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Abstract

We study the problem of lifting various mixing properties from a
base automorphism T ∈ Aut(X,B, µ) to skew products of the form
Tϕ,S , where ϕ : X → G is a cocycle with values in a locally compact
Abelian group G, S = (Sg)g∈G is a measurable representation of G in
Aut(Y, C, ν) and Tϕ,S acts on the product space (X × Y,B ⊗ C, µ⊗ ν)
by

Tϕ,S(x, y) = (Tx, Sϕ(x)(y)).

It is also shown that whenever T is ergodic (mildly mixing, mixing)
but Tϕ,S is not ergodic (is not mildly mixing, not mixing), then on
a non-trivial factor A ⊂ C of S the corresponding Rokhlin cocycle
x 7→ Sϕ(x)|A is a coboundary (a quasi-coboundary).

Introduction

Given an ergodic automorphism T of a standard Borel space (X,B, µ) we
can study various extensions T̃ of it. Among such extensions a special role is
played by so called compact group extensions or, more generally, isometric
extensions (see [8], [11] and [30]). In particular, one can ask which ergodic
properties of T are lifted by isometric extensions. The two papers1 by Dan
Rudolph [25] and [26] are beautiful examples of the mechanism that once the
extension enjoys some “minimal” ergodic property then it shares some strong
ergodic properties assumed to hold for its base. By iterating the procedure
of taking isometric extensions we can hence lift ergodic properties of T to
weakly mixing distal extensions of it.
∗Research partly supported by Polish MNiSzW grant N N201 384834
1In [25] it is proved that Bernoullicity is lifted whenever the extension is weakly mixing,

while in [26] it is shown that mixing (multiple mixing) lifts whenever the extension is
weakly mixing.
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The notion complementary to distality is relative weak mixing [8], [11],
[30] and a natural question arises what happens with lifting ergodic proper-
ties from T to T̃ when T̃ is relatively weakly mixing over the factor T . This,
by Abramov-Rokhlin’s theorem [2], leads to the study of so called Rokhlin
cocycle extensions which are automorphisms of the form T̃ = TΘ acting on
(X × Y,B ⊗ C, µ⊗ ν) by the formula

TΘ(x, y) = (Tx,Θx(y)),

where Θ : X → Aut(Y, C, ν) is measurable2. Since the above formula de-
scribes all possible (ergodic) extensions of T , it is hard to expect interesting
theorems on such a level of generality – one has to specify subclasses of
Rokhlin cocycles for which one can obtain some results. We will focus on
the following class.

Let G be a second countable locally compact Abelian (LCA) group.
Assume that we have a measurable action S of this group given by g 7→
Sg ∈ Aut(Y, C, ν). Let ϕ : X → G be a cocycle. The automorphism Tϕ,S
acting on (X × Y,B ⊗ C, µ⊗ ν) given by

Tϕ,S(x, y) = (Tx, Sϕ(x)(y))

will be called the Rokhlin (ϕ,S)-extension3 of T .
A systematic study of the problem of lifting ergodic properties from T to

Tϕ,S was originated by D. Rudolph in [27]. Since then, extensions Tϕ,S → T
have been studied in numerous papers, see e.g. [5], [10], [11], [12], [21], [22],
[24] and [28].

The present paper is a continuation of investigations from [21] and [22],
and, due to a new approach presented here, makes them complete. This new
approach is based on a harmonic analysis result from [17], and it consists
in showing that given an action S = (Sg)g∈G of a second countable LCA
groupG on a probability standard Borel space (Y, C, ν) and a saturated Borel
subgroup Λ ⊂ Ĝ, the spectral space of functions in L2(Y, C, ν) whose spectral
measures are concentrated on Λ is the L2-space of an S-invariant sub-σ-
algebra A ⊂ C (a measure-theoretic factor of S). This will systematically
be used in our study because the group of L∞-eigenvalues of the Mackey
G-action associated to T and ϕ is saturated and hence yields an S-factor.

2The map Θ is often called a Rokhlin cocycle.
3We would like to emphasize that, as noticed in [5], if we admit G to be non-Abelian

locally compact, then each ergodic extension T̃ = TΘ is of the form Tϕ,S ; more specifically,
a general Rokhlin cocycle x 7→ Θ(x) is cohomologous to a cocycle x 7→ Sϕ(x) for some G,ϕ
and S.
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Using that we will prove natural necessary and sufficient conditions for
weak mixing of Tϕ,S and relative weak mixing of Tϕ,S over T . We also com-
pute possible eigenvalues of Tϕ,S and determine the relative Kronecker factor
whenever Tϕ,S is ergodic. The idea of a factor determined by a saturated
group allows us to prove that if T is ergodic but Tϕ,S is not, then the Rokhlin
cocycle x 7→ Sϕ(x)|A is a coboundary as a cocycle taking values in Aut(A),
where A is the non-trivial factor of S corresponding to the above-mentioned
eigenvalue group. Finally, by replacing coboundary by quasi-coboundary, a
similar conclusion is achieved when T is mildly mixing but Tϕ,S is not, and
when T is mixing but Tϕ,S is not.

Another tool explored here is a use of mixing sequences of weighted
unitary operators, that is, of operators on L2(X,B, µ) given by the formula

f 7→ ξ · f ◦ T for each f ∈ L2(X,B, µ)

determined by a measurable ξ : X → T and an automorphism T . This,
in particular, will solve the problem of lifting mild mixing property, and
complete the picture from [22] of lifting mixing and multiple mixing.

1 Preliminaries

We briefly recall basic definitions, some known results and fix notation for
the rest of the paper.

1.1 Self-joinings of an automorphism, relative concepts

Assume that T is an automorphism of a standard probability Borel space
(X,B, µ), which we denote T ∈ Aut(X,B, µ)4. Denote by J(T ) the set of
self-joinings of T , that means the set of T×T -invariant probability measures
on (X×X,B⊗B) whose both marginals are equal to µ. To each self-joining
η ∈ J(T ) one associates a Markov operator5 Φη of L2(X,B, µ) given by∫

X
Φηf(y)g(y) dµ(y) =

∫
X×X

f(x)g(y) dη(x, y)

for each f, g ∈ L2(X,B, µ). Moreover, the T ×T–invariance of η means that

Φη ◦ T = T ◦ Φη. (1)
4We shall also denote by T the unitary operator f 7→ f ◦ T on L2(X,B, µ).
5A linear bounded operator Φ of L2(X,B, µ) is called Markov if Φ(1) = 1 = Φ∗(1)

and Φf ≥ 0 whenever f ≥ 0. Notice also that we always have ‖Φηf‖ ≤ ‖f‖ and thus
‖Φη‖ = 1.

3



On the other hand each Markov operator Φ on L2(X,B, µ) for which (1)
holds determines a self-joining ηΦ by the formula

ηΦ(A×B) =
∫
B

Φ(1A) dµ

for each A,B ∈ B. Then

Φ = ΦηΦ and η = ηΦη . (2)

Therefore the set J(T ) can naturally be identified with the set J (T ) of
Markov operators on L2(X,B, µ) satisfying (1). The set J (T ) is a closed
subset in the weak operator topology and hence it is compact. Thus

Φn → Φ iff 〈Φnf, g〉 → 〈Φf, g〉 for each f, g ∈ L2(X,B, µ).

By transferring the weak operator topology via (2) we obtain the weak
topology on J(T ) and

ηn → η iff ηn(A×B)→ η(A×B) for each A,B ∈ B.

Since the composition of two Markov operators is Markov, J (T ) is a compact
semitopological semigroup6. By the same token, J(T ) is also a compact
semitopological semigroup (η1 ◦ η2 := ηΦη1◦Φη2 ).

Given a factor7 , i.e. a T -invariant sub-σ-algebra A ⊂ B, let

µ =
∫
X/A

δx ⊗ µx dµ(x)

be the disintegration of µ over the factor A. By setting

µ⊗A µ =
∫
X/A

δx ⊗ µx ⊗ µx dµ(x).

we obtain a self-joining µ⊗Aµ which is often called the relative product over
A. Note that µ⊗A µ|A⊗A = ∆A, where ∆A(A1×A2) = µ(A1∩A2) for each
A1, A2 ∈ A. Moreover, we have Φµ⊗Aµ = E(·|A).

Assume additionally that T is ergodic. Then we can speak about ergodic
self-joinings of T and the set of such joinings will be denoted by Je(T ). By

6If S is a semigroup with a topology then it is called semitopological if for each s0 ∈ S
the maps s 7→ s · s0, s 7→ s0 · s from S to S are continuous.

7Up to a little abuse of notation, we define the factor system T |A : (X/A,A, µ|A) →
(X/A,A, µ|A) in which cosets x ∈ X/A are given by those points which cannot be distin-
guished by the sets from A; then T |A(x) = Tx.
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J e(T ) we denote the subset of J (T ) corresponding to Je(T ). The elements
of J e(T ) are exactly the extremal points in the natural simplex structure of
J (T ). Recall that T is said to be relatively weakly mixing over a factor A if
E(·|A) ∈ J e(T ).

For more about joinings or relative concepts in ergodic theory, see e.g.
[8], [11], [19], [28] and [30].

1.2 G-actions

Assume that G is a second countable LCA group. By a G-action S =
(Sg)g∈G we mean a measurable representation of G on a probability stan-
dard Borel space (Y, C, ν), that is a group homomorphism g 7→ Sg, G →
Aut(Y, C, ν). Then we also denote by S = (Sg)g∈G the associated uni-
tary representation of G on L2(Y, C, ν), which is continuous. For each
f ∈ L2(Y, C, ν), by σf,S (or σf is S is understood) we denote the spec-
tral measure of f , i.e. the measure on the character group Ĝ 8 determined
by the Fourier transform9

σ̂f,S(g) :=
∫
Ĝ
χ(g) dσf,S(χ) =

∫
Y
f ◦ Sg · f dν.

We denote G(f) = span{Sgf : g ∈ G}. Then the correspondence f → 1
Ĝ

yields the canonical isomorphism of S|G(f) with the representation Vσf =
(V σf
g )g∈G of L2(Ĝ,B(Ĝ), σf ), where V

σf
g j(χ) = χ(g)j(χ). The maximal

spectral type of S on L2
0(Y, C, ν) (the subspace of zero mean function in

L2(Y, C, ν)) will be denoted by σS10.
For more about the spectral theory of G-actions, see e.g. [19], [20].
Suppose that Si = (S(i)

g )g∈G is a G-action on (Yi, Ci, νi), i = 1, 2. By a
joining of these two G-actions we mean an (S(1)

g ×S(2)
g )g∈G-invariant measure

on (Y1 × Y2, C1 ⊗ C2) with projections ν1 and ν2 respectively11. Recall that
S1 and S2 are called disjoint (in the sense of Furstenberg [7]) if the only
possible joining between them is product measure. We then write S1 ⊥ S2.

8Since G is second countable LCA, also Ĝ is second countable LCA.
9By Pontryagin Duality Theorem, the character group of Ĝ has a natural identification

with G.
10Formally speaking, it is the class of equivalence of measures which are maximal spec-

tral measures but in what follows we abuse the vocabulary and often speak about a given
measure as the maximal spectral type.

11Slightly generalizing Section 1.1, η determines a Markov intertwining operator Φη :
L2(Y1, C1, ν1)→ L2(Y2, C2, ν2); the correspondence similar to (2) also takes place.
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It is well-known [14] that

σS1 ⊥ σS2 ⇒ S1 ⊥ S2.

Denote by M(Ĝ) the convolution Banach algebra of all complex Borel
measures on Ĝ12. Let M+(Ĝ) ⊂ M(Ĝ) (respectively M+,1(Ĝ) ⊂ M(Ĝ))
consists of nonnegative members of M(Ĝ) (of all probability measures in
M(Ĝ)).

Assume thatG is not compact. Recall that σ ∈M+(Ĝ) is called Dirichlet
if lim supg→∞ |σ̂(g)| = σ(Ĝ) or, equivalently, if there exists a sequence gn →
∞ in G such that σ̂(gn)→ σ(Ĝ).

If σ = σS is Dirichlet then S is called rigid, and σ̂(gn) → σ(Ĝ) is
equivalent to Sgn → Id in the strong (or, which here is the same, in the
weak) operator topology. In this case (gn) is called a rigidity sequence for
S.

1.3 G-valued cocycles for an ergodic automorphism

Assume that T ∈ Aut(X,B, µ). Let G be a second countable LCA group13.
Let ϕ : X → G be measurable. It determines a cocycle ϕ(n, x) = ϕ(n)(x)14

by the following formula

ϕ(n)(x) =


ϕ(x) · ϕ(Tx) · . . . · ϕ(Tn−1x) if n > 0
1 if n = 0
(ϕ(Tnx) · . . . · ϕ(T−1x))−1 if n < 0.

Let us recall now the definitions of two groups related to T and ϕ that play
basic role in the study of Rokhlin cocycle extensions (studied in Section 3).

The group Λϕ: This is a Borel subgroup of Ĝ defined as

Λϕ = {χ ∈ Ĝ : χ ◦ ϕ = ξ/ξ ◦ T for a measurable ξ : X → T}15.

This group turns out to be the group of L∞-eigenvalues of the Mackey action
(of G) associated to the cocycle ϕ (see e.g. [1], [15], [18], [22]).

The group Σϕ: This is a Borel subgroup of Ĝ defined as

Σϕ = {χ ∈ Ĝ : χ ◦ ϕ = c · ξ/ξ ◦ T for a measurable ξ : X → T and c ∈ T}.
12Since Ĝ is Polish, all members of M(Ĝ) are regular measures.
13Here and all over the paper we use multiplicative notation.
14ϕ(·, ·) satisfies the cocycle identity ϕ(m+n, ·) = ϕ(m, ·) ·ϕ(n, Tm·); it is often ϕ itself

which is called a cocycle. A cocycle ϕ : X → G is called a coboundary if ϕ = f/f ◦ T
for a measurable f : X → G. If two cocycles differ by a coboundary then they are
called cohomologous. A cocycle is said to be a quasi-coboundary if it is cohomologous to a
constant cocycle.

15We denote T = {z ∈ C : |z| = 1}.
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2 Tools

In this section we will present tools that will be needed to prove lifting of
various properties by Rokhlin cocycles (see Section 3). Some of the results
that will be presented here are new and seem to be of independent interest
(see Section 2.2).

2.1 Idempotents in J(T )

Assume that T ∈ Aut(X,B, µ). Then the closure of the group {T j : j ∈ Z}
in J (T ), denoted by {T j : j ∈ Z}, is a closed subsemigroup of J (T ) and
therefore

{T j : j ∈ Z} is a semitopological compact semigroup. (3)

Given a factor A ⊂ B, we have E(·|A) = Φµ⊗Aµ. Notice that given
Φ ∈ J (T ),

Φ ◦ E(·|A) = E(·|A) if and only if Φf = f for each f ∈ L2(A). (4)

It follows that

Φ ◦ E(·|A) = E(·|A) if and only if ηΦ|A⊗A = ∆A. (5)

Indeed, assume ηΦ|A⊗A = ∆A, fix f ∈ L2(A) and let g ∈ L2(A) be arbitrary.
Then ∫

X
Φf(y)g(y) dµ(y) =

∫
X×X

f(x)g(y) dηΦ(x, y) =
∫
X
fg dµ.

Since g was arbitrary in L2(A), Φf − f is orthogonal to L2(A). But we
must have ‖Φf‖ ≤ ‖f‖, and thus Φf = f . Conversely, if Φf = f for
each f ∈ L2(A), we get the same equalities for all f , g ∈ L2(A), whence
ηΦ|A⊗A = ∆A. Now (5) follows from (4).

In view of (5) we obtain that

{Φ ∈ J (T ) : ηΦ|A⊗A = ∆A} is a compact semitopological semigroup. (6)

Lemma 1 Assume that η ∈ J(T ). Then

L2(B ⊗ {∅, X}, η) ∩ L2({∅, X} ⊗ B, η)

= {f ⊗ 1 : f ∈ L2(X,B, µ), ‖Φηf‖ = ‖f‖}. (7)
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Proof.
Suppose that f(x) = g(y) for η–a.e. (x, y) ∈ X × X. Then we have

Φηf = g and

‖f‖2 =
∫
X×X

|f(x)|2 dη(x, y) =
∫
X×X

|g(y)|2 dη(x, y) = ‖g‖2,

so ‖Φηf‖ = ‖f‖.
On the other hand, take f ∈ L2(X,B, µ) satisfying ‖Φηf‖ = ‖f‖. Then

similarly ∫
X×X

|f(x)|2 dη(x, y) =
∫
X×X

|Φηf(y)|2 dη(x, y).

But, immediately from the definition, the function (x, y) 7→ Φηf(y) is the
orthogonal projection of (x, y) 7→ f(x) on the subspace L2({∅, X} ⊗ B) of
L2(X ×X,B ⊗ B, η). It follows that f(x) = Φηf(y) η-a.e. (x, y).

The σ-algebra B ⊗ {∅, X} ∩ {X, ∅} ⊗ B (modulo η) can be seen on one
hand as a factor B1(η) ⊗ {∅, X} of B ⊗ {∅, X} and on the other hand as a
factor {∅, X} ⊗ B2(η) of {∅, X} ⊗ B. This defines two factors B1(η), B2(η)
of (X,B, µ), the largest factors identified by the joining η.

We can see factors of the form B1(η) in a different way. Indeed, given
η ∈ J(T ) define

B(η) := {A ∈ B : η
(
(A×X)4(X ×A)

)
= 0}.

Then L2(B(η)) = {f ∈ L2(X,B, µ) : Φηf = f}. Indeed, from the von
Neumann theorem for contractions

1
N

N−1∑
n=0

Φn
η → projFix(Φη) (8)

and since the limit is an idempotent and a Markov operator, it is the or-
thogonal projection on the L2–space of a factor.

Recall also that if W is a contraction of a Hilbert space H then so is its
adjoint and then W ∗Wf = f if and only if ‖Wf‖ = ‖f‖. Hence for any
η ∈ J(T ),

B1(η) = B(η∗ ◦ η),

where η∗ := ηΦ∗ .
Whenever A ⊂ B is a factor of T , the relative product µ ⊗A µ is an

idempotent in J(T ). The following result states that this is the only way
to obtain idempotents in J(T ) (cf. Theorem 6.9 in [11] where self-adjoint
idempotents of J (T ) are shown to correspond to factors).
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Proposition 1 Assume that η is an idempotent in J(T ). Then there exists
a factor A of T such that η = µ⊗A µ.

Proof.
In view of (8), Φη must be an orthogonal projection and it is an isometry

exactly on its range. Now, by Lemma 1, Φη is an isometry exactly on
L2(B1(η)). Therefore, it is the orthogonal projection onto L2(B1(η)), that
is Φη = E(·|B1(η)) and the result follows.

2.2 Canonical factor of a G-action associated to a saturated
Borel subgroup

Assume that Λ is a Borel subgroup of Ĝ. Let us recall (see [17]) that if
σ, τ ∈M+,1(Ĝ) then τ sticks to σ if

σ̂(gj)→ 1 =⇒ τ̂(gj)→ 1

for any sequence (gj)j≥1 in G going to infinity. Following [17] (see Thm. 2.2
in [17]), one says that Λ is saturated if for any σ, τ ∈M+,1(Ĝ)

σ(Λ) = 1 and τ sticks to σ =⇒ τ(Λ) = 1.

Theorem 1 ([17], Thm. 3.4) Every group Λϕ is saturated.

Remark 1 As noticed e.g. in [22], every subgroup Σϕ is also of the form
Λψ, whence Σϕ is also a saturated subgroup.

We shall also need the following characterization of saturated groups.

Theorem 2 ([17], Thm. 2.1) A Borel subgroup Λ ⊂ Ĝ is saturated if and
only if for any τ ∈ M+(Ĝ) the indicator function 1Λ belongs to the closed
convex hull in L1(Ĝ, τ) of the characters of Ĝ.

The following corollary describes a dynamical consequence of Theorem 2 16.
Given a Borel subset Λ of Ĝ, we denote by HΛ the spectral subspace corre-
sponding to Λ, i.e. the space of those elements in L2(Y, C, ν) whose spectral
measures are concentrated on Λ. We denote by g̃ the character of Ĝ associ-
ated by Pontryagin duality to g ∈ G: g̃(χ) := χ(g) for χ ∈ Ĝ.

16This consequence of Theorem 2 seems to appear for the first time.
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Corollary 1 Let S be an action of G on (Y, C, ν) and Λ be a saturated
subgroup of Ĝ. Then HΛ = L2(A) where A ⊂ C is a factor of S.

Proof.
First notice that in Theorem 2, L1-convergence can be replaced by L2-

convergence, in particular

Nn∑
k=1

a
(n)
k g̃

(n)
k (χ)→ 1Λ in L2(Ĝ,B(Ĝ), σS)

for some a(n)
k ≥ 0 with

∑Nk
k=1 a

(n)
k = 1 and some g(n)

k ∈ G. Then, for each
τ ∈M+(Ĝ), τ � σS we still have

Nn∑
k=1

a
(n)
k g̃

(n)
k (χ)→ 1Λ in L2(Ĝ,B(Ĝ), τ). (9)

Consider f ∈ L2(Y, C, ν). In the canonical representation of G(f), the func-
tion

∑Nn
k=1 a

(n)
k g̃

(n)
k ∈ L2(Ĝ,B(Ĝ), σf ) corresponds to

∑Nn
k=1 a

(n)
k S

g
(n)
k

f and

the subspace 1Λ · L2(Ĝ,B(Ĝ), σf ) corresponds to HΛ ∩G(f). So, by taking
τ = σf in (9),

Nn∑
k=1

a
(n)
k S

g
(n)
k

f → projHΛ∩G(f)f.

Now, since HΛ is a spectral subspace, projHΛ
f = projHΛ∩G(f)f . It fol-

lows that the sequence
(∑Nn

k=1 a
(n)
k S

g
(n)
k

)
n≥1

of Markov operators of L2(Y, C, ν)

converges weakly to projHΛ
. Therefore, the latter projection is a Markov

operator and the result follows from Proposition 1.

The following lemma allows us to localize some eigenvalues of S.

Lemma 2 Let S be a G-action on (Y, C, ν) and Λ be a saturated subgroup
of Ĝ. Assume that σS(Λ) = 0 and that σS(χ0Λ) > 0 for some χ0 ∈ Ĝ.
Then S has an eigenvalue in χ0Λ. More precisely, there exists exactly one
eigenvalue of S in χ0Λ and Hχ0Λ is the eigenspace corresponding to that
eigenvalue.

Proof.
Denote by Γ the cyclic group {χn0 : n ∈ Z} considered with the discrete

topology. Let Z be the dual group of Γ. Hence we obtain a probability
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space (Z,D, η), where D = B(Z) and η is the normalized Haar measure on
Z. Given g ∈ G we define g̃ ∈ Z by g̃(χ) = χ(g) for each χ ∈ Γ, and
Rg : Z → Z by Rg(z) = g̃ · z. In this way we obtain an ergodic discrete
spectrum G-action R = (Rg)g∈G on (Z,D, η), whose point spectrum is equal
to Γ. Let us consider the diagonal G-action S × R = (Sg × Rg)g∈G on
(Y × Z, C ⊗ D, ν ⊗ η). The maximal spectral type σS×R of the associated
unitary G-action is equal to(∑

n∈Z

1
2|n|

δχn0

)
∗ σS +

∑
n6=0

1
2|n|

δχn0 .

By the assumption, we have σS×R(Λ) > 0. In view of Corollary 1, there
exists a non-trivial S ×R–factor A ⊂ C ⊗D for which

L2(A) = {F ∈ L2(Y × Z, ν ⊗ η) : σF,S×R is concentrated on Λ}.

Now fix a non-zero f ∈ Hχ0Λ and let h be the eigenfunction z 7→ z(χ0) of
R, corresponding to the eigenvalue χ0. Then σf⊗h,S×R = δχ0 ∗ σf,S , hence

σf⊗h,S×R is concentrated on Λ (10)

and f ⊗ h ∈ L2
0(A). Consider the function |f |2 ⊗ h. First notice that

|f |2 ⊗ h = (f ⊗ h) · (f ⊗ 1),

so the function |f |2 ⊗ h is measurable with respect to A ∨ (C ⊗ {∅, Z}).
The two G-actions (S × R)|A and S are spectrally disjoint since, by

assumption, σS(Λ) = 0. Hence, they are disjoint. In particular, |f |2 ⊗ h is
in L2(Y × Z, ν ⊗ η) and

σ|f |2⊗h,S×R = σf⊗h,(S×R)|A ∗ σf,S . (11)

At the same time, since
∫
Y |f |

2 dν > 0, we have δ1 � σ|f |2,S and therefore

σ|f |2⊗h,S×R = σ|f |2,S ∗ σh,R � δ1 ∗ δχ0
= δχ0

.

It now follows directly from (11) that σf,S is not a continuous measure.

More precisely, in view of (10), σf,S must have a point mass at some χ ∈ Ĝ
such that χ0 ∈ χΛ, and f cannot be orthogonal to the subspace of eigenfunc-
tions corresponding to the eigenvalues of S in χ0Λ. Since f is an arbitrary
element of Hχ0Λ, the space Hχ0Λ consists only of eigenfunctions. Finally,
since σS(Λ) = 0, no two different eigenvalues of S can be in the coset χ0Λ
and the proof is complete.
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Remark 2 Note that σS(Λ) = 0 implies that S is ergodic. It follows
that under the assumptions of the above lemma, Hχ0Λ is moreover one-
dimensional.

Although, the result below (Proposition 2) will not be used in what
follows, we bring it up, as it is another sample of applications of saturated
groups in (non-singular) ergodic theory.

Assume that T is a non-singular ergodic automorphism of a standard
probability space (X,B, µ) and that S : (Y, C, ν)→ (Y, C, ν) is another non-
singular automorphism. Let π : (X,B, µ)→ (Y, C, ν) settle a homomorphism
between T and S. Following [5], (S, π) is called a relatively finite measure-
preserving (rfmp) factor of T if dµ◦T

dµ is π−1(C)-measurable.

Proposition 2 Assume that T is a nonsingular ergodic automorphism and
S is an rfmp factor of it. Let R be a weakly mixing probability preserving
automorphism of a standard probability Borel space (Z,D, η). Assume that
R× S is ergodic. Then R× T is also ergodic 17.

Proof.
We need to show that σR(e(T )) = 0, where e(T ) stands for the group of

L∞ eigenvalues (c ∈ e(T ) ⊂ T if for some f ∈ L∞(X,B, µ), f ◦T = c ·f), see
e.g. [23]. In view of Theorem 2 in [4], e(T ) is the union of countably many
cosets c · e(S), e(T ) =

⋃∞
i=1 ci · e(S). On the other hand, σR(e(S))=0 and

e(S) is saturated (see [17]). Since R is weakly mixing, in view of Lemma 2,
σR(c · e(S)) = 0 for each c ∈ T. Therefore, σR(e(T )) = 0 and the result
follows.

Following [5], given a non-singular automorphism S of (Y, C, ν), to obtain
T and π so that (S, π) is an rfmp factor of T we must take any ergodic skew
product T = SΘ on (X,B, µ) = (Y, C, ν) ⊗ (X ′,B′, µ′) where (X ′,B′, µ′) is
another probability standard Borel space and Θ : X → Aut(X ′,B′, µ′) is
measurable.

2.3 Lemma on mixing times of weighted unitary operators

In the study of mixing properties of automorphism of the form Tϕ,S unitary
operators Vξ defined below will play a crucial role.

17Usually, to ensure ergodicity one has to assume mild mixing of R, a property stronger
than weak mixing. As a matter of fact, R is mildly mixing if and only if R× T is ergodic
for each non-singular ergodic T , see [9]. By definition ([9]), mild mixing means that R has
no non-trivial rigid factors.
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Let T be an automorphism of (X,B, µ). Let ξ : X → T be a cocycle.
We define a unitary operator Vξ on L2(X,B, µ) by setting

Vξ(f)(x) = ξ(x) · f(Tx)

for each f ∈ L2(X,B, µ). A sequence (ni) ⊂ N, ni → ∞ is said to be a
mixing sequence for Vξ if V ni

ξ → 0 in the weak operator topology (while (ni)
is a mixing sequence for T if Tni restricted to L2

0(X,B, µ) goes to 0, that is,
Tni → Φµ⊗µ in J (T )).

Denote by Tξ the Anzai skew product corresponding to T and ξ, i.e. the
automorphism of (X × T,B ⊗ B(T), µ⊗ λ) given by Tξ(x, z) = (Tx, ξ(x)z),
where λ stands for the Lebesgue measure of the circle.

We assume now that T is ergodic.

Proposition 3 Assume that Tni → Φ in J (T ), where Φ = Φρ ∈ J e(T ).
Suppose that the (T × T, ρ)-cocycle ξ ⊗ ξ is not a coboundary. Then (ni) is
a mixing sequence for Vξ.

Proof.
We can moreover assume that (Tξ)ni → Φ̃ = Φρ̃ in J (Tξ). Given f1,

f2 ∈ L2(X,B, µ), we define Fi ∈ L2(X × T, µ ⊗ λ) by Fi(x, z) = fi(x)z,
i = 1, 2. Set also J(x1, z1, x2, z2) = z1z2, so J ∈ L2((X × T)× (X × T), ρ̃).
Moreover let, with some abuse of notation, H denote Eρ̃(J |B⊗B). We have∫
X

(Vξ)nif1 · f2 dµ =
∫
X
ξ(ni) · f1 ◦ Tni · f2 dµ

=
∫
X×T

F1 ◦ Tniξ · F 2 dµ dλ

−→
∫

(X×T)×(X×T)
F1(x1, z1)F2(x2, z2) dρ̃((x1, z1), (x2, z2))

=
∫

(X×T)×(X×T)
f1(x1)f2(x2)z1z2 dρ̃((x1, z1), (x2, z2))

=
∫
X×X

f1 ⊗ f2 ·H dρ.

We claim now that, for ρ-a.a. (x1, x2) ∈ X ×X,

ξ(x1)ξ(x2)H(x1, x2) = H(Tx1, Tx2). (12)

Indeed, J ◦ (Tξ × Tξ) = (ξ ⊗ ξ) · J , so

Eρ̃(J |B ⊗ B) ◦ (T × T ) = Eρ̃(J ◦ (Tξ × Tξ)|B ⊗ B)

= ξ ⊗ ξ · Eρ̃(J |B ⊗ B)
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and (12) follows.
Now, ergodicity of ρ implies that H is of constant modulus. If H 6= 0

then from (12) it follows that ξ ⊗ ξ is a (T × T, ρ)-coboundary. Otherwise∫
X(Vξ)nif1 · f2 dµ → 0 for all f1, f2 ∈ L2(X,B, µ), so (ni) is a mixing

sequence for Vξ.

Corollary 2 If T is weakly mixing and (ni) is a mixing sequence for T , then
(ni) is also a mixing sequence for Vξ whenever ξ is not a quasi-coboundary.

Proof.
We have then Tni → Φµ⊗µ in J (T ). As T is weakly mixing, µ ⊗ µ ∈

J e(T ), and it is well-known that ξ⊗ ξ is a (T ×T, µ⊗µ)-coboundary if and
only if ξ is a quasi-coboundary (see e.g. [22], Appendix).

3 Lifting mixing properties to Rokhlin cocycle ex-
tensions

In this section we will present a systematic study of mixing properties of
automorphisms of the form Tϕ,S . Throughout T is assumed to be an auto-
morphism of (X,B, µ), ϕ : X → G a cocycle and S = (Sg)g∈G a G-action
acting on (Y, C, ν).

3.1 Maximal spectral type of Tϕ,S

Let {fn}n≥0 and {gn}n≥0 be orthonormal bases in L2(X,B, µ) and L2(Y, C, ν)
respectively, where f0 = g0 = 1. For the maximal spectral type σTϕ,S of Tϕ,S
on L2

0(X × Y, µ⊗ ν), we take18

σTϕ,S =
∑

(m,n) 6=(0,0)

2−(m+n)σfn⊗gm,Tϕ,S . (13)

According to the notation of section 2.3, given χ ∈ Ĝ, we denote by Vχ◦ϕ
the unitary operator on L2(X,B, µ) which acts by the formula

(Vχ◦ϕf)(x) = χ(ϕ(x))f(Tx).

18Up to some abuse of vocabulary, we take as σTϕ,S any spectral measure realizing the
maximal spectral type.
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Its maximal spectral type, on L2(X,B, µ), is equal to

σVχ◦ϕ =
∑
n≥0

1
2n

σfn,Vχ◦ϕ .

Notice also that the maximal spectral type of S on L2
0(Y, C, ν) is given by

σS =
∑
m≥1

1
2m

σgm,S

and σT , the maximal spectral type of T on L2
0(X,B, µ), is equal to

∑
n≥1

1
2n σfn,T .

Lemma 3 We have σTϕ,S = σT +
∫
Ĝ
σVχ◦ϕ dσS(χ). Moreover

σTϕ,S |L2(X×Y,µ⊗ν)	L2(X,µ)⊗1Y
=
∫
Ĝ
σVχ◦ϕ dσS(χ).

Proof.
Firstly, we calculate the spectral measure of f ⊗ g for f ∈ L2(X,B, µ),

g ∈ L2(Y, C, ν). For each k ∈ Z we have

σ̂f⊗g,Tϕ,S (k) =
∫
X×Y

(f ⊗ g) ◦ (Tϕ,S)k · f ⊗ g d(µ⊗ ν)

=
∫
X
f(T kx)f(x)

(∫
Y
g(Sϕ(k)(x)(y))g(y) dν(y)

)
dµ(x)

=
∫
X
f(T kx)f(x)

(∫
Ĝ
χ(ϕ(k)(x)) dσg,S(χ)

)
dµ(x)

=
∫
Ĝ

(∫
X
χ(ϕ(k)(x))f(T kx)f(x) dµ(x)

)
dσg,S(χ).

=
∫
Ĝ
σ̂f,Vχ◦ϕ(k) dσg,S(χ).

It follows that
σf⊗g,Tϕ,S =

∫
Ĝ
σf,Vχ◦ϕ dσg,S(χ). (14)
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Therefore, in view of (13) and (14)

σTϕ,S =
∑

(n,m)6=(0,0)

1
2n+m

σfn⊗gm,Tϕ,S

=
∫
Ĝ

∑
(n,m) 6=(0,0)

1
2n+m

σfn,Vχ◦ϕ dσgm,S(χ)

=
∑
m≥1

1
2m

∫
Ĝ

∑
n≥0

1
2n
σfn,Vχ◦ϕ dσgm,S(χ) +

∫
Ĝ

∑
n≥1

1
2n
σfn,Vχ◦ϕ dσg0,S(χ)

=
∑
m≥1

1
2m

∫
Ĝ
σVχ◦ϕ dσgm,S(χ) +

∑
n≥1

1
2n
σfn,T

=
∫
Ĝ
σVχ◦ϕ dσS(χ) + σT .

The result immediately follows.

3.2 Maximal spectral type of Tϕ,S on subspaces of the form
L2(X,B, µ)⊗G(g)

Assume now that g ∈ L2
0(Y, C, ν). Recall that by G(g) we denote the cyclic

space generated by g, i.e.

G(g) = span{g ◦ Sh : h ∈ G}.

The space L2(X,B, µ) ⊗ G(g) is Tϕ,S-invariant. Indeed, we can naturally
identify L2(X × Y,B ⊗ C, µ ⊗ ν) with the space L2

(
X,B, µ; L2(Y, C, ν)

)
of

square-integrable L2(Y, C, ν)-valued functions on (X,B, µ), and then L2(X,B, µ)⊗
G(g) becomes the subspace of functions taking µ-a.e. their values in G(g).
Now, if F (x, ·) ∈ G(g), then (F ◦ Tϕ,S)(x, ·) = F (Tx, ·) ◦ Sϕ(x) ∈ G(g).

For each h ∈ G, as σg◦Sh,S = σg,S , we have from (14)

σf⊗g,Tϕ,S = σf⊗(g◦Sh),Tϕ,S .

Let {fn}n≥0 be an orthonormal base in L2(X,B, µ) with f0 = 1. It is then
clear that

σTϕ,S |L2(X,µ)⊗G(g)
=
∑
n≥0

2−nσfn⊗g,Tϕ,S . (15)

Therefore, by the proof of Lemma 3, we obtain the following.
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Lemma 4 We have

σTϕ,S |L2(X,µ)⊗G(g)
=
∫
Ĝ
σVχ◦ϕ dσg,S(χ).

3.3 Ergodicity of Tϕ,S

We assume here that T is ergodic. Let us first notice that, then

χ ∈ Λϕ if and only if σVχ◦ϕ({1}) > 0 (16)

or, more generally, that

The cocycle χ ◦ ϕ is cohomologous to e2πit

if and only if σVχ◦ϕ({e2πit}) > 0.
(17)

Indeed, σVχ◦ϕ({e2πit}) > 0 if and only if e2πit is an eigenvalue of Vχ◦ϕ and any
eigenfunction corresponding to this eigenvalue will have constant modulus
and so, up to normalization, be a transfer function j in the cohomology
equation χ ◦ ϕ = e2πit · j/j ◦ T .

The result below has already been proved in [21]. We give however a
shorter proof.

Proposition 4 ([21]) Tϕ,S is ergodic if and only if T is ergodic and
σS(Λϕ) = 0.

Proof.
It is clearly necessary that T be ergodic. Then, by Lemma 3, σTϕ,S ({1}) =

0 if and only if σVχ◦ϕ({1}) = 0 for σS-a.e. χ ∈ Ĝ and therefore, in view
of (16), if and only if σS(Λϕ) = 0.

Remark 3 Let us notice that σS(Λϕ) = 0 implies that σS({1}) = 0. Indeed
a necessary condition for ergodicity of Tϕ,S is the ergodicity property of S
itself.
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3.4 Eigenvalues of Tϕ,S

Assume now that Tϕ,S is ergodic. We will determine its eigenvalues (and
eigenfunctions). Let us fix t ∈ [0, 1) and set

At = {χ ∈ Ĝ : χ ◦ ϕ is cohomologous to e2πit}.

Notice that At ⊂ Σϕ and that if χ ∈ At and χ1 ∈ Λϕ then χχ1 ∈ At.
Moreover, if χ1, χ2 ∈ At belong to At then χ1χ2 ∈ Λϕ. It follows that At is
a coset of Λϕ.

Suppose that e2πit is an eigenvalue of Tϕ,S , i.e. σTϕ,S ({e2πit}) > 0 and
let F be a corresponding eigenfunction. We shall assume that F is not a
function of x alone (otherwise F is an eigenfunction of T and the result below
is trivial). Then there exists g ∈ L2

0(Y, C, ν) such that F is not orthogonal
to L2(X,B, µ)⊗G(g). Since the spectral measure of F is the Dirac measure
at e2πit, it follows from Lemma 4 that∫

Ĝ
σVχ◦ϕ dσg,S(χ)({e2πit}) > 0.

The latter occurs if and only if σg,S({χ ∈ Ĝ : σVχ◦ϕ({e2πit}) > 0}) > 0,
that is, by (17), if and only if σg,S(At) > 0. Now At is a coset χ0Λϕ of Λϕ
and there exists then a non-zero g1 ∈ G(g)∩Hχ0Λϕ . According to Lemma 2
(and Theorem 1), since Tϕ,S is ergodic and thus σS(Λϕ) = 0, it follows that
g1 is an eigenfunction corresponding to an eigenvalue χ ∈ At.

Let now f be a measurable function of modulus 1 satisfying χ◦ϕ ·f ◦T =
e2πit · f µ-a.e. As g1 ◦ Sϕ(x) = χ(ϕ(x)) · g1, we get

(f ⊗ g1) ◦ Tϕ,S = (χ ◦ ϕ · f ◦ T )⊗ g1 = e2πit · (f ⊗ g1).

So, f ⊗ g1 is an eigenfunction of Tϕ,S corresponding to e2πit and, since Tϕ,S
is ergodic, F can be different from f ⊗ g1 only by a multiplicative constant.
Therefore we have proved the following.

Proposition 5 Assume that Tϕ,S is ergodic. Then the eigenfunctions of
Tϕ,S are the functions of the form f ⊗ g, where χ ◦ ϕ = e2πit · f/f ◦ T ,
χ is an eigenvalue of S and g is an eigenfunction corresponding to χ. In
particular, e2πit (t ∈ [0, 1)) is an eigenvalue of Tϕ,S if and only if there exists
an eigenvalue of S in At.
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3.5 Weak mixing and relative weak mixing

A characterization of the weak mixing property for Tϕ,S is a direct corollary
of Proposition 5.

Corollary 3 Tϕ,S is weakly mixing if and only if it is ergodic, T is weakly
mixing and S has no eigenvalues in Σϕ.

Remark 4 Notice that this corollary generalizes the well-known criterion
for weak mixing property of Abelian compact group extensions.

Let us pass to a characterization of the relative weak mixing property.
We still assume that Tϕ,S is ergodic.

Let us first notice that the relative product of Tϕ,S with itself over the
factor T is isomorphic to Tϕ,S×S , where S×S stands for the diagonal action
g 7→ Sg×Sg of G on (Y ×Y, C⊗C, ν⊗ν). So Tϕ,S is relatively weakly mixing
over T if and only if Tϕ,S×S is ergodic.

Since σS×S = σS + σS ∗ σS , it follows from Proposition 4 that Tϕ,S is
relatively weakly mixing over T if and only if σS(Λϕ) + σS ∗ σS(Λϕ) = 0.
The latter statement is equivalent to saying that σS(χΛϕ) = 0 for each
χ ∈ Ĝ. This has already been proved in [21] but now we have Lemma 2
at our disposal which finally improves and clarifies the result: Since Tϕ,S is
ergodic, we have σS(Λϕ) = 0, and σS(χ0Λϕ) > 0 for some χ0 if and only if
S has an eigenvalue.

Proposition 6 Tϕ,S is relatively weakly mixing over T if and only if it is
ergodic and S is weakly mixing.

3.6 Relative Kronecker factor of Tϕ,S over T

The notion which is complementary to relative weak mixing is the concept
of relative Kronecker factor [8], [30]. More precisely, assume that R is an
automorphism acting on (Z,D, η) and E ⊂ D is its factor. Then the relative
Kronecker factor K(E) (of R over R|E) is the smallest σ-algebra making all
relative eigenfunctions19 measurable (E ⊂ K(E)).

19By a relative (with respect to E) eigenvalue of R one means an E-measurable map
c : (Z/E , E , η|E)→ U(n) for which there is M : (Z,D, η)→ Cn satisfying the following:

c(z)

 M1(z)
· · ·

Mn(z)

 =

 M1(Rz)
· · ·

Mn(Rz)

 for a.e. z ∈ Z, (18)
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Denote by K(S) ⊂ C the Kronecker factor of S, i.e. the factor generated
by the eigenfunctions of the unitary action of S. If g, h are eigenfunctions
of S (corresponding to χ and χ′ respectively) then

(g ⊗ h) ◦ Tϕ,S×S(x, y, y′) = χ(ϕ(x))χ′(ϕ(x)) · (g ⊗ h)(y, y′).

It follows that B⊗K(S) is contained in the relative Kronecker factor of Tϕ,S
over T (cf. (18) and (19) for n = 1). In fact, we have the following.

Proposition 7 Assume that Tϕ,S is ergodic. The relative Kronecker factor
of Tϕ,S over T is equal to B ⊗ K(S).

Proof.
We will establish condition C1 on page 131 of [8].
Assume that F ∈ L2(X×Y ×Y, µ⊗ν⊗ν) is a Tϕ,S×S-invariant function.

Take g, h ∈ L2(Y, C, ν) and suppose that F is not orthogonal to L2(X,B, µ)⊗
G(g⊗h). Then, proceeding as in the proof of Proposition 5, we obtain that
σg⊗h,S×S(Λϕ) = σg,S ∗ σh,S(Λϕ) > 0. Therefore σg,S(χΛϕ) > 0 for some
χ ∈ Ĝ \ {1} (and the same holds for h). By Lemma 2, remembering that
Tϕ,S is ergodic, g is not orthogonal to an eigenfunction of S from HχΛ. It
follows that if {gi}i≥0 stands for an orthonormal base of L2(K(S)), where
each gi is an eigenfunction corresponding to χi, i ≥ 0, then

F (x, y, y′) =
∑
i,j≥0

aij(x)gi(y)gj(y′),

where χi · χj ∈ Λϕ, whenever aij 6= 0 (in fact χj = χi since there is at
most one eigenvalue in a coset χΛϕ). Fix any function J = J(x, y′) ∈
L2(X × Y, µ⊗ ν). Then, for each i, j ≥ 0 the function given by

((aij ⊗ gi ⊗ gj) ∗ J) (x, y) :=
∫
Y
aij(x)gi(y)gj(y′)J(x, y′) dν(y′)

is of the form A(x)gi(y), so it is measurable with respect to B ⊗K(S). The
result follows then directly from the description of the relative Kronecker
factor given in [8], Theorem 6.13.

Mi ⊥E Mj for i 6= j and E(|Mi|2|E) = 1, i, j = 1, . . . , n. (19)

The map M satisfying (18) and (19) is called a relative eigenfunction corresponding to c.
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Remark 5 Proposition 7 yields another proof of the result about eigenfunc-
tions of Tϕ,S when Tϕ,S is ergodic. Indeed, eigenfunctions are measurable
with respect to the relative Kronecker factor. If, as before, {gi} stands for
an orthonormal base of eigenfunctions in L2(K(S)) and F ◦ Tϕ,S = c · F ,
then

F (x, y) =
∑
i≥0

ai(x)gi(y), F ◦ Tϕ,S(x, y) =
∑
i≥0

ai(Tx)χi(ϕ(x))gi(y),

so c · ai(x) = ai(Tx) · χi(ϕ(x)) for each i ≥ 0.

3.7 Regularity of Rokhlin cocycles

When the group Λϕ of a cocycle ϕ : X → G is not trivial then, obviously,
the skew product Tϕ : (X × G,µ ⊗ λG) → (X × G,µ ⊗ λG), Tϕ(x, g) =
(Tx, ϕ(x) ·g), is not ergodic, but ϕ need not be a coboundary. We will show
however in this section that on the level of Rokhlin cocycles, that is when
considering the cocycle x 7→ Sϕ(x), it must be a coboundary as soon as σS is
concentrated on Λϕ20. In the general case, we denote by AΛϕ be the S-factor
corresponding to Λϕ according to Corollary 1, i.e. L2(AΛϕ) = HΛϕ , and we
will show that x 7→ Sϕ(x)|AΛϕ

is a coboundary.
We show firstly that, when T is ergodic, B ⊗AΛϕ contains the factor of

Tϕ,S-invariant sets.

Lemma 5 Assume that T is ergodic. Every Tϕ,S-invariant function F in
L2(X × Y,B ⊗ C, µ⊗ ν) is B ⊗AΛϕ-measurable.

Proof.
Given any g ∈ L2

0(Y, C, ν), the projection of F on the Tϕ,S-invariant
subspace L2(X,B, µ)⊗G(g) is still Tϕ,S-invariant. If this projection is non-
zero, the maximal spectral type of Tϕ,S on L2(X,B, µ)⊗G(g) must have an
atom at 1. Then, by Lemma 4, σg,S({χ ∈ Ĝ : σVχ◦ϕ({1}) > 0} > 0 and so,
since T is ergodic, σg,S(Λϕ) > 0 in view of (16). Since g was arbitrary, it
follows F ∈ L2(X,B, µ)⊗HΛϕ = L2(X × Y,B ⊗AΛϕ , µ⊗ ν).

We give now a short description of the action of Tϕ,S on L2(X,B, µ) ⊗
G(g) for a non-zero g ∈ L2(X,B, µ), which will shed some light on the
proof of Proposition 8 below. We identify naturally L2(X,B, µ) ⊗ G(g) to
L2(X,B, µ; G(g)). We may furthermore replace G(g) by L2(Ĝ,B(Ĝ), σg,S)

20When Λϕ is uncountable then there is always a weakly mixing Gaussian action S such
that σS is concentrated on Λϕ.
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through the canonical spectral isomorphism, which we denote by I. We
shall determine the unitary operator Vϕ on L2(X,B, µ; L2(Ĝ,B(Ĝ), σg,S)) =
L2(X×Ĝ,B⊗B(Ĝ), µ⊗σg,S) which corresponds to Tϕ,S acting on L2(X,B, µ)⊗
G(g).

Let F̃ ∈ L2(X × Ĝ,B⊗B(Ĝ), µ⊗σg,S) correspond to F ∈ L2(X,B, µ)⊗
G(g) - i.e. F̃ (x, ·) = I(F (x, ·)) for µ-a.e. x. We have, for µ-a.e. x,

(VϕF̃ )(x, ·) = I(F (Tx, Sϕ(x)(·))).

Now, if h ∈ G, the image of g ◦ Sh under I is h̃, where h̃(χ) = χ(h) for
χ ∈ Ĝ. If we take F of the form F = f ⊗ g ◦ Sh then F̃ = f ⊗ h̃ and

Vϕ(f ⊗ h̃)(x, ·) = f(Tx) · I(g ◦ Sϕ(x)·h) = χ(ϕ(x)) · (f ⊗ h̃)(Tx, ·).

It follows that for each F̃ ∈ L2(X×Ĝ, µ⊗σg,S), µ⊗σg,S-a.e. (x, χ) ∈ X×Ĝ,

(VϕF̃ )(x, χ) = χ(ϕ(x))F̃ (Tx, χ). (20)

We come to the result announced at the beginning of this section.

Proposition 8 The Rokhlin cocycle x 7→ Sϕ(x)|AΛϕ
is a coboundary. In

other words Tϕ,S |B⊗AΛϕ
is relatively isomorphic to T × idY |B⊗AΛϕ

.

Proof.
Let σS |Λϕ be the spectral type of S|L2(AΛϕ ) (i.e. σS |Λϕ is σS restricted to

Λϕ). When χ ∈ Λϕ, the cocycle χ◦ϕ is a coboundary, that is χ◦ϕ = f/f ◦T
µ-a.e. for some measurable f of modulus 1. In fact there exists a measurable
selector of transfer functions defined σS |Λϕ-a.e. (see e.g. [17], Sections 3.1
and 3.2). This means that there exists a measurable function F̃ of modulus
1 on X × Λϕ such that

χ(ϕ(x)) = F̃ (x, χ)/F̃ (Tx, χ) for µ⊗ σS |Λϕ-a.a. (x, χ) (21)

(so, for every g ∈ L2(AΛϕ), the function F ∈ L2(X,B, µ)⊗G(g) correspond-
ing to F̃ is Tϕ,S-invariant).

Given x ∈ X, for every g ∈ L2(AΛϕ) the action of Sϕ(x) on G(g) cor-
responds through the spectral isomorphism to the multiplication by the
function χ 7→ χ(ϕ(x)). On the other hand, by the canonical action of
L∞(Ĝ,B(Ĝ), σS|Λϕ ) on L2(AΛϕ), there also exists a unitary operator Wx on
L2(AΛϕ) whose restriction to each G(g), for g ∈ L2(AΛϕ), corresponds to the
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multiplication by the unit-modulus function F̃ (x, ·). Then the equality (21)
yields

Sϕ(x)|L2(AΛϕ ) = WxW
−1
Tx for µ-a.a. x.

So, the cocycle x 7→ Sϕ(x)|L2(AΛϕ ) is a T -coboundary as a cocycle taking
values in U(L2(AΛϕ)).

Finally, Aut(AΛϕ) is naturally identified to a closed subgroup of the
Polish group U(L2(AΛϕ)). Since x 7→ Sϕ(x)|L2(AΛϕ ) takes its values in
Aut(AΛϕ), it is still a coboundary as an Aut(AΛϕ)-valued cocycle.

In view of Proposition 4 we obtain the following result.

Corollary 4 If T is ergodic and Tϕ,S is not ergodic then there is a non-
trivial factor A of S such that Tϕ,S |B⊗A is relatively isomorphic to T ×
idY |B⊗A.

3.8 Lifting mild mixing property

In this section we will show that the triviality of the Rokhlin cocycle de-
scribed in Proposition 8 also takes place when dealing with the mild mixing
property, and we give necessary and sufficient conditions in order that the
mild mixing property lift from T to Tϕ,S . Recall that T is mildly mixing if
T has no non-trivial rigid factors and that a factor A of T is rigid if and
only if the spectral type of T |A is a Dirichlet measure.

Suppose now that A is a non-trivial factor of T and suppose moreover
that (qn) is a rigidity sequence for T |A. Consider

I(A) := {Φ ∈ J (T ) : ηΦ|A⊗A = ∆A
and Φ is a limit point of {T j : j ∈ Z}}. (22)

Note that I(A) is non-empty since any limit Markov operator of the set
{T qn : n ≥ 1} belongs to it. It follows from (5) and (6) that I(A) is a
closed subsemigroup of J (T ), hence a semitopological compact semigroup.
We recall (see e.g. [13], p. 6, Lemma 2.2) that each compact semitopological
semigroup contains an idempotent. Now, using Proposition 1, we obtain the
following.

Proposition 9 Assume that T is an automorphism of (X,B, µ) and let
A ⊂ B be a non-trivial rigid factor of T . Then there exist a factor A′
containing A and a rigidity sequence (qn) for T |A′ such that T qn → E(·|A′).
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We will also need the following.

Lemma 6 Assume that T is mildly mixing. If ξ : X → T is a cocycle and Tξ
has a non-trivial rigid factor A ⊂ B⊗B(T) then there exist a factor A′ of Tξ
containing A and a mixing sequence (qn) for T such that (Tξ)qn → E(·|A′).

Proof.
From Proposition 9 there exist a factor A′ of Tξ containing A and a rigid

sequence (qn) for Tξ|A′ such that

(Tξ)qn → E(·|A′). (23)

It remains to show that (qn) is a mixing sequence for T . But, since we assume
that T is mildly mixing, no spectral measure of a function in L2

0(X,B, µ)
is a Dirichlet measure, while the maximal spectral type of Tξ on L2(A′) is
a Dirichlet measure. Thus L2

0(B ⊗ {∅,T}) ⊥ L2(A′) and the result follows
from (23).

Proposition 10 Assume that T is mildly mixing. If σS(Σϕ) = 0, then Tϕ,S
is also mildly mixing.

Proof.
First, we claim that, if some positive measure σ1 � σVχ◦ϕ is a Dirichlet

measure, then χ ∈ Σϕ.
Indeed, then there exists f ∈ L2(X,B, µ) such that σf,Vχ◦ϕ = σ1. If we

consider F = f ⊗ z ∈ L2(X ×T, µ⊗λ) (here z denotes the identity function
from T to C), we have F ◦Tnχ◦ϕ = V n

χ◦ϕf ⊗ z for all n ∈ Z and it follows that
σF,Tχ◦ϕ = σ1. Since σ1 is a Dirichlet measure, F is measurable with respect
to some rigid factor A of Tχ◦ϕ.

In view of Lemma 6, there exist a factor A′ of Tχ◦ϕ containing A and
a mixing sequence (qn) for T such that T qnχ◦ϕ → E(·|A′). In particular
F ◦ T qnχ◦ϕ → F and V qn

χ◦ϕf → f , so (qn) is not a mixing sequence for Vχ◦ϕ.
But Corollary 2 implies then that the cocycle χ ◦ ϕ is a quasi-coboundary,
in other words χ ∈ Σϕ, which proves our claim.

It remains to show that there is no positive measure σ � σTϕ,S which is a
Dirichlet measure. Suppose the contrary: then, for some sequence nj →∞,
znj → 1 σ-a.e. It follows that if we set A = {z ∈ T : znj → 1}, then
σTϕ,S (A) > 0. Since T is mildly mixing and thus σT (A) = 0, it follows by
Lemma 3 that σS({χ ∈ Ĝ : σVχ◦ϕ(A) > 0}) > 0.
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But clearly if σVχ◦ϕ(A) > 0, then the positive measure σVχ◦ϕ |A is Dirich-
let, hence χ must belong to Σϕ by the first part of the proof. Since σS(Σϕ) =
0, we obtain a contradiction.

Remark 6 Supposing only that T is mildly mixing, we get that each rigid
function of Tϕ,S belongs to L2(X,B, µ) ⊗HΣϕ . Indeed, if σg,S(Σϕ) = 0, in
view of Lemma 4, the same proof gives that there is no Dirichlet measure
σ � σTϕ,S |L2(X,B,µ)⊗G(g)

.
Let us denote by AΣϕ is the factor of S corresponding to the saturated

group Σϕ according to Corollary 1, so that HΣϕ = L2(AΣϕ). In other words,

each rigid factor of Tϕ,S is contained in B ⊗AΣϕ. (24)

Proposition 11 Assume that T is weakly mixing (and σS(Σϕ) > 0). Then
there exists an automorphism U of (Y |AΣϕ

,AΣϕ , ν|AΣϕ
) such that Tϕ,S |B⊗AΣϕ

is isomorphic to T × U .

Proof.
By definition, if χ ∈ Σϕ the cocycle χ ◦ϕ is cohomologous to a constant

e2πit. However T is weakly mixing, so this constant is unique, hence we can
write t = t(χ) (t(χ) ∈ [0, 1)). Then, as in the case of Λϕ, there exists a
measurable selector of transfer functions χ 7→ F̃ (·, χ) defined on σS |Σϕ a.e.,
equivalently a measurable function F̃ of modulus 1 on X × Σϕ such that

χ(ϕ(x)) = e2πit(χ)F̃ (x, χ)/F̃ (Tx, χ) for µ⊗ σS |Σϕ-a.a. (x, χ). (25)

In particular, e2πit(χ) = u(χ), σS |Σϕ-a.e., where u is a measurable function
of modulus 1 on Σϕ.

Then, as in the proof of Proposition 8, we deduce that there exist unitary
operators U and Wx (x ∈ X) of L2(AΣϕ) corresponding to the multiplication
by u and F̃ (x, ·) respectively, so that

Sϕ(x)|Σϕ = UWxW
−1
Tx µ-a.e. x. (26)

We have to show that U corresponds to an automorphism. Let us consider
the (T×T, µ⊗µ)-cocycle (x1, x2) 7→ Sϕ(x2)S

−1
ϕ(x1)|Σϕ . In view of (26) (and the

fact that the operators under consideration commute), it is a coboundary
with the transfer operator map (x1, x2) 7→ Wx2W

−1
x1

, whence, as in the
proof of Proposition 8, it is also a coboundary as a cocycle with values
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in Aut(AΣϕ). Thus there exists a measurable map (x1, x2) 7→ Vx1,x2 ∈
Aut(AΣϕ) with

Sϕ(x2)S
−1
ϕ(x1)|Σϕ = Vx1,x2V

−1
Tx1,Tx2

for µ⊗ µ-a.a. (x1, x2).

Since T is weakly mixing, T ×T is ergodic and therefore the two transfer op-
erator maps must coincide up to a constant. More precisely, Wx1W

−1
x2
Vx1,x2

is T × T -invariant, so there exists a unitary operator V of L2(AΣϕ) such
that

Wx1W
−1
x2
Vx1,x2 = V for µ⊗ µ-a.a. (x1, x2).

By selecting x1 so that the above equality is true for µ-a.e. x2, we obtain

Vx1,x = WxW
−1
x1
V for µ-a.a. x.

Then the map x 7→ Vx1,x ∈ Aut(AΣϕ) is also a transfer operator map for
the equation (26):

UVx1,xV
−1
x1,Tx

= UWxW
−1
Tx = Sϕ(x)|Σϕ µ-a.e. x.

Therefore U ∈ Aut(AΣϕ), x 7→ Sϕ(x) is cohomologous to the constant U in
Aut(AΣϕ), and the result follows.

Corollary 5 Assume that T is mildly mixing. Then Tϕ,S is not mildly
mixing if and only if there exists a non-trivial factor A of S and an auto-
morphism U of (Y |A,A, ν|A) which is not mildly mixing such that Tϕ,S |B⊗A
is isomorphic to T ⊗ U .

Proof.
In view of (24), if Tϕ,S is not mildly mixing, neither is Tϕ,S |B⊗AΣϕ

and
we apply Proposition 11. Then T × U is not mildly mixing and, as T is
mildly mixing, U cannot be mildly mixing. The other direction is clear.

Remark 7 It turns out that in Corollary 5 we can replace U non mildly
mixing by U rigid. Indeed, in the proof of Proposition 11, U corresponds
to the multiplication by u(χ), and given a rigid factor A of U defined by
Unjh → h for some sequence (nj), we have that L2(A) is the spectral
subspace of S|AΣϕ

corresponding to {χ ∈ Σϕ : u(χ)n
′
j → 1} for some

subsquence; in particular, A is also S-invariant. Moreover, the cocycle
Sϕ(x2)S

−1
ϕ(x1)|Σϕ is still cohomologous to the constant U in the closed sub-

group of Aut(AΣϕ) of all automorphisms corresponding to multiplications
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by unit-modulus functions (in the spectral representation of S|AΣϕ
). So, the

automorphisms Vx1,x2 can be taken in this subgroup and hence preserving
the invariant subspaces of S. Then B⊗A is preserved by the conjugation au-
tomorphism and we have relative isomorphism of Tϕ,S |B⊗A with T ⊗U |B⊗A.

We now show that under the recurrence property of ϕ the converse of
Proposition 10 holds. For that we need some elementary remarks about
recurrent cocycles with values in Polish Abelian groups. They are taken
directly from the theory of cocycles with values in LCA groups [29].

Let T be an ergodic automorphism of (X,B, µ). Assume that A is an
Abelian21 Polish group. Let ω : X → A be a cocycle. The cocycle ω is
said to be recurrent if for each ε > 0, B ∈ B of positive measure and each
neighbourhood V of 1, there exists a positive integer N such that

µ(B ∩ T−NB ∩ [ω(N) ∈ V ]) > 0. (27)

Suppose that ω′ : X → A is another cocycle. Then we have the following
fact:

if ω and ω′ are cohomologous and ω is recurrent, then so is ω. (28)

Assume now that a ∈ A and let ã denote the corresponding constant cocycle:
ã(x) = a. Then the following fact holds:

ã is recurrent if and only if
there exists nj →∞ such that anj → 1 in A.

(29)

Indeed, fix a neighbourhood V of 1 and apply (27) with B = X to obtain
that µ([ã(N) ∈ V ]) > 0 for some positive integer N . It follows that aN ∈ V .
Letting V → {1}, either N = N(a, V ) → ∞ and we are done, or N stays
bounded. In the latter case we have aN = 1 for some N ≥ 1 and by taking
multiples of this N , (29) also follows. On the other hand, if anj → 1 then
the sequence of differences ni − nj is a sequence universally good for the
Poincaré recurrence and clearly ani−nj → 1 when i, j → ∞. Therefore ã is
recurrent.

Let σ ∈ M+(Ĝ). Denote by U(σ) the group of measurable functions of
modulus 1 defined on Ĝ, modulo equality σ-a.e. We endow U(σ) with the
L2(σ)-topology, which makes it a Polish (Abelian) group. Given g ∈ G, we
still denote by g̃ the function χ 7→ χ(g) taken as an element of U(σ). Then
we define ϕσ from X to U(σ) by setting

ϕσ(x)(χ) = χ(ϕ(x)) for each χ ∈ Ĝ,
21We keep going to use multiplicative notation.
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i.e. ϕσ is the composition of ϕ and of the map g 7→ g̃. As the latter map is
a continuous group homomorphism, it is clear from the definition (27) that

if ϕ is recurrent then so is ϕσ. (30)

Proposition 12 If T is mildly mixing, then Tϕ,S is mildly mixing if and
only if σ(Σϕ) = 0 for each positive measure σ � σS such that the cocycle
ϕσ is recurrent.

In particular, if ϕ is recurrent and Tϕ,S is mildly mixing then σS(Σϕ) =
0.

Proof.
We keep the notation as in the proof of Proposition 11: U is the automor-

phism of (Y |AΣϕ
,AΣϕ , ν|AΣϕ

) corresponding to the unit-modulus function u
on Σϕ, and the equation (25) may now be written as

ϕσ(χ) = u(χ)F̃ (x, χ)/F̃ (Tx, χ) for µ⊗ σS |Σϕ-a.a. (x, χ).

Suppose that ϕσ is recurrent for some positive measure σ � σS with
σ(Σϕ) > 0. We can then assume that 0 < σ � σS |Σϕ . Then the constant
cocycle u restricted to U(σ) is cohomologous to ϕσ and it is also recurrent
by (28). Thus, in view of (29), there is a sequence (nj) with unj → 1 in
U(σ), whence Unjh→ h for each function h such that σh,S � σ. It follows
that U is not mildly mixing.

For the other direction, if Tϕ,S is not mildly mixing, then U is not mildly
mixing and we find conversely that u restricted to U(σh,S) is recurrent, for
some non-zero h ∈ L2

0(AΣϕ). Then ϕσh,S is also recurrent and σh,S(Σϕ) > 0.
The second assertion follows then from (30): if ϕ is recurrent, then the

cocycle ϕσS is also recurrent.

3.9 Lifting mixing and multiple mixing

We give here two corollaries of results from [22].

Proposition 13 ([22]) Assume that T is mixing. If σS(Σϕ) = 0 then Tϕ,S
is mixing. Conversely, if σS(Σϕ) > 0 and ϕ is recurrent then Tϕ,S is not
mixing.

Corollary 6 Assume that T is mixing. Then Tϕ,S is not mixing if and
only if there exists a non-trivial factor A of S and an automorphism U of
(Y |A,A, ν|A) which is not mixing such that Tϕ,S |B⊗A is isomorphic to T⊗U .
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Proof.
The proof of Proposition 13 in [22] (Theorem 7.1) shows actually that if T

is mixing and σh,S(Σϕ) = 0, then σ̂f⊗h,Tϕ,S (n)→ 0 for each f ∈ L2(X,B, µ).
Therefore if Tϕ,S is not mixing, we must have a function F ∈ L2

0(X,B, µ)⊗
HΣϕ whose spectral measure does not vanish at infinity, whence Tϕ,S |B⊗AΣϕ

is not mixing. Then we can apply Proposition 11 and the result follows
exactly as for Corollary 5.

Proposition 14 ([22]) Assume that T is r-fold mixing and that ϕ is re-
current. If Tϕ,S is mildly mixing then it is also r-fold mixing.

Now, the corollary below directly follows from Proposition 14 and Propo-
sition 12.

Corollary 7 Assume that T is r-fold mixing and ϕ is recurrent. Then Tϕ,S
is r-fold mixing if and only if σS(Σϕ) = 0.
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[17] B. Host, J.-F. Méla, F. Parreau, Non-singular transformations and spectral analysis of mea-
sures, Bull. Soc. Math. France 119 (1991), 33-90.

[18] A. B. Katok in collaboration with E. A. Robinson Jr., Cocycles, Cohomology and Combina-
torial Constructions in Ergodic Theory, Proceedings of Symposia in Pure Mathematics 69
(2001), 107-173.

[19] A. Katok, J.-P. Thouvenot, Spectral Properties and Combinatorial Constructions in Ergodic
Theory, Handbook of dynamical systems. Vol. 1B, 649–743, Elsevier B. V., Amsterdam, 2006.
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