
NOTE ON THE KURATOWSKI THEOREM FOR ABSTRACT

MEASURES OF NONCOMPACTNESS

K. LEŚNIAK

Abstract. We show in this note whether exactly holds the full version of Kuratowski’s
Intersection Theorem. Although the technique of proof is standard, this summarizes
observations scattered on a few papers of other authors.

1. Notation and definitions

Let us begin with standard concepts from metric topology. By X we mean a complete
space furnished with a metric d. The diameter of a set A ⊂ X is δ(A) = supa1,a2∈A d(a1, a2),
the open ball in x0 ∈ X with radius r > 0 is B(x0, r) = {x ∈ X : d(x, x0) < r}, the ε-
aureola (or ε-neighbourhood) around A is OεA =

⋃
a∈A B(a, ε), and the Hausdorff distance

between A, B ⊂ X is h(A, B) = inf{r > 0 : B ⊂ OrA ∧ A ⊂ OrB}. Denote by F(X)
the family of nonempty closed sets in X, also called the hyperspace of closed sets. One
should recognize that F(X) with h is an infinite-valued metric space (or generalized metric
space in the Luxemburg-Jung sense). However we shall not go in this terminology further,
because we need only set-convergence An −→

n→∞
A w.r.t. the Hausdorff distance h.

Having a complete space X one can define functionals related to a lack of compactness
of its subsets. These functionals are called measures of noncompactness (m.n.c. for short).
Below we collect known general constructions:

— Kuratowski m.n.c. α(A) = inf{r > 0 : ∃D1,D2,...,Dk⊂X s.t. δ(Di) < r,
⋃

i Di ⊃ A},
— Istrătescu m.n.c. β(A) = inf{r > 0 :6 ∃infinite S⊂A s.t. ∀s1,s2∈S, s1 6=s2

d(s1, s2) > r},
— Hausdorff m.n.c. χ(A) = inf{r > 0 : ∃x1,x2,...,xk∈X s.t.

⋃
i B(xi, r) ⊃ A},

— Hausdorff m.n.c. relative to C ⊂ X

χC(A) = inf{r > 0 : ∃c1,c2,...,ck∈C s.t.
⋃

i B(ci, r) ⊃ A}.
— inner Hausdorff m.n.c.

χi(A) = χA(A) = inf{r > 0 : ∃a1,a2,...,ak∈A s.t.
⋃

i B(ai, r) ⊃ A}.

We also add to this collection the diameter δ (cf. [BG]). All except two of the quoted
measures are equivalent: χ 6 χi 6 β 6 α 6 2χ. Furthermore α 6 δ, χ 6 χC . An abstract
m.n.c. is simply any functional µ : F(X) → [0,∞]. We call a family {An}

∞
n=1 µ-descending
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2 LEŚNIAK

under the conditions:

1◦ An 6= ∅ ∀n,
2◦ An is closed ∀n,
3◦ An+1 ⊂ An ∀n (decreasing),
4◦ µ(An) −→ 0.

We shall say that a functional µ satisfies (∗), if every sequence {xn}
∞
n=1 with xn ∈ An for

any µ-descending family {An}
∞
n=1 admits a convergent subsequence. We shall say that a

functional µ has the Kuratowski property, if the intersection A =
⋂

n An of any µ-descending
family {An}

∞
n=1 fulfills the following:

(nonemptiness) A 6= ∅;
(compactness) A is compact;
(convergence) An → A w.r.t. h.

Although µ is defined on F(X) but one can trivially extend it to all subsets of X by putting
µ(A)

.
= µ(A) for nonempty A ⊂ X, and µ(∅) = 0. Note that this is not the only possible

extension being neutral to property (∗), e.g. µ(∅) = ∞ is acceptable.
Concerning Kuratowski’s property observe that this implies upper regularity i.e. any

nonempty closed set A with µ(A) = 0 must be compact. To see this just take constant
sequence An

.
= A in the definition. Nevertheless there exist nonregular Kuratowski func-

tionals, namely the diameter (see Example 3).
The functional µ : S → [0,∞] given on some larger family F(X) ⊂ S ⊂ 2X is said to

have property (∗) (resp. the Kuratowski property), if its restriction to F(X) has the same
property.

2. Theorem

The original result by K. Kuratowski (see [K] chapt.III par.30 pp.318–320) is a joint
generalization of the Cantor Intersection Theorem and the characterization of compactness
due to Riesz. Thanks to the observation of G. Darbo (e.g. [DG] chapt.III par.4.9.C pp.69-
70, [H] chapt.2.6 pp.23–25) the Kuratowski m.n.c. has found applications in the fixed
point theory as joint generalization of the Banach and Schauder Fixed Point Principles
(because of obvious reasons this generalization makes sense only in the realm of Banach
spaces). Actual literature is very large and constitutes a kind of branch in fixed point
theory. What matters measures of noncompactness play an important rôle in asymptotic
stability of dynamical systems ([H], [BRz], [L]).

The theorem below explains for which measures the Kuratowski theorem holds.

Theorem 1. The functional µ has the Kuratowski property if and only if it satisfies (∗).

Proof. For the proof let us denote by {An}
∞
n=1 some fixed µ-descending family and by A

its intersection, A
.
=

⋂
n An.
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’If’ part. Assume (∗). Nonemptiness: pick up anyhow xn ∈ An and find convergent
subsequence xnj

→ x. Since xnj
∈ Anj

⊂ Ap for j s.t. nj > p we get x ∈ Ap. Being index
p arbitrary x ∈ A, so A 6= ∅. Compactness: fix {xn}

∞
n=1 ⊂ A. We can think that xn ∈ An,

due to A ⊂ An, thus we can derive a convergent subsequence. Convergence: suppose on
the contrary that An does not converge to A w.r.t. h. Hence Anj

6⊂ OεA for infinitely
many nj and some ε > 0. Putting Bj

.
= Anj

∩ [X \ OεA] defines decreasing family of
nonempty closed sets. Similarly as for nonemptiness one sees that

⋂
j Bj 6= ∅. (Indeed:

xj ∈ Bj ⊂ Anj
, µ(Anj

) → 0 etc.). So we arrived at the contradiction with
⋂

j

Bj =
⋂

j

Anj
∩ [X \ OεA] =

⋂

n

An ∩ [X \ OεA] = ∅.

’Only if’ part. Assume now Kuratowski’s property. Let {xn}
∞
n=1 be a sequence with

xn ∈ An. By convergence h(An, A) → 0 one can find in A a sequence {an}
∞
n=1 asymptot-

ically close to {xn}
∞
n=1 i.e. d(xn, an) → 0. By compactness of A there exists a convergent

subsequence {ank
}∞k=1

. Hence {xnk
}∞k=1

is convergent. �

Observe that our proof encompasses the following question: is the family {Bj}j µ-
descending itself? A slightly ,,more general” version of the Kuratowski Theorem reads as
follows.

Theorem 2. Let µ satisfy (∗), {An}
∞
n=1 be a decreasing family of (possibly empty) closed

sets with µ(An) → 0 and A =
⋂∞

n=1
An be its intersection. Then An → A w.r.t. h and A

is compact. If additionally all sets An are nonempty, then A is nonempty too.

We point out that the convergence An → ∅ w.r.t. h is possible only if An = ∅ starting
from some n. (It means that ∅ is an isolated point in F(X)∪{∅} furnished with h.) When
µ(∅) 6= 0 the Theorems 1 and 2 are exactly the same.

One would like to deal with the convergence even in case the intersection has nonzero
measure (e.g. it is noncompact or unbounded). The following statement provides a partial
solution.

Theorem 3. Let µ satisfy (∗), {An}
∞
n=1 be a decreasing family of closed sets, and A =⋂∞

n=1
An be its intersection. If µ( An \ A ) → 0, then An → A w.r.t. h. In particular A is

nonempty, if all sets An are so.

Proof. We can apply Theorem 2 to the sequence {An \ A}∞n=1 obtaining its h-convergence

to
⋂∞

n=1
An \ A. Observe now

An = An \ A ∪ A,

A =

∞⋂

n=1

An \ A ∪ A,

and recall that the set-theoretic union ,,∪” is continuous w.r.t. h. Hence the desired
convergence of sets follows. �
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3. Examples

In this section we are concerned with typical assumptions on abstract m.n.c. µ : 2X →
[0,∞]. We show that the condition (∗) is fulfilled very often.

Example 1. Let µ satisfy

(regularity) µ(A) = 0 ⇔ A is relatively compact,
(nonsingularity) µ(A ∪ {x}) = µ(A),
(monotonicity) A ⊂ B ⇒ µ(A) 6 µ(B).

Then there holds Kuratowski’s theorem (as was observed in [COZ] Lemma 1.3., comp.
[ADL]). Due to equivalence from Theorem 1 it is enough to check property (∗). To do this
fix µ-descending family {An}

∞
n=1 and choose {xn}

∞
n=1 with xn ∈ An. Thus we have

µ({xn : n > 1}) = µ({xn : n > p}) 6 µ(Ap) → 0,

so {xn}
∞
n=1 admits a convergent subsequence. Remember that α (Kuratowski m.n.c.), β

(Istrătescu m.n.c.) and χ (Hausdorff m.n.c.) are all regular, nonsingular and monotone.
They are even ultraadditive i.e. µ(A ∪ B) = max{µ(A), µ(B)}. ♦

Example 2. Let µ satisfy

(i) µ({xn}
∞
n=1) = 0 ⇒ {xn : n > 1} is relatively compact,

(ii) there exists constant M1 > 0 s.t. µ(A ∪ {x1, x2, . . . , xp}) 6 M1 · µ(A),
(iii) there exists constant M2 > 0 s.t. A ⊂ B ⇒ µ(A) 6 M2 · µ(B).

Of course any measure from Example 1 obeys (i)-(iii). Similarly as before every measure
with (i)-(iii) has property (∗). The measure considered in [B], namely χi (inner Hausdorff
m.n.c.), is just regular but nonsingularity is weakened to condition (ii) with M1 = 2, and
monotonicity is weakened to condition (iii) with M2 = 2. ♦

Example 3. Let µ satisfy

(a) µ({xn : n > p}) −→
p→∞

0 ⇒ {xn : n > 1} is relatively compact,

(b) there exists constant M > 0 s.t. A ⊂ B ⇒ µ(A) 6 M · µ(B).

Any measure from Example 2 obeys (a)-(b) ((a) follows from (i)-(ii) and (iii) is exactly
(b)). Again each measure with (a)-(b) has property (∗). The functionals δ (diameter)
and χC (relative Hausdorff m.n.c.) are monotone (hence (b)). They fulfill also (a) due to
inequalities χ 6 χC , χ 6 δ. Moreover, a nonempty set A has δ(A) = 0 iff A is singleton.
This is stronger than upper regularity but, at the same time, this shows also nonregularity
of δ. ♦
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Remark that for any µ-descending family {An}
∞
n=1, µ with the Kuratowski property, one

has χ(An) → 0 (|χ(An) − χ(A)| 6 h(An, A) → 0, where A =
⋂

n An, χ(A) = 0; cf. The-
orem 2 in [B]). So every µ-descending family is automatically χ-descending (equivalently
α-descending etc.). Obviously the converse is not true (just take µ = δ). Thus we can
think about χ (or any equivalent m.n.c.) as the coarsest possible m.n.c. when formulating
the Kuratowski Theorem.

At the end observe that it is enough to check the Kuratowski Theorem just for one
measure among α, β, χ, χi because they are all equivalent. Then the case of δ and χC can
be deduced.
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Noncompactness and Condensing Operators, Birkhäuser Basel 1992
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