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A topological lens for a measure-preserving
system
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Abstract

We introduce a functor which associates to every measure preserv-
ing system (X,B, µ, T ) a topological system (C2(µ), T̃ ) defined on the
space of 2-fold couplings of µ, called the topological lens of T . We show
that often the topological lens “magnifies” the basic measure dynami-
cal properties of T in terms of the corresponding topological properties
of T̃ . Some of our main results are as follows: (i) T is weakly mixing
iff T̃ is topologically transitive (iff it is topologically weakly mixing).
(ii) T has zero entropy iff T̃ has zero topological entropy, and T has
positive entropy iff T̃ has infinite topological entropy. (iii) For T a
K-system, the topological lens is a P -system (i.e. it is topologically
transitive and the set of periodic points is dense; such sytems are also
called chaotic in the sense of Devaney).
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Introduction

Ergodic theory and topological dynamics are two branches of the theory of
dynamical systems. The first deals with groups acting on a probability mea-
sure space in a measure-preserving way; the second, with the action of groups
on compact spaces as groups of homeomorphisms. Some of the terminology
used in both branches is almost the same. One speaks of transitivity, ergod-
icity, weak and strong mixing, distality, rigidity, etc. both in ergodic theory
and in topological dynamics. Even more surprising is the fact that major
theorems in both areas read almost the same. To mention one conspicuous
example, compare the statement of H. Furstenberg’s theorem, identifying
topologically distal dynamical systems as inverse limit of isometric exten-
sions ([5]), with R. Zimmer’s theorem, characterizing measure distal systems
(i.e. systems having a separating sieve) as systems admitting Furstenberg’s
towers of (measure) isometric extensions ([18],[19]).

In the present work we restrict our attention to the classical case where
the acting group is the group of integers Z. We denote by T the measure
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preserving transformation (or the homeomorphism) which corresponds to
1 ∈ Z and write (X,B, µ, T ) (or (X,T )) for the general measure preserving
(or topological compact metric) system we study.

Given a topological system (X,T ) we denote by M(X) the compact con-
vex set of probability measures on X and by MT (X) the compact convex
subset (in fact the simplex) of T -invariant measures. By a classical theo-
rem of Krylov and Bogoliouboff this is always a non-vacuous set. When
MT (X) consists of a single measure, say MT (X) = {µ}, we say that (X,T )
is uniquely ergodic. In the general case, each element µ of MT (X) defines
a measure dynamical system (X,BX , µ, T ) (BX denotes the Borel σ-field of
the topological space X). We say that µ ∈M(X) is full when suppµ = X.

Part of the mystery of the elusive connection between the two theories is
removed by the following theorem whose proof is straightforward; one only
has to note that for a full measure µ, µ(U) > 0 whenever U is a non-empty
open set.

Theorem 1 Let (X,T ) be a topological dynamical system, µ ∈ MT (X) a
full measure; then (X,T ) is topologically transitive, weakly mixing, topologi-
cally mixing if the measure-preserving system (X,BX , µ, T ) is ergodic, weakly
mixing, mixing, respectively.

A substantial part of modern ergodic theory deals with the converse situ-
ation. One starts with a given measure ergodic system (X,B, µ, T ) and then
looks for a topological model; i.e. a topological system (Y, S) and a measure
ν ∈ MS(Y ) such that the systems (X,B, µ, T ) and (Y,BY , ν, S) are isomor-
phic, and such that the topological system (Y, S) has some special properties
like being minimal or uniquely ergodic. The prototype for this kind of state-
ments is the famous Jewett- Krieger theorem which gaurantees the existence
of a uniquely ergodic model for any ergodic system.

In the present work we offer a novel perspective on the investigation
of the connection between measure and topological systems. We introduce
a functor which associates to every measure preserving system (X,B, µ, T )
a topological dynamical system (C2(µ), T̃ ) defined on the space of 2-fold
couplings of µ, called the topological lens of T . More specifically, a coupling
of µ is a probability measure ξ on X × X with both marginals equal to µ.
We equip C2(µ) with the (compact metrizable) weak∗ topology and define
T̃ : C2(µ)→ C2(µ) by the formula

T̃ (ξ)(A×B) = ξ(T−1A× T−1B), A,B ∈ B,
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that is, T̃ (ξ) = (T × T )∗(ξ). As we will show, the topological lens usually
“magnifies” the basic measure dynamical properties of T in terms of the
corresponding topological properties of T̃ .

Briefly our main results are as follows: (i) T is weakly mixing iff T̃ is
topologically transitive (iff it is topologically weakly mixing). (ii) T has zero
entropy iff T̃ has zero topological entropy, and T has positive entropy iff T̃ has
infinite topological entropy. (iii) T is rigid iff T̃ is pointwise recurrent (iff T̃ is
uniformly rigid). (iv) Distality of T̃ implies that T has discrete spectrum. (v)
For the Bernoulli system T of infinite entropy, the topological lens (C2(µ), T̃ )
is a universal system both topologically and measure theoretically in the sense
that every metric compact topologically transitive, as well as every measure
preserving system, appears as a subsystem of C2(µ). (vi) For T a K-system,
the topological lens is a P -system (i.e. it is topologically transitive and the
set of periodic points is dense; such systems are also called chaotic in the
sense of Devaney). (vii) Finally, for many zero entropy measure systems
(including the generic automorphism T ∈ Aut (µ)) the set of periodic points
of the topological lens T̃ is closed and nowhere-dense.

1 The space of couplings

Assume that (X,B, µ) is a standard probability Borel space. By C2(X,µ)
(or C2(µ)) we denote the space of 2-couplings of (X,B, µ), that is the space
of probability measures on (X ×X,B⊗B) with projections µ on both coor-
dinates. The formula

〈Jρ(1A), 1B〉L2(µ) = 〈1A, 1B〉L2(ρ), A,B ∈ B (1)

establishes a one-to-one correspondence ρ 7→ Jρ between C2(µ) and the space
J(µ) of doubly stochastic operators (Markov operators) on L2(X,B, µ) (J :
L2(X,B, µ) → L2(X,B, µ) is called doubly stochastic if it is positive and
J(1) = J∗(1) = 1; note that necessarily ‖J‖ = 1). With respect to the
weak operator topology J(µ) forms a compact semitopological (metrizable)
semigroup, where multiplication is defined by composition: Jρ1◦ρ2 = Jρ1 ◦Jρ2 .
Recall that a metric compatible with the weak topology on J(µ) is given by

d(J, J ′) =
∞∑

i,j=0

1

2i+j
|〈Jfi, fj〉 − 〈J ′fi, fj〉|, (2)
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where {fi}i≥0 is a dense subset of L2(X,B, µ) and ‖fi‖ = 1 for i ≥ 0. Using
once more the correspondence ρ↔ Jρ we observe that in the weak topology
on C2(µ) we have

ρn → ρ iff ρn(A×B)→ ρ(A×B) for all A,B ∈ B.

It also follows that a basis of open sets in C2(µ) is given by the family of sets
of the form

U(α, ε, P ) = {ρ ∈ C2(µ) : |ρ(Ai × Aj)− pij| < ε}, (3)

where α = {A1, . . . , Ak} is a Borel partition of X, ε > 0 and P = [pij]
k
i,j=1 is

a non-negative matrix such that the sum of elements in the i-row is equal to
µ(Ai) and the sum of elements in the j-column is equal to µ(Aj), 1 ≤ i, j ≤ k.

Denote by Aut (µ) = Aut (X,B, µ) the group of automorphisms of (X,B, µ).
Notice that Aut (X,B, µ) naturally embeds into C2(µ) where the embedding
is given by S 7→ µS. Here µS stands for the graph measure given by S,
i.e. µS(A × B) = µ(S−1A ∩ B) for each A,B ∈ B. The Markov operator
corresponding to µS is equal to US (the Koopman operator associated to S),
where US(f) = f ◦ S for each f ∈ L2(X,B, µ). Once µ is understood we
will also use the notation ∆S for µS. The embedding S 7→ ∆S is also topo-
logical, as on the group of automorphisms considered as a (closed) subset of
U(L2(X,B, µ)), the group of unitary operators on L2(X,B, µ), the weak and
the strong operator topologies coincide. It follows from a theorem of Kura-
towski that the set of graph couplings, that is the image of the embedding
Aut (µ) ⊂ C2(µ), is a Gδ subset of C2(µ). It is not hard to check that it is
also dense in C2(µ) (see e.g. subsection 3.3 below). We denote this dense Gδ

subset of graph couplings by Cgr(µ), but often we will regard Aut (µ), via
this embedding, as a subset of C2(µ).

Suppose A ⊂ B is a T -invariant sub-σ-algebra. We can then consider the
factor system (X/A,A, µ) (instead of µ we sometimes write µA if we want to
emphasize that we consider the quotient system), here X/A stands for classes
of points of X that cannot be separated by sets of A. If λ ∈ C2(µA) then

we can lift it to an element of C2(µ), denoted by λ̂ and called the relatively
independent extension of λ, by setting∫

X×X
f ⊗ g dλ̂ =

∫
X/A×X/A

E(f |A)(x)E(g|A)(y) dλ(x, y)

for f, g ∈ L2(X,B, µ). Denoting by iL2(A) the natural embedding of L2(A)
into L2(B), by a simple calculation we have the following.
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Lemma 1 Jbλ = iL2(A) ◦ Jλ ◦ E(·|A).

It follows immediately that the following holds.

Lemma 2 The map C2(µA) 3 λ 7→ λ̂ ∈ C2(µ) is a continuous monomor-
phism of semitopological semigroups; i.e. it is continuous, 1-1 and (λ ◦ ρ)̂ =

λ̂◦ ρ̂. In particular this map is an embedding of the topological system C2(µA)
into C2(µ).

Let T be an element of Aut (µ). By J2(T ) ⊂ C2(µ) we denote the set of
2-self-joinings of T . Recall that a 2-self-joining of T is just an element of
C2(µ) which is T × T -invariant. Equivalently, ρ ∈ C2(µ) is a 2-self-joining
of T if and only if Jρ ◦ UT = UT ◦ Jρ. From this it easily follows that J2(T )
is a closed subsemigroup of C2(µ). When T is ergodic Je2(T ), the set of
ergodic 2-self-joinings, is nonempty and it coincides with the collection of
extremal points of the simplex J2(T ). (Warning: C2(µ) is not a simplex.)
When A ⊂ B is a T -invariant sub-σ-algebra then the quotient action of T
on (X/A,A, µ) is called a factor of T ; we will often write T |A to denote this

action. It is easy to see that if λ ∈ J2(T |A) then λ̂ ∈ J2(T ) and therefore
Lemma 2 is also true in the context of self-joinings.

Extending the notion of 2-self-joinings we define the set Jn(T ) (n ≥ 1 or
even n =∞) of n-self-joinings of T . These are the T×n-invariant probability
measures on (Xn,B⊗n) all of whose one dimensional marginals are equal to
µ.

For a more about joinings we refer to [6] and the list of references thereof.

2 The topological lens of an automorphism

Given T ∈ Aut (X,B, µ) consider the Z-action T̃ on J(µ) defined by conju-
gation:

T̃ (J) = U−1
T ◦ J ◦ UT , (4)

where UT is the Koopman operator associated to T . We will call this action
the topological lens of T . Notice that T̃ is a homeomorphism of J(µ). Since

〈T̃ (J)1A, 1B〉L2(µ) = 〈J ◦ UT1A, UT1B〉L2(µ) = 〈J1T−1A, 1T−1B〉L2(µ),
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the corresponding action on C2(µ), which we also denote by T̃ , is given by
(see (1))

T̃ (ρ)(A×B) = ρ(T−1A× T−1B) for each A,B ∈ B. (5)

It is easy to see that
T̃ n = T̃ n (6)

for each n ∈ Z. Moreover if T1 (acting on (X1,B1, µ1)) is a factor of T , then

T̃1 is a topological factor of T̃ . (7)

In fact, if θ : (X,B, µ) → (X1,B1, µ1) satisfies θ ◦ T = T1 ◦ θ, then the map

θ̃(J) = V ∗θ ◦ J ◦ Vθ (Vθ : L2(X1, µ1) → L2(X,µ), Vθ(f1) = f1 ◦ θ) is the
corresponding continuous homomorphism of topological dynamical systems.
Equivalently, if ρ ∈ C2(µ) then

θ̃(ρ)(A1 ×B1) = ρ(θ−1A1 × θ−1B1)

for each A1, B1 ∈ B1. In order to show that θ̃ is onto we use the relative
independent extension construction (see Lemma 2 above).

Of course for every T ∈ Aut (X,B, µ) the dense Gδ subset Cgr(µ) ⊂ C2(µ)

is T̃ -invariant. Since the action of T̃ on Cgr(µ) is isomorphic to conju-
gation by T on Aut (µ), and as the group Aut (µ) is algebraically simple

[4], it follows that the homomorphism T 7→ T̃ from Aut (µ) into the group
Homeo (C2(µ)) is an isomorphism. A more difficult question is whether there
are S, T ∈ Aut (µ) which are not conjugate (that is, the measure preserving
systems (X,B, µ, S) and (X,B, µ, T ) are not isomorphic) while their topolog-

ical lenses (C2(µ), S̃) and (C2(µ), T̃ ) are isomorphic as topological systems.
It is not hard to see that this can not happen for ergodic rotations (see Propo-
sition 2 below). However, it is very likely that the answer is yes. In fact, it
seems that the argument in the proof of Theorem 8 below might be refined
to show that any two measure theoretical Bernoulli systems have isomorphic
lenses.

Notice that every (nontrivial) topological lens has many fixed points (in

particular, T̃ has many minimal subsets); indeed the fixed point set of T̃
coincides with the set of joinings,

Fix(T̃ ) = J2(T ). (8)
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Notice that J2(T ) is a closed T̃ -invariant subset of C2(µ) whose interior is
empty (to see this, given ρ ∈ J2(T ) and ε > 0 take first η ∈ C2(µ) which is
not a 2-self-joining and then consider ρε = (1− ε)ρ + εη which cannot be a
2-self-joining for ε > 0). Similarly, periodic points for the lens correspond to

2-self-joinings of powers of T . Thus the set of periodic points for T̃ , which is
just

⋃
n≥1 J2(T

n), is T̃ -invariant and meager.
The aim of this paper is to investigate how topological properties of the

lens (C2(µ), T̃ ) reflect ergodic properties of T . (Unless we say explicitly
otherwise we usually assume that T is ergodic.)

Before we begin our study of topological lenses we briefly discuss a simpler
topological system on J(µ) given by the one sided composition tT :

tT (J) := J ◦ UT for J ∈ J(µ);

the corresponding action on C2(µ) which is given by the formula

tT (ρ)(A×B) = ρ(T−1A×B) for each A,B ∈ B

we will also denote by tT . We will now argue that this system is particu-
larly simple from the dynamical point of view. Indeed, because of one sided
continuity of the composition of Markov operators (both left and right), the
enveloping semigroup of tT consists solely of continuous maps tJ , where J
belongs to the weak closure of the group generated by UT . It follows that
the topological system (tT , C2(µ)) is weakly almost periodic (WAP); see [3]
and [6]. For such systems the closure of each orbit contains exactly one min-
imal subsystem and this unique minimal system is a compact monothetic
topological group. In fact, we can describe these minimal (sub)systems quite
precisely.

Denote by K ⊂ B the sub-σ-algebra corresponding to the Kronecker
factor of T . Put

Ĵe2(K) = {λ̂ : λ ∈ Je2(T |K, µK)}

and Ĵe(K) for the corresponding set of Markov operators.

Proposition 1 There exists a sequence (ni) of density 1 such that for each
ρ ∈ C2(µ) the limit points along subsequences (nik) of t

nik
T (ρ) are of the form

ρ ◦ λ̂ for some λ ∈ Je2(T |K, µK).
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Proof.
The result holds trivially if the system T has discrete spectrum; indeed,

recall that in this case the set of Markov operators corresponding to Je2(T ) is
closed and equal to the closure of powers of UT . Take for (ni) the sequence
of all natural numbers.

Next assume that T has partly continuous spectrum. There exists a
sequence (ni) of density 1 such that if we denote

L2(X,B, µ) = L2(K)⊕ F (9)

then for each f, g ∈ F

〈Uni
T f, g〉 → 0, when i→∞.

Since T |K has discrete spectrum, we can choose a subsequence (nik) of (ni)
such that U

nik
T |K → V , with V ∈ J(T |K) and V = Jλ for some λ ∈ Je2(T |K).

All we need to show is that

U
nik
T = t

nik
T (Id)→ Jλ̂.

With no loss of generality we can assume U
nik
T → J . Note that J preserves the

decomposition (9); a weak limit of powers of UT preserves a weakly closed
UT -invariant subspace. For f ∈ L2(X,B, µ) and g ∈ F , by decomposing
f = f1 + f2, where f1 ∈ L2(K) and f2 ∈ F , we have∫

X

f2 ◦ T nik · g dµ→ 0

by the property of (ni), hence∫
X

f ◦ T nik · g dµ→
∫
X

J(f) · g dµ =

∫
X

J(f1) · g dµ.

Thus Im(J) ⊂ L2(K) or more precisely J(L2(K)) ⊂ L2(K) and J((L2(K)⊥) =
{0}. Hence, J = iL2(K) ◦ Jλ ◦ E(·|K) = Jλ̂ by Lemma 1.

Notice that the action of tT |K on Je2(T |K) just goes back to the action of
T |K on (X/K,K, µ) if we recall that T |K is isomorphic to a minimal rotation
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on a compact monothetic group X/K (endowed with its normalized Haar

measure µK). Therefore tT acting on Ĵe2(K) is also minimal, and for each
J ∈ J(T ) the only minimal subset contained in the orbit closure of J is equal

to J ◦ Ĵe(K).

Remark 1 Let S be a homeomorphism of a compact metric space M . Let
A ⊂ M be closed. We say that A is a quasi-attractor if there exists a
sequence (ni) of density one such that for each x ∈ M , every limit point of
the sequence Snix lies in A. We claim that in such a case: each invariant
measure is concentrated on A and each minimal subset is contained in A. In
fact, suppose that µ is ergodic for S and let x ∈M be a generic point for µ.
Suppose that µ(M \A) > 0. Choose a compact subset C ⊂M \A for which
µ(C) > 0 and then a continuous function f with 0 ≤ f ≤ 1 such that f = 1
on C and f = 0 on A. Since f = 0 on A and (ni) has density 1,

1

n

n−1∑
k=0

f(Skx)→ 0.

Hence
∫
M
f dµ = 0, contradicting the fact that

∫
M
f dµ ≥

∫
C
f dµ = µ(C) >

0.

We now observe that J ◦ Ĵe(K) is a quasi-attractor in the closure of the
orbit of J ∈ J(µ). Finally note that if T is weakly mixing, then all the sets

J ◦ Ĵe(K) collapse into one point (Ĵe2(K) = {µ⊗ µ}), and we obtain just one
attracting fixed point for the whole action tT on C2(µ).

In contrast, the conjugation by T ∈ Aut (µ) on J(µ), that is, the action

of T̃ on C2(µ), is usually not WAP. This will be amply demonstrated in the
rest of this work, but here is a simple first example.

Example. Let G = SL(2,R) and Γ ⊂ G a discrete cocompact subgroup.
The geodesic and horocycle flows on the compact homogeneous space X =
G/Γ are the restrictions of the left multiplication G-action to the subgroups
{At =

(
et 0
0 e−t

)
: t ∈ R} and {Bs = ( 1 s

0 1 ) : s ∈ R}, respectively. These
flows preserve the normalized Haar measure λ on X. Now the commutation
relations

AtBsA
−1
t =

(
1 se2t
0 1

)
,

applied to the corresponding unitary operators on L2(X,λ), show that in
the weak operator topology limt→−∞AtBsA

−1
t = Id, while, by mixing of the
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horocycle flow, limt→∞AtBsA
−1
t = P , where P is the projection onto the

subspace of constant functions. Thus in J(λ) the orbit closure of, say B1,
under conjugation by A1 is isomorphic to the two-point compactification of
Z. In particular, there are in this orbit closure two distinct minimal sets {Id}
and {P}, and therefore it is not WAP.

3 Recurrence, distality and weak mixing

In this section we impose certain topological conditions on the lens like re-
currence, distality and transitivity, and examine their implication for the
corresponding measure preserving transformation.

3.1 Pointwise recurrence and rigidity

Let us recall some basic definitions. Let R be a homeomorphism of a compact
space Z. Then R is called pointwise recurrent if for every z ∈ Z and ε > 0
the orbit of z returns to the ε-ball centered at z infinitely often. If there is an
increasing sequence (ni) of integers such that Rni → Id uniformly (pointwise)
then R is called uniformly rigid (rigid).

An automorphism T : (X,B, µ) → (X,B, µ) is called rigid if for some
increasing sequence (ni) of integers, Uni

T → Id in L2(X,B, µ).

Lemma 3 If (C2(µ), T̃ ) is pointwise recurrent then (X,B, µ, T ) is rigid.

Proof.
Let α = {A1, . . . , Ak} be a finite measurable partition of X such that the

numbers ai = µ(Ai) are all positive and distinct (ai 6= aj whenever i 6= j).

Fix n ∈ N and set tij = µ(T−nAi ∩ Aj). Thus
∑k

i=1 ai = 1 and for each i,∑k
j=1 tij = ai > 0.
Let ξ = ξα be the measure on X ×X defined by:

ξ =
k∑
i=1

aiµAi ⊗ µAi , where µAi(B) =
µ(B ∩ Ai)
µ(Ai)

, 1 ≤ i ≤ k.

If we fix B ∈ B then ξ(B × X) = ξ(X × B) =
∑k

i=1 ai
µ(Ai∩B)
µ(Ai)

= µ(B), so

ξ ∈ C2(µ). Notice that ξ(
⋃k
j=1Aj × Aj) = 1.
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Fix an ε > 0. Since T̃ is pointwise recurrent, we can assume that for
some n ≥ 1, T̃ nξ is so close to ξ that

|T̃ nξ(∪kj=1Aj × Aj)− 1| < ε.

If we now put bij =
µ(T−nAj∩Ai)

ai
then

∑k
j=1 bij = 1 and

T̃ nξ(∪kj=1Aj × Aj)
=
∑k

j=1

∑k
i=1 aiµAi ⊗ µAi(T−nAj × T−nAj)

=
∑k

i=1 ai
∑k

j=1

(
µ(T−nAj∩Ai)

ai

)2

=
∑k

i=1 ai
∑k

j=1(
tij
ai

)2 =
∑k

i=1 ai
∑k

j=1 b
2
ij,

so ∣∣∣∣∣
k∑
i=1

ai

k∑
j=1

b2ij − 1

∣∣∣∣∣ < ε.

If ε is sufficiently small then this implies that for all 1 ≤ i ≤ k,
∣∣∣∑k

j=1 b
2
ij − 1

∣∣∣ <
ε′ or, equivalently

∑
j 6=j′ bijbij′ < ε′. This, in turn, means that, given i, for

only one ji we have |tiji − ai| < ε′′. The map i 7→ ji is 1-1. However the
numbers ai are distinct, so if for each i

|µ(T−nAi ∩ Aiji)− µ(Ai)| < ε′′

then ji = i. It follows that ji = i for each 1 ≤ i ≤ k, that is, |µ(T nAi ∩Ai)−
ai| < ε′′. This proves the rigidity of (X,B, µ, T ) since ε′′ → 0 when ε→ 0.

Theorem 2 The following conditions on T ∈ Aut (X,B, µ) are equivalent:
(i) T is rigid;

(ii) T̃ is pointwise recurrent;

(iii) T̃ is rigid;

(iv) T̃ is uniformly rigid.

Proof.
(i)⇒(iv) Let {fk}k≥0 be a dense set of L2-functions all of norm 1 (see (2)).

Let J ∈ J(µ) and fix ε > 0. Choose N ≥ 1 so that
∑∞

k,l=N
1

2k+l
< ε/8. Since
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T is rigid we can find m ≥ 1 such that

N−1∑
k,l=0

1

2k+l
(‖Um

T fk − fk‖+ ‖Um
T fl − fl‖) < ε/2.

We now have ∑
k,l≥0

1

2k+l
|〈J ◦ Um

T fk, U
m
T fl〉 − 〈Jfk, fl〉| ≤

∑
k,l≥0

1

2k+l
(|〈J ◦ Um

T fk, U
m
T fl〉 − 〈Jfk, Um

T fl〉|+ |〈Jfk, Um
T fl〉 − 〈Jfk, fl〉|) ≤

N−1∑
k,l=0

1

2k+l
(‖Um

T fk−fk‖+‖Um
T fl−fl‖)+

∑
k,l≥N

1

2k+l
(‖Um

T fk−fk‖+‖Um
T fl−fl‖)

and therefore∑
k,l≥0

1

2k+l
|〈T̃m(J)fk, fl〉 − 〈Jfk, fl〉| < ε/2 + ε/8 < ε.

The uniform rigidity of T̃ follows.
The implications (iv) ⇒ (iii) ⇒ (ii) are true for every dynamical system

and finally the implication (ii) ⇒ (i) follows from Lemma 3.

3.2 The discrete spectrum case and distality of the
topological lens

Suppose T is ergodic and has discrete spectrum. In this case the set {Un
T :

n ∈ Z} is relatively compact in the strong operator topology, and moreover
each limit point of this set is of the form US, where S ∈ C(T ). As we have
seen in the proof of Theorem 2 this implies that whenever J ∈ J(µ) and

Unk
T → US then T̃ nk(J) → U−1

S ◦ J ◦ US. It follows that any pointwise limit

Θ of powers of T̃ , that is any element of the Ellis semigroup of T̃ , is also a
conjugation. Hence the Ellis semigroup of T̃ is a group of homeomorphisms.
This fact implies that T̃ is equicontinuous, that is, the family {T̃ n : n ∈ Z}
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is equicontinuous. Moreover each minimal subset (which must be the closure
of an orbit) is of the form

{US ◦ J ◦ US−1 : S ∈ C(T )}

for some J ∈ J(µ).
Equicontinuous systems are special examples of distal systems. Recall

that a homeomorphism R of a compact metric space Z is distal if for every
pair (z1, z2) of distinct points of Z the closure of its orbit (via R × R) is
disjoint from the diagonal ∆Z = {(z, z) : z ∈ Z} in Z × Z. Every distal
system has a decomposition into minimal components, in other words every
point z ∈ Z is almost periodic (uniformly recurrent) that is, the set of return
times of z to any fixed neighborhood has bounded gaps. (For more details
see e.g. [6].)

Theorem 3 Suppose that T is ergodic and that T̃ on C2(µ) is distal. Then

T has discrete spectrum. Therefore if T̃ is distal then it is equicontinuous.

Proof.
Using the notation of Lemma 3, by our assumption of distality, we ob-

tain that for a finite measurable partition α = {A1, . . . , Ak} of X with the
property that the k numbers ai = µ(Ai) are distinct and positive, the corre-
sponding measure,

ξα =
k∑
i=1

aiµAi × µAi , where µA(B) =
µ(B ∩ A)

µ(A)

is a uniformly recurrent point of the topological system (C2(µ), T̃ ). However,
as we have seen in the proof of that lemma, this implies that the set of
recurrence times for the sets Ai (i = 1, 2, . . . , k), i.e. the set

{n ∈ Z : |µ(T nAi ∩ Ai)− µ(Ai)| < ε},

has bounded gaps or equivalently the set {n ∈ Z : ‖Uni
T 1Ai−1Ai‖2 <

√
2ε; i =

1, 2, . . . , k} has bounded gaps. It follows that for each ε > 0 the set {Un
T (1A) :

n ∈ Z} admits a finite ε-net, which means that its L2-closure is compact.
In turn this implies that for every k-tuple of real numbers (c1, c2, . . . , ck) the
L2(µ)-function

k∑
i=1

ciχAi

15



also has a compact UT -orbit and therefore T has discrete spectrum (see [13]
or notice that in the terminology of [5] we obtained a dense set of compact
functions in L2(µ)). This completes the proof of the theorem.

In particular, for T with non-discrete spectrum there always are non-
trivial proximal pairs in the topological lens.

Proposition 2 The topological lenses of aperiodic ergodic rotations are topo-
logically conjugate iff the rotations are conjugate as measure preserving sys-
tems.

Proof.
We first point out the following facts concerning an aperiodic ergodic

rotation T ∈ Aut (µ).

1. Each minimal subset of T̃ is of the form YJ = {US◦J◦US−1 : S ∈ C(T )}
for J ∈ J(µ).

2. Assume additionally (but with no loss in generality) that Tx = x+x0,
i.e. T is a uniquely ergodic rotation on a compact monothetic (metric) group
X. Then T is topologically conjugate to the translation tT by T on C(T ).

3. Under the assumption in 2., T̃ |YJ is a topological factor of T . Indeed,
the map

C(T ) 3 S 7→ US ◦ J ◦ US−1 ∈ YJ
is equivariant (between tT and T̃ |YJ ).

4. If J does not commute with any S ∈ C(T ) \ {Id} then the above map
is an isomorphism.

5. There always is some J ∈ J(µ) which does not commute with any
S ∈ C(T ) \ {Id}, e.g. take J = R, where R ∈ Aut (µ) is weakly mixing with
C(R) = {Rn : n ∈ Z}.

Now assume that for aperiodic ergodic rotations T1 and T2 we have a
topological conjugacy Φ : (C2(µ), T̃1) → (C2(µ), T̃2). Then Φ sends minimal
subsets onto minimal subsets and moreover every minimal subset has a min-
imal preimage. It now follows, in view of (1) - (5), that T1 and T2 are weakly
topologically isomorphic (i.e. each is a topological factor of the other), hence
are isomorphic (a well known fact). Of course this implies that they are also
measure theoretically isomorphic.
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3.3 Weak mixing of a system versus topological tran-
sitivity of its lens

It is well-known that invertible elements are dense in the set C2(µ) (see [7]).
However we will need a slightly more concrete result saying that a special
family of interval exchange transformations is dense in C2(λ[0,1]), where λ[0,1]

stands for Lebesgue measure on [0, 1].
Thus we now assume (with no loss in generality) thatX = [0, 1], µ = λ[0,1].

Let α = {I1, I2 . . . , Ik} be the partition of [0, 1] into k intervals of equal
length. Fix ε > 0 and P as in (3). We also assume that pij ∈ Q and let

pij =
mij

L
, mij ∈ N, L ∈ N \ {0}

for all i, j = 1, . . . , k. Divide each interval Ii into L subintervals Jij of equal
length. We are now going to define a transformation S ∈ Aut ([0, 1], λ[0,1])
which will be an element of U(α, ε, P ). It will be defined as an interval
exchange automorphism; i.e. each Jij will be mapped by S onto an interval
Jσ(i,j) via a map of the form x 7→ x + βij (defined on Jij), where σ is a
suitable bijection of {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ L}. In fact, we will group
some consecutive J ′ijs into longer subintervals and then permute these new
subintervals. Therefore if we “visualize” the graph of S in [0, 1] × [0, 1] as
given by the diagonals of some little subsquares, we only need to say what is
this family of subsquares. We begin by taking the subsquares:

(J11 ∪ . . . ∪ J1,km11)× (J11 ∪ . . . ∪ J1,km11),

(J1,km11+1 ∪ . . . ∪ J1,km11+km12)× (J21 ∪ . . . ∪ J2,km12), . . . ,

(J1,km11+km12+...+km1,k−1+1 ∪ . . . ∪ J1,km11+km12+...+km1k
)× (Jk1 ∪ . . . ∪ J1,km1k

)

which define S on I1 (since
∑k

j=1m1j/L = 1/k,
∑k

j=1 km1j = L). To define
S on I2 we choose the following subsquares:

(J21 ∪ . . . ∪ J2,km21)× (J1,km11+1 ∪ . . . ∪ J1,km11+km21),

(J2,km21+1 ∪ . . . ∪ J2,km21+km22)× (J2,km12+1 ∪ . . . ∪ J2,km12+km22), . . .

(J2,km21+...+km2,k−1+1 ∪ . . . ∪ J2,km21+...+km2,k−1+km2k
)×

(Jk,km1k+1 ∪ . . . ∪ Jk,km1k+km2k
).
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We keep going with this procedure of choosing “the first possible” square,
defining S on I3, then through all the remaining intervals. This construction
is correct since for each a, b = 1, . . . , k

k∑
j=1

kmaj

L
= 1,

k∑
i=1

kmib

L
= 1.

Given k ≥ 1, let Sk stand for the family of automorphisms of ([0, 1], λ)
given by dividing [0, 1] into k intervals of equal length and then permuting
them according to a permutation π of {1, 2, . . . , k}. By the above reasoning
we have proved the following:

Proposition 3 The family
⋃
k≥1 Sk is dense in C2(λ[0,1]).

Remark 2 It has been proved by Kechris and Rosendal in [10] that there

exists a residual set of T ’s, such that T̃ |Aut (X,B, µ), that is, conjugation
by T , is topologically transitive on Aut (X,B, µ). Hence by the above re-

mark we also have that for a residual set of T ’s, T̃ is transitive on C2(λ[0,1]).
As the set of weakly mixing transformations is residual in Aut (X,B, µ), it
follows that for a residual set of weakly mixing transformations T , conjuga-
tion by T is transitive. It turns out, however, that this property is in fact a
characterization of weak mixing as the theorem below shows.

Theorem 4 Assume that T ∈ Aut (X,B, µ) is ergodic. Then the following
conditions are equivalent.
(i) T is weakly mixing.

(ii) T̃ is transitive.

(iii) T̃ is topologically weakly mixing.

Proof.
(ii)⇒(i) Denote by (X1, µ1, T1) the Kronecker factor of (X,µ, T ). In view

of (7), T̃1 is a factor of T̃ and since by assumption T̃ is transitive, so is T̃1.

Since T̃1 is WAP it has exactly one minimal set. However, if it is not the
trivial one point system, it has at least two distinct fixed points, µ1×µ1 and
∆µ1 . Thus T̃1 is trivial, hence T is weakly mixing.
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(i)⇒(ii) For a partition α = {A1, . . . , Ak} with µ(Aj) = 1/k for j =
1, . . . , k, a permutation η of {1, . . . , k} and an ε > 0 set

V (α, η, ε) = {ξ ∈ C2(µ) :

∣∣∣∣ξ(Ai × Aη(i))− 1

k

∣∣∣∣ < ε}.

Claim. Given two permutations π, σ of {1, . . . , k} there exists an n ≥ 1 such
that

T̃−n(V (α, σ, ε)) ∩ V (α, π, 2ε′) 6= ∅, (10)

where ε′ > 0 is made precise below.
Indeed, by the weak mixing property of T there exists n ≥ 1 such that∣∣∣∣µ(T nAi ∩ Aj)−

1

k2

∣∣∣∣ < ε for all i, j = 1, . . . , k. (11)

Let

∆η =
k⋃
i=1

Ai × Aη(i), where η = σ, π.

For a fixed 1 ≤ i ≤ k let B
i

s = T−nAs ∩ Ai, s ≥ 1. Then βi = {Bi

1, . . . , B
i

k}
is a partition of Ai and by (11)∣∣∣∣µ(B

i

s)−
1

k2

∣∣∣∣ < ε for s = 1, . . . , k.

We now replace the partitions βi by partitions for which all atoms Bi
s, 1 ≤

s ≤ k, have measure 1
k2 and moreover

k∑
i,s=1

µ(B
i

s4Bi
s) < ε′, (12)

where ε′ = ε′(ε, k) and ε′ → 0 when ε→ 0. Now choose any ξ ∈ C2(µ) such
that

ξ(Bi
s ×B

σ(i)
π(s)) =

1

k2

for all i, s = 1, . . . , k (for example we can take the measure
∑k

i,s=1
1
k2µBis ⊗

µ
B
σ(i)
π(s)

, see the proof of Lemma 3). Notice that the measure ξ is supported

by the union
⋃k
i,s=1B

i
s ×B

σ(i)
π(s), and in particular

ξ(Bi
s ×B

j
t ) = 0 unless j = σ(i), t = π(s). (13)
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We will now check that
(i) ξ ∈ V (α, σ, ε),

(ii) T̃ nξ ∈ V (α, π, 2ε′).
Indeed, as

⋃k
s=1B

i
s = Ai for each 1 ≤ i ≤ k, and (13) holds,

ξ(Ai × Aσ(i)) = ξ

(
k⋃
s=1

Bi
s ×B

σ(i)
π(s)

)
=

k∑
s=1

ξ
(
Bi
s ×B

σ(i)
π(s)

)
= k · 1

k2
=

1

k

and thus ξ ∈ V (α, σ, ε). Moreover, ξ
(⋃k

i=1Ai × Aσ(i)

)
= 1. In order to

check (ii), consider

(T̃ nξ)(As × At) = ξ(
k⋃
i=1

(Ai ∩ T−nAs)×
k⋃
j=1

(Aj × T−nAt)) =

ξ(
k⋃

i,j=1

B
i

s ×B
j

t) =
k∑

i,j=1

ξ(B
i

s ×B
j

t).

We have ∣∣∣∣∣
k∑

i,j=1

ξ(B
i

s ×B
j

t)−
k∑

i,j=1

ξ(Bi
s ×B

j
t )

∣∣∣∣∣ ≤
k∑

i,j=1

|ξ(Bi

s ×B
j

t)− ξ(Bi
s ×B

j
t )| ≤

k∑
i,j=1

(µ(B
i

s4Bi
s) + µ(B

j

t4B
j
t )) < 2ε′.

In particular, ∣∣∣∣∣(T̃ nξ)(As × Aπ(s))−
k∑

i,j=1

ξ(Bi
s ×B

j
π(s))

∣∣∣∣∣ < 2ε′.

But in view of (13)

k∑
i,j=1

ξ(Bi
s ×B

j
π(s)) =

k∑
i=1

ξ(Bi
s ×B

σ(i)
π(s)) =

1

k
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and the proof of the claim is complete.
Let U1, U2 be any non-empty open subsets of C2(µ). By Proposition 3

there are a partition α = {A1, . . . , Ak} of X with µ(Ai) = 1/k, i = 1, . . . , k,
ε > 0 and permutations π, σ such that

V (α, σ, ε) ⊂ U1, V (α, π, 2ε′) ⊂ U2.

By the above claim there exists n ≥ 1 such that

T̃−nV (α, σ, ε) ∩ V (α, π, 2ε′) 6= ∅

and therefore T̃−nU1 ∩ U2 6= ∅ which completes the proof of this part of the
theorem.

(i) ⇒ (iii) In order to obtain topological weak mixing we repeat the
arguments used for the proof of transitivity but now with

T̃−nV (α, σi, ε) ∩ V (α, πi, 2ε
′) 6= ∅

for i = 1, 2.

Remark 3 Recall that the map S 7→ µS is a homeomorphism from the
Polish group Aut (X,B, µ) onto a dense Gδ subset of C2(µ) which is T̃ -

invariant. Moreover it intertwines T and T̃ , where by T we denote the action
of T on Aut (X,B, µ) by conjugation (see [7]). We conclude that T is weakly
mixing iff T is topologically transitive (iff it is topologically weakly mixing)
on the Polish space Aut (X,B, µ).

For T, S ∈ Aut (X,B, µ) denote by 〈T, S〉 the closed subgroup generated
by T and S.

Corollary 1 If T is weakly mixing then

S = {S ∈ Aut (X,B, µ) : 〈T, S〉 = Aut (X,B, µ)}

is a residual subset of Aut (X,B, µ).
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Proof.
By Theorem 4

{S ∈ Aut (X,B, µ) : {T−nST n : n ∈ Z} is dense in Aut (X,B, µ)}

is dense Gδ and it is clearly a subset of S.

Remark 4 The proof of Theorem 4 shows also that if T is mixing then T̃ is
topologically mixing.

4 Periodic points of the lens

Recall that a topologically transitive dynamical system (Y, S) is a P -system
(or is chaotic in the sense of Devaney) if the set of S-periodic points is dense
in Y (see [8]).

Let T ∈ Aut (X,B, µ). We recall that an element ξ ∈ C2(µ) is a fixed
point for T̃ (T̃ ξ = ξ) if and only if ξ is a self-joining for T , i.e. ξ ∈ J2(T ).
Thus ξ ∈ C2(µ) is a periodic point for T̃ (T̃ nξ = ξ for some n ≥ 1) if and
only if ξ ∈ J2(T

n). Set

Jn(T ) = {ξ ∈ C2(µ) : T̃ nξ = ξ},

J∞(T ) =
⋃
{Jn(T ) : n ≥ 1}.

Similarly we let

Cn(T ) = {S ∈ Aut (X,B, µ) : ST n = T nS},

C∞(T ) =
⋃
{Cn(T ) : n ≥ 1}.

(Thus C1(T ) = C(T ) is the centralizer of T in Aut (X,B, µ), and for each
n ≥ 1, Cn(T ) = C(T n).) Identifying a transformation S ∈ Aut (X,B, µ)
with its graph measure ∆S (the image of µ under the map x 7→ (x, Sx) of X
into X×X), we can think of Aut (X,B, µ) as a dense Gδ subset of C2(µ). In
particular, viewed in this way, Cn(T ) is a subset of Jn(T ) for n = 1, 2, . . . .
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4.1 The topological lens of a K-transformation is a P -
system

Theorem 5 Let (X,B, µ, T ) be an ergodic system.

1. If (X,B, µ, T ) is Bernoulli then the set C∞(T ) is dense in Aut (X,B, µ).

2. If (X,B, µ, T ) is a K-system then the set J∞(T ) is dense in C2(µ).
Hence, if (X,B, µ, T ) is a K-system then the topological system (C2(µ), T̃ )
is a P -system.

Proof.
Let T be a Bernoulli transformation. Given a measurable partition of X,

A = {A0, A1, . . . , Ad−1} into d sets of equal measure, and an ε > 0, we would
like to find an n0 and S ∈ C(T n0) = Cn0(T ) such that

µ(SAi4Ai+1) < ε, for i = 0, . . . , d− 1 (mod d). (14)

Step 1: As T is K, there exists n0 so that the partitions {T jn0A}j∈Z
are δ-independent. Here, δ is chosen small enough so that by the Ornstein
version of Sinai’s theorem (see [15], Lemma 5), there exists a measurable

partition Â = {Â0, Â1, . . . , Âd−1} of X into d sets with µ(Âi) = 1
d
, such that

the partitions {T jn0Â}j∈Z are independent,∑d−1
i=0 µ(Ai4Âi) < ε

100
.

(15)

Step 2: Next use Thouvenot’s relative version of Sinai’s theorem (see
[17] and [11]), to get a complementary partition P = {P0, P1, . . . , P`−1} such
that

the partitions {T jn0P}j∈Z are independent,

∨∞−∞T jn0Â ⊥ ∨∞−∞T jn0P,

H(P) +H(Â) = h(X,T n0).

(16)

Step 3: Of course T n0 is also Bernoulli and Ornstein’s isomorphism
theorem (see [16], Proposition 11, page 31) says that the partition P∨ Â can
be modified by an arbitrarily small amount so as to produce partitions P̃ and
Ã with the properties

the partitions {T jn0(P̃ ∨ Ã)}j∈Z are independent,

∨∞−∞T jn0Ã ⊥ ∨∞−∞T jn0P̃,

∨∞−∞T jn0(P̃ ∨ Ã) is the full Borel σ-algebra of X,∑d−1
i=0 µ(Ãi4Âi) < ε

100
.

(17)
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Step 4: Now we can view T n0 as a shift on d + ` symbols {αi : i ∈
{0, . . . , d− 1}} and {βi : i ∈ {0, . . . , `− 1}}, with the product measure. On
the phase space we define a transformation S by the map(
. . . , α−1, α0, α1, . . .
. . . , β−1, β0, β1, . . .

)
7→
(
. . . , α−1 + 1, α0 + 1, α1 + 1, . . .
. . . , β−1, β0, β1, . . .

)
(mod d).

This map is measure preserving, commutes with the shift, and has the prop-
erty

SÃi = Ãi+1 for i = 0, . . . , d− 1 (mod d). (18)

Taking into account the formula (16), (17) and (18), we obtain (14). This
proves part 1 of the theorem.

To prove part 2 it suffices to show that, given a K-transformation T , a
partition A = {A0, A1, . . . , Ad−1} of X into d sets with µ(Ai) = 1

d
, and ε > 0,

there are n0 and a self-joining λ of T n0 such that

λ(∪d−1
i=0Ai × Ai+1) > 1− ε (mod d). (19)

Step 5: As in Step 1 above, there exists n0 so that the partitions
{T jn0A}j∈Z are δ-independent, and an application of Ornstein’s theorem

yields a measurable partition Â = {Â0, Â1, . . . , Âd−1} of X into d-sets with
µ(Âi) = 1

d
, such that

the partitions {T jn0Â}j∈Z are independent,∑d−1
i=0 µ(Ai4Âi) < ε

100
.

Step 6: Now for the Bernoulli d-shift corresponding to T n0 and the
independent partition Â there is an automorphism Ŝ cyclically permuting
the sets {Âi : i = 1, 2, . . . , d − 1}. This defines a graph joining ∆Ŝ on the

Bernoulli factor defined by ∨∞−∞T jn0Â. The joining ∆Ŝ gives measure close

to 1 to the set ∪d−1
i=0Ai×Ai+1 since it gives measure 1 to the set ∪d−1

i=0 Âi×Âi+1.
Finally lift ∆Ŝ to a self-joining λ of T n0 on X ×X to get (19).

4.2 Zero entropy and P -systems

We have been unable to find T with zero entropy such that (T̃ , C2(µ)) is a
P -system (in general, there are P -systems with zero topological entropy, see
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[8]). A clear case where the periodic points of the lens fail to be dense is
when the equality

J∞(T ) = J1(T ) = J2(T ) (20)

holds, as in this case the set of periodic points is closed and nowhere-dense
(see the remarks following equation (8) in Section 2). It has been shown in [9]
(Theorem 6.1) that the equality (20) holds for all weakly mixing 2-fold simple
systems. (Although Theorem 6.1 in [9] states merely that C(T k) = C(T ) for
all k 6= 0, the proof actually yields the stronger result Je(T k) = C(T k) =
C(T ) = Je(T ). In particular (20) holds.)

Notice also that if S is a root of T satisfying (20) then the set of S-periodic
points is non-dense as well. Indeed, assume that Sk = T for some k ≥ 2.
Take r ≥ 1 and J ∈ J(µ) so that J ◦USr = USr ◦J . Then USkr ◦J = J ◦USkr
or equivalently UT r ◦ J = J ◦ UT r and therefore J∞(S) ⊂ J2(T ).

The equality (20) is also satisfied when

T n has simple spectrum for each n ≥ 1. (21)

In fact, if a unitary operator V ∈ U(H) of a separable Hilbert space H has
simple spectrum then each bounded linear operator W ∈ L(H) commuting
with V is a (weak) limit of polynomials in V and therefore the semigroup of
such W ’s is commutative. It follows that when S ∈ Aut (X,B, µ) has simple
spectrum the semigroup {Jλ : λ ∈ J2(S)} is also commutative. We clearly
have J2(T ) ⊂ J2(T

n) for each n ≥ 1. Assume now that J ∈ J(µ) and for
some n, J ◦ UTn = UTn ◦ J . Since UT ◦ UTn = UTn ◦ UT and UTn has simple
spectrum, J ◦ UT = UT ◦ J , and therefore J2(T ) = J2(T

n), so (20) follows.
Notice that the property (21) is closed under taking both powers and roots
(indeed, for the latter just observe that whenever Skm has simple spectrum
then both Sk and Sm have simple spectra).

Theorem 6 1. The generic transformation T ∈ Aut (X,B, µ) has the
property that for every n ∈ Z \ {0}, T n is of rank one. Thus the
generic T satisfies condition (21) and in particular its set of periodic
points is closed and nowhere-dense. Thus the topological lens is not a
P -system.

2. The equality (20) holds for all weakly mixing 2-fold simple systems. In
particular, for such systems the lens is never a P -system

3. If T is a Gaussian system with simple spectrum then it satisfies condi-
tion (21); in particular T̃ is not a P -system.
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Proof.
1. It is well known, and not hard to check, that the set R of rank one

transformations is a dense Gδ subset of the Polish group G = Aut (µ). It
is also well known that a rank one transformation has simple spectrum (see
e.g. [6], Theorem 16.5). For each integer k ≥ 1, let πk : Aut (µ) → Aut (µ)
be the map T 7→ T k. Clearly πk is a continuous map and it follows that
the set Sk := π−1

k (R) = {T ∈ G : T k ∈ R} is a Gδ subset of G. Clearly R,
and therefore also Sk, are conjugation-invariant and, as Sk contains ergodic
transformations (e.g. an irrational rotation), it follows, by Halmos’ theorem,
that Sk is a dense Gδ subset of G. In fact, it can be shown that Sk ⊂ R, (if
T k is rank 1 then so is T ), but in any case we can take R∞ = R∩

⋂
k≥1 Sk as

the required generic (in fact, dense Gδ) set of transformations, since T ∈ R

iff T−1 ∈ R.
2. This has been shown in [9].
3. Since T n is a (generalized) Gaussian system whose maximal spectral

multiplicity is bounded by n, it follows that T n has simple spectrum. In fact,
the maximal spectral multiplicity of a Gaussian system is either 1 or ∞ (see
[1] and [14]).

Of course every Kronecker (that is, ergodic discrete spectrum) system is
simple, but in this class we encounter both types of behavior.

For an irrational rotation Rα on the circle T, we have C(Rα) = C(Rn
α) =

Cn(Rα) = {Rβ : β ∈ T} for all n 6= 0. Thus, by simplicity, also J1(Rα) =

Jn(Rα) for all n 6= 0. Of course, T̃ is not a P -system because of the absence
of transitivity.

The situation changes when T is not totally ergodic. Considering the
dyadic adding machine (X,µ, T ), with X = {0, 1}N and Tx = x + 1, where
1 = (1, 0, 0, . . . ), one can easily check that, given any permutation π of
Z2n = {0, 1, . . . , 2n−1}, the corresponding homeomorphism Sπ defined on X
by permuting the first 2n coordinates, commutes with T n which do not affect
the first 2n coordinates of elements of X. It follows that the set C∞(T ) is
dense in Aut (X,B, µ); i.e. the periodic points are dense in (C2(µ), T̃ ). Note
however that (C2(µ), T̃ ) is not topologically transitive and therefore not a
P -system.
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5 Invariant measures on the topological lens

and quasi-factors

In this section we will examine the relation between T̃ -invariant probability
measures on the topological lens and quasi-factors. For completeness we will
repeat some arguments from [6] concerning the basic connection between
quasi-factors and self-joinings – this has to be checked because we must drop
the assumption, made in [6], of ergodicity of the barycenter. Given a standard
Borel space (Y,C) we denote by M(Y ) the set of probability measures on it.
Recall that M(Y ) carries a natural Borel structure which is generated by the
evaluation maps φA : µ 7→ µ(A), A ∈ C.

Assume now that T is an automorphism (not necessarily ergodic) of a
standard probability Borel space (X,B, µ). Let P ∈ QF (T, µ) be a quasi-
factor of the system (T,X,B, µ), i.e. P ∈ M(M(X)) is T -invariant for the
natural induced action of T on measures, and its barycenter

∫
M(X)

ν dP (ν)

equals µ. Consider also Msym(XZ), the set of probability measures on XZ

which are invariant under the group S of all finite permutations. Let φ :
M(M(X))→Msym(XZ) be defined by the formula:

φ(Q) = Q
∞

:=

∫
M(X)

(. . .⊗ θ ⊗ θ ⊗ . . .) dQ(θ). (22)

By the de Finetti-Hewitt-Savage theorem φ is an affine isomorphism of these
two convex sets (simplices). Now consider Jsym,∞(T, µ), the set of infinite
symmetric self-joinings of (T,X,B, µ) (it is a closed subset of Msym(XZ) but
since µ is not necessarily ergodic, in general this set is not a simplex). We
have

φ(QF (T, µ)) = Jsym,∞(T, µ). (23)

In fact, if P ∈ QF (T, µ), then clearly φ(P ) ∈ Msym(XZ) and the fact that
its 1-dimensional marginals equal µ follows from the barycenter condition on
P . In order to see that φ(P ) is T∞-invariant note that

φ(P ) ◦ T∞ =

∫
M(X)

(. . .⊗ θ ⊗ θ ⊗ . . .) dP ◦ T (θ)

=

∫
M(X)

(. . .⊗ θ ⊗ θ ⊗ . . .) dP (θ) = φ(P ).
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Finally, if ρ ∈ Jsym,∞(T, µ) then, by the de Finetti-Hewitt-Savage theorem,
its S-ergodic decomposition is of the form

ρ =

∫
M(X)

(. . .⊗ θ ⊗ θ ⊗ . . .) dQ(θ)

Clearly Q ∈ QF (T, µ) and φ(Q) = ρ. Thus φ is onto and (23) is established.
Note that this shows that (22) is in fact the S-ergodic decomposition of P

∞
.

Proposition 4 The quasi-factor (T,M(X), P ) is isomorphic (as a dynami-
cal system) to the factor of (T∞, XZ, P

∞
) given by the σ-algebra of symmetric

sets (i.e. S-invariant sets).

Proof.
Consider the map Φ : (T∞, XZ, P

∞
)→ (T,M(X), P ) given in the follow-

ing way. Take first the S-ergodic decomposition of P
∞

:

P
∞

=

∫
M(X)

(. . .⊗ θ ⊗ θ ⊗ . . .) dP (θ).

Now to x ∈ XZ which belongs to exactly one ergodic component (the support
of some . . . ⊗ θ ⊗ . . .) we associate the measure θ = θx. All we need to
show is that this map establishes a homomorphism. (Since it is constant on
atoms of the partition given by the S-ergodic decomposition, the preimage
of B(M(X)) will be exactly the σ-algebra of symmetric sets.) Given a Borel
subset Λ ⊂M(X) we have

(. . .⊗ θ ⊗ θ ⊗ . . .)(Φ−1(Λ)) =

{
1, when θ = θx and x ∈ Λ

0, otherwise,

and therefore
P
∞

(Φ−1(Λ)) = P (Λ).

Finally, the map Φ is clearly equivariant.

We will now discuss the ergodic case.

Corollary 2 Assume that µ and P ∈ QF (T, µ) are ergodic. Then there
exists ρ ∈ Je∞(T, µ) such that the factor given by the σ-algebra of symmet-
ric sets of the system (T∞, XZ, ρ) is isomorphic to the dynamical system
(T,M(X), P ).
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Proof.
By our assumption the σ-algebra of symmetric sets, which (as a factor

of (T∞, XZ, P
∞

)) is isomorphic to (T,M(X), P ), is ergodic. It follows that
the same σ-algebra is a factor of a.e. T∞-ergodic component of P

∞
. Since µ

itself is ergodic, J∞(T, µ) is a simplex, so the ergodic components of P
∞

are
self-joinings. Any such ergodic self-joining will serve as ρ.

Remark 5 The family of dynamical systems given by ergodic quasi-factors
of an ergodic automorphism T is hence contained in

{(T∞, X/B⊗∞sym,B⊗∞sym, λ) : λ ∈ Je∞(T, µ)}.

Let us come back to the topological lens T̃ of an automorphism T . We
will relate T̃ -invariant measures to quasi-factors of T . Notice that C2(µ) ⊂
M(X ×X) is a closed (compact) subset in the weak-∗ topology, hence each
T × T -invariant Borel measure on C2(µ) is also a T × T -invariant Borel

measure on M(X × X). Let P ∈ M(C2(µ)) be T̃ -invariant. If we let λ =∫
M(X×X)

ν dP (ν) be the barycenter of P , then λ ∈ C2(µ) and (C2(µ), P, T̃ )

is a quasi-factor of (X × X,λ, T × T ). Notice that even if P is ergodic,
λ need not be ergodic. (As an easy example consider P being the Dirac
measure at a non-ergodic self-joining of T .) However, as we have shown
above, the arguments from [6] about the characterization of quasi-factors
as factors of infinite symmetric self-joinings go through, and therefore the
dynamical system (C2(µ), P, T̃ ) is a factor of an infinite self-joining of the
system (X × X,λ, T × T ) (moreover this infinite self-joining is symmetric,
that is, it is an invariant measure for the group of finite permutations of
(X×X)Z). It follows directly that (T̃ , P ) is a factor of an infinite self-joining

of (X,µ, T ) and since (C2(µ), P, T̃ ) is ergodic, it is also a factor of an infinite
ergodic self-joining of (X,µ, T ).

Corollary 3 Assume that (T,X,B, µ) is ergodic and let P ∈MeT (C2(µ)) be
ergodic. Let λ ∈ J2(T, µ) denote the barycenter of P . Then P ∈ QF (T×T, λ)

and there exists ρ ∈ Je∞(T, µ) such that (C2(µ), P, T̃ ) is isomorphic to the
factor of (XZ, ρ, T∞) given by the σ-algebra of sets invariant under finite
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permutations of consecutive pairs of coordinates. If additionally λ is ergodic,
then ρ ∈ Je∞(T × T, λ) (the identification is given by grouping every two
consecutive coordinates).

Proof.
Apply Proposition 4 and notice that P

∞
can also be seen as an element

of J∞(T, µ) and that µ is ergodic.

5.1 The entropy of T̃

Let us recall that the class of zero entropy systems is closed under taking
joinings, since each marginal factor is included in the Pinsker factor of the
system given by the joining. Clearly this class is also closed under taking
factors. Therefore using Corollary 3 and the variational principle we obtain
the following.

Theorem 7 If T has zero entropy, then the topological entropy of T̃ is
zero.

We will now show that also the converse is true. In fact a stronger result
holds.

Theorem 8 If h(T ) > 0 then htop(T̃ ) =∞.

Proof.
Step 1. Assume first that T acting on (X,B, µ) is Bernoulli (1/2, 1/2)

with an independent generator (A,Ac), i.e. µ(A) = 1/2 and the family
{T kA, T kAc : k ∈ Z} is independent. Consider the map F : C2(µ)→ [0, 1/2]N

given by

F (λ) = (T̃ n(λ)(A× A))n≥0 = (λ(T−nA× T−nA))n≥0,

where on the space [0, 1/2]N we consider the one-sided shift S: S((xi)i≥0) =
(yj)j≥0, yj = xj+1. Clearly, F is an equivariant continuous map. We will show
that F is onto. To this end let us first notice that all we need to show is
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that for each n ≥ 1, each block (b0, b1, . . . , bn−1) ∈ {0, 1/2}n, there exists λ ∈
C2(µ) such that F (λ)[0, n − 1] = (b0, . . . , bn−1). In fact, {0, 1/2}n is the set
of extremal points of the convex set [0, 1/2]n and once we have “realizations”
of the extremal points we use the fact that the map λ 7→ F (λ)[0, . . . , n− 1]
is affine. The proof goes by induction on n. For a “realization” of a block
B = (b0) of length 1 we take λ as the graph coupling given by an isomorphism
of the space (X,B, µ), where the isomorphism is obtained from two measure
preserving maps (isomorphisms)

A0 7→ Ab0+1, A1 7→ Ab0 ,

where A0 = A and A1 = Ac, and addition is mod 2. Now take n ≥ 1
and B = (b0, . . . , bn−1) and suppose that the graph coupling given by an
isomorphism of the space (X,B, µ) obtained from 2n−1 measure-preserving
maps (isomorphisms)

Ai0 ∩ T−1Ai1 ∩ . . . ∩ T−n+2Ain−2 7→ Aj0 ∩ T−1Aj1 ∩ . . . ∩ T−n+2Ajn−2

“realizes” the block (b0, . . . , bn−2). A coupling λ “realizing” the block B is
then obtained as the graph coupling given by an isomorphism of the space
(X,B, µ) obtained from 2n measure preserving maps (isomorphisms)

Ai0 ∩ T−1Ai1 ∩ . . . ∩ T−n+2Ain−2 ∩ T−n+1Ain−1 7→

Aj0 ∩ T−1Aj1 ∩ . . . ∩ T−n+2Ajn−2 ∩ T−n+1Ain−1+bn−1+1.

It follows that the shift S is a topological factor of T̃ , so h(T̃ ) = +∞.
Step 2. Suppose h(T ) > 0. By replacing T with Tm if necessary, we can

assume that the entropy of T is larger than log 2. Then, by Sinai’s theorem,
T has a factor T1 which is Bernoulli (1/2, 1/2). Now h(T̃1) = +∞, so h(T̃ )
is also infinite.

5.2 Invariant measures for T̃ supported on Aut (µ)

We start with the following general setup.

Example: Let Y be a compact abelian second countable topological
group with normalized Haar measure λ. Let T : Y → Y be a continu-
ous automorphism. We recall that the measure λ is preserved by T ; i.e.
T ∈ Aut (Y, λ).
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With each z ∈ Y we associate the λ-preserving invertible transformation
Rz : Y → Y defined by Rz(y) = y + z. We then have T ◦ Rz ◦ T−1(y) =
T ◦Rz(T

−1y) = T (T−1y + z) = y + Tz = RTz(y) for all y, z ∈ Y , so that

T ◦Rz ◦ T−1 = RTz.

Thus the map φ : z 7→ Rz is a topological isomorphism of the compact topo-
logical dynamical system (Y, T ) into the (Polish) dynamical system (Aut (λ), T̃ ),
where T̃ denotes conjugation by T ∈ Aut (λ).

Next consider the simplex MT (Y ) of T -invariant Borel probability mea-
sures on Y . For an element ν ∈ MT (Y ) let Pν = φ∗(ν) be the push-forward
image of ν in the space of probability measures on Aut (λ) under φ. It then
follows that φ is an isomorphism of measure dynamical systems

φ : (Y, ν, T )→ (Aut (λ), Pν , T̃ ).

Identifying Aut (λ) with its image in C2(µ) under the canonical embedding,
we obtain the measure theoretical isomorphism

φ : (Y, ν, T )→ (C2(µ), Pν , T̃ ).

Now a particular instance of the above example will establish the following
surprising result. Let Y = TZ, where T = R/Z is the circle group. Let T
be the shift transformation on Y and let λ be the product measure λ = λZ

0 ,
where λ0 is normalized Lebesgue measure on T. We consider Y also as a
compact topological group and observe that (i) λ is the normalized Haar
measure on Y and (ii) T is a continuous automorphism of the compact group
Y .

Theorem 9 The topological lens (C2(λ), T̃ ) is universal both topologically
and measure theoretically:

1. Every metric compact topologically transitive system appears as a sub-
system of the Gδ dense T̃ -invariant subset Aut (λ) ⊂ C2(λ).

2. Let (Ω,A, ν, S) be an ergodic system. There exists a T̃ -invariant er-
godic probability measure Pν on Aut (λ) such that the corresponding
dynamical system (C2(µ), Pν , T̃ ) is measure theoretically isomorphic to
(Ω,A, ν, S).
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Proof.
Both claims follow immediately from the example above applied to the

group Y = TZ, and the fact that the topological Bernoulli system (Y, T )
is universal both for compact metrizable topologically transitive systems as
well as for ergodic measure preserving systems.

Remark 6 In [2] Danilenko introduced the notion of near simplicity. An
ergodic dynamical system (X,B, µ, T ) is 2-fold nearly simple if each 2-fold
ergodic self-joining λ of µ is either the product measure µ × µ or it is an
integral of graph couplings:

λ =

∫
Aut (X,B,µ)

µS dP (S),

where P is a T̃ -invariant measure. For all the examples of 2-fold near-simple
maps given in [2], the measure P is supported on a finite set. Danilenko
shows that, at least when P is supported on a finite set, the system (X ×
X,λ, T × T ) is isomorphic to the product of the original system (X,B, µ, T )

and the system (Aut (X,B, µ), P, T̃ ). It will be interesting to find near simple
systems where P is a continuous measure.

5.3 T̃ -invariant measures when T is measure-theoretically
distal

The computation of the simplex MeT (C2(µ)) for a general transformation
T seems to be a difficult task. If (X,B, µ, T ) is distal, then by Corol-

lary 3, (C2(µ), P, T̃ ) is (measure-theoretically) distal for each ergodic P ∈
MeT (C2(µ)). In this section we will consider mainly the particularly simple
situation of an isometric extension of a Kronecker system.

Suppose first that T is a Kronecker system, that is, it is ergodic and has
discrete spectrum (and therefore is isomorphic to an ergodic translation on a
compact metric monothetic group). Assume moreover that P ∈ MeT (C2(µ))

is ergodic for T̃ . Then there exists J = Jρ ∈ J(µ) such that P is supported
on the set

YJ := {US ◦ J ◦ U−1
S : S ∈ C(T )}
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(see the beginning of section 3.2). Consider the map κ : C(T )→ YJ defined
by

κ : S 7→ US ◦ J ◦ U−1
S (24)

(notice that it is 1−1 unless for some Id 6= R ∈ C(T ) the measure ρ is R×R-
invariant; all measures which are R × R-invariant are easy to describe). If
on C(T ) we consider the action by the translation of T then the system we
obtain is isomorphic to the original system (X,T ), in particular it is uniquely

ergodic and has discrete spectrum. The system (YJ , T̃ ) is a topological factor

of T and hence (C2(µ), P, T̃ ) has also discrete spectrum. In this way we fully
described ergodic invariant measures for Kronecker systems.

Let now T be an arbitrary ergodic automorphism of a standard probabil-
ity Borel space (X,B, µ). Let G be a compact metric abelian group and let
ϕ : X → G be a measurable map (a cocycle). Define Tϕ : X × G → X × G
by the formula

Tϕ(x, g) = (Tx, g + ϕ(x))

and observe that Tϕ preserves the product measure µ ⊗ λG, where λG is
the normalized Haar measure on G. We will assume that Tϕ is ergodic and
has the same eigenfunctions as T . (The latter assumption does not restrict
the generality of Proposition 5 below since, by enlarging the σ-algebra B

so that the additional eigenfunctions become B-measurable, we can achieve
this situation.) Under these assumptions there exists a subsequence (ni) of
density 1 such that Uni

Tϕ
→ 0 weakly on the space L2(X × G, µ ⊗ λG) 	

(L2(X,B, µ)⊗ 1G). Given χ ∈ Ĝ (Ĝ stands for the dual of G), we put

VT,ϕ,χ(f) = χ(ϕ) · f ◦ T

for each f ∈ L2(X,B, µ). Then for each χ 6= 1

V ni
T,ϕ,χ → 0 weakly on L2(X,B, µ)

or equivalently ∫
X

χ(ϕ(ni)) · f ◦ T ni · g dµ→ 0 (25)

for each f, g ∈ L2(X,B, µ).
Suppose now that ξ ∈ C2(µ ⊗ λG) satisfies the condition ξ|X×X = ∆X .

Identifying the two copies of X we can assume that ξ ∈M(X ×G×G) and
the projections of ξ on the two “copies” of X × G equal µ⊗ λG. Instead of
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Tϕ × Tϕ we must consider Tϕ×ϕ. The disintegration of ξ over µ has the form
ξ =

∫
X
δx⊗ ξx dµ(x), where ξx are probability measures on G×G. Since for

each A ∈ B, B ∈ B(G)∫
A

λG(B) dµ(x) = µ(A)λG(B) = ξ(A×B ×G) =

∫
A

ξx(B ×G)µ(x),

we have λG(B) = ξx(B × G). Similarly λG(B) = ξx(G × B), whence ξx ∈
C2(λG) for µ-a.e. x ∈ X.

For χ, η ∈ Ĝ we have∫
X×G×G

f(x)χ(g)η(h) d(T niϕ×ϕ)∗(ξ)(x, g, h) =

∫
X×G×G

f(T nix)χ(g + ϕ(ni)(x))η(h+ ϕ(ni)(x)) dξ(x, g, h) =∫
X

(χ · η)(ϕ(ni)(x))f(T nix)

(∫
{x}×G×G

χ(g)η(h) dξx(g, h)

)
dµ(x).

If χ 6= η then, by (25), the limit of the latter expression, when i → ∞,
is zero. If χ = η, assuming additionally that T ni → S ∈ C(T ) and that(
T niϕ×ϕ

)
∗ (ξ)→ ξ̃ we obtain as the limit∫

X×G×G
f(x)χ(g)η(h) dξ̃(x, g, h) =

∫
X×G×G

f(Sx)χ(g)χ(h) dξ(x, g, h).

Thus the coupling ξ̃ has the form ξ̃ =
∫
X
δSx ⊗ ξ̃x dµ(x), where for µ-a.e.

x ∈ X the measure ξ̃x on G×G has the following Fourier coefficients

̂̃
ξx(χ, η) =

{
0, if χ 6= η,∫

G×G χ(g − h) dξS
−1x(g, h), if χ = η.

(26)

In order to gain a better picture of the limit measure and its dynamics
we perform the following change of coordinates. Let

m : G×G→ G, m(g, h) = g − h and

m : X ×G×G→ X ×G×G, m(x, g, h) = (x, g − h, h).
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Set νx := m∗(ξ̃
x) and ν := m∗(ξ̃). We then have

ν =

∫
X

δSx ⊗ νx ⊗ λG dµ(x). (27)

In fact, denoting the measure on the right hand side of (27) by ξ1, we have∫
X×G×G

f(x)χ(g)η(h) dξ1(x, g, h) =

∫
X

f(Sx)

(∫
{x}×G×G

χ(g)η(h) dνx(g)dλG(h)

)
dµ(x) = 0

whenever η 6= 1 (indeed, χ 6= (χ · η) if and only if η 6= 1). For η = 1 we
obtain∫
X×G×G

f(x)χ(g)η(h) dξ1(x, g, h) =

∫
X

f(Sx)

(∫
{x}×G

χ(g) dνx(g)

)
dµ(x) =

∫
X

f(Sx)

(∫
{x}×G×G

χ(g − h) dξ̃x(g, h)

)
dµ(x)

and we see that indeed m∗(ξ̃) = ξ1. We also note that

m ◦ Tϕ×ϕ = T0×ϕ ◦m,

where T0 = T × IdG.
From now on we assume that T is an ergodic rotation (so that C(T ) is a

compact group in the strong operator topology). We have proved that in this
case, under the change of coordinates, the limit points along subsequences of
(ni) are measures of the form∫

X

δSx ⊗ νx ⊗ λG dµ(x) = θ ⊗ λG,

where θ ∈ Mµ(X × G) and the latter is the subset of M(X × G) consisting
of measures whose projection on X is µ. In the new coordinate system the
automorphism Tϕ×ϕ is transformed to T0×ϕ. Now from the fact that (ni)
has density 1 (see Remark 1) and the fact that the action of T0×ϕ preserves
the set Mµ(X × G) × {λG}, it follows that each invariant measure P for

T̃0×ϕ is concentrated on Mµ(X ×G)× {λG}. Thus we only need to consider
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the set of ergodic (T × IdG)e-invariant measures on Mµ(X × G). Since the
action of T × IdG on X ×G is equicontinuous, we conclude that the system
(C2(µ⊗ λG), P, T̃ϕ) has discrete spectrum.

Given R ∈ C(T ) denote by

ZR = {ρ ∈ C2(µ⊗ λG) : ρ|X×X = µR}.

Notice that ZR is closed and T̃ϕ-invariant. By the above we have proved the
following result.

Proposition 5 If T has discrete spectrum and ϕ : X → G is a cocycle taking
values in a compact metric abelian group G such that Tϕ is ergodic then for

each ergodic T̃ϕ-invariant measure P concentrated on ZId the resulting system

(ZId, P, T̃ϕ) has discrete spectrum.

Remark 7 Let us note that the dificulty in the proof of Proposition 5 arises
from the fact that the cocycle ϕ × ϕ is not ergodic. Indeed, we will shortly
argue that whenever T has discrete spectrum and ϕ : X → G is ergodic (i.e.
Tϕ is ergodic) then the action of Tϕ on Mµ(X × G) has only one invariant
measure and moreover this measure is the Dirac measure supported on µ⊗λG.

First notice that by the Stone-Weierstrass theorem the set of continuous
functions of the form f ⊗ χ, where f ∈ C(X), χ ∈ Ĝ, is linearly dense in
C(X×G) and therefore to check weak convergence of a sequence of measures
in Mµ(X × G) we only need to test this on functions of the form f ⊗ χ.
Assume that (ni) has density 1 and that Uni

Tϕ
converges (weakly) to zero in

the orthocomplement of L2(X,µ) ⊗ 1G. Take ξ ∈ Mµ(X × G). Suppose
that along a subsequence of (ni), which we still denote by (ni), we have(
T niϕ
)
∗ (ξ)→ ξ̃. Then a calculation as above shows that for χ 6= 1∫

X×G
f(x)χ(g) dξ̃(x, g) = 0,

and we conclude that ξ̃ = µ⊗ λG.

Suppose now that the assumptions of Proposition 5 are fulfilled and as-
sume moreover that R ∈ C(T ) is such that the cocycle

ϕ× ϕ ◦R : X → G×G is ergodic. (28)
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We consider T̃ϕ on ZR. Identyfying the two copies of X we see that the action

of T̃ϕ on ZR can be identified with a subsystem of the action of Tϕ×ϕ◦R on
Mµ(X × G × G). In view of Remark 7, which by (28) we may apply to
ϕ× ϕ ◦R, we obtain the following.

Proposition 6 Assume that T has discrete spectrum and that ϕ : X → G
is a cocycle taking values in a compact metric abelian group G such that Tϕ
is ergodic. Then for each R ∈ C(T ) such that ϕ×ϕ◦R is ergodic the system

(ZR, T̃ϕ) has a quasi-attracting point. In particular it has only one invariant
measure (which is the Dirac measure concentrated at the unique self-joining
of Tϕ projecting on µR).

Notice however that the two propositions above do not describe all the
ergodic invariant measures for T̃ϕ in the case of T having discrete spectrum.

In particular we do not know whether an ergodic measure P (for T̃ϕ) which
projects on the natural Haar measure of YJ , where the map κ (see (24)) is
1− 1, yields also a system with discrete spectrum.

We will show next that going up one further step in the distal eche-
lon, namely taking a further isometric extension, one can already obtain a
transformation T preserving a measure µ for which there exists an ergodic
probability measure P ∈ MeT (C2(µ)) such that the measure distal system

(C2(µ), P, T̃ ) has mixed spectrum.
Let Tx = x+α be an irrational rotation on T, let ϕ : T→ T be given by

ϕ(x) = x and let Tϕ : T2 → T2 be defined by Tϕ(x, y) = (x + α, x + y). Let
Rx = x + β, where α, β and 1 are independent over the rational numbers.
Then the cocycle ϕ×ϕ◦R is ergodic and the skew product Tϕ×ϕ◦R has partly
continuous spectrum (notice however that its discrete part is bigger than the
one given by the rotation by α). Now Proposition 6 applies and we know

that there exists only one (trivial) T̃ϕ-invariant measure on ZR.
Let now T (an extension of Tϕ) on T3 be given by

T (x, y, z) = (x+ α, x+ y, x+ y + z),

and set µ = λT ⊗ λT ⊗ λT. Denote by Sa,b,c ∈ Aut(µ) the rotation by
(a, b, c) ∈ T3. We have

T ◦ Sa,b,c ◦ T
−1

= Sa,a+b,a+b+c. (29)
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In other words the action of T̃ on the set of graph measures given by Sa,b,c,
(a, b, c) ∈ T3, is isomorphic to the action W on T3 given by

W (a, b, c) = (a, a+ b, a+ b+ c).

Now, the homeomorphism W has many invariant tori Ta (a ∈ T), where
Ta = {(a, b, c) : b, c ∈ T}. Identifying Ta with T2, the action of W = Wa on
Ta becomes Wa(b, c) = (b+ a, b+ c+ a). If now a = β is irrational then Wβ

is isomorphic to the Tϕ we started with (with β taking the place of α; the
constant cocycle β is a coboundary). Thus we have proved the following.

Proposition 7 For the transformation T (x, y, z) = (x+α, x+y, x+y+z) as

above there are T̃ -invariant measures P such that the system (C2(λ
⊗3
T ), P, T̃ )

is ergodic and has partly continuous spectrum. In fact, for each β ∈ T there

exists Pβ such that the system (C2(λ
⊗3
T ), Pβ, T̃ ) is isomorphic to the affine

transformation (x, y) 7→ (x+ β, x+ y) of T2.

We conclude with the following intriguing problem.

Problem 1 Construct an ergodic system of zero entropy for which the topo-
logical lens is a P -system. In view of Theorem 4 this amounts to finding a
weakly mixing system (X,B, µ, T ) with zero measure entropy such that the
periodic points of the topological lens are dense.
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