) = (I1, 3) or (I, 3) = (I•1 , 3), that is, T ∨3 = T •3 .

Finally, assume that m = 2, I is not a chain, and (I, 2) ∈ T . By applying the poset
extension type arguments as for m = 4 and the Algorithm T.2 presented below, we show
that

(D1) (I, 2) ∈ max T if and only if I is not a peak subposet of a garland Gn, with n ≥ 2,
and I is one of the maximal tame posets of Table 2.7.

(D2) I is a peak subposet of a garland Gn of Table 2.7, with n ≥ 2, and there is an
infinite chain

F0 ↪→ I ↪→ I2 ↪→ I3 ↪→ . . . . . . ↪→ Ir ↪→ Ir+1 ↪→ . . . . . .

of proper peak embeddings, where Ir is a peak subposet of a garland Gn, with n ≥ 2, for
each r ≥ 2.
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Algorithm T.2. Input: The poset F0 and the garland Gr.

Pass: • Global variables: T ∨2 , T ∨3 , T ∨4 , KT , G, m, MAX.
• Local variables: n, I.
• Meaning of particular variables:

– T ∨2 , T ∨3 , T ∨4 - lists of pairs (J, j) ∈ T ∨j for j = 2 . . . 4, that are maximal in
T .

– KT - list of pairs (J, j) that do not belong to any of the sets T ∨2 , T ∨3 , T ∨4 .
– m = 2..4,
– MAX - constant that determines the number of maximal elements

of posets.
– G - the garland Gr, with r ≥ 2.

1. begin
2. enroll the pair (F0, 4) in T ∨4 ;

3. m← 3;

4. G← the garland;

5. TProcedure(T ∨4 [1]);
6. end

As an output we get the set KT defined above and the set T ∨2 ∪ T ∨3 ∪ T ∨4 of all maximal
elements in T .

The algorithm uses the following two procedures, where the first one is applied by the second.

Procedure T.2a.

1. on list(I,T ∨n )

2. if( T ∨n does not contain any (J, n), with J a peak subposet of I) then
3. if (I does not contain a peak subposet of any posets J , with (J, n) ∈ T ∨n )

4. then
5. enroll (I, n) in T ∨n ;

6. else
7. enroll (I, n) in T ∨n and replace it with (I ′, n) ∈ T ∨n
8. if I ′ is a proper peak subposet of I;

9. end

Procedure T.2b.

1. TProcedure(J)
2. if(|J | ≤MAX) then
3. construct the set EJ ;
4. for (each I from EJ) do
5. begin
6. for n← m to 2 do
7. if (Î[0,n] does not contain any of the posets N1,. . . ,N6)
8. then
9. if (I is not a subposet of G) then

10. on list(I,T ∨n );
11. TProcedure(I);
12. break;
13. else
14. if (m = 3) then
15. on list(I,T ∨n );
16. TProcedure(I);
17. break;
18. end;
19. else
20. if(J is not a subposet of G) then
21. enroll (J, n) in KT ;
22. end
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The algorithm relay on the following observations. If (I, 2) ∈ T , I is not a chain and is not a
peak subposet of a garland Gn, with n ≥ 2, then

(i) I contains F0 as a peak subposet, and
(ii) if I ′ is any of the 36 hypercitical posets of Table 2.6, then I ′ is not a peak subposet

of I,
because otherwise (I ′, 2) � (I, 2) and, by Theorem 2.4, we get the contradiction (I, 2) ∈ W ∩ T = ∅.

The algorithm produces the list of all maximal posets I (with respect to the peak embedding)
that are not peak subposets of garlands Gn, with n ≥ 2, satisfying the condition (i), and satisfy-
ing (ii) (equivalently, the poset Î[0,2] (2.2) does not contain any hypercritical poset of Nazarova
(2.0)). As an output we get just the set KT defined above and and the list of the first 17 posets
of Table 2.7.

Since, by a direct checking, we show that the garland Gn, with n ≥ 2, does not contain as
a peak subposet any of the 36 posets of Table 2.6 then Theorem 2.4 yields (Gn, 2) 6∈ W, that
is, (Gn, 2) ∈ T and consequently (I, 2) ∈ T , for any peak subposet I of a garland. Hence, by
Theorem 2.4, the the posets I containing F0 as a peak subposet that are not peak subposets of
any of the first 17 posets of Table 2.7, but are peak subposets of a garland Gn, with n ≥ 2, are
just the remaining posets of T . This shows that T ∨2 = T •2 and finishes the proof of the statements
(C) and (D).

In view of (B), to finish the proof of the equality (3.5), it remains to show that the inclusion
T � ⊇ T holds. Let (I, m) be an element of T . If there is an (I ′,m′) ∈ max T = T • such that
(I,m) � (I ′,m′) then (I, m) ∈ T �, because (I ′,m′) ∈ T • = max T � (see (A)) and obviously the
poset T � is closed under the predecessors in T . If there is no (I ′,m′) ∈ max T = T • such that
(I,m) � (I ′,m′) then (D) yields (I,m) ∈ T �, because each of the pairs (C1,m) and (C2,m), with
m ≥ 2, belongs to T � and any pair (I, 2), with I a peak subposet of a garland Gn, belong to T �.
This finishes the proof of the equality (3.5) and of Theorem 2.5. �

4. Appendix

We collect in this section some explanations concerning the computational programs we use
in the proof of Theorems 2.4 and 2.5 in Section 3.

4.1. In most of the programs we use several functions from the package CREP, which is a
package of programs allowing us to work with particular problems that appear in representation
theory of finite dimensional algebras over a field. In particular, CREP contains several data bases
containing some classifications that appear in the theory. It can be retrived via ftp from the server
ftp.uni-bielefeld.de under the directory pub/math/f-d-alg.

4.2. Throughout this section, by a poset I ≡ (I,�) we mean a finite partially ordered set
with a unique maximal element. Following the CREP data format for posets, we represent any
poset I by a pair [n, l], where n is the number of elements of I (that is identified with the set
{1, 2, . . . , n}) and ` = [`1, . . . , `r] is a set describing the Hasse quiver of I (see [11, p. 281]) by
providing, for each j ∈ {1, . . . , r}, a list `j = [`j,1, . . . , `j,mj ] of the upper neighbours `j,1, . . . , `j,mj

of `j,1 in the Hasse quiver of I. For instance, any of the following two different descriptions
[6, [ [1, 2, 3], [2, 4], [3, 4, 5], [4, 6], [5, 6] ]] and [6, [ [1, 2], [1, 3], [2, 4], [3, 4], [3, 5], [4, 6], [5, 6] ]]

define the poset I whose Hasse quiver has the form
2→4→ 6

↗ ↗ ↗
1→3→5 .

4.3. We say that I is a peak subposet of I ′ if there is a poset embedding I ↪→ I ′ that carries
the unique maximal element of I to the unique maximal element of I ′. We denote by EI the set
of all one-element peak extensions I ↪→ I ′ of I, see W.2.1.

4.4. Our programs use the following functions:
• ext(I) that returns the set EI of all one-element peak extensions I ↪→ I ′ of the poset I.
• Imm(I, m) presented below, that constructs the finite poset Î[0,m] defined in (2.2), for each

pair (I, m), with m ≥ 2.
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• subposet(I, I ′) that tests whether the poset I is a peak subposet of I ′.
4.5. We also freely use the following functions available in the CREP package:
• pswild(p) that tests, whether a given poset p contains one of the hypercitical posets of

Nazarova (2.0). Hint: In order to work (in our situation) with the function pswild(−) from the
CREP package in Maple V release 5.1, one has to delete the lines 556 and 558 in crep.src file.
• cartanm(p) that computes the Cartan matrix of the poset p.
• mini(p) that returns all minimal of the poset p.
• minEl(p) that returns all maximal of the poset p.
4.6. All programs we use in this paper are written in Maple V release 5.1, because most of

them use some functions from the CREP package.
In order to use CREP with Maple as a surface, we have to start with a Maple session from

the CREP home directory (otherwise Maple is not able to execute CREP commands properly).
Then to start CREP with Maple, we need to change first the current directory to the CREP
home directory and then we start Maple from there.

> Imm:=proc(p,m)
> local n,f,l,elem_min,elem_max,r,rr,pmm;
> n:=p[1];
> elem_max:=maxEl(p);
> elem_min:=minEl(p);
> f:=x->x+n*m;
> elem_min:=map(f,op({elem_min}));
> l:=[];
> for r in elem_max do
> for rr in elem_min do
> l:=[l[],[rr,r]];
> od;
> od;
> pmm:=Imm(p,m+1);
> RETURN([pmm[1],[op(pmm[2]),l[]]]);
> end:

Complete source codes of all implementations used in this paper and an instruction on ”how
to start the programs in Maple with the CREP package” can be found in

www.mat.uni.torun.pl/~simson

References
[1] D. M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets,

Canad. Math. Soc. Books in Math., Springer-Verlag, New York Berlin Heidelberg, 2000.
[2] D. Arnold and D. Simson, Representations of finite partially ordered sets over commutative

artinian uniserial rings, J. Pure Appl. Algebra, 205(2006), 640–659.
[3] D. Arnold and D. Simson, Representations of finite posets over commutative discrete

valuation rings, Comm. Algebra, 35(2007), in press.
[4] G. Birkhoff, Subgroups of abelian groups, Proc. London Math. Soc., 38(1934), 385–401.
[5] Ju. A. Drozd, Matrix problems and categories of matrices, in Zap. Nauchn. Sem.

Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 28(1972), pp. 144–153 (in Russian).
[6] Ju. A. Drozd, Tame and wild matrix problems, in ”Representations and Quadratic Forms”,

Akad. Nauk USSR, Inst. Matem., Kiev 1979, 39–74 (in Russian).



A Birkhoff type problem 17

[7] P. Gabriel, Indecomposable representations II, Symposia Mat.Inst. Naz. Alta Mat.,
11(1973), 81–104.

[8] L. A. Nazarova, Partially ordered sets of infinite type, Izv. Akad. Nauk SSSR, 39(1975),
963–991 (in Russian).

[9] V. V. Plahotnik, Representations of partially ordered sets over commutative rings, Izv.
Akad. Nauk SSSR, 40(1976), 527–543 (in Russian).

[10] F. Richman, and E. Walker, Subgroups of p5 bounded groups, in ”Abelian Groups and
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