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Glossary

Spectral decomposition of a unitary representation If

U D (Ua)a2A is a continuous unitary representa-

tion of a locally compact second countable (l.c.s.c.)
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Abelian group A in a separable Hilbert space H then

a decomposition H D
L1

iD1 A(xi) is called spectral

if �x1 � �x2 � : : : (such a sequence of measures is

also called spectral); here A(x) :D spanfUax : a 2 Ag

is called the cyclic space generated by x 2 H and �x

stands for the spectral measure of x.

Maximal spectral type and the multiplicity function ofU

The maximal spectral type �U of U is the type of �x1

in any spectral decomposition of H; the multiplicity

function MU : bA ! f1; 2; : : :g [ fC1g is defined �U-

a.e. and MU(�) D
P1

iD1 1Yi (�), where Y1 D bA and

Yi D supp d�x i /d�x1 for i � 2.

A representationU is said to have simple spectrum ifH

is reduced to a single cyclic space. The multiplicity is

uniform if there is only one essential value of MU. The

essential supremum of MU is called themaximal spec-

tral multiplicity.U is said to have discrete spectrum ifH

has an orthonormal base consisting of eigenvectors of

U;U has singular (Haar, absolutely continuous) spec-

trum if the maximal spectral type ofU is singular with

respect to (equivalent to, absolutely continuous with

respect to) a Haar measure of bA.
Koopman representation of a dynamical systemT Let

A be a l.c.s.c. (and not compact) Abelian group and

T : a 7! Ta a representation of A in the group

Aut(X;B; �) of (measure-preserving) automorphisms

of a standard probability Borel space (X;B; �).

The Koopman representation U D UT of T in

L2(X;B; �) is defined as the unitary representation

a 7! UTa 2 U(L2(X;B; �)), where UTa ( f ) D f ı Ta .

Ergodicity, weak mixing, mild mixing, mixing and

rigidity of T A measure-preserving A-action T D

(Ta)a2A is called ergodic if �0 � 1 2 bA is a simple

eigenvalue ofUT . It is weakly mixing ifUT has a con-

tinuous spectrum on the subspace L20(X;B; �) of zero

mean functions. T is said to be rigid if there is a se-

quence (an) going to infinity in A such that the se-

quence (UTan
) goes to the identity in the strong (or

weak) operator topology; T is said to bemildly mixing

if it has no non-trivial rigid factors. We say that T is

mixing if the operator equal to zero is the only limit

point of fUTa jL20(X;B;�) : a 2 Ag in the weak operator

topology.

Spectral disjointness Two A-actions S and T are called

spectrally disjoint if the maximal spectral types of their

Koopman representations UT and US on the corre-

sponding L20-spaces are mutually singular.

SCS property We say that a Borel measure � on bA sat-

isfies the strong convolution singularity property (SCS

property) if, for each n � 1, in the disintegration

(given by the map (�1; : : : ; �n) 7! �1 � : : : � �n)

�˝n D
R
bA �� d� (n)(�) the conditional measures ��

are atomic with exactly n! atoms (� (n) stands for the

nth convolution � � : : : � �). An A-action T satisfies

the SCS property if the maximal spectral type of UT

on L20 is a type of an SCS measure.

Kolmogorov group property AnA-actionT satisfies the

Kolmogorov group property if �UT � �UT � �UT .

Weighted operator Let T be an ergodic automorphism

of (X;B; �) and � : X ! T be a measurable func-

tion. The (unitary) operator V D V�;T acting on

L2(X;B; �) by the formula V�;T ( f )(x) D �(x) f (Tx) is

called a weighted operator.

Induced automorphism Assume that T is an automor-

phism of a standard probability Borel space (X;B; �).

Let A 2 B, �(A) > 0. The induced automorphism TA

is defined on the conditional space (A;BA; �A), where

BA is the trace of B on A, �A(B) D �(B)/�(A) for

B 2 BA and TA(x) D T kA(x)x, where kA(x) is the

smallest k � 1 for which T kx 2 A.

AT property of an automorphism An automorphism T

of a standard probability Borel space (X;B; �)

is called approximatively transitive (AT for short)

if for every " > 0 and every finite set f1; : : : ; fn
of non-negative L1-functions on (X;B; �) we can

find f 2 L1(X;B; �) also non-negative such that

k fi  
P

j ˛i j f ı Tn jkL1 < " for all i D 1; : : : ; n (for

some ˛i j � 0, n j 2 N).

Cocycles and group extensions If T is an ergodic auto-

morphism, G is a l.c.s.c. Abelian group and ' : X ! G

is measurable then the pair (T; ') generates a cocycle

'(�)(�) : Z � X ! G, where

'(n)(x) D

8
<
:
'(x)C : : :C '(Tn 1x) for n > 0 ;

0 for n D 0 ;

 ('(Tnx)C : : :C '(T 1x)) for n < 0 :

(That is ('(n)) is a standard 1-cocycle in the algebraic

sense for the Z-action n( f ) D f ı Tn on the group of

measurable functions on X with values in G; hence the

function ' : X ! G itself is often called a cocycle.)

Assume additionally that G is compact. Using the co-

cycle ' we define a group extension T' on (X �G;B˝

B(G); � ˝ �G ) (�G stands for Haar measure of G),

where T'(x; g) D (Tx; '(x)C g).

Special flow Given an ergodic automorphism T on

a standard probability Borel space (X;B; �) and a pos-

itive integrable function f : X ! RC we put

X f D f(x; t) 2 X � R : 0 � t < f (x)g ;

B
f D B˝ B(R)jX f ;
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and define � f as normalized �˝ �RjX f . By a spe-

cial flow we mean the R-action T f D (T
f
t )t2R under

which a point (x; s) 2 X f moves vertically with the

unit speed, and once it reaches the graph of f , it is iden-

tified with (Tx; 0).

Markov operator A linear operator J : L2(X;B; �) !

L2(Y ;C; �) is called Markov if it sends non-

negative functions to non-negative functions and

J1 D J�1 D 1.

Unitary actions on Fock spaces If H is a separable

Hilbert space then by Hˇn we denote the subspace

of n-tensors of H˝n symmetric under all permuta-

tions of coordinates, n � 1; then the Hilbert space

F(H) :D
L1

nD0 H
ˇn is called a symmetric Fock space.

If V 2 U(H) then F(V) :D
L1

nD0 V
ˇn 2 U(F(H))

where Vˇn D V˝n jHˇn .

Definition of the Subject

Spectral theory of dynamical systems is a study of special

unitary representations, called Koopman representations

(see the glossary). Invariants of such representations are

called spectral invariants of measure-preserving systems.

Together with the entropy, they constitute the most im-

portant invariants used in the study of measure-theoretic

intrinsic properties and classification problems of dynam-

ical systems as well as in applications. Spectral theory was

originated by vonNeumann, Halmos and Koopman in the

1930s. In this article we will focus on recent progresses in

the spectral theory of finite measure-preserving dynamical

systems.

Introduction

Throughout A denotes a non-compact l.c.s.c. Abelian

group (A will be most often Z or R). The assumption

of second countability implies that A is metrizable, �-

compact and the space C0(A) is separable. Moreover the

dual group bA is also l.c.s.c. Abelian.

General Unitary Representations

We are interested in unitary, that is with values in the uni-

tary groupU(H) of a Hilbert spaceH, (weakly) continuous

representations V : A 3 a 7! Va 2 U(H) of such groups

(the scalar valued maps a 7! hVax; yi are continuous for

each x; y 2 H).

Let H D L2(bA;B(bA); �), where B(bA) stands for the
�-algebra of Borel sets of bA and � 2 MC(bA) (whenever
X is a l.c.s.c. space, by M(X) we denote the set of com-

plex Borel measures on X, while MC(X) stands for the

subset of positive (finite) measures). Given a 2 A, for

f 2 L2(bA;B(bA); �) put

V�
a ( f )(�) D i(a)(�) � f (�) D �(a) � f (�) (� 2 bA) ;

where i : A !
bbA is the canonical Pontriagin isomorphism

of A with its second dual. Then V� D (V
�
a )a2A is a uni-

tary representation ofA. Since C0(bA) is dense in L2(bA; �),
the latter space is separable. Therefore also direct sumsL1

iD1 V
�i of such type representations will be unitary

representations of A in separable Hilbert spaces.

Lemma 1 (Wiener Lemma) If F � L2(bA; �) is a closed

V
�
a -invariant subspace for all a 2 A then F D 1YL2(bA;
B(bA); �) for some Borel subset Y � bA.

Notice however that since A is not compact (equivalently,
bA is not discrete), we can find � continuous and there-

fore V� has no irreducible (non-zero) subrepresentation.

From now on only unitary representations of A in separa-

ble Hilbert spaces will be considered and we will show how

to classify them.

A function r : A ! C is called positive definite if

NX

n;mD0

r(an  am)znzm � 0 (1)

for each N > 0, (an) � A and (zn) � C. The central result

about positive definite functions is the following theorem

(see e. g. [173]).

Theorem 1 (Bochner–Herglotz) Let r : A ! C be con-

tinuous. Then r is positive definite if and only if there exists

(a unique) � 2 MC(bA) such that

r(a) D

Z

bA
�(a) d�(�) for each a 2 A :

If now U D (Ua)a2A is a representation of A in H then

for each x 2 H the function r(a) :D hUax; xi is contin-

uous and satisfies (1), so it is positive definite. By the

Bochner–Herglotz Theorem there exists a unique mea-

sure �U;x D �x 2 MC(bA) (called the Spectral measure of

x) such that

b� x (a) :D

Z

bA
i(a)(�) d�x (�) D hUax; xi

for each a 2 A. Since the partial map Uax 7!

i(a) 2 L2(bA; �x ) is isometric and equivariant, there

exists a unique extension of it to a unitary operator
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W : A(x)! L2(bA; �x ) giving rise to an isomorphism of

UjA(x) and V�x . Then the existence of a spectral de-

composition is proved by making use of separability and

a choice of maximal cyclic spaces at every step of an in-

duction procedure. Moreover, a spectral decomposition is

unique in the following sense.

Theorem 2 (Spectral Theorem) If H D
L1

iD1 A(xi) DL1
iD1 A(x0i) are two spectral decompositions of H then

�x i � �x0i
for each i � 1.

It follows that the representationU is entirely determined

by types (the sets of equivalent measures to a given one)

of a decreasing sequence of measures or, equivalently, U

is determined by its maximal spectral type �U and its mul-

tiplicity function MU.

Notice that eigenvalues of U correspond to Dirac

measures: � 2 bA is an eigenvalue (i. e. for some kxk D 1,

Ua(x) D �(a)x for each a 2 A) if and only if �U;x D ı�.

ThereforeU has a discrete spectrum if and only if themax-

imal spectral type ofU is a discrete measure.

We refer the reader to [64,105,127,147,156] for pre-

sentations of spectral theory needed in the theory of dy-

namical systems – such presentations are usually given for

A D Z but once we have the Bochner–Herglotz Theorem

and the Wiener Lemma, their extensions to the general

case are straightforward.

Koopman Representations

We will consider measure-preserving representations of

A. It means that we fix a probability standard Borel

space (X;B; �) and by Aut(X;B; �) we denote the

group of automorphisms of this space, that is T 2

Aut(X;B; �) if T : X ! X is a bimeasurable (a.e.) bi-

jection satisfying �(A) D �(TA) D �(T 1A) for

each A 2 B. Consider then a representation of A

in Aut(X;B; �) that is a group homomorphism a 7!

Ta 2 Aut(X;B; �); we write T D (Ta)a2A. More-

over, we require that the associated Koopman repre-

sentation UT is continuous. Unless explicitly stated,

A-actions are assumed to be free, that is we assume that

for �-a.e. x 2 X the map a 7! Tax is 1 1. In fact, since

constant functions are obviously invariant for UTa , that is

the trivial character 1 is always an eigenvalue of UT , the

Koopman representation is considered only on the sub-

space L20(X;B; �) of zero mean functions. We will restrict

our attention only to ergodic dynamical systems (see the

glossary). It is easy to see that T is ergodic if and only if

wheneverA 2 B and AD Ta(A) (�-a.e.) for all a 2 A then

�(A) equals 0 or 1. In case of ergodic Koopman represen-

tations, all eigenvalues are simple. In particular, (ergodic)

Koopman representations with discrete spectra have sim-

ple spectra. The reader is referred to monographs men-

tioned above as well as to [26,158,177,196,204] for basic

facts on the theory of dynamical systems.

The passage T 7! UT can be seen as functorial (con-

travariant). In particular a measure-theoretic isomor-

phism of A-systems T and T 0 implies spectral isomor-

phism of the corresponding Koopman representations;

hence spectral properties are measure-theoretic invari-

ants. Since unitary representations are completely clas-

sified, one of the main questions in the spectral theory

of dynamical systems is to decide which pairs ([�];M)

can be realized by Koopman representations. The most

spectacular, still unsolved, is the Banach problem con-

cerning ([�T ];M � 1). Another important problem is to

give complete spectral classification in some classes of

dynamical systems (classically, it was done in the the-

ory of Kolmogorov and Gaussian dynamical systems).

We will also see how spectral properties of dynamical

systems can determine their statistical (ergodic) prop-

erties; a culmination given by the fact that a spec-

tral isomorphism may imply measure-theoretic simili-

tude (discrete spectrum case, Gaussian–Kronecker case).

We conjecture that a dynamical system T either is spec-

trally determined or there are uncountably many pair-

wise non-isomorphic systems spectrally isomorphic to

T .

We could also consider Koopman representations in

Lp for 1 � p ¤ 2. However wheneverW : Lp(X;B; �)!

Lp(Y ;C; �) is a surjective isometry and W ı UTa D

USa ı W for each a 2 A then by the Lamperti Theo-

rem (e. g. [172]) the isometryW has to come from a non-

singular pointwise map R : Y ! X and, by ergodicity, R

“preserves” the measure � and hence establishes a mea-

sure-theoretic isomorphism [94] (see also [127]). Thus

spectral classification of such Koopman representations

goes back to the measure-theoretic classification of dy-

namical systems, so it looks hardly interesting. This does

not mean that there are no interesting dynamical ques-

tions for p ¤ 2. Let us mention still open Thouvenot’s

question (formulated in the 1980s) for Z-actions: For ev-

ery ergodic T acting on (X;B;¹), does there exist f 2

L1(X;B; �) such that the closed linear span of f ı Tn ,

n 2 Z equals L1(X;B; �)?

Iwanik [79,80] proved that if T is a system with pos-

itive entropy then its Lp-multiplicity is 1 for all p > 1.

Moreover, Iwanik and de Sam Lazaro [85] proved that for

Gaussian systems (they will be considered in Sect. “Spec-

tral Theory of Dynamical Systems of Probabilistic Ori-

gin”) the Lp-multiplicities are the same for all p > 1 (see

also [137]).
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Markov Operators, Joinings and Koopman

Representations, Disjointness

and Spectral Disjointness, Entropy

We would like to emphasize that spectral theory is closely

related to the theory of joinings (see⊲ Joinings in Ergodic

Theory for needed definitions). The elements � of the set

J(S;T ) of joinings of two A-actions S and T are in a 1-

1 correspondence with Markov operators J D J� between

the L2-spaces equivariant with the corresponding Koop-

man representations (see the glossary and ⊲ Joinings in

Ergodic Theory). The set of ergodic self-joinings of an er-

godic A-action T is denoted by J e2 (T ).

Each Koopman representationUT consists of Markov

operators (indeed, UTa is clearly a Markov operator). In

fact, if U 2 U(L2(X;B; �)) is Markov then it is of the

form UR , where R 2 Aut(X;B; �) [133]. This allows us to

see Koopman representations as unitaryMarkov represen-

tations, but since a spectral isomorphism does not “pre-

serve” the set of Markov operators, spectrally isomorphic

systems can have drastically different sets of self-joinings.

We will touch here only some aspects of interactions

(clearly, far from completeness) between the spectral the-

ory and the theory of joinings.

In order to see however an example of such interac-

tions let us recall that the simplicity of eigenvalues for er-

godic systems yields a short “joining” proof of the clas-

sical isomorphism theorem of Halmos-von Neumann in

the discrete spectrum case: Assume that S D (S⊣)⊣2A

and T D (Ta)a2A are ergodic A-actions on (X;B; �)

and (Y ;C; �) respectively. Assume that both Koopman rep-

resentations have purely discrete spectrum and that their

group of eigenvalues are the same. Then S and T are mea-

sure-theoretically isomorphic. Indeed, each ergodic joining

of T and S is the graph of an isomorphism of these two

systems (see [127]; see also Goodson’s proof in [66]). An-

other example of such interactions appear in the study

Rokhlin’s multiple mixing problem and its relation with

the pairwise independence property (PID) for joinings of

higher order. We will not deal with this subject here, refer-

ring the reader to ⊲ Joinings in Ergodic Theory (see how-

ever Sect. “Lifting Mixing Properties”).

Following [60], two A-actions S and T are called dis-

joint provided the product measure is the only element in

J(S;T ). It was already noticed in [72] that spectrally dis-

joint systems are disjoint in the Furstenberg sense; indeed,

Im(J�jL20
) D f0g since �T ;J� f � �S; f .

Notice that whenever we take � 2 J e2(T ) we obtain

a new ergodic A-action (Ta � Ta)a2A defined on the

probability space (X � X; �). One can now ask how close

spectrally to T is this new action? It turns out that ex-

cept of the obvious fact that the marginal �-algebras are

factors, (T � T ; �) can have other factors spectrally dis-

joint with T : the most striking phenomenon here is a re-

sult of Smorodinsky and Thouvenot [198] (see also [29])

saying that each zero entropy system is a factor of an

ergodic self-joining system of a fixed Bernoulli system

(Bernoulli systems themselves have countable Haar spec-

trum). The situation changes if � D �˝ �. In this case for

f ; g 2 L2(X;B; �) the spectral measure of f ˝ g is equal

to �T ; f � �T ;g . A consequence of this observation is that

an ergodic action T D (Ta)a2A is weakly mixing (see the

glossary) if and only if the product measure �˝ � is an

ergodic self-joining of T .

The entropy which is a basic measure-theoretic invari-

ant does not appear when we deal with spectral proper-

ties. We will not give here any formal definition of entropy

for amenable group actions referring the reader to [153].

Assume that A is countable and discrete. We always as-

sume that A is Abelian, hence it is amenable. For each

dynamical system T D (Ta)a2A acting on (X;B; �), we

can find a largest invariant sub-� field P � B, called the

Pinsker �-algebra, such that the entropy of the corre-

sponding quotient system is zero. Generalizing the classi-

cal Rokhlin-Sinai Theorem (see also [97] for Zd -actions),

Thouvenot (unpublished) and independently Dooley and

Golodets [31] proved this theorem for groups even more

general than those considered here: The spectrum of UT

on L2(X;B; �)	 L2(P) is Haar with uniform infinite mul-

tiplicity. This general result is quite intricate and based on

methods introduced to entropy theory by Rudolph and

Weiss [179] with a very surprising use of Dye’s Theo-

rem on orbital equivalence of all ergodic systems. For A

which is not countable the same result was recently proved

in [17] in case of unimodular amenable groups which are

not increasing union of compact subgroups. It follows that

spectral theory of dynamical systems essentially reduces to

the zero entropy case.

Maximal Spectral Type of a Koopman

Representation, Alexeyev’s Theorem

Only few general properties of maximal spectral types

of Koopman representations are known. The fact that

a Koopman representation preserves the space of real

functions implies that its maximal spectral type is the type

of a symmetric (invariant under themap � 7! �) measure.

Recall that the Gelfand spectrum �(U) of a repre-

sentation U D (Ua)a2A is defined as the of approxima-

tive eigenvalues of U, that is �(U) 3 � 2 bA if for a se-

quence (xn) bounded and bounded away from zero,

kUaxn  �(a)xnk ! 0 for each a 2 A. The spectrum
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is a closed subset in the topology of pointwise con-

vergence, hence in the compact-open topology of bA.
In case of A D Z, the above set �(U) is equal to

fz 2 C : U  z � Id is not invertibleg.

Assume now that A is countable and discrete (and

Abelian). Then there exists a Fölner sequence (Bn)n�1
whose elements tile A [153]. Take a free and ergodic ac-

tion T D (Ta)a2A on (X;B; �). By [153] for each " > 0

we can find a set Yn 2 B such that the sets TbYn are

pairwise disjoint for b 2 Bn and �(
S

b2Bn
TbYn) > 1  ".

For each � 2 bA, by considering functions of the form

fn D
P

b2Bn
�(b)1TbYn we obtain that � 2 �(UT ). It fol-

lows that the topological support of the maximal spec-

tral type of the Koopman representation of a free and

ergodic action is full [105,127,147]. The theory of Gaus-

sian systems shows in particular that there are symmet-

ric measures on the circle whose topological support is the

whole circle but which cannot be maximal spectral types

of Koopman representations.

An open well-known question remains whether an ab-

solutely continuous measure � is themaximal spectral type

of a Koopman representation if and only if � is equivalent

to a Haar measure of bA (this is unknown for A D Z).

Another interesting question was recently raised by A.

Katok (private communication): Is it true that the topo-

logical supports of all measures in a spectral sequence of

a Koopman representation are full? If the answer to this

question is positive then for example the essential supre-

mum of MUT is the same on all balls of bA.
Notice that the fact that all spectral measures in a spec-

tral sequence are symmetric means thatUT is isomorphic

to UT 1 . A. del Junco [89] showed that generically for

Z-actions, T and its inverse are not measure-theoretically

isomorphic (in fact he proved disjointness).

LetT be anA-action on (X;B; �). One can ask wether

a “good” function can realize the maximal spectral type of

UT . In particular can we find a function f 2 L1(X;B; �)

that realizes the maximal spectral type? The answer is

given in the following general theorem (see [139]).

Theorem 3 (Alexeyev’s Theorem) Assume that U D

(Ua)a2A is a unitary representation of A in a separa-

ble Hilbert space H. Assume that F � H is a dense linear

subspace. Assume moreover that with some F-norm � –

stronger than the norm k � k given by the scalar product – F

becomes a Fréchet space. Then, for each spectral measure �

(� �U) there exists y 2 F such that �y � � . In particular,

there exists y 2 F that realizes the maximal spectral type.

By taking H D L2(X;B; �) and F D L1(X;B; �) we ob-

tain the positive answer to the original question. Alex-

eyev [14] proved the above theorem for A D Z using

analytic functions. Refining Alexeyev’s original proof,

Fra̧czek [52] showed the existence of a sufficiently regu-

lar function realizing the maximal spectral type depend-

ing only on the “regularity” of the underlying probability

space, e. g. when X is a compact metric space (compact

manifold) then one can find a continuous (smooth) func-

tion realizing the maximal spectral type.

By the theory of systems of probabilistic origin (see

Sect. “Spectral Theory of Dynamical Systems of Prob-

abilistic Origin”), in case of simplicity of the spec-

trum, one can easily point out spectral measures whose

types are not realized by (essentially) bounded func-

tions. However, it is still an open question whether for

each Koopman representationUT there exists a sequence

( fi)i�1 � L1(X;B; �) such that the sequence (� f i )i�1 is

a spectral sequence for UT . For A D Z it is unknown

whether the maximal spectral type of a Koopman repre-

sentation can be realized by a characteristic function.

Spectral Theory ofWeighted Operators

We now pass to the problem of possible essential values

for the multiplicity function of a Koopman representation.

However, one of known techniques is a use of cocycles,

so before we tackle the multiplicity problem, we will go

through recent results concerning spectral theory of com-

pact group extensions automorphisms which in turn entail

a study of weighted operators (see the glossary).

Assume that T is an ergodic automorphism of a stan-

dard Borel probability space (X;B; �). Let � : X ! T

be a measurable function and let V D V�;T be the cor-

responding weighted operator. To see a connection of

weighted operators with Koopman representations of

compact group extensions consider a compact (metric)

Abelian group G and a cocycle ' : X ! G. Then UT'
(see

the glossary) acts on L2(X � G; �˝ �G ). But

L2(X�G; �˝�G ) D
M

�2bG
L�; where L� D L2(X; �)˝�;

where L� is a UT'
-invariant (clearly, closed) subspace.

Moreover, the map f ˝ � 7! f settles a unitary isomor-

phism of UT'
jL�

with the operator V�ı';T . Therefore,

spectral analysis of such Koopman representations re-

duces to the spectral analysis of weighted operators V�ı';T

for all � 2 bG.

Maximal Spectral Type

of Weighted Operators over Rotations

The spectral analysis of weighted operators V�;T is es-

pecially well developed in case of rotations, i. e. when
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we additionally assume that T is an ergodic rotation on

a compact monothetic group X: Tx D x C x0, where x0 is

a topologically cyclic element of X (and � will stand for

Haar measure �x of X). In this case Helson’s analysis [74]

applies (see also [68,82,127,160]) leading to the following

conclusions:

� The maximal spectral type �V�;T
is either discrete or

continuous.

� When �V�;T
is continuous it is either singular or

Lebesgue.

� The spectral multiplicity of V�;T is uniform.

We now pass to a description of some results in case

when Tx D x C ˛ is an irrational rotation on the addi-

tive circle X D [0; 1). It was already noticed in the origi-

nal paper by Anzai [16] that when � : X ! T is an affine

cocycle (�(x) D exp(nx C c), 0 ¤ n 2 Z) then V�;T has

a Lebesgue spectrum. It was then considered by several au-

thors (originated by [123], see also [24,26]) to which extent

this property is stable when we perturb our cocycle. Since

the topological degree of affine cocyles is different from

zero, when perturbing them we consider smooth pertur-

bations by cocycles of degree zero.

Theorem 4 ([82]) Assume that Tx D x C ˛ is an irra-

tional rotation. If � : [0; 1)! T is of non-zero degree, abso-

lutely continuous, with the derivative of bounded variation

then V�;T has a Lebesgue spectrum.

In the same paper, it is noticed that if we drop the as-

sumption on the derivative then the maximal spectral type

of V�;T is a Rajchman measure (i. e. its Fourier transform

vanishes at infinity). It is still an open question, whether

one can find � absolutely continuous with non-zero de-

gree and such that V�;T has singular spectrum. “Below”

absolute continuity, topological properties of the cocycle

seem to stop playing any role – in [82] a continuous, de-

gree 1 cocycle � of bounded variation is constructed such

that �(x) D �(x)/�(Tx) for a measurable � : [0; 1)! T

(that is � is a coboundary) and therefore V�;T has purely

discrete spectrum (it is isomorphic to UT ). For other re-

sults about Lebesgue spectrum for Anzai skew products

see also [24,53,81] (in [53] Zd -actions of rotations and so

called winding numbers instead of topological degree are

considered).

When the cocycle is still smooth but its degree is zero

the situation drastically changes. Given an absolutely con-

tinuous function f : [0; 1)! R M. Herman [76], using

the Denjoy–Koksma inequality (see e. g. [122]), showed

that f
(qn)
0 ! 0 uniformly (here f0 D f  

R 1
0 f d�[0;1) and

(qn) stands for the sequence of denominators of ˛). It fol-

lows that Te2� i f is rigid and hence has a singular spec-

trum. B. Fayad [37] shows that this result is no longer

true if one dimensional rotation is replaced by a multi-di-

mensional rotation (his counterexample is in the analytic

class). See also [130] for the singularity of spectrum for

functions f whose Fourier transform satisfies o(1/jnj) con-

dition or to [84], where it is shown that sufficiently small

variation implies singularity of the spectrum.

A natural class of weighted operators arises when we

consider Koopman operators of rotations on nil-mani-

folds. We only look at the particular example of such

a rotation on a quotient of the Heisenberg group (R3;�)

(a general spectral theory of nil-actions was mainly de-

veloped by W. Parry [157]) – these actions have count-

able Lebesgue spectrum in the orthocomplement of the

subspace of eigenfunctions) that is take the nil-manifold

R3/�Z3 on which we define the nil-rotation S((x; y; z) �

Z3) D (˛; ˇ; 0)�(x; y; z)�Z3 D
 
x C ˛; y C ˇ; z C ˛y

�
�

Z3, where ˛; ˇ and 1 are rationally independent. It can be

shown that S is isomorphic to the skew product defined on

[0; 1)2 � T by

T' : (x; y; z) 7!
�
x C ˛; y C ˇ; z � e2� i'(x;y)

�
;

where '(x; y) D ˛y   (x C ˛; y C ˇ)C  (x; y) with

 (x; y) D x[y]. Since nil-cocycles can be considered as

a certain analog of affine cocycles for one-dimensional ro-

tations, it would be nice to explain to what kind of pertur-

bations the Lebesgue spectrum property is stable.

Yet another interesting problem which is related to the

spectral theory of extensions given by so called Rokhlin

cocycles (see Sect. “Rokhlin Cocycles”) arises, when given

f : [0; 1)! R, we want to describe spectrally the one-pa-

rameter set of weighted operators Wc :D Ve2� i c f ;T ; here T

is a fixed irrational rotation by ˛. As proved by quite so-

phisticated arguments in [84], if we take f (x) D x then for

all non-integer c 2 R the spectrum of Wc is continuous

and singular (see also [68] and [145] where some special

˛’s are considered). It has been open for some time if at

all one can find f : [0; 1)! R such that for each c ¤ 0,

the operator Wc has a Lebesgue spectrum. The positive

answer is given in [205]: for example if f (x) D x (2C")

(" > 0) and ˛ has bounded partial quotients then Wc

has a Lebesgue spectrum for all c ¤ 0. All functions with

such a property considered in [205] are non-integrable. It

would be interesting to find an integrable f with the above

property.

We refer to [66] and the references therein for further

results especially for transformations of the form (x; y) 7!

(xC˛; 1[0;ˇ )(x)C y) on [0; 1)�Z/2Z. Recall however that

earlier Katok and Stepin [104] used this kind of transfor-
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mations to give a first counterexample to the Kolmogorov

group property (see the glossary) for the spectrum.

TheMultiplicity Problem

for Weighted Operators over Rotations

In case of perturbations of affine cocycles, this problem

was already raised by Kushnirenko [123]. Some signifi-

cant results were obtained by M. Guenais. Before we state

her results let us recall a useful criterion to find an upper

bound for the multiplicity: If there exist c > 0 and a se-

quence (Fn)n�1 of cyclic subspaces of H such that for each

y 2 H, kyk D 1 we have lim infn!1 kpro jFn yk
2 � c,

then esssup(MU ) � 1/c which follows from a well-known

lemma of Chacon [23,26,111,127]. Using this and a tech-

nique which is close to the idea of local rank one

(see [44,111]) M. Guenais [69] proved a series of results

on multiplicity which we now list.

Theorem 5 Assume that Tx D x C ˛ and let

� : [0; 1)! T be a cocycle.

(i) If �(x) D e2� i cx then MV�;T
is bounded by jcj C 1.

(ii) If � is absolutely continuous and � is of topological de-

gree zero, then V�;T has a simple spectrum.

(iii) if � is of bounded variation, then

MV�;T
� max(2; 2�Var(�)/3).

Remarks on the Banach Problem

We already mentioned in Introduction the Banach prob-

lem in ergodic theory, which is simply the question

whether there exists a Koopman representation forA D Z

with simple Lebesgue spectrum. In fact no example of

a Koopman representation with Lebesgue spectrum of fi-

nite multiplicity is known. Helson and Parry [75] asked

for the validity of a still weaker version: Can one con-

struct T such that UT has a Lebesgue component in its spec-

trum whose multiplicity is finite? Quite surprisingly in [75]

they give a general construction yielding for each ergodic

T a cocycle ' : X ! Z/2Z such that the unitary opera-

tor UT'
has a Lebesgue spectrum in the orthocomple-

ment of functions depending only on the X-coordinate.

Then Mathew and Nadkarni [144] gave examples of co-

cycles over so called dyadic adding machine for which

the multiplicity of the Lebesgue component was equal

to 2. In [126] this was generalized to so called Toeplitz

Z/2Z-extensions of adding machines: for each even num-

ber k we can find a two-point extension of an adding

machine so that the multiplicity of the Lebesgue compo-

nent is k. Moreover, it was shown that Mathew and Nad-

karni’s constructions from [144] in fact are close to sys-

tems arising from number theory (like the famous Rudin–

Shapiro sequence, e. g. [160]), relating the result about

multiplicity of the Lebesgue component to results by Ka-

mae [96] and Queffelec [160]. Independently of [126],

Ageev [8] showed that one can construct 2-point exten-

sions of the Chacon transformation realizing (by taking

powers of the extension) each even number as the mul-

tiplicity of the Lebesgue component. Contrary to all pre-

vious examples, Ageev’s constructions are weakly mix-

ing.

Still an open question remains whether for A D Z

one can find a Koopman representation with the Lebesgue

component of multiplicity 1 (or even odd).

In [70], M. Guenais studies the problem of Lebesgue

spectrum in the classical case of Morse sequences

(see [107] as well as [124], where the problem of spectral

classification in this class is studied). All dynamical sytems

arising fromMorse sequences have simple spectra [124]. It

follows that if a Lebesgue component appears in a Morse

dynamical system, it has multiplicity one. Guenais [70]

using a Riesz product technique relates the Lebesgue spec-

trum problem with the still open problem of whether

a construction of “flat” trigonometric polynomials with

coefficients ˙1 is possible. However, it is proved in [70]

that such a construction can be carried out on some com-

pact Abelian groups and it leads, for an Abelian countable

torsion group A, to a construction of an ergodic action of

Awith simple spectrum and aHaar component in its spec-

trum.

Lifting Mixing Properties

We now give one more example of interactions between

spectral theory and joinings (see Introduction) that gives

rise to a quick proof of the fact that r-fold mixing prop-

erty of T (r � 2) lifts to a weakly mixing compact group

extension T' (the original proof of this fact is due to D.

Rudolph [175]). Indeed, to prove r-fold mixing for a mix-

ing( = 2-mixing) transformation S (acting on (Y ;C; �))

one has to prove that each weak limit of off-diagonal self-

joinings (given by powers of S, see ⊲ Joinings in Ergodic

Theory) of order r is simply the product measure �˝r .

We need also a Furstenberg’s lemma [62] about relative

unique ergodicity (RUE) of compact group extensions T' :

If � ˝ �G is an ergodic measure for T' then it is the only

(ergodic) invariant measure for T' whose projection on the

first coordinate is �. Now the result about lifting r-fold

mixing to compact group extensions follows directly from

the fact that whenever T' is weakly mixing, (� ˝ �G )
˝r

is an ergodic measure (this approach was shown to me by

A. del Junco). In particular if T is mixing and T' is weakly
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mixing then for each � 2 bG n f1g, the maximal spectral

type of V�ı';T is Rajchman.

See Sect. “Rokhlin Cocycles” for a generalization of the

lifting result to Rokhlin cocycle extensions.

TheMultiplicity Function

In this chapter only A D Z is considered (for other

groups, even for R, much less is known; see however the

case of so called product Zd -actions [50]). Contrary to the

case of maximal spectral type, it is rather commonly be-

lieved that there are no restrictions for the set of essential

values of Koopman representations.

Cocycle Approach

Wewill only concentrate on some results of the last twenty

years. In 1983, E.A. Robinson [164] proved that for each

n � 1 there exists an ergodic transformation whose max-

imal spectral multiplicity is n. Another important result

was proved in [165] (see also [98]), where it is shown that

given a finite setM � N containing 1 and closed under the

least common multiple one can find (even a weakly mix-

ing) T so that the set of essential values of the multiplicity

function equalsM. This result was then extended in [67] to

infinite sets and finally in [125] (see also [11]) to all subsets

M � N containing 1. In fact, as we have already noticed

in the previous section the spectral theory for compact

Abelian group extensions is reduced to a study of weighted

operators and then to comparing maximal spectral types

for such operators. This leads to sets of the form

M(G; v;H) D
n
](f� ı v i : i 2 Zg \ anih(H)) :

� 2 anih(H)
o

(H � G is a closed subgroup and v is a continuous group

automorphism of G). Then an algebraic lemma has been

proved in [125] saying that each set M containing 1 is

of the form M(G; v;H) and the techniques to construct

“good” cocycles and a passage to “natural factors” yielded

the following: For each M � f1; 2; : : :g � f1g contain-

ing 1 there exists an ergodic automorphim such that the set

of essential values for its Koopman representation equalsM.

See also [166] for the case of non-Abelian group exten-

sions.

A similar in spirit approach (that means, a passage

to a family of factors) is present in a recent paper of

Ageev [13] in which he first applies Katok’s analysis

(see [98,102]) for spectral multiplicities of the Koopman

representation associated with Cartesian products T�k for

a generic transformation T. In a natural way this approach

leads to study multiplicities of tensor products of unitary

operators. Roughly, the multiplicity is computed as the

number of atoms (counted modulo obvious symmetries)

for conditional measures (see [98]) of a product measure

over its convolution. Ageev [13] proved that for a typical

automorphism T the set of the values of the multiplicity

function for UT�k equals fk; k(k  1); : : : ; k!g and then

he just passes to “natural” factors for the Cartesian prod-

ucts by taking sets invariant under a fixed subgroup of per-

mutations of coordinates. In particular, he obtains all sets

of the form f2; 3; : : : ; ng on L20. He also shows that such

sets of multiplicities are realizable in the category of mix-

ing transformations.

Rokhlin’s UniformMultiplicity Problem

The Rokhlin multiplicity problem (see the recent book by

Anosov [15]) was, given n � 2, to construct an ergodic

transformation with uniform multiplicity n on L20. A solu-

tion for n D 2 was independently given by Ageev [9] and

Ryzhikov [188] (see also [15] and [66]) and in fact it con-

sists in showing that for some T (actually, any T with sim-

ple spectrum for which 1/2(Id C UT ) is in the weak oper-

ator closure of the powers of UT will do) the multiplicity

of T � T is uniformly equal to 2 (see also Sect. “Future Di-

rections”).

In [12], Ageev proposed a new approach which con-

sists in considering actions of “slightly non-Abelian”

groups; and showing that for a “typical” action of

such a group a fixed “direction” automorphism has

a uniform multiplicity. Shortly after publication of [12],

Danilenko [27], following Ageev’s approach, considerably

simplified the original proof. We will present Danilenko’s

arguments.

Fix n � 1. Denote e i D (0; : : : ; 1; : : : ; 0) 2 Zn ; i D

1; : : : ; n. We define an automorphism L of Zn setting

L(e i) D e iC1, i D 1; : : : ; n  1 and L(en) D e1. Using

L we define a semi-direct product G : D Zn
Ì Z defin-

ing multiplication as (u; k) � (w; l) D (u C Lkw; k C l).

Put e0 D (0; 1), ei D (e i ; 0), i D 1; : : : ; n (and Lei D

(Le i ; 0)). Moreover, denote enC1 D en
0 D (0; n). Notice

that e0 � ei � e
 1
0 D Lei for i D 1; : : : ; n (L(enC1) D enC1).

Theorem 6 (Ageev, Danilenko) For every unitary repre-

sentationU of G in a separable Hilbert space H, for which

Ue1 L r e1 has no non-trivial fixed points for 1 � r < n, the

essential values of the multiplicity function for UenC1
are

contained in the set of multiples of n. If, in addition, Ue0

has a simple spectrum, then UenC1
has uniform multi-

plicity n.
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It is then a certain work to show that the assumption of the

second part of the theorem is satisfied for a typical action

of the groupG. Using a special (C; F)-construction with all

the cut-and-stack parameters explicit Danilenko [27] was

also able to show that each set of the form k �M, where

k � 1 and M is an arbitrary subset of natural numbers

containing 1, is realizable as the set of essential values of

a Koopman representation.

Some other constructions based on the solution of

the Rokhlin problem for n D 2 and the method of [125]

are presented in [103] leading to sets different than those

pointed above; these sets contain 2 as their minimum.

Rokhlin Cocycles

We consider now a certain class of extensions which

should be viewed as a generalization of the concept of

compact group extensions. We will focus on Z-actions

only.

Assume that T is an ergodic automorphism of (X,

B; �). Let G be a l.c.s.c. Abelian group. Assume that this

group acts on (Y ;C; �), that is we have a G-action S D

(Sg )g2G on (Y ;C; �). Let ' : X ! G be a cocycle. We then

define an automorphism T';S of the space (X � Y ;B ˝

C; �˝ �) by

T';S(x; y) D (Tx; S'(x)(y)):

Such an extension is called a Rokhlin cocycle extension

(the map x 7! S'(x) is called a Rokhlin cocycle). Such an

operation generalizes the case of compact group exten-

sions; indeed, when G is compact the action of G on it-

self by rotations preserves Haar measure. (It is quite sur-

prising, that when only we admit G non-Abelian, then, as

shown in [28], each ergodic extension of T has a form of

a Rokhlin cocycle extension.) Ergodic and spectral prop-

erties of such extensions are examined in several pa-

pers: [63,65,129,131,132,133,167,176]. Since in these pa-

pers rather joining aspects are studied (among other things

in [129] Furstenberg’s RUE lemma is generalized to this

new context), we will mention here only few results,

mainly spectral, following [129] and [133]. We will con-

stantly assume that G is non-compact. As ' : X ! G is

then a cocycle with values in a non-compact group, the

theory of such cocycles is much more complicated (see

e. g. [193]), and in fact the theory of Rokhlin cocycle ex-

tensions leads to interesting interactions between classi-

cal ergodic theory, the theory of cocycles and the theory

of non-singular actions arising from cocycles taking val-

ues in non-compact groups – especially, the Mackey ac-

tion associated to ' plays a crucial role here (see the prob-

lem of invariant measures for T';S in [132] and [28]);

see also monographs [1,98,101,193]. Especially, two Borel

subgroups of bG are important here:

˙' D f� 2 bG : � ı ' D c � �/� ı T for a measurable

� : X ! T and c 2 Tg :

and its subgroup �' given by c D 1. �' turns out to be

the group of L1-eigenvalues of the Mackey action (of G)

associated to the cocycle '. This action is the quotient ac-

tion of the natural action of G (by translations on the sec-

ond coordinate) on the space of ergodic components of the

skew product T' – the Mackey action is (in general) not

measure-preserving, it is however non-singular. We refer

the reader to [2,78,147] for other properties of those sub-

groups.

Theorem 7 ([132,133])

(i) �T';S
jL2(X�Y;�˝�)	L2(X;�) D

R
Ĝ �V�ı';T d�S.

(ii) T';S is ergodic if and only if T is ergodic and

�S(�') D 0.

(iii) T';S is weakly mixing if and only if T is weakly mixing

and S has no eigenvalues in˙' .

(iv) if T is mixing, S is mildly mixing, ' is recurrent and

not cohomologous to a cocycle with values in a com-

pact subgroup of G then T';S remains mixing.

(v) If T is r-fold mixing, ' is recurrent and T';S is mildly

mixing then T';S is also r-fold mixing.

(vi) If T and R are disjoint, the cocycle ' is ergodic and S

is mildly mixing then T';S remains disjoint with R.

Let us recall [61,195] that an A-action S D (Sa)a2A is

mildly mixing (see the glossary) if and only if theA-action

(Sa � �a)a2A remains ergodic for every properly ergodic

non-singular A-action � D (�a)a2A.

Coming back to Smorodinsky–Thouvenot’s result

about factors of ergodic self-joinings of a Bernoulli au-

tomorphism we would like to emphasize here that the

disjointness result (vi) above was used in [132] to give

an example of an automorphism which is disjoint from

all weakly mixing transformations but which has an er-

godic self-joining whose associated automorphism has

a non-trivial weakly mixing factor. In a sense this is op-

posed to Smorodinsky–Thouvenot’s result as here from

self-joinings we produced a “more complicated” system

(namely the weakly mixing factor) than the original sys-

tem.

It would be interesting to develop the theory of spectral

multiplicity for Rokhlin cocycle extensions as it was done

in the case of compact group extensions. However a diffi-

culty is that in the compact group extension case we deal

with a countable direct sum of representations of the form
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V�ı';T while in the non-compact case we have to consider

an integral of such representations.

Rank-1 and Related Systems

Although properties like mixing, weak (and mild) mixing

as well as ergodicity, are clearly spectral properties, they

have “good” measure-theoretic formulations (expressed

by a certain behavior on sets). Simple spectrum prop-

erty is another example of a spectral property, and it was

a popular question in the 1980s whether simple spectrum

property of a Koopman representation can be expressed

in a more “measure-theoretic” way. We now recall rank-

1 concept which can be seen as a notion close to Ka-

tok’s and Stepin’s theory of cyclic approximation [104]

(see also [26]).

Assume thatT is an automorphism of a standard prob-

ability Borel space (X;B; �). T is said to have rank one

property if there exists an increasing sequence of Rokhlin

towers tending to the partition into points (a Rokhlin tower

is a family fF; TF; : : : ; Tn 1Fg of pairwise disjoint sets,

while “tending to the partition into points” means that we

can approximate every set in B by unions of levels of tow-

ers in the sequence). Baxter [20] showed that the maxi-

mal spectral type of such a T is realized by a characteristic

function. Since the cyclic space generated by the charac-

teristic function of the base contains characteristic func-

tions of all levels of the tower, by the definition of rank

one, the increasing sequence of cyclic spaces tends to the

whole L2-space, therefore rank one property implies sim-

plicity of the spectrum for the Koopman representation. It

was a question for some time whether rank-1 is just a char-

acterization of simplicity of the spectrum, disproved by del

Junco [88]. We refer the reader to [46] as a good source for

basic properties of rank-1 transformations.

Similarly to the rank one property, one can define fi-

nite rank automorphisms (simply by requiring that an ap-

proximation is given by a sequence of a fixed number of

towers) – see e. g. [152], or even, a more general property,

namely the local rank one property can be defined, just by

requiring that the approximating sequence of single tow-

ers fills up a fixed fraction of the space (see [44,111]). Lo-

cal rank one (so the more finite rank) property implies

finite multiplicity [111]. Mentzen [146] showed that for

each n � 1 one can construct an automorphism with sim-

ple spectrum and having rank n; in [138] there is an ex-

ample of a simple spectrum automorphism which is not

of local rank one. Ferenczi [45] introduced the notion of

funny rank one (approximating towers are Rokhlin tow-

ers with “holes”). Funny rank one also implies simplic-

ity of the spectrum. An example is given in [45] which is

even not loosely Bernoulli (see Sect. “Inducing and Spec-

tral Theory”, we recall that local rank one property implies

loose Bernoullicity [44]).

The notion of AT (see the glossary) has been in-

troduced by Connes and Woods [25]. They proved that

AT property implies zero entropy. They also proved that

funny rank one automorphisms are AT. In [32] it is proved

that the system induced by the classical Morse-Thue sys-

tem is AT (it is an open question by S. Ferenczi whether

this system has funny rank one property). A question by

Dooley and Quas is whether AT implies funny rank one

property. AT property implies “simplicity of the spectrum

in L1” which we already considered in Introduction (a

“generic” proof of this fact is due to J.-P. Thouvenot).

A persistent question was formulated in the 1980s

whether rank one itself is a spectral property. In [49] the

authors maintained that this is not the case, based on an

unpublished preprint of the first named author of [49] in

which there was a construction of a Gaussian–Kronecker

automorphism (see Sect. “Spectral Theory of Dynamical

Systems of Probabilistic Origin”) having rank-1 property.

This latter construction turned out to be false. In fact

de la Rue [181] proved that no Gaussian automorphism

can be of local rank one. Therefore the question whether:

Rank one is a spectral property remains one of the inter-

esting open questions in that theory. Downarowicz and

Kwiatkowski [33] proved that rank-1 is a spectral property

in the class of systems generated by generalized Morse se-

quences.

One of the most beautiful theorems about rank-1 au-

tomorphisms is the following result of J. King [110] (for

a different proof see [186]).

Theorem 8 (WCT) If T is of rank one then for each ele-

ment S of the centralizer C(T) of T there exists a sequence

(nk ) such that U
nk
T ! US strongly.

A conjecture of J. King is that in fact for rank-1 auto-

morphisms each indecomposableMarkov operator J D J�
(� 2 J e2(T)) is a weak limit of powers of UT (see [112],

also [186]). To which extent the WCT remains true for

actions of other groups is not clear. In [214] the WCT is

proved in case of rank one flows, however the main argu-

ment seems to be based on the fact that a rank one flow has

a non-zero time automorphism Tt0 which is of rank one,

which is not true. After the proof of theWCT by Ryzhikov

in [186] there is a remark that the rank one flow version of

the theorem can be proved by a word for word repetition

of the arguments. He also proves that if the flow (Tt)t2R is

mixing, then T1 does not have finite rank. On the other

hand, for A D Z2, Downarowicz and Kwiatkowski [34]

gave recently a counterexample to the WCT.
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Even though it looks as if rank one construction is

not complicated, mixing in this class is possible; histori-

cally the first mixing constructions were given by D. Orn-

stein [151] in 1970, using probability type arguments for

a choice of spacers. Once mixing was shown, the ques-

tion arose whether absolutely continuous spectrum is also

possible, as this would give automatically the positive an-

swer to the Banach problem. However Bourgain [21], re-

lating spectral measures of rank one automorphisms with

some classical constructions of Riesz product measures,

proved that a certain subclass of Ornstein’s class consists

of automorphisms with singular spectrum (see also [5]

and [6]). Since in Ornstein’s class spacers are chosen in

a certain “non-constructive” way, quite a lot of attention

was devoted to the rank one automorphism defined by

cutting a tower at the nth step into rn D n subcolumns of

equal “width” and placing i spacers over the ith subcol-

umn. The mixing property conjectured by M. Smorodin-

sky, was proved by Adams [7] (in fact Adams proved

a general result on mixing of a class of staircase trans-

formations). Spectral properties of rank-1 transformations

are also studied in [114], where the authors proved that

whenever
P1

nD1 r
 2
n D C1 (rn stands for the number of

subcolumns at the nth step of the construction of a rank-

1 automorphism) then the spectrum is automatically sin-

gular. H. Abdalaoui [5] gives a criterion for singularity

of the spectrum of a rank one transformation; his proof

uses a central limit theorem. It seems that still the ques-

tion whether rank one implies singularity of the spectrum

remains the most important question of this theory.

We have already seen in Sect. “Spectral Theory of

Weighted Operators” that for a special class of rank one

systems, namely those with discrete spectra ([87]), we have

a nice theory for weighted operators. It would be extremely

interesting to find a rank one automorphism with contin-

uous spectrum for which a substitute of Helson’s analysis

exists.

B. Fayad [39] constructs a rank one differentiable flow,

as a special flow over a two-dimensional rotation. In [40]

he gives new constructions of smooth flows with singular

spectra which are mixing (with a new criterion for a Ra-

jchman measure to be singular). In [35] a certain smooth

change of time for an irrational flows on the 3-torus is

given, so that the corresponding flow is partially mixing

and has the local rank one property.

Spectral Theory of Dynamical Systems

of Probabilistic Origin

Let us just recall that when (Yn)
1
nD 1 is a stationary

process then its distribution � on RZ is invariant un-

der the shift S on RZ: S((xn)n2Z) D (yn)n2Z, where

yn D xnC1; n 2 Z. In this way we obtain an automor-

phism S defined on (RZ;B(RZ); �). For each auto-

morphism T we can find f : X ! R measurable such

that the smallest �-algebra making the stationary process

( f ı Tn)n2Z measurable is equal to B, therefore, for the

purpose of this article, by a system of probabilistic ori-

gin we will mean (S; �) obtained from a stationary in-

finitely divisible process (see e. g. [142,192]). In particu-

lar, the theory of Gaussian dynamical systems is indeed

a classical part of ergodic theory (e. g. [149,150,211,212]).

If (Xn)n2Z is a stationary real centered Gaussian pro-

cess and � denotes the spectral measure of the process, i. e.

b�(n) D E(Xn � X0), n 2 Z, then by S D S� we denote the

corresponding Gaussian system on the shift space (recall

also that for each symmetric measure � on T there is ex-

actly one stationary real centered Gaussian process whose

spectral measure is �). Notice that if � has an atom, then

in the cyclic space generated by X0 there exists an eigen-

function Y for S� – if now S� were ergodic, jY j would be

a constant function which is not possible by the nature of

elements in Z(X0). In what follows we assume that � is

continuous.

It follows thatUS�
restricted to Z(X0) is spectrally the

same as V D V� acting on L2(T ; �), and we obtain that

(US�
; L2(RZ; �� )) can be represented as the symmetric

Fock space built over H D L2(T ; �) and US�
D F(V) –

see the glossary (Hˇn is called the n-th chaos). In other

words the spectral theory of Gaussian dynamical systems

is reduced to the spectral theory of special tensor products

unitary operators. Classical results (see [26]) which can be

obtained from this point of view are for example the fol-

lowing:

(A) ergodicity implies weak mixing,

(B) the multiplicity function is either 1 or is unbounded,

(C) the maximal spectral type of US�
is equal to exp(�),

hence Gaussian systems enjoy the Kolmogorov group

property.

However we can also look at a Gaussian system in a dif-

ferent way, simply by noticing that the variables e2� i f (f

is a real variable), where f 2 Z(X0) generate L2(RZ; �� ).

Now calculating the spectral measure of e2� i f is not diffi-

cult and we obtain easily (C). Moreover, integrals of typeR
e2� i f0e2� i f1ıT

n
e2� i f2ıT

nCm
d�� can also be calculated,

whence in particular we easily obtain Leonov’s theorem on

the multiple mixing property of Gaussian systems [141].

One of the most beautiful parts of the theory of Gaus-

sian systems concerns ergodic properties of S� when � is

concentrated on a thin Borel set. Recall that a closed sub-
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set K � T is said to be a Kronecker set if each f 2 C(K) is

a uniform limit of characters (restricted to K). Each Kro-

necker set has no rational relations. Gaussian–Kronecker

automorphisms are, by definition, those Gaussian systems

for which the measure � (always assumed to be contin-

uous) is concentrated on K [ K, K a Kronecker set. The

following theorem has been proved in [51] (see also [26]).

Theorem 9 (Foiaş–Stratila Theorem) If T is an ergodic

automorphism and f is a real-valued element of L20 such

that the spectral measure � f is concentrated on K [ K,

where K is a Kronecker set, then the process ( f ı Tn)n2Z

is Gaussian.

This theorem is indeed striking as it gives examples of

weakly mixing automorphisms which are spectrally de-

termined (like rotations). A relative version of the Foiaş–

Stratila Theorem has been proved in [129].

The Foiaş–Stratila Theorem implies that whenever

a spectral measure � is Kronecker, it has no realization

of the form � f with f bounded. We will see however in

Sect. “Future Directions” that for some automorphisms T

(having the SCS property) the maximal spectral type �T

has the property that S�T has a simple spectrum.

Gaussian–Kronecker automorphisms are examples of

automorphisms with simple spectra. In fact, whenever �

is concentrated on a set without rational relations, then S�

has a simple spectrum (see [26]). Examples of mixing au-

tomorphisms with simple spectra are known [149], how-

ever it is still unknown (Thouvenot’s question) whether

the Foiaş–Stratila property may hold in themixing class. F.

Parreau [154] using independent Helson sets gave an ex-

ample of mildly mixing Gaussian system with the Foiaş–

Stratila property.

In [165] there is a remark that the set of finite essential

values of the multiplicity function of US�
forms a (multi-

plicative) subsemigroup ofN . However, it seems that there

is no “written” proof of this fact.

Joining theory of a class of Gaussian system, called

GAG, is developed in [136]. A Gaussian automorphism S�

with the Gaussian space H � L20(R
Z; �� ) is called a GAG

if for each ergodic self-joining � 2 J e2(S� ) and arbitrary

f ; g 2 H the variable

(RZ �RZ; �) 3 (x; y) 7! f (x)C g(y)

is Gaussian. For GAG systems one can describe the cen-

tralizer and factors, they turn out to be objects close to the

probability structure of the system. One of the crucial ob-

servations in [136] was that all Gaussian systems with sim-

ple spectrum are GAG.

It is conjectured (J.P. Thouvenot) that in the class of

zero entropy Gaussian systems the PID property holds

true.

For the spectral theory of classical factors of a Gaus-

sian system see [137]; also spectrally they share basic spec-

tral properties of Gaussian systems. Recall that historically

one of the classical factors namely the �-algebra of sets in-

variant for the map

(: : : ; x 1; x0; x1; : : :) 7! (: : : ; x 1; x0; x1; : : :)

was the first example with zero entropy and countable

Lebesgue spectrum (indeed, we need a singular measure �

such that � � � is equivalent to Lebesgue measure [150]).

For factors obtained as functions of a stationary process

see [83].

T. de la Rue [181] proved that Gaussian systems are

never of local rank-1, however his argument does not ap-

ply to classical factors. We conjecture that Gaussian sys-

tems are disjoint from rank-1 automorphisms (or even

from local rank-1 systems).

We now turn the attention to Poissonian systems

(see [26] for more details). Assume that (X;B; �) is a stan-

dard Borel space, where � is infinite, �-finite. The new

configuration space eX is taken as the set of all countable

subsets fxi : i � 1g of X. Once a set A 2 B, of finite mea-

sure is given one can define a map NA : eX ! N([f1g)

just counting the number of elements belonging to A.

The measure-theoretic structure (eX;eB;e�) is given so

that the maps NA become random variables with Pois-

son distribution of parameter �(A) and such that when-

ever A1; : : : ;Ak � X are of finite measure and are pair-

wise disjoint then the variablesNA1 ; : : : ;NAk are indepen-

dent.

Assume now that T is an automorphism of (X;B; �).

It induces a natural automorphism on the space (eX;eB;e�)
defined by eT(fxi : i � 1g D fTxi : i � 1g. The automor-

phism eT is called the Poisson suspension of T (see [26]).

Such a suspension is ergodic if and only if no set of positive

and finite �-measure is T-invariant. Moreover ergodicity

of eT implies weak mixing. In fact the spectral structure of

UeT is very similar to the Gaussian one: namely the first

chaos equals L2(X;B; �) (we emphasize that this is about

the whole L2 and not only L20) on whichUeT acts asUT and

the L2(eX;e�) together with the action of UeT has the struc-

ture of the symmetric Fock space F(L2(X;B; �)) (see the

glossary).

We refer to [22,86,168,169] for ergodic properties of

systems given by symmetric ˛-stable stationary processes,

or more generally infinitely divisible processes. Again, they

share spectral properties similar to the Gaussian case: er-
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godicity implies weak mixing, while mixing implies mix-

ing of all orders.

In [171], E. Roy clarifies the dynamical “status” of such

systems. He uses Poisson suspension automorphisms and

theMaruyama representation of an infinitely divisible pro-

cess mixed with basic properties of automorphisms pre-

serving infinite measure (see [1]) to prove that as a dynam-

ical system, a stationary infinitely divisible process (with-

out the Gaussian part), is a factor of the Poisson suspen-

sion over the Lévy measure of this process. In [170] a the-

ory of ID-joinings is developed (which should be viewed as

an analog of the GAG theory in the Gaussian class). Par-

reau and Roy [155] give an example of a Poisson suspen-

sion with a minimal possible set of ergodic self-joinings.

Many natural problems still remain open here, for

example (assuming always zero entropy of the dynam-

ical system under consideration): Are Poisson suspen-

sions disjoint from Gaussian systems? What is the spec-

tral structure for dynamical systems generated by symmet-

ric ˛-stable process? Are such systems disjoint whenever

˛1 ¤ ˛2? Are Poissonian systems disjoint from local rank

one automorphisms (cf. [181])? In [91] it is proved that

Gaussian systems are disjoint from so called simple sys-

tems (see ⊲ Joinings in Ergodic Theory and [93,208]); we

will come back to an extension of this result in Sect. “Fu-

ture Directions”. It seems that flows of probabilistic origin

satisfy the Kolmogorov group property for the spectrum.

One can therefore ask how different are systems satisfying

the Kolmogorov group property from systems for which

the convolutions of the maximal spectral type are pairwise

disjoint (see also Sect. “Future Directions” and the SCS

property).

We also mention here another problem which will be

taken up in Sect. “Special Flows and Flows on Surfaces, In-

terval Exchange Transformations” – Is it true that flows

of probabilistic origin are disjoint from smooth flows on

surfaces? Recently A. Katok and A. Windsor announced

that it is possible to construct a Kronecker measure so

that the corresponding Gaussian system (Z-action (!)) has

a smooth representation on the torus.

Yet onemore (joining) property seems to be character-

istic in the class of systems of probabilistic origin, namely

they satisfy so called ELF property (see [30] and ⊲ Join-

ings in Ergodic Theory). Vershik asked whether the ELF

property is spectral – however the example of a cocy-

cle from [205] together with Theorem 7 (i) yields a cer-

tain Rokhlin extension of a rotation which is ELF and has

countable Lebesgue spectrum in the orthocomplement of

the eigenfunctions (see [206]); on the other hand any affine

extension of that rotation is spectrally the same, while it

cannot have the ELF property.

Prikhodko and Thouvenot (private communication)

have constructed weakly mixing and non-mixing rank one

automorphisms which enjoy the ELF property.

Inducing and Spectral Theory

Assume that T is an ergodic automorphism of a standard

probability Borel space (X;B; �). Can “all” dynamics be

obtained by inducing (see the glossary) from one fixed au-

tomorphism was a natural question from the very begin-

ning of ergodic theory. Because of Abramov’s formula for

entropy h(TA) D h(T)/�(A) it is clear that positive en-

tropy transformations cannot be obtained from inducing

on a zero entropy automorphism. However here we are

interested in spectral questions and thus we ask howmany

spectral types we obtain when we induce. It is proved

in [59] that the family of A 2 B for which TA is mixing is

dense for the (pseudo)metric d(A1;A2) D �(A14A2). De

la Rue [182] proves the following result: For each ergodic

transformation T of a standard probability space (X;B; �)

the set of A 2 B for which the maximal spectral type of

UTA is Lebesgue is dense in B. The multiplicity function is

not determined in that paper. Recall (without giving a for-

mal definition, see [152]) that a zero entropy automor-

phism is loosely Bernoulli (LB for short) if and only if it can

be induced from an irrational rotation (see also [43,99]).

The LB theory shows that not all dynamical systems can

be obtained by inducing from an ergodic rotation. How-

ever an open question remained whether LB systems ex-

haust spectrally all Koopman representations. In a deep

paper [180], de la Rue studies LB property in the class

of Gaussian–Kronecker automorphisms, in particular he

constructs S which is not LB. Suppose now that T is LB

and for some A 2 B,UTA is isomorphic toUS . Then by the

Foiaş–Stratila Theorem, TA is isomorphic to S, and hence

TA is not LB. However an induced automorphism from an

LB automorphism is LB, a contradiction.

Special Flows and Flows on Surfaces,

Interval Exchange Transformations

We now turn our attention to flows. The cases of the

geodesic flow, horocycle flows on homogenous spaces of

SL(2;R) and nilflows are classical (we refer the reader

to [105] with a nice description of the first two cases,

while for nilflows we refer to [157]: these classes of flows

on homogenous spaces have countable Lebesgue spec-

trum, in the third case – in the orthocomplement of the

eigenspace). On the other hand the classical cyclic approx-

imation theory of Katok and Stepin [104] (see [26]) leads

to examples of smooth flows on the torus with simple con-

tinuous singular spectra.
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Given an ergodic automorphism T on (X;B; �) and

a positive integrable function f : X ! RC consider the

corresponding special flow T f (see the glossary). Obvi-

ously, such a flow is ergodic. Special flows were introduced

to ergodic theory by von Neumann in his fundamental

work [148] in 1932. Also in that work he explains how

to compute eigenvalues for special flows, namely: r 2 R is

an eigenvalue of T f if and only if the following functional

equation

e2� ir f (x) D
�(x)

�(Tx)

has a measurable solution � : X ! T . We recall also that

the classical Ambrose-Kakutani theorem asserts that prac-

tically each ergodic flow has a special representation ([26],

see also Rudolph’s theorem on special representation

therein).

A classical situation when we obtain “natural” spe-

cial representations is while considering smooth flows

on surfaces (we refer the reader to Hasselblatt’s and Ka-

tok’s monograph [73]). They have transversals on which

the Poincaré map is piecewise isometric, and this en-

tails a study of interval exchange transformations (IET),

see [26,108,163]. Formally, to define IET ofm intervals we

need a permutation � of f1; : : : ;mg and a probability vec-

tor � D (�1; : : : ; �m) (with positive entries). Then we de-

fine T D T�;� of [0; 1) by putting

T�;� (x) D x C ˇ�
i  ˇi for x 2 [ˇi ; ˇiC1) ;

where ˇi D
P

j<i � j , ˇ
�
i D

P
� j<� i ˇ j . Obviously, each

IET preserves Lebesgue measure. One of possible ap-

proaches to study ergodic properties of IET is an “a.e”

approach “seen” in the definition of T�;� . It is based on

the fundamental fact that the induced transformation on

a subinterval of [0; 1) is also IET (see [26]). This leads

to a very delicate and deep mathematics based on Rauzy

induction, which is a way of inducing on special inter-

vals, considering only irreducible permutations whose set

is partitioned into orbits of some maps (any such an or-

bit is called a Rauzy class). If now R is a Rauzy class of

permutations and � lies in the standard simplex �m 1

then the Rauzy induction together with a natural renor-

malization leads to a map P : R ��m 1 ! R ��m 1 .

For a better understanding of the dynamics of the Rauzy

map Veech [209] introduced the space of zippered rectan-

gles. A zippered rectangle associated to the Rauzy classR is

a quadruple (�; h; a; �), where � 2 Rm
C
, h 2 Rm

C
, a 2 Rm

C
,

� 2 R and the vectors h and a satisfy some equations and

inequalities. Every zippered rectangle (�; h; a; �) deter-

mines a Riemann structure on a compact connected sur-

face. Denote by ˝(R) the space of all zippered rectan-

gles, corresponding to a given Rauzy classR and satisfying

the condition h�; hi D 1. In [209], Veech defined a flow

(Pt)t2R on the space˝(R) putting

Pt(�; h; a; �) D (et�; e th; e ta; �)

and extended the Rauzy map. On so called Veech moduli

space of zippered rectangles, the flow (Pt) becomes the Te-

ichmüller flow and it preserves a natural Lebesgue measure

class; by passing to a transversal and projecting the mea-

sure on the space of IETs R ��m 1 Veech has proved

the following fundamental theorem ([209], see also [143])

which is a generalization of the fact that Gauss measure

1/(ln 2)1/(1C x)dx is invariant for the Gauss map which

sends t 2 (0; 1) into the fractional part of its inverse.

Theorem 10 (Veech, Masur, 1982) Assume that R is

a Rauzy class. There exists a �-finite measure �R on R �

�m 1 which is P-invariant, equivalent to “Lebesgue” mea-

sure, conservative and ergodic.

In [209] it is proved that a.e. (in the above sense) IET is

then of rank one (and hence is ergodic and has a sim-

ple spectrum). He also formulated as an open problem

whether we can achieve the weakmixing property a.e. This

has been recently answered in positive by A. Avila and G.

Forni [19] (for � which is not a rotation).

Katok [100] proved that IET have no mixing factors

(in fact his proof shows more: the IET class is disjoint with

the class of mixing transformations). By their nature, IET

transformations are of finite rank (see [26]) so they are of

finite multiplicity. They need not be of simple spectrum

(see remarks in [105] pp. 88–90). It remains an open ques-

tion whether an IET can have a non-singular spectrum.

Joining properties in the class of exchange of 3 and more

intervals are studied in [47,48]. An important question of

Veech [208] whether a.e. IET is simple is still open.

When we consider a smooth flow on a surface pre-

serving a smooth measure, whose only singularity (we as-

sume that we have only finitely many singularities) are

simple (non-degenerated) saddles then such a flow has

a special representation over an interval exchange auto-

morphism under a smooth function which has finitely

many logarithmic singularities (see [73]). In the article by

Arnold [18] the quasi-periodic Hamiltonian case is con-

sidered:H : R2 ! R satisfiesH(xCm; yCn) D H(x; y)C

n˛1Cm˛2, ˛1/˛2 … Q, andwe then consider the following

system of differential equations on T 2

dx

dt
D
@H

@y
;
dy

dt
D
 @H

@x
: (2)
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As Arnold shows the dynamical system arising from the

system (2) has one ergodic component which has a special

representation over the irrational rotation by ˛ :D ˛1/˛2
under a smooth function with finitely many logarith-

mic singularities (all other ergodic components are peri-

odic orbits and separatrices). By changing a speed as it

is done in [57] so that critical points of the vector field

in (2) become singular points, Arnold’s special represen-

tation is transformed to a special flow over the same irra-

tional rotation however under a piecewise smooth func-

tion. If the sum of jumps is not zero then in fact we come

back to von Neumann’s class of special flows considered

in [148]. Similar classes of special flows (when the roof

function is of bounded variation) are obtained from er-

godic components of flows associated to billiards in con-

vex polygones with rational angles [106]. Kochergin [115]

showed that special flows over irrational rotations and un-

der bounded variation functions are never mixing. This

has been recently strengthened in [54] to the following:

If T is an irrational rotation and f is of bounded vari-

ation then the special flow T f is spectrally disjoint from

all mixing flows. In particular all such flows have sin-

gular spectra. Moreover, in [54] it is proved that when-

ever the Fourier transform of the roof function f is of

order O(1/n) then T f is disjoint from all mixing flows

(see also [55]). In fact in the papers [54,55,56,57] the au-

thors discuss the problem of disjointness of those spe-

cial flows with all ELF-flows conjecturing that no flow

of probabilistic origin has a smooth realization on a sur-

face. In [140] the analytic case is considered leading to

a “generic” result on disjointness with the ELF class gen-

eralizing the classical Shklover’s result on the weak mixing

property [197].

Kochergin [117] proved the absence of mixing for

flows where the roof function has finitely many singulari-

ties, whenever the sum of “left logarithmic speeds” and the

sum of “right logarithmic speeds” are equal – this is called

a symmetric logarithmic case, however some Diophantine

restriction is put on ˛.

In [128], where also the absence of mixing is con-

sidered for the symmetric logarithmic case, it was con-

jectured (and proved for arbitrary rotation) that a nec-

essary condition for mixing of a special flow T f (with

arbitrary T and f ) is the condition that the sequence of

distributions (( f (n)0 )�)n tends to ı1 in the space of prob-

ability measures on R. K. Schmidt [194] proved it using

the theory of cocycles and extending a result from [3] on

tightness of cocycles.

A. Katok [100] proved the absence of mixing for spe-

cial flows over IET when the roof function is of bounded

variation (see also [187]). Katok’s theorem was strength-

ened in [56] to the disjointness theorem with the class of

mixing flows.

On the other hand there is a lot of (difficult) results

pointing out classes of special flows over irrational rota-

tions which are mixing, especially (but not only) in the

class of non-symmetric logarithmic singularities: [36,38]

(B. Fayad was able to give a speed of convergence to zero

for Fourier coefficients), [109,119,120]. Recently mixing

property has been proved in a non-symmetric case in [203]

when the base transformation is a special class of IETs.

The eigenvalue problem (mainly how many frequen-

cies can have the group of eigenvalues) for special flows

over irrational rotations is studied in [41,42,71].

A. Avila and G. Forni [19] proved that a.e. translation

flow on a surface (of genus at least two) is weakly mixing

(which is a drastic difference with the linear flow case of

the torus, where the spectrum is always discrete).

The problem of whether mixing flows indicated in this

chapter are mixing of all orders is open (it is also unknown

whether they have singular spectra). One of several pos-

sible approaches (proposed by B. Fayad and J.-P. Thou-

venot) toward positive solution of this problem would be

to show that such flows enjoy so called Ratner’s property

(R-property). This property may be viewed as a particular

way of divergence of orbits of close points; it was shown

to hold for horocycle flows by M. Ratner [162]. We re-

fer the reader to [162] and the survey article [201] for the

formal definitions and basic consequences of R-property.

In particular, R-property implies “rigidity” of joinings and

it also implies the PID property; hence mixing and R-

property imply mixing of all orders. In [57,58] a version of

R-property is shown for the class of von Neumann special

flows (however ˛ is assumed to have bounded partial quo-

tients). This allowed one to prove there that such flows are

even mildly mixing (mixing is excluded by a Kochergin’s

result). We conjecture that an R-property may also hold

for special flows overmultidimensional rotations with roof

functions given by nil-cocycles which we mentioned in

Sect. “Spectral Theory of Weighted Operators”.

If indeed the R-property is ubiquitous in the class of

smooth flows on surfaces it may also be useful to show that

smooth flows on surfaces are disjoint with flows of proba-

bilistic origin – see [91,92,135,190,202].

B. Fayad [40] gives a criterion that implies singular-

ity of the maximal spectral type for a dynamical system

on a Riemannian manifold. As an application he gives

a class of smooth mixing flows (with singular spectra) on

T 3 obtained from linear flows by a time change (again

this is a drastic difference with dimension two, where

a smooth time change of a linear flow leads to non-mix-

ing flows [26]).



8570 S Spectral Theory of Dynamical Systems

The spectral multiplicity problem for special flows

(with sufficiently regular roof functions) over irrational ro-

tations seems to be completely untouched (except for the

case of a sufficiently smooth f – the spectrum of T f is then

simple [26]). It would be nice to have examples of such

flows with finite bigger than onemultiplicity. In particular,

is it true that the von Neumann class of special flows have

finite multiplicity? This was partially solved by A. Katok

(private communication) on certain subspaces in L2, but

not on the whole L2-space.

Problem. Given Tx D x C ˛ (with ˛ irrational) can

we find f : [0; 1) ! RC sufficiently regular (e. g. with

finitely many “controllable” singularities) such that T f has

a Lebesgue spectrum?

Of course the above is related to the question whether at all

one can find a smooth flow on a surface with a Lebesgue

spectrum (for Z-actions we can even see positive entropy

diffeomorphisms on the torus).

We mention at the end that if we drop here (and in

other problems) the assumption of regularity of f then the

answers will be always positive because of the LB theory;

in particular there is a section of any horocycle flow (it

has the LB property [161]) such that in the correspond-

ing special representation T f the map T is an irrational

rotation. Using a Kochergin’s result [118] on cohomology

(see also [98,176]) the L1-function f is cohomologous to

a positive function g which is even continuous, thus T f is

isomorphic to T g .

Future Directions

We have already seen several cases where spectral proper-

ties interact with measure-theoretic properties of a system.

Let us mention a few more cases which require further re-

search and deeper understanding.

We recall that the weakmixing property can be under-

stood as a property complementary to discrete spectrum

(more precisely to the distality [62]), or similarly mild

mixing property is complementary to rigidity. This can

be phrased quite precisely by saying that T is not weakly

(mildly) mixing if and only if it has a non-trivial factor

with discrete spectrum (it has a non-trivial rigid factor). It

has been a question for quite a long time if in a sense mix-

ing can be “built” on the same principle. In other words we

seek a certain “highly” non-mixing factor. It was quite sur-

prising when in 2005 F. Parrreau (private communication)

gave the positive answer to this problem.

Theorem 11 (Parreau) Assume that T is an ergodic au-

tomorphism of a standard probability space (X;B; �). As-

sume moreover that T is not mixing. Then there exists

a non-trivial factor (see below) of T which is disjoint with

all mixing automorphisms.

In fact, Parreau proved that each factor of T given

by B1(�) (this �-algebra is described in [136]), where

U
nk

T ! J�, is disjoint from all mixing transformations.

This proof leads to some other results of the same type,

for example: Assume that T is an ergodic automorphism

of a standard probability space. Assume that there exists

a non-trivial automorphism S with a singular spectrum

which is not disjoint with T. Then T has a non-trivial factor

which is disjoint with any automorphism with a Lebesgue

spectrum.

The problem of spectral multiplicity of Cartesian prod-

ucts for “typical” transformation studied by Katok [98]

and then its solution in [13] which we already consid-

ered in Sect. “The Multiplicity Function” lead to a study

of those T for which

(CS) � (m) ? � (n) whenever m ¤ n ;

where � D �T just stands for the reduced maximal spec-

tral type of UT (which is constantly assumed to be a con-

tinuous measure), see also Stepin’s article [199].

The usefulness of the above property (CS) in ergodic

theory was already shown in [90], where a spectral coun-

terexample machinery was presented using the following

observation: If A is a T�1-invariant sub-�-algebra such

that the maximal spectral type on L2(A) is absolutely con-

tinuous with respect to �T then A is contained in one of

the coordinate sub-�-algebras B. Based on that in [90] it

is shown how to construct two weakly isomorphic action

which are not isomorphic or how to construct two non-

disjoint automorphisms which have no common non-

trivial factors (such constructions were previously known

for so called minimal self-joining automorphisms [174]).

See also [200] for extensions of those results toZd -actions.

Prikhodko and Ryzhikov [159] proved that the clas-

sical Chacon transformation enjoys the (CS) property.

The SCS property defined in the glossary is stronger than

the (CS) condition above; the SCS property implies that

the corresponding Gaussian system S�T has a simple spec-

trum. Ageev [10] shows that Chacon’s transformation sat-

isfies the SCS property; moreover in [13] he shows that the

SCS property is satisfied generically and he gives a con-

struction of a rank onemixing SCS-system (see also [191]).

In [134] it is proved that some special flows considered

in Sect. “Special Flows and Flows on Surfaces, Interval

Exchange Transformations” (including the von Neumann

class, howeverwith ˛ having unbounded partial quotients)

have the SCS property. Since the corresponding Gaus-

sian systems have simple spectra, it would be interesting
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to decide whether �T (for an SCS-automorphism) can

be concentrated on a set without rational relations. It is

quite plausible that the SCS property is commonly seen for

smooth flows on surfaces.

Katok and Thouvenot (private communication) con-

sidered systems called infinitely divisible. These are sys-

tems T on (X;B; �) which have a family of factors B! in-

dexed by ! 2
S1

nD0f0; 1g
n (B" D B) such that B!0 ?

B!1; B!0 _ B!1 D B! and for each � 2 f0; 1gN ,

\n2NB�[0;n] D f;; Xg. They showed (unpublished) that

there are discrete spectrum transformations which are ID,

and that there are rank one transformations with contin-

uous spectra which are also ID (clearly Gaussian systems

are ID). It was until recently that a relationship between ID

automorphisms and systems coming from stationary ID

processes was unclear. In [135] it is proved that dynamical

systems coming from stationary ID processes are factors

of ID automorphisms; moreover, ID automorphisms are

disjoint with all systems having the SCS property. It would

be nice to decide whether Koopman representations asso-

ciated to ID automorphisms satisfy the Kolmogorov group

property.
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Glossary

Atomic units, a. u. The electron-charge jej, and the

mass me are taken as unity. The unit of time is fixed

by setting the Plank constant „ to unity. The Bohr

radius a0 D „2/(mee
2) is one a.u. of length in the


