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Introduction

The conference was held between September 1 and 7, 2000 at the Faculty of Math-
ematics and Computer Science of the Nicholas Copernicus University at Gagarina
12/18 in Torun, Poland. It was a continuation of a series of international (origi-
nally German-Polish and later French-German-Israeli-Polish) workshops: Kazimierz
Dolny (Poland) 1992, Aachen 1993, Torun 1994, Warsaw 1995, Berlin 1996, Szk-
larska Porgba (Poland) 1997. At the present conference colleagues from Austria,
France, Germany, Great Britain, Holland, India, Israel, Japan, Korea, Poland, Rus-
sia, Sweden, Ukraine, and USA, contributed, through their lectures and discussions,
to a profitable exchange of scientific results and ideas. The main topics of the con-
ference were: measure-theoretic, topological, and smooth dynamics, which includes
spectral, combinatorial, and entropy-theoretic aspects of dynamical systems, topo-
logical and measurable actions of amenable groups, holomorphic dynamics, Gaussian
automorphisms, and applications of ergodic theory to statistical mechanics, thermo-
dynamics, number theory, probability theory and differential equations. This volume
contains materials of the conference: full list of participants, full list of lectures, ex-
tended abstracts of most of the lectures, and some open questions. The organizers
from Toruri would like to express their gratitude to all participants for contributing
to the success of the conference; in particular we like to thank:

— all 52 speakers,

professors Manfred Denker and Feliks Przytycki for their help in obtaining funds
of the European Scientific Foundation,

— professor Adam Jakubowski, the dean of the Faculty of Mathematics and Com-
puter Science of the Nicholas Copernicus University,

— sponsors of the Conference.

Torun, March 2001 Brunon Kaminski
Jan Kwiatkowski
Mariusz Lemanczyk
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3

Extended abstracts

3.1 Jon Aaronson'
Invariant measures and asymptotics for so-
me skew products

Let (X, B) be a standard measurable space, and let 7 : X — X be an invertible
measurable map. Let G be a LCAP topological group and let p: X = G be
measurable.

The skew product transformation 7, : X x G — X x G is defined by Tie, g =
(T2, y + ¢(z)).

For certain examples, we identify all Tg-invariant locally finite measures (e.g.
p X mg where po7 = p) and study their asymptotic behaviour.

If 7 is a uniquely ergodic homeomorphism of a compact metric space (with
invariant probability p), G is compact (with Haar probability measure mg) and
¢ : X — G is continuous, then ergodicity of Ty With respect to the product p x mg
is equivalent to its unique ergodicity. For non-compact G, if 7 is uniquely ergodic
(with invariant probability p), and Ty 1 ergodic with respect to p x mg, then (by a
version of the so-called coboundary theorem) there is no Tg-invariant probability on
A x @G

The Maharam measures form a natural class of Ts-1nvariant, locally finite mea-
sures.

Given ¢ : X — G be measurable, a continuous homomorphism o : G — R and
1= o € P(X,B) (*°?,7)-conformal (i.e. por ~ u and leuﬂ = ™% y-a.e.), the
associated Maharam measure is

dme(z,y) := e *Wdu(z)dy.

A Maharam measure is 74-invariant, the dilation from the first coordinate being
cancelled by the translation in the second.
The transformations 7, considered here have the following properties:

LJoint work with H. Nakada, O. Sarig, R. Solomyak
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1) For each continuous homomorphism « : G — R, there is a unique (e**?, 7)-
conformal probability p = u, on (X, B);

2) For each continuous homomorphism a : G — R, the Maharam measure m, is
ergodic (for 7,);

3) The only ergodic 74-invariant locally finite measures are Maharam measures.

Now let S be a finite set, let © C S™ be a mixing SFT over S, and consider the
tail relation of the shift T": ¥ — 35

TT):={(z,4) €L?: An>0, Tz =T"y}.

This is generated by the adic transformation 7 : ¥ — ¥, 7 = Vi, the transformation
induced by the odometer V : S — S" on & :

'T(,L) s Vmin{nzl: V“(z)eE}(x)'

These adic transformations are uniquely ergodic.
Let f: ¥ — G and consider Ty : ¥ x G — ¥ x G. It turns out that 7}’s tail
relation is

UTY) = {((z.9), (¢,9)) € (Ex B : (2,0) € TT), yf —y = Py},

where ¥ : T — G is defined by v¥y(z,2) :== 32 (f(T"z) — f(1™z")). Evidently
T(Ty) is generated by a skew product 7, : ExG — LxG where ¢f(z) = ¢p(z, 72) =
>0 (f(T'z) — f(T'(r2))).

A measurable function f : ¥ — G is periodic if 3y € G, 2z € S! and gia— 8t
measurable, not constant, s.t. yo f =2-g-goT; and is called aperiodic if it is not
periodic.

Suppose that ¥ is topologically mixing, and that f : ¥ — G is Holder continuous
and aperiodic. It is known that for every continuous homomorphism o : G — R:
1) (see [4]) there is a unique e/ )-conformal prob. . € P(Z);
2) (see [4]) pe is non-atomic;
3) Ty, is ergodic with respect to the Maharam measure on $5 x G defined by
dme(2,y) = e *¥du,(x)dy ( <= T is exact, which is proved in [5]).

Theorem 3.1.1 ([1]). Suppose that f : = — G is aperiodic and has finite memory.
If m is an ergodic, 74, -invariant locally finite measure on Sy x G, then m ~ myq
for some continuous homomorphism a : G — R.

Related results for suspension semiflows appear in 2], and these establish the
result that for a horocycle foliation of a Z%cover of a compact manifold of constant
negative curvature, the only locally finite measures which are ergodic and invari-
ant for the horocycle foliation, and quasi-invariant under the geodesic flow are the
Maharam-type measures introduced in [3|.
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3.2 Vitaly Bergelson
IP sets and polynomial multiple recurrence

General background

Let us call a set S C Z an IP set if it consists of an infinite sequence (z,)2, C Z

n=1
together with all finite sums of the form z,, + z,, + ... + Zyn,, where £ € N and
0 <mn < mnp <... < ng It follows that the elements of the IP set generated

by (zn)52, are naturally indexed by the elements of the set F of finite nonempty
subsets of N. Indeed, for any a € F define z, := Z"Ea Zn. Note that if (z4)aer is
an IP set in Z then for any disjoint o, 8 € F one has z, + ZTg = Toug. Thus IP sets
can be viewed as approximate semigroups. It turns out that many results of the
ergodic theory of semigroup actions, especially those pertaining to recurrence and
multiple recurrence, admit far reaching extensions and refinements in the framework
of IP sets.

Theorem 3.2.1 (Hindman, [14]). If E C Z is an IP set, then for any finite
partition E = |J._, C;, at least one of the cells C; contains an IP set.

Remark 3.2.1. If a set A contains a subsemigroup of (N, +), it is not hard to con-
struct a partition A = (J_, C; with the property that no C; contains a semigroup.
Hindman’s theorem shows that any similar attempt to destroy the property of con-
taining an IP set is doomed to failure.

IP sets arise naturally in ergodic theory and topological dynamics. First of all,
Hindman's theorem itself may be seen as a sort of “iterated” Poincaré recurrence
theorem (see (1], Section 3, and [2|, Section 3). Second, IP sets provide a natural
concept of largeness (namely IP*-ness, see below) which is stronger and, on many
occasions, more appropriate than the more familiar and traditional notion of syn-
deticity (= relative denseness). A set E C Z is called IP* if for any IP set S one
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has EN S # 0. It is not hard to show that if a set E C Z is IP* then it is synde-
tic. On the other hand, not every syndetic set is IP*. (Consider, for example, the
odd integers.) It follows from Hindman’s theorem that the intersection of any finite
collection of IP* sets is also an IP* set.

Let now (X, B, 1) be a probability space and T an invertible measure preserving
transformation of X'. Khinichine’s recurrence theorem states ‘rhat for any A € B
with p(A) > 0 and any A € (0,1) the set

Ry = {n EZ:pu(ANT A > /\,LL(A)Q}

is syndetic. Khintchine’s original proof was via the (uniform version of) von Neu-
mann’s ergodic theorem. One can however show more: the set R, , is always an
IP* set, and moreover this remains true for measure preserving actions of arbitrary
semigroups (with appropriately defined notion of IP*). See the discussion in [1],
pp.49-50. Indeed, it was shown in [3] that the IP* version of Khintchine’s recur-
rence theorem also holds for recurrence along polynomials. For example, if T},
T, are commuting invertible measure preserving transformations of a probability
space (X, B, u) then for any A € B with p#(A) > 0 and any A € (0,1) the set
{neZ:pAn TP T A) % Aji( 4 )*} is IP*. (The results proved in [3] are much
more general.)

We conclude the introductory discussion with a remark about one classical def-
inition. A function f: Z — R is called almost periodic if for any £ > 0 the set of
“g-periods”,

= {h:sup|f(z+h) - f(z)| <e}
TEZ
is syndetic. This important notion (introduced by H. Bohr in 1924 for continuous
functions on R) has one unpleasant glitch: it is not obvious from the definition
that if f and g are almost periodic then f + g also is. However, if one modifies
the definition by demanding that for any & > 0 the set P. is IP* then one gets an
equivalent definition which is free from this flaw. See the discussion in [1], p. 9.

Polynomial multiple recurrence along IP sets

Traditionally, ergodic theory deals with various Cesaro averages. After all, the very
inception of ergodic theory is tightly related to the question about the equality
of time and space averages. Also, such basic properties of dynamical systems as
ergodicity, weak mixing and strong mixing are naturally expressible in terms of
Cesaro averages (for the case of strong mixing see, for example, [4]).

In the IP framework Cesaro convergence is replaced by IP convergence, which we
presently define (cf. [10], Chapter 8.) An F-sequence is a sequence in an arbitrary
space which is indexed by F. For «, # € F we shall write @ > § iff mina > max fj.
Let (z4)acr be an F-sequence in topological space X and let © € X. One says
that IP-limz, = z if for every neighborhood U of x there exists ag € F such that
T, € U for all @ > ay. To define the notion of F-subsequence, one invokes the
concept of F-homomorphism. An F-homomorphism is a mapping p: F — F
which has the property that if a,8 € F with a N g = 0, then ¢(a) N p(3) = 0
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and p(a U B) = p(a) Uw(B). An F-subsequence of (24)acr is defined as any F-
sequence of the form (T,())acr where ¢ is an JF-homomorphism. It follows now
from Hindman’s theorem that any F-sequence in a compact metric space has a
convergent F-subsequence (see [10], Theorem 8.14, p. 165).

We are now in position to formulate IP analogues of some “Cesaro” facts. As-
sume, for example, that (U;)2, are commuting unitary operators of a Hilbert space
H and let Uy := [[;c, Ui, @ € F. One immediately observes that (Ua)aer is nothing
but a multiplicative IP set of commuting unitary operators. It is, however, its struc-
ture as an F-sequence that interests us now. The following result may be viewed as
IP analogue of von Neumann’s ergodic theorem.

Theorem 3.2.2. (Cf. [12], Theorem 1.7, p. 124). Let (Uy)acr be an F-sequence
in a commutative group of unitary operators acting on a separable Hilbert space H.
Then one can find an F-subsequence (Up(a))acr such that for any f € H

IP-lim U(P(a)f = Pf
erists in weak topology. In addition, P is an orthogonal projection onto a subspace
of H.

We are moving now to some examples of IP results pertaining to multiple recur-
rence. The theory of multiple recurrence started with the publication of [9], where
Furstenberg gave an ergodic proof of the celebrated Szemerédi’s theorem on arith-
metic progressions by proving the following extension of the Poincaré recurrence
theorem and showing that Szemerédi’s theorem is a consequence of it.

Theorem 3.2.3 ([9]). For any invertible probability measure preserving system
(X,B,11,T), any A € B with u(A) > 0 and any k € N the set

{ne€Z: pANT"ANT™AN .. .NTA) > 0}
is syndetic,

In [11] Furstenberg and Katznelson obtained a multidimensional Szemerédi the-
orem by deriving it from the following multiple recurrence theorem.

Theorem 3.2.4 ([11]). Let (X, B, 1) be a probability measure space and Ty, ..., T},
commuting invertible measure preserving transformations of X. Then forany Ae B
with u(A) > 0 one has

N-1
. . 1 T A n
lanl}ng E MANTIANTIAN...NTRA) > 0.

n=0

The natural question arises as to whether the set of simultaneous returns,
{(REZ: p(ANTIPANTIAN...NTIA) > 0}

is [P*. The answer is yes and is contained in the following IP-Szemerédi theorem
proved in [12]:

b
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Theorem 3.2.5 ([12]). Let (X, B, 1) be a probability space and let k € N. For any
F-sequences (Téi))agy, i =1,...,k, in a commutative group of invertible measure
preserving transformations of X and for any A € B with u(A) > 0 there exists an
F-homomorphism @: F — F such that

IP-lim g ﬂ Ty A) > 0.
=1

A polynomial extension of Furstenberg-Katznelson’s multidimensional Szemerédi
theorem was obtained in [5] where, in particular, the following result was proved.

Theorem 3.2.6 ([5]). Let (X, B, 1) be a probability measure space, T\, ..., T} com-

muting invertible measure preserving transformations of X, py,...,pr polynomi-
als with mtional coejﬁcz’ents taking integer values on the integers and satisfying
pi(0)=0, i= k. Then for any A € B with u(A) > 0 one has
N-1
fipunf s Z pANTPIANTIAN ... ATHM4) > 0
N—=o0 0

Apgain, it was natural to inquire whether sets of the form
neZ: AnTM"™ANTIAN...NTP™M4) > 0}

are IP*. The following IP polynomial Szemerédi theorem proved in [8] shows that
the answer is in the affirmative.

Theorem 3.2.7 ([8]). Let Ty,...,T; be commuting invertible measure preserving
transformations of a probability measure space (X, B, i), let d,r € N and suppose
we are given polynomials p;; € Ziny,...,ny), i =1,...,7, j = 1,...,k, satisfying
pij(0) = 0. Then for any A € B with u(A) > 0 the set

r

{(nl, o, Mg) EZY: ,u(ﬂ(HLZ}P”J"““'"“)A} > 0}

i=1
is an IP* set in 2%, (IP sets and IP* sets in Z* are defined in the same way as in
Z.)

We collect some of the corollaries of this theorem in the following list. For more
discussion and details see [1] and [8].
(i) Taking d = 1 we see that the set

{nez: plAnTP g e an  apiippet) | gt gy 5 )
is IP*. |
(ii) Since for any IP sets (ng})a@r, ¢ = 1,...,k, any measure preserving system

(X, B, 1, T) and any A € B with u(A) > 0 there exists e« € F such that

(1)_(2) L1 (2 (k)
/,L(AOT"“ ANTraTe AN, NTR T R 4) > (,
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one obtains (via Furstenberg’s correspondence principle) the fact that for any ECZ
having positive upper density there exist z € Z and o € F such that

{z,z+n)z+nIn® .. z+ ntn® .ng")} CE.

(iii) Let P: Z" — Z' be a polynomial mapping satisfying P(0) = 0, let F C Z"
be a finite set, let S C Z' be a set of positive Banach density and let (nﬁj))a@«,
t=1,2,...,r be arbitrary IP sets. Then for some « € Z! and o« € F one has

{u+ P(nVzy, 0Py, ... n0z,) (Ha4Borass i) EFFEE

(The Banach upper density of a set S C Z* is defined to be

d'{8)= sup hmsupm,
{Hll}nEN n—o0 |Hn|

where the supremum goes over all sequences of parallelepipeds

I, = [al, 6] x -+ x [a® )] ¢ Z* n € N,
with b — ol & o0, 1 <i<k)

We now turn our attention to polynomial IP theorems in the setup of topolog-
ical dynamics. We remark in passing that while measure preserving dynamics is
applicable to density Ramsey theory, theorems in topological dynamics of the kind
that we introduce below yield applications in partition Ramsey theory. See [1] and
[16] for more discussion.

The following theorem proved in [5] gives, as a corollary, the polynomial version
of van der Waerden’s theorem on arithmetic progressions (and is, in its turn, an
important tool in proving the polynomial Szemerédi theorem appearing in [5]).

Theorem 3.2.8 ([5]). Let (X, p) be a compact metric space, let T, ..., T} be com-
muting self-homeomorphisms of X and letp;; : Z — Z,i=1,.. oy By = Lo,
be polynomials satisfying p; ;(0) = 0. Then for any € > 0 there exist © € X and
n € N such that p(Tf”'"(n) ‘s .i”lp"’(")m, z) <eforalli=1,..., k.

Corollary 3.2.1. Let d,k € N and let P: Z*¥ — 7! be a polynomial satisfying

P(0) = 0. Then for any finite coloring of Z* and any finite set E C Z* there exist
v € Z% and n € N such that the set v + P(nE) is monochromatic.

We formulate now a general Abelian polynomial IP multiple recurrence theorem,
which is a corollary of the polynomial Hales-Jewett theorem obtained in [6]. Tt
contains the previous theorem as a special case.

Theorem 3.2.9 ([6]). Let (X, p) be a compact metric space, let k. d € N and let

Tj(:}“, t=1,..,k ji,...,Ja € N, be commuting homeomorphisms of X. For
any € > 0 there erist x € X and a finite nonempty set o« C {1,..., N} such that
p(Hjh.--,jdEﬂ fZ}(:,)'_.Jd:r;, x) <eforalli=1,... k.
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Corollary 3.2.2. Let G be an Abelian group and let gi?u €EG i=1,...,k,
Jis---,Ja € N. For any finite coloring of G there exist h € G and o € F such that

the elements h[[; . ca 93(‘2.-..,3',1 all have the same color.

In the recent paper |7, a nil-IP topological multiple recurrence theorem is es-
tablished, extending the Abelian results mentioned above to a nilpotent setup. To
formulate the main result we will need to introduce some definitions and notation.
Some care and precision are needed here due to the fact that we are dealing with
non-commutativity. We start with extending (and somewhat modifying) the def-
inition of IP set to a non-commutative situation. Let < be (any) linear order on
N. (In particular, it may be the standard order < on N.) Let G be a (not nec-
essarily commutative) semigroup. Given a sequence {g;};en in G and o € F, let
Gy = H;Ea g; denote the product of g;, j € «, in the order which < induces on
a. Let FP({g;}jem, <) = {ga}aer. The elements of the set of <-ordered finite
products, FP({g;}jen, <), satisfy the relation gaus = gags Whenever o < 8 (which
means that £ < [ for all k € @, | € ). The objects of the form FP({gj}j@;, —<) are
non-commutative IP sets, which, alternatively, may be defined as follows: Given a
semigroup G, an IP set in G is a mapping F — G, a ¥ g,, such that for some
linear order < on N one has g,us = gags whenever o < f3.

To give the reader a flavor of what nil-IP topological multiple recurrence theorem
is about we will formulate first its special, “linear” case.

Theorem 3.2.10. Let G be a nilpotent group of self-homeomorphisms of a compact
metric space (X, p). For any ¢ > 0 and any IP-systems {g&l)}ae}-, e {g((f)}&ef n
G there erist x € X and o € F such that p(.@,(;f)x,zb‘) <eforalli=1,... k.

We are moving now toward a formulation of the polynomial nil-IP theorem. (It
is worth mentioning that the only way known to us of proving the “linear” case above
is to derive it as a corollary from this much more general fact. This situation is quite
different in the abelian case where one can get the proof of the “linear” result in a self-
contained way.) Before introducing general nil-IP polynomials, let us summarize the
pertinent definitions and facts about IP polynomials with values in Abelian groups.
Call a mapping P from F into a commutative (semi)group G an IP polynomial
of degree 0 if P is constant, and, inductively, define an IP-polynomial of degree
< d if for any 8 € F there exists a polynomial mapping DgP: F(N\ ) — G
of degree < d — 1 where F(N\ /) is the set of finite subsets of N\ 3 such that
PlaU ) = Pla) + (DgP)(«) for every a € F withan g = 0.

If G is an Abelian group, it follows from [6], Theorem 8.3, that for any IP-
polynomial P: 7 — G there exist d € N and a family {g(,,..j0}o,..jnewe of
elements of G such that for any o € F one has Pla) = [[;, iicat 961 gn- 1t
is this latter characterization of commutative IP-polynomials which makes sense in
the nilpotent setup as well. Namely, let now G be a nilpotent group. We will call
a mapping P: F — G an IP-polynomial if for some d € N there exist a family
{961,i) Yiiroiyerie Of elements of G and a linear order < on N such that for any
« € F one has P(a) = Hal,---yjd)ead i)

Theorem 3.2.11 ([7]). Let G be a nilpotent group of self-homeomorphisms of a
compact metric space (X, p) and let Py,...,P.: F — G be polynomial mappings.
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For any € > 0, there exist v € X and o € F such that p(Pi(a)z,z) < ¢ for all
i=1,... k.

Corollary 3.2.3. Let G be an infinite nilpotent group, let F be the free group gener-
ated by a (finite) set {z,...,zn}, let E C F be finite, let <1, ..., <., be linear orders
on N and let r € N. There exists N € N such that for any r-coloring G = LE._i G
of G and anygg-i) €G,1<i<m,1<j <N, there ezist m € {1,...,r} and a
nonempty o C {1,..., N} such that if o: F — G is the homomorphism defined by

=i

o(z;) = an‘JSi}, i=1,...,m, then the set {h € G : hp(E) C Cw} is infinite.

For example, taking E to be {212227%, 2;'222,}, one can find N such that for any

r-coloring of G and any gi”, T .,g,(\}),g?), ees ,g}jf) thereexist 1 < jy <... <5 <N

and 1 < m < r such that for h; = g:(hl) .. .gg.tl) and hs = g(?) . .g}?), the products
hhnhshi® and hhy'hihy have the same color for infinitely many h € G.

Let G be a nilpotent group with uniformly bounded torsion, that is, for some
deN, g? =15 for all g € G. (Examples: (i) the group of upper triangular matrices
with unit main diagonal over a field of finite characteristic; (ii) any finite p-group,
where p is a prime number.) It is easy to see that any finitely generated subgroup of
G is finite, and, moreover, one can estimate its cardinality in terms of the number
of generators and the nilpotency class of G.

For convenience of discussion let us temporarily assume that G is infinite. Let a
finite coloring of G be given. In accordance with the principles of Ramsey theory, one
should be able to find in one color arbitrarily large “highly organized” con figurations.
In the case of our group G, which has uniformly bounded torsion, it is natural to
look for monochromatic cosets of arbitrarily large subgroups. While getting such
monochromatic cosets is itself a nontrivial task, an even better result would be not
only to get monochromatic cosets of arbitrarily large subgroups, but to have these
subgroups be as “noncommutative” as G is.

We will now formalize these considerations. Given B C G, let (B) denote the
subgroup of G generated by B, and let 7,{B) be the [-th term of the lower central
series of this subgroup. Let G be a (finite or infinite) nilpotent group of class g and
let N € N; we call G N-large if there are N elements ¢;,...,gy5 € G and K & N,
K < N, such that for all £ = K,..., N and every nonempty B C {g1,-- 061}
one has v,(B U {g}) # 7,(B). It then follows that for any 1 < I, < lh < ... <
Ik < Nand 1 < j <... < j, <N, the group generated by hy = g, Gy
ho = gjy 4y - Gjiyr s M = it,e_,+1 - -+ 95, has nilpotency class g.

The following theorem is a consequence of the nil-IP topological recurrence result.

Theorem 3.2.12 ([7]). For any m,d,q,r € N there exists N € N such that if G
is an N-large nilpotent group of class q with g¢* = 1¢ for all g € G, then for any
r-coloring of G there is a subgroup H of G of nilpotency class q and of cardinality
> m such that for some h € G the coset hH is monochromatic.

29



Discussion of open problems

In this section we shall formulate some conjectures which naturally arise in the IP
context. (For more conjectures and discussion see [1], section 5, and [8], Chapter 8.)

We start with an alternative definition of an IP polynomial in a multiplicative
commutative group (cf. [3], Section 3 and [6], Section 8). Let us say that an F-
sequence {Va}aer in a multiplicative commutative group G with identity I is a
VIP-system if for some d (called the degree of the system if it is the least such) we
have

A1)k . i . ; :
H Vaiotay, =1, faiNa; =0,0<i<j<d
0<i) <..<ig<d

For d = 1, this reduces to a characterization of IP sets.

In general, VIP-systems may be infinitely generated. For example, let {Si,j}f.;ggu.

57

be elements of a commutative group and put 7, = [] S;j, @ € F. Then
{Tw}acr is a VIP-system of degree (at most) 2.
We remark that the topological version of the following conjecture is known to

be true ([6]).

Conjecture 1. If £ € N, (X, B, ) is a probability space and {V(.fi)}aef, 1L€isk,
are commuting VIP-systems of measure preserving transformations of X then for
every A € B with p(A) > 0 there exists o € F with

Lj€o,ily

k

,u(ﬂ(Va(i))_lA) > 0.

=1

Conjecture 2. Let (V,)qcr be a VIP-system of unitary operators on a Hilbert
space H such that IP-limV, f = Qf exists weakly for all f € H. Then (f,Qf) >0
for all f € H.

We remark that Conjecture 2, if true, would settle in affirmative the k = 1 case
of Conjecture 1; that is, the case of single recurrence. (See also [3], Section 3.)

The following conjecture (from [1], p. 56) asserts that a “density polynomial
Hales-Jewett theorem” holds. Such a result would extend both the partition results
from [6] and the density version of the (“linear”) Hales-Jewett theorem proved in
[13]. For ¢,d, N € N let M, 4 n be the set of g-tuples of subsets of {1,2,---, N}¢:

Mq,d,N:{(alu"' vaq):aic {1:2a 1N}d1 i= 112:"' 1Q}

Conjecture 3. For any ¢,d € N and € > 0 there exists C' = C(q, d, €) such that if

N > C and a set S C M, n satisfies |M|51N| > ¢ then S contains a “simplex” of
Gty
the form:

{(a11a2’ e vaq)v (al U'}’d,O!g,' t aaq): (C{I,O{Q Ufyd-:' o sa{])s

) ,(O_’],O!g,"' 1(1(;U7d)}7

where v C N is a finite non-empty set and a; Ny =@ forall i = 1,2,--- , ¢.
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The discussion of topological nil-IP polynomial recurrence in Section 2 above
leads one to believe that nil-IP theory should produce corresponding results in the
measure preserving framework as well. A. Leibman proved in [15] that the polyno-
mial Szemerédi theorem obtained in [5] holds when the transformations T, generate
a nilpotent group. The following conjecture, if true, would contain both the IP
polynomial Szemerédi Theorem from [8] and the nilpotent polynomial Szemerédi
Theorem from [15] as special cases.

Conjecture 4. Let G be a nilpotent group of invertible measure preserving trans-
formations of a probability measure space (X, B, 1) and let P,...,Pe: F—Gbe
polynomial mappings. Then for any A € B with 1(A) > 0 there exists a € F with

u(ﬁﬂ(a)fl) > 0.
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3.3 Julien Brémont
On some random walks on 7 in random

medium
Model
Let (€2, F, u, T') be an invertible and ergodic dynamical system. The space (2 is inter-
preted as the space of environments. Fix an integer L and set A = {-L,...,0,1}.

Let (p.).ea be positive random variables such that ) __, p.(w) = 1, p-ae. We
assume the existence of some € > 0 such that p, > ¢, p-ae., for z #£0, z € A.

For fixed w, let (§,(w))n>0 be a Markov chain on Z, defined by &(w) = 0 and
the transition probabilities in the medium w:

Va,y € Z, p(r,y,w) = py_.(T"w).

If P] denotes the measure induced by (£,(w))n>0 on the space of jumps A", we want
to study this chain with P.-probability 1 for a given w, w-a.e. We shall study first
the asymptotic behaviour and second, conditions under which the model exhibit
classical behaviour.

Results
a; -+ Qap-p ar

Set M := ; 0 0 , where a; = p_L-!_;D”_i_pi, for 1 < ¢ < L.
0 -« 1 0 1

From directional contraction properties of M in the positive cone, there exists a
unique positive vector V€ RL and a unique strictly positive scalar A such that:
VIl =1 and MT~'V = AV. We set v(AM, T) the dominant Lyapunov exponent of
M with respect to 7. We have:

1
pra.e, Vo = 0,y(M,T) = lim —log|T"M --- Mz||

n—+-+00 7,

and then '
A7) = [ 1og() s

32



Theorem 3.3.1 (asymptotic behaviour). Let (fa)nzo be the sequence of random
variables defined by: fo=---= fi,_o =1 and by

25} ar,

T_lfn—l T‘]fn—l t 'T_L+1fn—L-{-1

fo=a; + forn>L —1.

Then (fu(w)) converges, uniformly in w an ezponential rate, to a function f(w)
which ts unique positive solution of the equation:

aj,
f=a _,_TT—f+ +T—1f“'T‘L+1f'

We have v(M,T) = [log(f)du. The asymptotic behaviour of the walk is the fol-
lowing one:

(i) If [log(f)dp < 0, then: & (w) — 400, P! -a.e., p-a.e.

(ii) If [log(f)dp =0, then: —oo = limé,(w) < im&, (w) = +o0, P -a.e., y-a.e.
(iii) If [ log(f)dp > 0, then: &,(w) — —o0, Pl-a.e., p-a.e.

Fixing w, let (wn)n>0, with w, = Ty, be the sequence of the environments
from the point of view of a moving particle. Collecting all the chains (En(w)), we
observe that (w,) is a Markov chain on Q with generator P. We write (IM) the
assumption of the existence of a P-invariant probability equivalent to p. Under
(IM) a law of large numbers is valid.

We also consider the Markov chain on (2 x A) defined by z;, = (wy, z;), where
2 = &1 (w) — &(w). We write (HC) for the assumption of the existence of "har-
monic coordinates" in L*(Q x A) for the previous chain (cf [4]). Under (IM) and
(HC), a functional CLT is valid.

Theorem 3.3.2 (characterization of both (IM) and (HC)).
(i) If v(M,T) = 0, (IM) + (HC) < Ty > 0 with ¢ and é € L'Y(p) such that

Juwg P
T-lp’
(i) Ifv(M,T) < 0, (IM) + (HC)

. [ 400 2 /oo
:»/ (Z%,\---T-"/\) (ZO)\--oT”)\)d,u<+oo.

(iii) If y(M,T) > 0, (IM) + (HC)
@/(ZAI WPEE= ) (ZAI-- )d,u<+oo

One can also characterize (IM) alone in a similar way. The next result shows
the importance of the notions of (IM) and (HC).

Theorem 3.3.3. Assume that y(M,T) = 0. Then (IM) <= "u-a.e., the normal-
ized paths converge to a non-degenerated Brownian motion ",

We now give an example:
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Theorem 3.3.4. Assume that Q is the circle S', T = T, is an irrational rotation
and p 1s Lebesgue measure.

(i) If v(M,T) # 0, then & (w) — +o0, Pl -a.e., p-a.e

If M is continuous, a drift> 0 and @ functional CLT occur, p-a.e.

(i) If (M, T) =0, then (&,(w)) is recurrent, p-a.e.

If M belongs to C™(SY, R) and if a is of finite type n such that m + 6 > n, then
there is a law of large numbers, with a drift equal to 0, and a functional CLT, p-a.e.
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3.4 Georgi Chakvetadze
Measurable dynamics and one-dimensional
model of drilling

We consider a family of interval maps serving as a model for the process of rock
destruction by drilling bit. These maps depend on two parameters — a scalar and
a function — and are defined as follows. Let p : R (O be a 1-periodic function,
twice continuously differentiable on [0,1], p"(r) < 0, p(1 — 1) = p(r), r € R. This
function is determined by the geometry of the drilling bit. Set m = inf,¢p 1 [p"(r)],
M = sup,¢pq " (7)], @ = M and assume that 0 < b < 1. Given s € R the graph of
the function

hs(r) =p(s) + (s +0)(r — s) — bTm(7 —-35)%, r>s, (1)

L

intersects the graph of p in a finite number of points with abscissas s < r;(s) <
2(8) < - < 1ye(s). Set F(s) = F,,(s) = ri(s) mod 1, s € [0,1). The transforma-
tion F' is piecewise monotonic.

We study the dynamical properties of F' with respect to Lebesgue measure on
the unit interval. The next lemma describes the occurrence of trivial dynamics in
the system.



Lemma 3.4.1. Assume that b > 5. Then all the phase space is attracted to the

unique fized point of the transformation F.

The next theorem provides the sufficient condition for the system to behave
chaotically on some large set on the unit interval.

Theorem 3.4.1. Assume that p" has a bounded variation on [0,1] and the values of
the parameters a and b satisfy the inequality (1 — b)°/b > (a — b)2 + H(a—1)(1=b).
Then the transformation F has an absolutely continuous invariant probability (acip).

Note, that the measure v = v, constructed in Theorem 1 has a property that
any acip for F' is absolutely continuous with respect to v.
Once having obtained the acip v we study the endomorphism < F,u>.

Theorem 3.4.2. Assume that p” has a bounded variation on [0, 1] and the inequality
(1—0)%/b> 2(a—0b)? holds. Then the system < F,v > is evact, isomorphic to some
Bernoully shift and the central limit theorem holds for the functions of bounded p-
variation (p > 1).

Next we discuss the stability property of the measure v with respect to stochastic
perturbation Y, e > 0, introduced as follows. Given e > 0 and s € [0,1) we replace
p(s) (p'(s +0)) in the equality (1) by the stochastic variable distributed with some
density on the interval [p(s) — e, p(s) + €] ([p'(s + 0) — e, p'(s +0) + e]). Then F(s)
is replaced by the stochastic variable distributed on some set including F'(s) with
the density u.(s,-). The Markov chain Y, has u(s,-) as the densities of transition
probabilities. In the proof of the next theorem additionally some technical conditions
are used which we omit.

Theorem 3.4.3. Assume that p € C*([0,1]) and the transformation F has no
periodic turning points. Then the densities of stationary distributions of the chains
Y. tend to the density of v in Li-metric as e — 0.

‘The dynamical model of drilling was suggested by Lasota and Rusek. The prob-
lem of existence of acip for one dimensional maps was stated by Ulam. The stochas-
tic perturbations of dynamical systems were studied by Blank, Keller, Kifer, Sinai
et al.
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3.5 Maurice Courbage
Stochastic process determined or not deter-
mained by their 2-marginals laws

Let w = (w;)icz be a stationary stochastic process on a finite space K = {0, 1,2, .., k—
1}. Let Q = Z%, o be the shift on Q, (0w); = w;jy, and p be the associated o-invariant
probability measure on §2. We say that a o-invariant measure v on £ has the same
2-marginal laws as g if v({wy = i,w, = j}) = p{wo = i,w, = j}) for all n € Z,
1,5, € K

We say that p is determined by its 2-dimensional marginals if for any o-invariant
measure » on §2, having the 2-marginals as y, v = pu.

We consider here ergodic stochastic processes determined or not determined by
their 2-marginals in the class of ergodic measures.

Our motivation in this problem comes from the problem of entropy in non-
equilibrium thermodynamics. The problem can be formulated in measure-theore-
tical language as follows.

Let (X, T, u) be a dynamical system and P = (P,;), i =0,...,k — 1, be a finite
measurable partition. Let I, be the family of stochastic matrices:

(In)ij = u(T™"P4|R;), n>0.

For any probability » on the o-algebra generated by P, we define the probability
measure at time n by:
vn(Pj) = Z”(Pi)(nn)ij

and the non-equilibrium entropy by

log v, (P;)

S(Vn) = Zun(Pj) /.LH(R;;)

J

If IT,, is a semi-group of irreducible and aperiodic stochastic matrices, then v, (P;) —
p(P;) as n — oo and S(v,) is monotonically decreasing to zero as n — oo. The
above properties of IT, define what we call a Chapmann-Kolmogorov partition. If,
for a o-invariant measure g on 2, the zero coordinate partition is a Chapmann-
Kolmogorov partition, p is called a Chapman-Kolmogorov measure.

Our first result states that any ergodic Markov chain is not determined by its
2-marginal laws. The proof is based on a construction described in the two following
theorems.

Theorem 3.5.1. Let it be a probability measure on K'*', n > 2, invariant with
respect o o.
We say that u € M, if

E M(w(} =Y, Wi = Tpy. .-, Wy = -’L‘n—l) = N(WO =Ig,--.Wp1 = mn—l)-
Y
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Let vy(p1) be a measure on K",

VU(LUO =Tp,...,Wpn = -Tpn)
= :U’(-’L'Up R $n)ﬂ($n+l1 < y$2n|In) ce- #(-T{p—l)n—I-la s 3$pra'$(p—1)n)-
Let
1 n—1 ‘
®, = - 7 ).
(1) 1=~ 3 olvo(p)
7=0
Then @, : M, — M(Q,0) has the properties:
i) &, is one-to-one,
ii) @, preserves the 2-marginals,
iii) ®,p = p <= p is @ Markov chain.

Theorem 3.5.2. If the stochastic matriz A,(p) defined by

(An(1))ij = mlwn = jlwo = 4)
is rreducible then
i) @,(p) is ergodic,
ii) @,(u) has infinite memory.

It follows from i)-iii) of Theorem 1 that if v € M,, is not Markovian, but having
the same 2-marginals of a Markov chain puy, then ®,,(v) is not Markovian but having
the same 2-marginals as py. These results are contained in [1,3]. Theorem 2 can be
generalized to p-marginal laws.

The above processes have positive entropy. As to zero entropy systems, we
found pairwise independent partitions in the Anzai skew product of translations [2].
A necessary condition for the existence of a Chapman-Kolmogorov partition is that
the dynamical system contains a Lebesgue spectral type.

The following open problems can be formulated:

Problem 3.5.1. Find Chapman-Kolmogorov partitions that are pairwise indepen-
dent in the skew product.

Problem 3.5.2. Find a class of dynamical systems having a Chapman-Kolmogorov

partition.

Ergodic measures on {0, 1}* determined by their 2-marginals

(1). Let 5% be irrational, T = [0, 2], Rz = = + o (mod27) and d\ = & Let P
be the partition of T given by two arcs:

P[):[DHB[) Dy :[18!271”[:
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where £ is irrational. Let z2 be the measure on {0, 1}* defined by
wlwg =gy ywn =1) = NP, NR'P, N...NR™P,).
Then for any ergodic measure v on {0, 1}* s.t.
I/(LUU = ?':,Ldn :j) == /,L(Ld{) = iawn = J)
we have v = p.
(2). Let (R*, T, ) be a Kronecker-Gauss dynamical system with [ Xodp = 0.
Let
P(]:{_X[])O}, P]z{zY(](O},
Viwg =gy ..., Wnp =in) =pu(P,N...NnT"P,).

Then (o, v) is determined by its 2-marginals.
These results are contained in [4].
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3.6 Aleksandre I. Danilenko
Entropy of cocycles of measurable equiva-
lence relations and applications

Let R be a countable measure preserving equivalence relation on a standard prob-
ability space (X, By, ). Given a Borel cocycle o of R with values in the automor-
phism group of another standard probability space (Y, By, v), a type [ subrelation
S of R and a finite partition P of X x V', we set

' 1
h(S,a, P ::/ H( alz, 2’ P»,;!)d.& ),
( ) \5/() (z,2") Py ) dp(x)
where P, is the “restriction” of P to the fiber {z'} x Y. Recall that #S(z) < oo
since § is of type I. Now we define
h(a, P) = inf{h(S,a, P)|S is a type I subrelation of R}
h(a) = sup{h(a, P)|P is a finite partition of X x Y},
M(a) = V{P|h(e, P)=0}.
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We say that o is CPE if [I(«) is the least possible, i.e. M(a) = By ® Ny, where
My stands for the trivial sub-o-algebra of B,-.

Theorem 3.6.1. 1. If two cocycles o, f : R —Aut(Y,v) are cohomologouus (or
even weakly equivalent) then h(a) = h(B). If o is CPE then B so is.

2. If the group {y € Aut(X, ) | (yx )R =R and cory = a} is ergodic then there
exists a sub-c-algebra §F C By such that Tl(a) = By @ F.

3. If v is recurrent then h(a) =0, i.e. [I{a) = Byyy-.

4. If R = U, R, for an increasing sequence (R,) of type I R-subrelations then
h(a, P) = lim, h( Ry, o, P).

Our purpose now is to provide a new definition for the entropy of a process.
Let G' be a countable amenable group, R a free action of G on X generating TR,
I'= (Ty)4ec a v-preserving action of G on Y and Q a finite Y-partition. We set

h(T,Q) := h(Br,Mx © Q),
where fr : R — Aut(X, v) is a cocycle given by br(Rymem) =T,

Theorem 3.6.2. 1. h(T, Q) is well defined.

2, E(T,Q) = h(T,Q), where h(T,Q) is the classical entropy of the process (T, Q)
(2], [4]- |

3. Mo, P) = h(R* P | By ® Ny), where R® = (Rg)geg stands for the a-skew-
product extension of R.

As applications we obtain short proofs of the following recent results.

Theorem 3.6.3. 1. If § is a factor of T then h(T) = h(T | §) + hT | ) (the
entropy of the §-quotient action + the F-relative entropy), |6].

2. IfT is §-relatively CPE. Then for each ¢ > 0 there exists a finite G-subset K
such that #%H(Vgep T3 | {E) — H(Q | E)‘ < € for any finite subset F with

90197 € K forall g; # g, € K (see [5] for § trivial).
3. (see [1]) Let Ay, Ay and € are three factors of T with € € 2, N As.

IfT 1 A is E-relatively CPE and h(T | Ay | €) = 0 then U, and 2 are
C-relatively independent

If Ay and Ay are E-relatively independent then INT [ (A VA | @) =1(T |
A [ &) VINT [ Ay | €).

oy and AUy are €-relatively independent iff TI(T | 2, | ) and (T | Ay | &) are
S-relatively independent and h(T [ %, V Uy | &) = H(T [ 2, | €)+h(T [ Uy | @).
4. (see [3] for the case G' = Z) If § is a class-bijective factor of T and T | F) <logn
Jor some integer n then there exists a finite partition Q of Y such that #Q = n and
IFS: vV VggG TqQ = 931’-
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This research was inspired by |5], where the orbit theory was used to prove the
absolute version of Theorem 3(2). Unlike [5], [1], [6] we do not use Rokhlin lemma,
Sannon-MaMillan theorem, castle analysis, joining techniques. Our approach is
independent of 2|, [4] where the classical entropic concepts for amenable actions
were elaborated.
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3.7 Manfred Denker?
Relative thermodynamaic formalism

Introduction

Let T' be a continuous map of a compact metric space ¥ onto itself and ¢ € C(Y).
The well known variational principle states that

sup {hu(T) +/ w(y)u(dy)} = Pr(p), (3.1)
peM(T) Y

where M(T') denotes the set of T-invariant probability measures. The supremum is
attained (if at all) for equilibrium measures. h,(T) + [;- o(y)p(dy) is called the free
energy of the measure . Under suitable additional assumptions on T like expan-
siveness the existence of an equilibrium measure g is well known. Uniqueness and
the Gibbs property of equilibrium measures require much stronger assumptions on
T and . These topics constitute a part of the theory of thermodynamic formalism.

For certain non-invertible locally expanding maps the transfer operator

(Veg)() = > g(y)exp(e(y)) (3.2)
y:T(y)=x

has an eigenvalue A = exp P(7,¢) and an eigenmeasure p for V* (called a Gibbs
measure) which is an equilibrium measure.

?The talk is based on joint research with M. Gordin and St.-M. Heinemann.
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Fibred Systems and Transfer Operators

We consider a fibred system where the map T is foliated over a continuous map S :
X — X on some compact space X, with a continuous factorisation mapm:Y — X
which semi-conjugates T' to S. We always suppose that 7, S and 7 are surjective.
Ledrappier and Walters (1976) extended the variational principle to the fibred
case: . .
sup {IL“(TIS) +/ 7 d,u} = / Pr(p, Y, )v(dz), (3.3)
pEM(T\w) Y X
where v € M(S), M(T,v) = {p:pe€ M(S),por™' =v}, Y, = 77 ({z}) forz € X,
hu(T'|S) denotes the mean relative entropy of T with respect to S, and Pr(y, Z)
denotes the relative pressure of a function v/ : Z — R with respect to T" and a closed
set Z C Y. In analogy to the non-fibred case, the quantity h,(T[S) + [y-¢ duis
called the relative free energy (of p). Furthermore, a probability measure 1 which
maximizes this expression is called a relative equilibrium measure. The problems of
determining the maximum (or supremum) of free energy, existence, uniqueness and
other properties of equilibrium measures are of obvious interest.
The relative transfer operator is given by a family of operators between spaces of
all bounded Borel measurable functions B, on the fibres Y,. For z € X and k& =1
the operators AR B: — Bguk(y) are defined by

k—1
V) ()= > gly)exp (Zw(Tj(y'))), (3.4)
T*(y )=y j=0
=(y)=z

where y € Ygi(;). Under suitable continuity assumptions A% preserves continuous
functions and V,E(U* maps measures of bounded total variation on Ys(,) to measures
of bounded total variation on Y,. Unlike for Vw(l)*, there is no natural way to derive
a global operator on bounded measurable functions from the family {V{" : z ¢ X},

unless S is invertible. Clearly, for an invertible base map S the relative transfer
operator coincides with the usual one.

Main Results

We assume that T is bounded-to-one on fibres. A fibred system is called fibre
expanding, if the fibre maps T, : Yz = n7'({z}) — Yy, are uniformly expanding
in Ruelle’s sense and topologically ezact along fibres if, for every € > 0, balls of
radius € centered at any y € ¥ are mapped under T™ onto the fibre of T"(y) for all
sufficiently large n.

Let ¢ : ¥ — R be a Borel measurable function. A system {p : =z € X}
of conditional probabilities for ) is called a Gibbs family for p, if there exists a
measurable function A, : X' — R such that for z € X and f € L;(1,) we have that

/' Ve (05 () = Ao () / £ () s (dy). (3.5)
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Theorem 3.7.1. ([1]) Let Y = (Y, T, X,S,7) be a fibred system. Assume that Y
is fibrewise expanding and topologically exact along fibres. Then, for every Holder
continuous function ¢ : Y — R, there exists a unique Gibbs family {1, : z € X} for
p. The function A, ts also unique and one has that supp{p,} =Y.

In addition, if i,(-) = (7(:),T(-)) is a local homeomorphism and S and w are
open maps, then the Gibbs family {p, : © € X} and the function A, : X — R are
continuous.

Theorem 3.7.2. ([2]) If the assumptions of the last theorem are satisfied (including
the addition), then, for any S-invariant measure v on X, we have that

sup (hu(T|.5')+-/}: (,od,u) :/){logAﬁpdy. (3.6)

pEM (T,w)

Moreover, the supremum is finite and is attained by a unique probability measure.
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3.8 Jéréme Depauw
Résistivité du réseau cubique de résistances
aléatoires stationnaires

1. — Considérons un conducteur de forme parallélépipédique rectangle, de section
horizontale S et de hauteur h, composé dans un matériau homogéne et isotrope.
Lorsque ses faces latérales sont isolées, et une différence de potentiel U imposée
entre ses faces horizontales, il est traversé par un courant /. Ce dernier est, pour un
“bon” matériau, proportionnel a la différence de potentiel U. Le coefficient de pro-

portionnalité R = — est la résistance du conducteur. Celle-ci dépend naturellement
des dimensions de ce dernier: elle est inversement proportionnelle 4 sa section, et
b

proportionnelle & sa hauteur. Cette proportionnalité fait apparaitre un coefficient
p= ER qui ne dépend que du matériau. Clest la résistivité de ce dernier. Nous
étudions ici la notion analogue pour un réseau aléatoire.

2. — Soit le réseau Z = Z3 et (o0; Ty, To, T3) son repére affine canonique, le premier

i p b

vecteur correspondant a la direction verticale. Deux nceuds voisins e et e+7;, e € Z,
J =1, 2, 3 sont reliés par une résistance de valeur Rj(e). Pour N fixé, soit Zy le
sous-réseau de Z correspondant aux nceuds de la boite [0, N]®. Lorsque les quatre
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faces verticales sont isolées, et qu'une différence de potentiel U est imposée entre
les deux faces horizontales, ce réseau est traversé par un courant Iy. Sa résistance
est le coefficient de proportionnalité entre la différence de potentiel U imposée au

réseau et le courant Iy: Ry = 7o Suivant I’analogie avec la notion de résistivité
N
2

définie ci-dessus, la résistivité de Zy est la quantité — Ry = NRy.

Supposons que les résistances R ;(e) soient des variables aléatoires indépendantes,
prenant deux valeurs r, 7/, 0 < r < 7', avec probabilité é, et soit (2, 7, P) 'espace
de probabilité associé a cette expérience. Kesten a posé la question suivante (4],
pb.12, p.385): quel type de convergence a-t-on pour la suite de variables aléatoires
NRpy, et quelle est la limite?

Nous avons montré la convergence ponctuelle vers une constante:

Théoréme 3.8.1. ([1]) Sous les hypothéses décrites ci-dessus, NRy converge pres-
que strement vers une constante, quand N tend vers 'infini.

La valeur de la limite reste un probléme ouvert (le seul résultat connu concerne
la dimension 2; Marchant et Gabillard [5] ont montré que dans cette dimension, la
seule valeur possible est v/777). Nous nous proposons ici de donner une expression
de la limite et d’indiquer pourquoi sa valeur est inconue.

3. — Considérons le systéme dynamique constitué par les réalisations de I'expérience
aléatoire décrite dans 'introduction. L’espace des réalisations est 1’ensemble € des
suites w = (R;(e));. indexée sur {1,2,3} x Z, & valeurs dans {r,7'}. Il est muni de
la tribu usuelle, et de la probabilité P faisant des coordonnées R;(e) des variables
aléatoires indépendantes équidistribués et de loi uniforme. L’action de Z3 est le
décalage, défini avec des notations évidentes par Tx(w) = (R;(e + &));.. En notant
Rj(w), 3 = 1, 2, 3, les applications de premiere coordonnée, Rj(w) = R;(0), la
résistance de I'aréte [e, e+;] pour la réalisation w prend done 'expression R;(Txw).
Considérons des fonctions (4;);=1,03 et (Bj)j=123 € L*(Q) telles que 4;(Thw) et
Bj(T5w) représentent respectivement le champ électrique et le courant dans Paréte
[e,e + &;]. Les lois de I'électricité s'écrivent:

3
Z(I}”Bj — B;j) =0  Loi des nceuds,
i=1

T;A, — Ay =Ty A; — A Lois de Mailles,
AJ‘ = Rij Loi de Ohm '

olt T; est I'opérateur de L? défini par T} f = foT5:,. Les conditions aux bords n’ayant
pas de sens pour un courant spatialement stationnaire, elles sont remplacées par des

conditions en moyenne:
/Al = U, /‘42 Z/ /'13 = 0.
Ja Ja 9]

L'existence et I'unicité d'un tel courant sont donnés par un théoréme d’analyse
hilbertienne reposant sur le théoréme de Lax Milgram.
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Théoréme 3.8.2. ([2],[7]) Le systéme constitué des quatre équations ci-dessus ad-
met une unique solution A = (4;); € (L2())°.

L’idée de la preuve de la convergence ponctuelle de N Ry peut alors se résumer
grossiérement de la maniére suivante. La conductivité N Ry est de 'ordre de

ZEEEN AI(TEN“J)
ZEEZN Bl(Tng) '

D’aprés le théoréme ergodique ponctuel, cette variable aléatoire converge presque
Ja A U

Ja By Jo Bi'Ay
nateur qui est inconue, puisque le théoréme de Lax Milgram ne donne pas explicite-
ment la solution A.

sirement vers . C’est la valeur du dénomi-

, ce qui est encore égal &
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3.9 Yves Derriennic
On Hopf’s decomposition and the ratio er-
godic theorem for a Z%-action in infinite
measure

Let S and T' be two commuting, measure preserving transformations of a measure
space (£2, F, m). According to Wiener’s ergodic theorem



exists m-a.e. when f € L'; the limit is 0 when the system is ergodic and the measure
m is infinite. Thus in this situation it is natural to look for a version of the ergodic
theorem similar to Hopf’s ratio ergodic theorem: given f and ¢ € L! with g >0
m-a.e., do the ratios

Zn—l n-] (Sth )

Zn 1 ! [) (](S"‘Tt )
converge /n-a.e., the measure m being infinite? It is known since a long time that
the answer is negative. A counter-example is given in Krengel’s book (p.217). 1t
is worthwhile to recall the basic idea of this counter-example. The measure space
is Z with m the counting measure; the transformations are both equal to the unit
translation: Tj = j+ 1, S =T. Then

it
p—d

n—1 2n-2

J(S*T'0) = 3 0+ 1fG) + Y (20 =i = D).

=0

n—1 n—

o
Il

0t

Il
=]
L

It is clear that for f € {' and f > 0, these sums Y_p—) 3.1 f(S*T'0) may con-
verge or diverge, therefore in general the ergodic ratios do not converge to a ﬁnite
limit. Moreover this example shows that the set where S p_; S f(SFTY) =

may depend on f, hence Hopf’s maximal ergodic inequality cannot be true for the
double sums Y 37y S5y f(S*TY). It is emphasized by Krengel that, using stack-
ing arguments, it is p0831ble to bulld such a counter-example with S and T being
individually conservative, ergodic and the action of (S, T) being free.

n—1 n—1

It is remarkable that the replacement of the S sided sums ), — ST F(SHTY

by the symmetric sums Z,(f) = > ;- ; ot 5. nf(SLT‘) produces an essential
change of the problem (from now on we assume the invertibility of the transfor-
mations).

Maximal ergodic inequality for symmetric sums. There is a universal
constant c (depending only on the dimension) such that for every fand g € L1
with g > 0 m-a.e., and for every t > 0 we have

/ gdmgg/fdm
JE) t

where E(t) = {w € 2;sup,, zn—g)l 5 t}.

The proof follows the classical pattern of Wiener’s proof of the maximal ergodic
inequality. But instead of the Vitali type covering lemma we use the Besicovitch
covering lemma (we refer to the book of Wheeden and Zygmund “Measure and
Integral”, Marcel Dekker ed.). At the time of his talk at the Torun conference the
author ignored that the preceding inequality, with the same proof based on the
Besicovitch covering lemma, was the main content of a 1983 paper by Maria Becker.
This reference was kindly provided by Jon Aaronson to whom the author expresses
his thanks.

From this maximal inequality it is easy to deduce a version of Hopf’s decompo-
sition for symmetric sums.



Hopf’s decomposition for symmetric sums. The space Q splits into two
disjoint measurable parts C, the conservative part, and D, the dissipative part, such
that for every f € LL, {lim, Z,(f) = +oo} = C N {lim, Z,(f) > 0}

In Aaronson’s book there is another approach to Hopf's decomposition for a
group action.
To get a ratio ergodic theorem for the symmetric sums it would then suffice to
prove for f € L
lim ;‘:}_” f(ST™)
r En(f)

One might think, at first glance, that this should be easy. But, as far as the au-
thor knows, it is an unsolved problem. So, following the invitation of the organizers
of the Torun conference, we propose:

=0 m-ae. (7)

Problem 3.9.1. Prove or disprove the convergence (7) stated above. (S and T are
two commuting measure preserving invertible transformations of an infinite measure
space).

If we return to Krengel’s example that we recalled at the beginning, we observe
that the convergence (?) holds, therefore in that case the ratio ergodic theorem for
symmetric sums holds.
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3.10 Tomasz Downarowicz®

Relative variational principle

This note is a survey of results which are being prepared for publication as [3] in a
mathematical journal, where they will appear with complete proofs, examples, and
historical comments.

At the beginning, Abramov and Rokhlin’s definition of measure-theoretic fiber
entropy is extended, using disintegration. A strong connection with measure-theo-
retic conditional entropy is proved.

Largest part of the work is devoted to the case of a pair of topological dynamical
systems on compact Hausdorff (not necessarily metrizable) spaces, one being a factor
of another. Topological notions of fiber entropy and conditional entropy are defined

3 Joint work with J. Serafin
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and studied. We prove three variational principles of conditional nature, some of
them generalizing results known before in metric spaces.

A tail entropy of a measure is introduced in totally disconnected spaces. As an
application of our variational principles it is proved that the tail entropy estimates
from below the “defect of upper semi-continuity” of the entropy function.

Let (X, X, 1) be a probability space and « a finite measurable partition of X.
Throughout this note we shall write:

H(p,a) = =37, n(A) log(u(A));
H(p,a|B) = H(p,aV B)— H(y, B).

We start with recalling the definition of disintegration of a measure, and then
by defining the measure theoretic conditional and fiber entropies:

Definition 3.10.1 (classical). Let 7 : (X, %, 1) — (¥, 0, ) be a homomorphism
of measure spaces. By a disintegration of p, with respect to v we shall mean a family
of measures y, defined for v-almost every y € Y, each supported by 7y, such that
for every bounded measurable function f on X the function f(y) := [ F(z)du, ()
is measurable, and

[ Tajavty) = | fadduco).

Assume now, that w is a factor map between measure preserving dynamical
systems (X, u,T) and (Y, 2, S).

Definition 3.10.2 (classical). For a partition o of X we set
! n
h(p, alv) == infinf ~H(p, o™|f),
B8 nn
where f ranges over all Y-measurable partitions of X. Furthermore, we set
h(ulv) = suph(, alv),

with a ranging over all partitions of X. The latter is called the conditional entropy
of the system (X, i, T) given the factor (Y, v, S)

Definition 3.10.3. Let « be a finite partition of .X'. By the fiber entropy of o we
shall mean the function h(y, a|-) defined v-almost everywhere on ¥ by the formula

h(p, aly) .= imH(g,, /T 'a™).

We shall say that the disintegration is invariant if tsy = Ty, v-a.e. It is known
that such disintegration exists in skew products (with respect to the base), or in
the case where S is invertible and the measure space (Y, f) is compact in the sense
of Marczewski (see [6]), for example, when it is a compact Hausdorff space with a
Radon measure p. In such case we have the following result (a generalization of
Abramov-Rokhlin’s theorem for skew products [1]):
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Theorem 3.10.1. If (Y,v,S) is a factor of (X,p,T) via a map 7 such that an
invariant disintegration of p with respect to v exists then, for every partition o of
X holds

/h(u,aly)dV(y) = h(p, a|v).

From now on we will assume that (Y, 5) is a topological factor of (X,T) (both
systems are actions of a continuous map on a compact Hausdorff space). By a
measure we shall always mean an invariant Radon probability measure on the cor-
responding space. The letter A will denote a finite open cover of X.

We introduce the following notions (compare [5]):

Definition 3.10.4. For y € Y set
H(Aly) == logmin{#F : F C A, UF oyl
If v is a measure on Y then we set
H(A|v) := /H(A|y)d1/.
Definition 3.10.5. The topological fiber entropy of the cover A given y equals

1
h(A|y) := lim sup EH(A”ly).

n—roo

If v is a measure on Y then we denote
1
h(A|v) := inf ;H(.Anh/).
n L

Definition 3.10.6. We set,

h(X]y) := sup h(Aly),
h(X|v) := sup,h(Alv),

where A ranges over all finite covers, and v is a measure on Y. The above quantities
will be called the topological fiber entropy of X given y, and given v, respectively.
Of course, infinity is admitted in both cases.

The last quantity to be defined has purely topological nature and it will be called
the topological conditional entropy of (X,T) given the factor (Y,5).

Definition 3.10.7. Let

H(A]Y) = sup,y H(Aly)
h(AlY) := inf, ZH(A"Y)
h(X|Y) := sup,h(A|Y).

Let Pr(.X') and Pg(}") denote the sets of invariant measures on X and Y, respec-
tively. In the theorems below we connect all previously defined types of entropies.
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Theorem 3.10.2 (outer variational principle). Let (Y, S) be a topological factor
of (X,T). Then
h(X[Y) = suph(X|y) = suph(X|v) = sup h(X|7),
yeY % U
where the last two suprema run over all invariant and all ergodic measures on Y,
respectively.

Theorem 3.10.3 (inner variational principle). (compare Theorem 2.1 in [4]).
Let m : X — Y be a topological factor map between topological dynamical systems
(X,T) and (Y, S). If v is an invariant measure on the factor (Y,S) then

h(X|v) = sup{h(ulv) : p€ Pr(X),rpu= v},
Combining the above two results, we obtain:

Theorem 3.10.4 (conditional variational principle). (Compare [2]).
Letm: X — Y be a topological factor map between topological dynamical systems
(X,T) and (Y,S). Then

h(X|Y)= sup h(u|wu).
HEP(X)

M. Misiurewicz introduced in [5] the notion of the so-called “topological condi-
tional entropy” of a dynamical system. We would rather call it the tasl entropy,
because “topological conditional entropy” has in our paper a different meaning. As-
sume that the space X is totally disconnected. Then, as it is well known, the
dynamical system (X, T’) is isomorphic to an inverse limit of a net of symbolic sys-
tems

<_
(X,T) =lim (Y, o),
L

where for each index ¢, (Y,,0) is a subshift over a finite alphabet. In this case,
applying the outer variational principle, the tail entropy can be defined in terms of
the topological fiber entropy:

h*(X) =inf sup h(X|p,),
b pePr(X)

where 1, denotes the projection of u onto the factor space Y,. The following defini-
tion sounds naturally in this context:

Definition 3.10.8. Let p € Pr(X). The tail entropy of u is defined as
h*(u) = infh(X|u,).

Our next result states that the “defect of upper semi-continuity” of the entropy
function i(-) defined on Pr(X) is estimated by the tail entropy. Let

(h* —h) () := limsuph(u') = h(p), p, 4 € Pr(X).
p—p
Theorem 3.10.5. (see [5] for the first inequality) For every pu € Pyp(X) with h(p) <
m?
h*(X) > (W — h)(p) > h*(p).
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3.11 Sébastien Ferenczi*

Structure of three-interval exchanges

In this lecture we give a detailed analysis of the spectral and ergodic properties of
a symmetric three-interval erchange transformation i.e., a three-interval exchange
transformation T' with probability vector («a, 8,1 — (a + ), a, 8 > 0, and permu-
tation (3,2, 1) ® defined by

Te=z+1-a if ze€|0,al

Tr=z+1-2a—pF if z€[o,a+f
Tr=z—a-p if z€la+p1]

Our approach is mostly combinatorial and relies on arithmetic results and a
combinatorial description of return words (with respect to the natural coding) to a
special family of intervals. The aim of this study was to develop a theory for three-
interval exchange transformations analogous to that developed by Morse-Hedlund,
Coven-Hedlund, and Arnoux-Rauzy which links together the diophantine properties
of an irrational number «, the ergodic dynamical properties of a circle rotation by
angle «, and the combinatorial symbolic properties of a class of binary sequences
known as the Sturmian infinite words: we define a new vectorial algorithm of simul-
taneous approximation for two real numbers and study its arithmetic properties.
Then we use this algorithm to combinatorially characterize the symbolic sub-shifts
canonically associated to three-interval exchanges. Finally we apply this descrip-
tion to solve long-standing problems on the spectral properties of three-interval
exchanges.

*Joint work with Charles Holton (Berkeley) and Luca Zamboni (North Texas)
SAll other permutations on three letters reduce the transformation to an exchange of two
intervals.



It is well known that every three-interval exchange transformation is induced
by a rotation on the circle, and some properties of three-interval exchange trans-
formations are readily traced back to the underlying rotation. For instance, under
the assumption that T satisfies the infinite distinct orbit condition of Keane, the
system is known to be both minimal and uniquely ergodic. Also, in the case of three
intervals, the associated surface (obtained by suspending an interval exchange trans-
formation via so-called ‘zippered rectangles’ is nothing more than a torus devoid of
singularities. Finally, our 2-dimensional vectorial algorithm, as it underlies the dy-
namics of a three-interval exchange, verifies only a guadratic form of Lagrange’s
Theorem: the algorithm is eventually periodic if and only if the parameters o and
S lie in the same quadratic extension of Q.

On the other hand, other more subtle spectral properties of three-interval ex-
change transformations appear not to be directly linked to the underlying rotation.
These include for instance the existence and characterization of the eigenvalues of
the associated unitary operator (in particular the weak mixing) and joinings (min-
imal self-joining and simplicity). Katok and Stepin have proved that almost all
three-interval exchange transformations are weakly mixing.

In this lecture we obtain necessary and sufficient conditions on « and 2 for T to
be weak mixing. These conditions unify all previously known examples, and show
that the weak mixing comes from the presence of either a spacer above a column of
positive measure (like for Chacon’s map; this property was also the basis of the famed
Ratner’s R-property), or of an isolated spacer above a column of small measure (like
for del Junco-Rudolph’s map). In addition, we exhibit new interesting examples of
weak mixing three-interval exchanges. The conditions stem from a combinatorial
recursive construction for generating three sequences of nested Rokhlin stacks which
describe the system from a measure-theoretic point of view, and which combined
with a result of Choksi and Nadkarni in the class of rank one systems, provide an
explicit computation of the eigenvalues.

While it is known that all three-interval exchange transformations are topologi-
cally weakly mixing, Veech proved the surprising existence of three-interval exchange
transformations with eigenvalue A = —1. This was later extended by Stewart who
showed that for all rational numbers g there exists a three-interval exchange transfor-

mation with eigenvalue e e . In this lecture we give a simple combinatorial process
for constructing the three-interval exchange transformations of Veech and Stewart.
In addition we exhibit examples of three-interval exchange transformations having
a p-adic odometer as factor.

However the question concerning the existence of irrational eigenvalues remained
unsolved, in spite of some partial results due to Merrill and Parreau. We are now
able to give affirmative answers to two questions asked by Veech in 1984:

Theorem 3.11.1. Let y be an irrational number, [0;y;, s . . . its usual continued
fraction expansion, and q., k > 1 the denominators of its convergents, given by
Qi1 = Yer1Gk + Q-1 If

+o00

Z——%—<+oo,

g Jk+1
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then there exists a symmetric three-interval exchange transformation, satisfying the
i.d.o.c. condition, which is measure-theoretically isomorphic to the rotation of angle
v, and hence has discrete (pure point) spectrum.

We also show

Theorem 3.11.2. For every quadratic irrational number v there exists a symmet-
ric three-interval exchange transformation, salisfying the i.d.o.c. condition, with
eigenvalue 277,

Theorems 1 and 2 are extremes of one another in that in one case the par-
tial quotients tend to infinity very quickly, while in the other they are eventually
periodic.

Theorems 1 and 2 suggest that not all properties of a three-interval exchange
transformation can be traced back to the underlying rotation: the irrational rotation
by angle v of Theorem 1 has no connection with the underlying rotation inducing
the interval exchange, and in the case of Theorem 2 the three-interval exchange
transformation has as factor a rotation with a quadratic angle, while the angle of
the inducing rotation is a Liouville number.

Among the remaining open questions, we formulate the following:

Problem 3.11.1. We do not know whether every complex number of modulus 1 is
an eigenvalue of some nondegenerate three-interval exchange transformation. The
question to know whether a nondegenerate three-interval exchange transformation
may have £ rationally independent irrational eigenvalues was recently solved by
Guenais and Parreau for £ = 2 but remains open for £ > 3.

3.12 Doris Fiebig
Factor theorems for Markov shifts

We study the question when is there a factor map from a locally compact transitive
Markov shift .S onto a locally compact transitive Markov shift T'. Here by a factor
map we mean a continuous shift commuting onto map. There is a trivial necessary
periodic point condition for the existence of a factor map. So we consider only
Markov shifts S, T" which satisfy this trivial periodic point condition. In case that
S and T' are both compact then a necessary condition for the existence of a factor
map is that the topological entropy does not increase, hyop(S) > fuep(T). And
hiop(S) > huop(T) is sufficient, [1]. If one relaxes the compactness assumption on S
then surprisingly the entropy condition vanishes completely: If S is a non-compact
(but locally compact transitive) Markov shift and 7" is compact transitive then there
is always a factor map from S onto T, [2]|. The case that S or T' is compact is thus
satisfactorily solved.

We consider here the case that both, S and 7" are non-compact (but locally
compact transitive). In this setting there are various necessary conditions for the
existence of a factor map. Assume there is a factor map from S onto T'. If S has
a rome, that means there is a compact open set & in S such that for every point
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in 5 visits the set K at least once, then also T has a rome. Similarly, we say . is
periodic at infinity, if there is a compact open set K such that the points in S which
never visit K are contained in the periodic points of S. Again, if S is periodic at
infinity, then so is T. A property which lifts under factor map is the following. We
say that S is big at infinity if there is an uncountable set A of points in S such that
for every compact open set & in S there is some integer N such that S"AN K = )
for all n with |n| > N.

Having these necessary conditions for the existence of a factor map from S onto
T we restrict first to the case that S is big at infinity and that T is mixing with
a rome. We prove that then a factor map from S onto 7T exists iff the trivial
periodic point condition is satisfied. We obtain two interesting applications: There
are two mixing locally compact Markov shifts being a factor of each other but having
distinct Gurevic entropy (the “loop counting entropy” defined in [5]), and using a
result from [3] we can show that there is a mixing locally compact Markov shift
having an endomorphism which is uncountable-to-1.

Then we extend the class of Markov shifts T' by considering now T which are
periodic at infinity. Then a new periodic point condition at infinity arises, and we
give a complete description when a factor map from S onto T exists, in case that S
is big at infinity and T is mixing and periodic at infinity.

Finally we consider the other extremal case that S has a rome. We show that in
this situation an entropy condition restores, and also return time constraints arise.
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3.13 UlIf Fiebig®
Pressure and equilibrum states for count-
able state Markov shifts

We consider continuous real valued functions f on transitive two-sided countable
state Markov shifts (X, 5) given in the graph presentation. We introduce topological
pressure, prove a variational principle and study the existence of equilibrium states.

8 Joint work with Doris Fiebig and Michiko Yuri
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Our methods avoid the use of the Perron-operator, this enables us to study the
thermodynamic formalism in situations where this operator is not well defined.

We give a general definition of the topological pressure Py, (f, S) which extends
the notion from the compact setting. For functions f which satisfy a mild distortion
property, namely D,(f) = O(1/n), the pressure P,(f,S) is determined by the
values of f on periodic points which visit a fixed finite path in the defining graph of
the Markov shift. Functions where the values depend only on the zero-coordinate
or more generally Holder continuous functions always have bounded distortions,
sup, D,(f) < oo, in particular they satisfy the mild distortion property. This
implies that our notion of topological pressure also extends those introduced by
Sarig [3] for Hélder continuous functions and by Gurevic and Savchenko [2] for
functions where the values depend only on the zero-coordinate.

We prove a variational principle for functions satistying the mild distortion prop-
erty. To study the existence of equilibrium state we introduce a new notion of
positive recurrence for functions with bounded distortions, sup, D,(f) < oco. The
function f = 0 is positive recurrent in our sense iff the Markov shift (X, S) is positive
recurrent in the classical sense.

To construct equilibrium states we rather follow the classical approach in using
point masses on periodic points than the ideas of Sarig, which use the Ruelle-Perron-
Frobenius-operator, or of Gurevic and Savchenko, which use matrix techniques. For
positive recurrent functions we construct a sequence (u,) of probability measures,
each concentrated on finitely many periodic points. Our notion of positive recurrence
is designed to make this sequence of measures (p,) tight. Thus any subsequence
has a weak limit 1. The next essential point is that the positive recurrence implies
that a certain set of closed open pairwise disjoint sets built from first return loops
is actually an almost everywhere partition of the space X' with respect to every
weak limit g We then show that a weak limit g is an equilibrium state for f if
and only if [ f~du < oo. In particular, any such function which is bounded from
below has an equilibrium state. If f is bounded from above, a modified version of
this construction makes to easier to check conditions for the existence of equilibrium
states for a large class of Markov shifts, which include the Bernoulli shift. Finally
we extend our results to continuous functions on one-sided Markov shifts, give an
application from number theory and give an example how our results extend the
work of Sarig and that of Gurevic and Savchenko.
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3.14 Alan Forrest
Dynamics on ordered Cantor sets

We introduce ordered dynamics with the following elementary definition and a the-
orem that admits many generalizations:

Definition 3.14.1. Let I be the unit interval with unit Lebesgue measure and the
usual total ordering, <. An aperiodic point, € I, defines a total order, <z, on N:
n <y m if and only if T"z < T™z (here N, the natural numbers, include 0).

Theorem 3.14.1. If (I,T) is ergodic, Lebesgue measure preserving, then there is a
subset B of I of full measure such that ¢ : x —<, is 1-1 when restricted to B.

Thus we encode almost every point in I with an order on N. Coding by order
opens an interesting alternative to classical symbolic coding. Note that the issues of
expansiveness, generation and finite entropy make no appearance. The remainder of
this note, which summarizes the work in [3], takes this approach to the topological
category.

Definition 3.14.2. Suppose that X is a Cantor subset of R inheriting an order <
from the usual order on R. We call such an order standard: this structure can be
defined intrinsically.

Say that a point z € X is a left end if [z, y) N X is a neighbourhood of z for any
y > x. Write X~ for the set of left ends; it is countable and infinite. The unique
minimal element, 7, is a left end.

Examples include certain Cantor extensions or subsystems of classical 1-dimen-
sional maps such as rotations on the circle, the unimodal map or more general maps.
The classical Feigenbaum classification of transition to Chaos is expressed in terms
of the order <, where z is the critical point. Recently Blokh and Misiurewicz [1,2]
have considered interval maps using the canonical ordering, generalizing the idea of
rotation number and analyzing sequences of runs in <,.

Lexicographical order on A" or A% (using some well-ordering on Z), where A is an
ordered finite set, is standard. Thus every Cantor subshift, one-sided or two-sided,
supports a natural standard order.

We consider Cantor systems (X, T') here in which T is invertible and aperiodic.
This is not the full generality possible [3].

Definition 3.14.3. Let Q be the set of all orders on Z. Define <™ to be the
restriction of <€ {} to I, = ZN[~(n —1)/2,n/2] (an interval of n integers).

{) is naturally a Cantor set with basis of clopen sets U(<',n) = { < € Q :
< = <™ 1 For each n > 1, we write Q, for the partition of Q defined by
clopen sets U(<,n).  also supports a homeomorphism shift map, S: n(S <)m if
(n+1) < (m+1).

In an invertible aperiodic Cantor system (X,T), we can extend Def 1 to make
<, an order on Z, and redefine ¢ : X — Q as ¢(z) =<,.
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Theorem 3.14.2. Suppose that (X, T, <) s a standard ordered Cantor system then

@ is continuous and equivariant with respect to the dynamical actions of T and S.
If{T"z= : n € Z} = X, then ¢ is 1-1 on the set of transitive points. In

particular, if (X, T) is also minimal then ¢ embeds (X, T) as a subsystem of (€2, S).

Simple counter-examples show that a condition on X~ such as the one above is
necessary. It is not hard to show that every transitive Cantor system has a standard
order which has this condition. When ¢ : X — {2 is an injection, we call such a
set-up generating.

If < is a standard order on (X,T), then we can define, for each n > 1, a

clopen partition P, of X according to the value of the function, z +—><(x”), ie.

Pn = ¢_1(Q11)-

In our analogue with symbolic coding, the sequence of partitions P, corresponds
to Ve, T~'P where P is a generating partition. The growth of [Py, the number of
atoms in P,, is an alternative measure of the complexity or entropy of the system.
The fact that 1 < |P,| < n! = exp(nlogn+0(n)) allows room for super-exponential
growth and the classification of infinite entropy systems.

Zero entropy example If (X, T, <) is the Morse-Thue in its usual representation
in {0,1}%, then the lezicographical order is generating. In this case |P,| is bounded
linearly in n, above and below.

Theorem 3.14.3 (Finite entropy cases). Suppose that (X,T) is an aperiodic
transitive Cantor system. If < is a generating standard order, then hy,(X,T) =
lim, (log |Pyl)/n.

Theorem 3.14.4. If (Y,5) is a transitive Cantor subsystem of (Q,S), then there
is an aperiodic generating standard ordered Cantor system (X,T,<) for which

log |P,| = loge, + o(n), where ¢, is the number of atoms of Q, intersected by
Y.

Infinite order entropy examples fora =1 orl /2, there are aperiodic stan-
dard ordered Cantor systems (X, T, <) for which lim, (log |P,|)/nlogn = a.

The example for @ = 1/2 is given by Theorem 7 applied to the S-invariant sub-
set, Y, of 2 which excludes all those orders, <, that have some n such that
n < (n+1) < (n-+2): a natural ordered dynamical generalization of subshift
of finite type. I am grateful to Bernard Host for suggesting this example.
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3.15 Krzysztof Fraczek
Classification of diffeomorphisms on the
torus

Let M be a compact Riemannian smooth manifold and p its probability Lebesgue
measure. Let f: (M, p) — (M, ) be a smooth measure—preserving ergodic diffeo-
morphism. An important question of smooth ergodic theory is: what is the relation
between asymptotic properties of the sequence {Df"}nen and dynamical or spec-
tral properties of the dynamical system f : (M, u) — (M, p). There are results
well describing this relation in the case where M is the torus. For example, if a
diffeomorphism f is homotopic to the identity and the sequence {Df"}nen is uni-
formly bounded, then f is C%-conjugate to an ergodic rotation (see (3] p. 181).
Hence f has purely discrete spectrum. Moreover, if {Df"},en is bounded in the
C"™-norm (r € NU {oo}), then f and the ergodic rotation are C™—conjugated (see
[3] p. 182). On the other hand, if {Df™},cy has “exponential growth”, precisely if
[ is an Anosov diffeomorphism, then it is metrically isomorphic to a Bernoulli shift
(see [6]). Hence f has countable Lebesgue spectrum. Moreover, f is C%-conjugate
to an algebraic automorphism of the torus (see [5]).

A natural question is: what can happen between the above extreme cases? We
would like to propose the following definition, which was introduced in [1].

Definition 3.15.1. We say that the derivative of a smooth diffeomorphism f:M—
M has f-strong polynomial growth (8 > 0) if the sequence {-5Df"}nen converges
p—a.e. to a measurable p—nonzero function. We will use the word linear instead of
1-polynomial.

Let us fix our attention on diffeomorphisms of 2-dimensional torus T2. One of
the examples of ergodic measure—preserving diffeomorphisms with linear growth of
the derivative is any skew product of any irrational rotation on the circle and any
circle smooth cocycle with nonzero degree. Let o € T be an irrational number and
let ¢ : T — T be a C'-cocycle. We denote by d(p) the topological degree of ¢.
Consider the skew product T, : (T?,\) — (T2, \) defined by

Tap(mr, 22) = (21 + @, %2 + @(z1)).

Observe that

1
L DT (31, 19) n ’
— Q. Iy,Tq) = N d 1
el 1 o Do(z1 + ka) -

By the Ergodic Theorem, the sequence %ZZ;{; Do(+ + ka) converges uniformly
to the number [ Do(z)dz = d(p). Therefore the sequence %DTQ’W converges uni-
0

0 . . . :
d(o) 0 } The following result is proved in [1].

formly to the nonzero matrix [
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Theorem 3.15.1. Fvery ergodic measure-preserving C'-diffeomorphism of T with
strong linear growth of the derivative s algebraically conjugated (i.e. by a group
automorphism) to a skew product of an irrational rotation on T and a circle C'-
cocycle with nonzero degree. Moreover for no positive real § # 1 does an ergodic
measure-preserving C%-diffeomorphism of polynomial strong growth of the derivative
with degree [ exist.

Moreover, every skew product of an irrational rotation on the circle and a circle
C?-cocycle with nonzero degree has countable Lebesgue spectrum on the ortho-
complement of the space of functions depending only on the first variable (see [4]).
It follows that every measure—preserving, ergodic diffeomorphism with the above-
mentioned linear growth of the derivative has countable Lebesgue spectrum on the
orthocomplement of its eigenfunctions.

Now I would like to propose a seemingly weaker and more natural definition of
the linear growth of the derivative.

Definition 3.15.2. We say that the derivative of a smooth diffeomorphism f :
T? — T? has linear growth if there exist positive constants ¢, C' such that

0<c< D@ <0 (3.1)

for every 7 € T? and n € N,

This definition has a nice property, because the linear growth of the derivative
is invariant under the relation of smooth conjugation. Of course, if d(p) # 0, then
T4, has linear growth of the derivative. Moreover, it is easy to check that if ¢ is
of class C®, then the sequence DTy , is bounded in C*(T?, M,(R)). The following
result is proved in [2]

Theorem 3.15.2 (Main Theorem). Let f : (T?,\) — (T%,A) be a measure-
preserving C3-diffeomorphism. Suppose that

e [ is ergodic,
e f has linear growth of the derivative,
o the sequence { D f"}uen is bounded in C*(T?, My(R)).
Then f is algebraically conjugate to a skew product of an irrational rotation on the

circle and a circle C3-cocycle with nonzero degree.
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3.16 Sergey Gefter
On dense embeddings of discrete groups
into locally compact groups and on as-
sociated with them equivalence relations’

Let G be a continuous locally compact second countable group with left Haar mea-
sure 41, and I' be a countable dense subgroup of G. Then (G, 1) is a standard measure

space and I" acts on (G, ) by left translations: g J—)» 79, YE€T, g € G. The ac-
tion of I' on (G, i) is ergodic because ' is dense in G. Let us denote the [-orbital
equivalence relation by Rr. If G is amenable as a discrete group (for example, if
G is Abelian or is solvable), the equivalence relation Ry is amenable too. That is
why this case is not especially interesting from the orbital theory point of view. The
opposite case in partially described with the following important Zimmer’s theorem.

Theorem 3.16.1. (R. Zimmer, 1987) If G is a connected non-solvable Lie group,
then Rr is non-amenable.

A lot of interesting questions on the equivalence relation Ry arise in a non-
amenable case. In the present talk we would like to consider only one of them,
namely the calculation of the fundamental group of Rp in some particular cases
when [' acts by translations on a non-compact group G.

Now let G be a non-compact locally compact group. Denote by Aut(Rp) the
automorphism group of Rr. It is well known that if § € Aut(Ry) then there exists
A=mod # > 0, such that o = .

Definition 3.16.1. The fundamental group of the equivalence relation Rp is the
following subgroup in R}, :

F(Rr) — {HIOdH | B e Aut(Rp)}.

The definition and properties of the fundamental group of type I, equivalence
relations see in [1] and |2, §2].
If the equivalence relation Rr is amenable, then F(Ry) = R?,.

1. Actions of the irreducible lattices

"The work is partially supported by INTAS grant 97-1843
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For each prime p € Z let @@, be the field of p-adic numbers, and let Q,, = R.
Let V' = {primes in Z} U {o0}, and py,ps,...,pm € V. Suppose that for each p;,
H,, is a connected almost @-simple linear algebraic Q-group such that the group

H,,(Q,,) is not compact. Let B = H H,,(Q,,), so that B is a locally compact non-

compact group. Now let us suppose that A is an irreducible lattice and we fix some
non-trivial subset Iy C {1,...,m}. We let G = [ H,,(Q,,) and T’ = 7, (A), where

i€lp
m, © B — G is a projection onto G. Then G is a locally compact non-compact

group and I is a dense subgroup in G.

Theorem 3.16.2. Suppose ) Q,, —rank(H,,) > 2. Then all automorphisms of
iglo
equivalence relation Rp presefve Haar measure, i.e. F(Rr) = {1}.

The proof of this theorem uses Zimmer’s rigidity theorem for ergodic actions of
semisimple groups and the notion of the fundamental group for an ergodic action of
a continuous locally compact group [3].

Example 1.1. We let Z[v2] = {m +nv2 | m,n € Z} and T' = SL,(Z[v?2)).
Then I' is isomorphic to the irreducible lattice in SL,(R) x SL,(R). Consider the
equivalence relation R generated by left translations of T on G = SL,(R). If n > 3,
then all automorphisms of Ry preserve Haar measure on G.

Example 1.2. Let S = {p1,ps,...,pm} be a finite set of primes. We denote by
Z[S] the subring of Q generated by the elements le’ ooy 5o Let T = SLy(Z[S]), n >
3. Identify I' with its image under the diagonal embeddings in B = SL,(R) x
SLa(Qp,) % ... x SLn(@,, ). Then I' is an irreducible lattice in B. Consider the
equivalence relation Ry generated by translations of I' on G = SL,(R). Then all
automorphisms of Rp preserve Haar measure on G.

2. Actions of the groups (}-rational points

Let H be a connected semisimple linear algebraic (Q-group, and let p be a prime.
We let G = H(Q,) and I' = H(Q). Assume that H is a simply connected, almost
Q-simple and the groups H(R) and H((Q,) are non-compact. Then G is a locally
compact group and I' is a dense subgroup in G.

Theorem 3.16.3. Suppose that H(R) has Kazhdan’s property (T). Then all auto-
morphisms of equivalence relation Rp preserve Haar measure on G.

Example. Let G = SL,(Q,), I' = SL,(Q), n > 3. Then F(Rr) = {1}.

3. Countable groups which do not have ergodic actions by translations
on non-compact locally compact groups

It is well known that the group of integers cannot be densely embedded into
a non-discrete non-compact locally compact group (in other words, a monothetic
locally compact group is either compact or isomorphic to Z).

Definition 3.16.2. We say that a discrete group I' has Z-property if ' cannot
embedded densely into a continuous locally compact non-compact group.

The following theorem provides a complete description of the Abelian groups
with Z-property.
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For a prime p we let
Coe ={z€T|2"" =1 for some n}.

Theorem 3.16.4 (Kulagin, Gefter, 1999). 1. The group Cpe has Z-property.
2. Let T be an infinite discrete Abelian group with Z-property. Then either 2 Zx F'
or I' 2 Cyeo x F, where F is a finite Abelian group.
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3.17 Eli Glasner?®
The topological Rokhlin property and topo-
logical entropy

Abstract

For a compact metric space X let G = H (X) denote the group of self homeomor-
phisms with the topology of uniform convergence. The group G acts on itself by
conjugation and we say that X satisfies the topological Rokhlin property if this
action has dense orbits. We show that the Hilbert cube, the Cantor set and, with
a slight modification, also even dimensional spheres, satisfy this property. We also
show that zero entropy is generic for homeomorphisms of the Cantor set, whereas it
is infinite entropy which is generic for homeomorphisms of cubes of dimension d > 2
and the Hilbert cube.

Introduction

Let (X, X, 1, T) be an aperiodic probability measure preserving system with g non-
atomic. Given € > 0 and a positive integer n, Rokhlin’s lemma tells us that there
is a measurable subset A C X such that A, TA,T2A,... T"'A are disjoint and
cover X' up to a set of measure less than €. This simple lemma is an essential tool
in ergodic theory. It is used in one way or another in most aspects of this theory.
One well known consequence of it is the following.

8Joint work with B. Weiss
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Theorem 3.17.1. For a non-atomic probability space (X, X, ) let G be the Polish
group of measure preserving transformations with a measureble inverse, equipped
with the weak topology. Then the action of the group G on itself by conjugation is
topologically transitive; i.e. there exists a transformation T € G such that the set
{STS':S € G} is dense in G.

One can consider a more general situation where a (say countable discrete) group
' acts by measure preserving transformations on a probability space (X, X, pu).
Again the space A = Ar of all such I'-actions can be endowed with the weak
topology, making it a Polish space, and the group G of all bi-measure-preserving-
transformations of (X, &', 1), acts on A by conjugation. In |2] the following definition
was introduced. Say that the group I' has the Rokhlin property if the action of G
on Ar is topologically transitive. It is observed there that every amenable I' has
the Rokhlin property, and the question which groups have the Rokhlin property is
raised. (See 2| for more details).

In the present work we are dealing with an analogous question in the topological
context. For a compact metric space X', denote the group of self homeomorphisms
of X by G = H(X). With the topology of uniform convergence, G is a Polish
topological group.

We say that a Polish topological group G has the topological Rokhlin property
(or just the Rokhlin property) when it acts transitively on itself by conjugation. We
say that the space X has the Rokhlin property when G = H(X) has the Rokhlin
property; i.e. H(X) is the closure of a single conjugacy class. Which compact metric
spaces poses the Rokhlin property? We show that the Hilbert cube and the Cantor
set have it. For some connected spaces like spheres the existence of orientation
of a homeomorphism, which is clearly preserved under conjugation, means that
H(S5%) can not have the Rokhlin property; therefore we say that a sphere satisfies
the Rokhlin property when the group Hy(S%) — the connected component of the
identity in H(S%) — has the Rokhlin property. With this definition we show that
even dimensional spheres have the Rokhlin property. On the other hand it appears
that for general compact manifolds of positive finite dimension the answer is rather
different. For circle homeomorphisms, Poincaré’s rotation number, 7 : H*(S') —
R/Z, h — 7(h), where H¥(S') = Hy(S") is the subgroup of index 2 of orientation
preserving homeomorphisms, is a continuous conjugation invariant and thus there
are at least a continuum of different closed disjoint conjugation invariant subsets.

We refer the reader to the recent paper [1], by E. Akin, M. Hurley and J.
Kennedy, for a detailed discussion of circle homeomorphisms. Their main result
(on the circle) can be briefly formulated by saying that the circle has the local
Rokhlin property, where a space X has the local Rokhlin property if H(X) contains
an open dense subset which is the union of interior of conjugacy class closures. More
precisely they show that for a rational number ¢, the set 77!(c) has a nonempty in-
terior in H7(S') and that in each such set 77!(c) there is a — necessarily unique —
residual H*(S') conjugacy class. On the other hand for irrational rotation numbers
we have the following information. Denote by T the set of topologically transitive
homeomorphisms of S, then 7 is a G4 subset of H*(S!) on which 7 takes irrational
values and for an irrational number ¢ the set 7 N 77!(c) is the conjugacy class of
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the “rigid” rotation h.. It is also easy to see that no odd dimensional sphere has the
Rokhlin property?.

The motivation for the definition of the Rokhlin property came from the work
[2]. The Hilbert cube case was done during the special year in ergodic theory at the
Institute for Advanced Studies of the Hebrew University in Jerusalem, 1996-7. The
question regarding the Cantor set was raised recently by J. King and was answered
independently by E. Akin, ([1]).

A related problem is the question: what is the topological entropy of the typical
homeomorphism in H(X)? The machinery we develop for dealing with the Rokhlin
property, enables us to answer the entropy problem as follows. For the Hilbert cube
and spheres S% d > 2, the set of homeomorphisms with infinite entropy is residual
while for the Cantor set it is the set of zero entropy which is a dense G5 subset of
H(X).

The Hilbert cube is dealt with in section 1, the Cantor set in section 2 and in
section 3 we consider finite dimensional cubes and spheres. We wish to thank E.
Akin for his helpful comments and for supplying information concerning the Annulus
conjecture.
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3.18 Gernot Greschonig!?
Invariant cocycles have Abelian ranges

Let (XX, 8) be a standard Borel space and Aut(X,8) the group of Borel automor-
phisms of X. A Borel set R C X x X is a discrete Borel equivalence relation on X
if R is an equivalence relation whose equivalence classes Rz)={ye X :(a,y) €
R}, z € X, are all countable.

Now let R be a discrete Borel equivalence relation on .X. The Jull group [R] of
R is the group of all W € Aut(X,8) with Wz € R(z) for every ¢ € X. For any
countable group I' C Aut(.X,8) we denote by R[] the discrete Borel equivalence
relation {(x,yz):2 € X,y € T}.

We denote by

Aut(R) = {V € Aut(X,8) : (Va,Vy) € R if and only if (z, y) € R} (3.1)

For the proof it suffices to note that there are orientation preserving homeomorphisms with
an attracting fixed point — hence all small perturbations have a fixed point, while there are
orientation preserving homeomorphisms with no fixed points — and any small perturbation will
not have one either.

1% Joint work with Klaus Schmidt
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the automorphism group of R. If ;1 is a probability measure on 8 which is quasi-
invariant under R we set

Aut(R, p) = {V € Aut(R) : p is quasi-invariant under V}. (3.2)

Definition 3.18.1. Let R be a discrete Borel equivalence relation on a standard
Borel space (X, §) and p a probability measure on 8§ which is quasi-invariant under
R. An element V € Aut(R, u) is weakly asymptotically central if it preserves p and

i Ilirn w(BAV*WV™"B) = Illim p(V"BAWV™B) =0 (3.3)
T|—ro0 T|—00

for every W € [R] and B € 8. The automorphism V is strongly asymptotically
central if it preserves pu and

lim p({z € X : WV"W'Vz = V"W'V™Wa}) = 1 (3.4)

|r]—+o0
for all W, W' € [R].

Remark 3.18.1. The terminology chosen here is consistent with the weak and strong
topology on the set of ergodic transformations: if V' is a weakly asymptotically
central automorphism of (R, i), then W and V="W'V" commute asymptotically in
the weak topology. If V' is strongly asymptotically central, then W and V"WV
commute asymptotically in the strong topology.

Proposition 3.18.1. Let R be a discrete Borel equivalence relation on a standard
Borel space (X,8) and p a probability measure on 8 which is quasi-invariant and
conservative under R. Then every strongly asymptotically central automorphism V
of (R, 1) is weakly asymptotically central.

There exists a simple counterexample which shows that Proposition 3.18.1 fails
without the hypothesis of conservativity. The following theorem is useful to con-
struct examples of strongly asymptotically central automorphisms.

Theorem 3.18.1. Let I' be a countable abelian group of Borel automorphisms of a
standard Borel space (X, 8), and let V € Aut(X,8) with V-'T'V C T.

Suppose that R C R[T| is a V-invariant subrelation (i.e. V € Aut(R)) and
p o V-invariant probability measure on 8§ which is quasi-invariant under R. If
V€ Aut(R, i) is weakly asymptotically central and mizing then it is strongly asymp-
totically central.

Remark 3.18.2. If the equivalence relation R in Theorem 3.18.1 is ergodic then every
weakly asymptotically central automorphism V' of (R, ) is mixing (Theorem 2.3 in
[2]).

Examples of strongly asymptotically central automorphisms are shift spaces with
shift-invariant mixing probability measures and the Gibbs relation. Here we have to
restrict the Gibbs relation to a shift invariant Borel set of full measure where the
measure is quasi-invariant. Such a set exists according to Lemma 2.3 in [1], and we
use the fact that the Gibbs relation on the full shift over Z/kZ) is generated by the
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Abelian group >, Z/kZ). Another example is the homoclinic equivalence relation
on the k-torus with a hyperbolic automorphism. Furthermore there exist examples
of weakly but not strongly asymptotically central automorphisms.

Now we want to turn to the ranges of invariant cocycles.

Definition 3.18.2. Let G be a Polish (i.e. complete separable metric) group with
identity element 1 = 15 and Borel field B, R a discrete nonsingular equivalence
relation on a standard probability space (X, 8,u) and V € Aut(X). A Borel map
c: R — G is a cocycle on R if

c(z, z')e(z', ") = e(z, 2™) (3.5)
for every (z,z'), (z,2") € R. A cocycle ¢: R — G is V-invariant if
co(Vz,Vy) = c(z,y) (3.6)
for every (z,y) € R.

Theorem 3.18.2. Let R be a discrete nonsingular equivalence relation on a standard
probability space (X, 8, 1), V' an ergodic automorphism of (R, ) which is both weally
and strongly asymptotically central, and ¢ : R — G o V-invariant cocycle with
values in a Polish group G. Then there there exist a p-null set N € § and a closed
Abelian subgroup Gy C G such that c(z,y) € Gy for every (z,y) € Ry n.
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3.19 Stefan-M. Heinemann!!
Geometric exponents for hyperbolic Julia
sets

Abstract

For hyperbolic rational maps we show that the Hausdorff dimension of the associated
Julia set is bounded away from 2, where the bounds depend exclusively on certain
intrinsic geometric exponents. This result is derived via lower estimates for the
iterate-counting-function and for the dynamical Poincaré series. Subsequently, we
deduce some interesting consequences, such as upper bounds for the decay of the
area of parallel-neighbourhoods of the Julia set, and lower bounds for the Lyapunov
exponents with respect to the measure of maximal entropy.

" Joint work with B. O. Stratmann



Structure of the talk

We consider Julia sets J(T') & C of hyperbolic holomorphic endomorphisms 7" :
C — C of the Riemann sphere. It is well-known that these maps form a large
open set inside the set of all holomorphic endomorphisms, and it is conjectured that
they are in fact dense (‘Fatou-conjecture’). Furthermore, for hyperbolic maps there
already exists an affirmative answer to the ‘analogue of the Ahlfors-conjecture for
Kleinian groups’, which asserts that the Julia set has always vanishing 2-dimensional
Lebesgue measure. That this conjecture is true for hyperbolic rational maps is of
course an immediate consequence of the well-known fact that in this case the Julia
set is porous, and hence its Hausdorff dimension h is strictly less than 2 (see e.g. [2]).

We add to the latter result an estimate for h from above in terms of certain
intrinsic parameters. Our estimate clearly reveals the geometric obstacles which
prevent a hyperbolic Julia set from being of Hausdorff dimension 2. In order to state
the estimate, let T" have critical distance c (the distance of J(T') to the forward orbit
of the critical points of T'), core ezponent « (the inverse of the maximal distortion of
T on J(T)), and inner lacunarity ezponent A (that is roughly, the area of U(J(T))/
(I'71), for U(J(T)) denoting a suitable neighbourhood of J(T') and (T!) the semi-
group generated by the holomorphic inverse branches of 7). Our main result relates
these three geometric exponents to the Hausdorff dimension of J(7'). Namely with
U.(J(T)) denoting the c-neighbourhood of J(T') we derive the formula

_ 2 A g!?
h <2 = (U

Originally, this type of formula arose from attempts to clarify the relationship be-
tween the spectrum of the Laplacian and certain intrinsic geometric quantities such
as volume and length-spectrum for hyperbolic manifolds. For geometrically finite,
infinite-volume hyperbolic manifolds a lower bound for the bottom of the Laplace-
spectrum was obtained in [1] in terms of the convex core of the manifold (namely, its
volume and the area of its boundary), which in certain cases leads to upper bounds
for the Hausdorff dimension of the associated Kleinian limit sets. Recently, we de-
rived by purely geometric means a similar type of formula for all convex cocompact
Kleinian groups (|2]).

We adopt the geometric method of [2] and show how to adjust it to the set-
ting of hyperbolic rational maps. For this we require the existence of geometrically
well-behaved coverings of J(T') and packings of the Fatou set F(T) := C\ J(T).
This allows us to introduce the concepts ‘iterate-counting-function’ and ‘dynamical
Poincaré series’ (representing the natural analogues of the ‘orbital counting func-
tion’ and ‘Poincaré series’ for Kleinian groups). We derive a finer estimate for the
h-conformal measure, and apply a folklore-lemma in elementary number theory,
which in turn leads to some lower estimates for the iterate-counting-function and
the dynamical Poincaré series. Subsequently, we interpret these estimates in terms
of the fractality of J(T') and the lacunarity of F(T), which then gives our main
result, the afore-stated formula for the Hausdorff dimension of J(T').
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3.20 Teturo Kamae
Stochastic analysis based on deterministic
Brownian motion

Deterministic Brownian motions are stochastic processes with noncorrelated, sta-
tionary and strictly ergodic increments having 0-entropy and (-expectation. The
self-similarity of order 1/2 follows from these properties. Such processes have a lot
of variety and have different properties. It is not the case of the Brownian motion
where the process is characterized as a process with stationary and independent
increments with O-expectation and standard variance.

Among the deterministic Brownian motions, the simplest one is the N-process
which is introduced in [2] and studied in [1]. It comes from a piece-wise linear
function consisting of 3 pieces with shape of letter “N” and is called an N-process
and denoted by {N;; ¢t € R}. It is a deterministic Brownian motion in the above
sense together with the time reversibility.

We consider a process Y; = H(Ny, ¢), where the function H(z, s) is twice contin-
uously differentiable in = and once continuously differentiable in s and Hy(z,s) > 0.
The function H is considered completely unknown except for these properties. We
want to predict the value Y; from the observation Y := {}}; t € J}, where J = [a, b]
and a < b < c. It is proved in [1] that there exists an estimator Y, such that

(c —b)?
b—a

E[(Y: = ¥2)*] = o((c — b)) + O( ) (3.1)

One of the motivations of the research is given by Benoit B. Mandelbrot [3], who
mentioned that the simulation of stock market by the Brownian motion contains
too much randomness. Actual market has a strong negative correlation between
the fluctuations of price on a day and the next day. He is suggesting to use the
N-shaped function as the base of the simulation.

Our model has a lot of similarities to the Itd process. For example, we get a
formula corresponding to the [t6 formula. Nevertheless, there is a big difference
between them. Our process has O-entropy while the It process has co-entropy.
Therefore, we have much better possibility of predicting the future. Theoretically,
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if we have complete information of the function H, and have complete data of Y
in the past, we should be able to predict the future without error. But the actual
setting is with the unknown function H and the limited observation Y; for a bounded
interval J. The best we can do is the order O((c — b)?) in the above estimate (1),
while O(c — b) in the case of Ité process.

The sample path of N-process repeats the N-function in various scales. The
main idea for the prediction called synchronization is to find out the positions and
the scales of the appearances of an N-function in the sample path. An N-function
in the sample path is a part of bigger N-functions while containing smaller ones.
Along the 3 line segments in an N-function, the sample path either increases at the
first part, then decreases and increases, or decreases at the first part, then increases
and decreases. Thus, it has a strong correlation along the synchronized intervals,
while the process itself has noncorrelated increments.
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3.21 Gerhard Keller
Spectral perturbation theory for transfer
operators of Amnosov diffeomorphisms

Outline

In this talk I reported about two related results:

I) G. Keller, C. Liverani, Stability of the Spectrum for Transfer Operators, Annali
della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, (4)
XXVIIL, (1999), pp. 141-152.

IT) M. Blank, G. Keller, C. Liverani, Perron-Frobenius spectrum for Anosov maps,
Preprint (2000),
http://www.mi.uni-erlangen.de/~keller /publications/bkl2000.ps.gz

Motivation for I): Spectral theory of piecewise expanding in-
terval maps

The statistical properties of a piecewise C* expanding map T : [0,1] — [0,1] are
most effectively studied in terms of spectral properties of its associated transfer
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operator
P:LéI%L;m, /Pf-gdx::/f-(goT)dx

As an operator on L}, its spectrum is always the full complex unit disk and carries

no useful 1nf01mat10n However it is known since long that it has the following nice
1/n

property: For each o > lim ,,_,o there are constants C|, Cy > 0 such that

‘I{T") |‘
var(P" f) < C) o" var(f) + Cs f|f| dx

where var(f) denotes the minimal variation of a function in the Lebesgue equivalence
class of f. Let V := {f : var(f) < co}. In terms of the two norms

1= [ lda, 0= var() + [ 15100
one thus has the following abstract setting:

PRI Colfly IPPAI < Cro® Ifl + Calfl, {f €V :lfll <1}is].|- compact
(3.1)
where Cj is not the same constant as before. In this abstract setting
= (V3. 1l) is a Banach space with a second norm |.|, P: V — V is linear, and
(3.1) is satisfied - it is well known that

P is quasicompact and its essential spectral radius is bounded by a.

Now let F; be a Markov operator describing a dynamically interesting perturbation
of T with Py = P. This could be a small deterministic perturbation of T, a small
stochastic perturbation of 7' or also an Ulam discretization of 7". In all of these cases
|P — P||,|P — P.] > 0, so classical perturbation theory is not applicable to the
isolated eigenvalues of P. But for this kind of perturbations we have [||P — P. | <
const €, where

P = Pelll :=sup {|Pf - P.f|: feV,|fl| <1} . (3.2)

The main result of I): Stability of the spectrum

For A € C and d > 0 denote the spectral projections

1
I .= _/| . J(z—PE)_ldz

2w

Theorem 3.21.1. The eigenvalues A of P = Py with |A| > o and their associated
etgenprojections are stable under perturbations in the following sense: Suppose that

(3.1) holds uniformly for a family (P :)exo (and not only for P = Fy). Letr € (o,1)
and let 6 > 0 be sufficiently small. Then there are =y > 0 and K > 0 such that for
all & € [0,&0] and for all A € C with |A| > r

I — G|l < K - (|| P = Ryl ]”
where n = log Zolog L € (0,1).
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The main result of II): Spectral and perturbation theory for
Anosov diffeomorphisms

Now we consider C*-Anosov diffeomorphisms 7' : T¢ — T%. In order to fix the
notation denote by E*(z) and E"(z) the stable and unstable distributions which
have the property that there are constants K > 0 and 0 < A, < 1 < A, such that
[(deT™) ooy | < KA} and [|(deT ") jpe(e)]| < K A" for all z € T and all n > 0.

Recall that each individual stable (unstable) manifold W#(z) (W¥(z)) is an
immersed C*? submanifold of T¢, but that the foliations (W*(z)), and (W*(z)), are
only Holder continuous in general. However, in case d = 2 they are always of class
C'** for some a > 0.

Given the constants Ay, A, and a we fix two further auxiliary constants § > 0
(small) and b > 0 (large). For 0 < 8 < 1 and ¢ : T¢ — R we define a local 8-Hélder
constant in stable direction

H3(p) = sup {WS{_)(;;P)SE_” cy € Wiz),d*(y,z) < 6} (3.3)

(d*(x,y) denotes the distance within W#(z)) and a class of test functions
Dp := {p : T = R measurable : ||, < 1, Hj(p) <1} .

In order to control f in the unstable direction we consider test vector fields v : T¢ —
7T, define Hj(v) just as in (3.3) and denote

Vsi={v: T = TT: |v] < 1, Hj(v) < 1,v(z) € E*(x) Yz}

Fix now 0 < § < v < a. For f € C*(T¢) this gives rise to the norms

Il =sun{ [ Fods:pens)

T
I £l := sup {/ dof(v(z))dz:ve Vg}
Td
AN = 1Al + 011 £ s
|/ ::Sup{ M(Ifgodm‘:tpED.f}

Denote by V' the completion of C''(T%) w.r.t. the norm || .||.

Theorem 3.21.2. Suppose that d = 2. For any ¢ > max{/\;l,)\f} there are
constants Cy, Cy,Cy > 0 such that

1) |Pf| < Golfl,
2) |[P"fIl < Cro™|Ifll + Ca | ],
3) {feV:fll €1} is|.| - compact.

4) In particular, P : V — V is quasicompact.
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5) Let Q. f(z) := [ f(y)q:(z,y) dy with some reasonable assumptions on the ker-
nels g, e.g. q.(r,y) = E‘dq(i’;—”’) and consider P, := Q.o P. Then 1) and 2)
hold for P. and |||P — P.||| < const €. In particular, Theorem 1 applies.

For d > 2 assertions 1) - 3) remain valid whith a different constant a. The results
also carry over to other smooth compact manifolds than the torus.

3.22  Yuri Kifer!?
Generating partitions for random transfor-
mations

The Kolmogorov-Sinai theorem says that the entropy of a measure preserving trans-
formation is equal to its entropy with respect to any generating partition. Rokhlin
showed in [11] that any ergodic transformation T of finite entropy has a countable
generating partition whose entropy is arbitrarily close to the entropy of T. Krieger
[7] proved that there exist finite generators with such properties and if the entropy
of 7" is less than log ¢ than there exists a generator of cardinality £.

In the work [6] we study generating partitions in the relative ergodic theory setup.
Here T' is an invertible skew product transformation acting by T(w,z) = (Yw, T, )
where ¢ is an invertible ergodic map of a complete probability space (£2, F,P) and
1., called often a random transformation, maps a Polish space X into itself. The
relative measure entropy of T was first studied in [1] under the name “mixed entropy
of the fiber of a skew product” where it was obtained as a difference of entropies of
T and ¥ which makes sense when these entropies are finite but in many interesting
cases both these entropies are infinite though the relative entropy is still finite.
Later, a general setup was considered and other notions of the relativized ergodic
theory such as the relative topological entropy and pressure were introduced and
studied (see [9], [4], [2], [5]).

A relative version of the Kolmogorov-Sinai theorem is not difficult to prove (see,
for instance, [4] and [2]) but the construction of relative generating partitions has
not appeared in the literature so far. Of course, if the usual entropy of T is finite
then Rokhlin’s countable and Krieger's finite generators will serve as relativized
generators, as well. However, the more precise analogues of Krieger’s result which
we obtain in this work, namely, that if T is ergodic and ¥ is aperiodic then there
is a relative generating partition with ¢ elements provided that the relative entropy
is less than log ¢, cannot be obtained in this way whenever the usual entropy of 1
is larger than log2. Moreover, if the usual entropy of T is infinite though the rela-
tive one is finite the known results cannot be employed, at all. Our relative result
complements Krieger’s theorem so that both together yield the general theorem on
skew products. We stress that our relative results do not require extra assumptions
on the probability space (Q, F,P) which would undermine the probabilistic philos-
ophy behind random transformations. On the other hand, Rokhlin’s countable and
Krieger’s finite generators theorems rely on separability and they are valid only for

2 Joint work with Benjamin Weiss
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Lebesgue spaces. Following the talk by the first author about this work at Torusi’s
conference in September 2000 A. Danilenko suggested another proof of our result
above based on orbit equivalence considerations from [3] and [12] and valid also only
for Lebesgue spaces.

The finite generator of the relative Krieger theorem provides a coding of the
system for one ergodic invariant measure. In this work we are interested also in
relative topological generators @ which are not only generating partitions for all
T'—invariant measures with the marginal P on Q but also that Q separate orbits of
T, in the sense that P—almost surely (a.s.) for any x,y € X, z # y there exists
n € Z such that T*(w, z) and T"(w, y) belong to different elements of Q. We intro-
duce the notion of asymptotically entropy expansive random transformations (cf.
[10]) which include as very particular cases expansive random transformations and
those which have zero relative topological entropy. Assuming that @ is aperiodic,
X is compact, T, are homeomorphisms and that the relative topological entropy of
T' is less than log ¢ for an integer £ > 1 we construct for asymptotically entropy ex-
pansive random transformations relative topological generators © with £ elements.
Actually, we construct such partitions in a more general situation when T is defined
on a I'—invariant set £ C 2 x X with compact fibers £, which are mapped by
T, homeomorphically. This result does not have a counterpart in the usual deter-
ministic theory without strong additional assumptions since, for instance, the only
generator for the identity transformation is the partition into points. The relative
generating partitions described above enable us to represent the system as a random
symbolic shift. We construct both measure and topological generators relying on
the strong Rokhlin lemma from [8].
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3.23 Renaud Leplaideur
Ezistence of SRB-measures for some topo-
logically hyperbolic diffeomorphisms

Let us consider a smooth dynamical system (M, f), where M is a compact smooth
riemannian manifold, f a C? diffeomorphism acting on M and g some invariant
ergodic probability measure on /. By the Ergodic Theorem, the set G/, of generic
points carries p-all the dynamic, and the question is then to ask for if we can observe
it.

For instance, may we have Lebp(G) > 0, where Leby denotes Lebesgue mea-
sure on M 7

If this property holds we say that u is a physical measure. In the case of hy-
perbolic dynamical systems we look for special physical measures, the so-called
Sinai- Ruelle- Bowen measures.

It is well-known that uniformly hyperbolic dynamical systems admit some SRB-
measure, but the existence is not clear for non-uniformly hyperbolic dynamical sys-
tems. Actually, hyperbolicity may fail in multiple ways, and so we are far away to
get some general theory. Nevertheless, several works (see e.g. [1], [5], [2], [3] or
[4]) prove existence or non-existence of SRB-measures for some systems such that
hyperbolicity fails in a topological way.

Our work is in keeping with this topological point of view; to be more precise
we set

Definition 3.23.1. f is said to be Almost-Axiom-A (3a) if there exist an open set
U and some f-invariant compact set © C U such that -

(i) Yo € U there is a df-invariant (where it makes sense) splitting of the tangent
space T, M = E"(z) ® E£°(x) with 2 — E%(z) and » — E*(z) two Lipschitz maps
(with uniformly bounded Lipschitz constant).

(ii) There exist two continuous and positive functions z —» E'(x) and = — k*(x)
such that

Ve U Vv € E°(z) ldf (z).v]| ey < e_tJ(T)HUHI

’ Vv e E¥(z)  |ldf ()0l p) 2 @],
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(iii) For p in U, k*(p) = 0 <= k*(p) = 0. If S denotes the set (k*)~1(0), then
HS8)=B.

Let A €]0,+00[. A point z in § is said to be A-hyperbolic if Yv € E%(x) \ {0},

1
limsup — log ||df ™(z).v]] < —A

n—++4o00 N

and Yv € E%(z) \ {0},

1
limsup = log ||df™(z).v|| < —A.

n—+oo Tt

If z is some A-hyperbolic point, there exist two immersed manifolds W*(x) and
W*(z) such that . _
T.W'(z) = E*(x) for i = u,s.

Hence it makes sense to define the Leb"-measure: a set A has positive Leb"-measure
if there exists some A-hyperbolic point z such that Leb*(A N W*(z)) > 0, where
Leb; denotes the Riemannian measure on W*(z).

If A and gy are fixed, a point z is said to be (g, A)-regular if it is some A-
hyperbolic point such that di(z, W' (x)) > ey, where i = u,s and d' denote the
Riemannian distance on W*(z). A set A is said to be a (g, A)-regular set if it is
some f-invariant set of (gg, A)-regular points. Then the result is the following:

Theorem 3.23.1. If there exists some (gg, A)-regular set A such that Leb*(A) > 0,
then f admits either a o-finite SRB measure or a probability SRB measure.
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3.24 E. Lesigne®®
Weak disjointness in ergodic theory

Let (X, A, 1, T) and (Y, B, v, S) be two probability measure-preserving dynamical
systems. We say that these two systems are weakly disjoint if, given any f € L*(p)
and g € L*(v),

there exist A € A and B € B such that u(A) = »(B) = 1, and,
for all (z,y) € A x B, the sequence

Nl 3.1

(% 3 /(T -.q(sny)) (3.1
n=0 N>0

converges.

The study of this weak disjointness property is in its early stages. In this abstract
we make some basic remarks, give some examples and ask some questions. A detailed
version of this note is in preparation. Let us make two remarks on the vocahulary.

e When no confusion is possible, we refer to the dynamical system by the trans-
formation alone and we speak of the weak disjointness of the transformations
T and S.

o Until the Conference on Ergodic Theory and Dynamical Systems, Torur 2000,
the weak disjointness property was called the “strong product ergodic prop-
erty”, as in [9)].

We begin the study of weak disjointness with the following two remarks.

e The weak disjointness property is an invariant of metric isomorphism of dy-
namical systems. If the transformations 7' and .S’ are metric factors of T and
S respectively, and if these latter transformations are weakly disjoint, then 7"
and S are weakly disjoint.

e By a careful but standard use of an ergodic maximal inequality, it can be
shown that T" and S are weakly disjoint as soon as Property (3.1) is satisfied
by all f and g belonging to dense subsets of L?(u) and L?(v) respectively.

Using the notion of generic points in topological measure-preserving dynamical sys-
tems, we deduce from these remarks the following proposition.

Proposition 3.24.1. If two measure-preserving dynamical systems are disjoint (in
the sense of |3|), then they are weakly disjoint.

The next proposition shows that the converse is not, true. A measure-preserving
dynamical system is said to have quasi-discrete spectrum if the generalized proper
functions in the sense of [5] generate a dense linear subspace of L2. This notion
is studied in [1]. The following proposition can be deduced from the generalized
Wiener-Wintner ergodic theorem proved in [§].

13 Joint work with A. Quas, T. de la Rue and B. Rittaud



Proposition 3.24.2. Any quasi-discrete spectrum transformation is weakly disjoint
from any measure preserving transformation, and in particuler any quasi-discrete
spectrum transformation is weakly disjoint from ilself.

This is not the only known example of transformation weakly disjoint from itself.
A direct consequence of the study developed in [6] is that Chacén’s transformation
is disjoint from itself. Thanks to deep Ratner’s theorem (see [4]), we see that if
both T" and S are translations by unipotent elements on finite volume homogeneous
spaces of connected Lie groups, then T and S are weakly disjoint. Another example,
whose study needs some more effort, is the Morse dynamical system: the subshift
associated to the Morse sequence (see [7]), which is known to be strictly ergodic, is
weakly disjoint from itself.

What about negative results?

Proposition 3.24.3. Two transformations with positive entropy are never weakly
disjoint.

We know also that negative results can be obtained in zero entropy: there exists a
zero entropy measure preserving dynamical system which is not weakly disjoint from
itself. Such an example can be constructed by a cutting and stacking procedure.

We conclude by a list of open questions.

Problem 3.24.1. Let us say that a dynamical system (or a transformation) is
unwersal if it is weakly disjoint from any measure-preserving transformation. Is
Chacén’s transformation universal? Is the Morse dynamical system universal?

Problem 3.24.2. (V. Bergelson) If T is invertible and weakly disjoint from itself,
is it weakly disjoint from its inverse?

Problem 3.24.3. Inspired by the ideas of the proof of the ergodic return time
theorem ([2] and [10]), we ask the following question, which contains the two previous
ones. If T'is weakly disjoint from itself, is it necessarily universal?

Problem 3.24.4. (B. Kaminski) Is the weak disjointness property generic?

We think that the weak disjointness property could be studied in the class of
distal dynamical systems, beginning with the case of Anzai skew products. It is
also sure that the links between weak disjointness and joinings have to be better
understood. Lastly, D. Rudolph suggested studying the property in the class of rank
one systems, and V. Bergelson suggested looking at rigid weakly mixing systems.
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3.25 Michael Lin'
Ergodic characterizations of reflexivity of
Banach spaces

I. Using the spectral theorem, von-Neumann [6] proved that for every unitary op-
erator T in a complex Hilbert space,

1 mn
Pr:= lim =% T*y exists Vz. x
T ngglon kz_l: v exists Vo (%)

A linear operator T on a (real or complex) Banach space X is called mean ergodic
if (¥) is satisfied, and wuniformly ergodic if the convergence in () is uniform on the
unit ball, i.e., limp_oq ||+ 3°5_; T — P|| = 0. A power-bounded T in a Banach space
is mean ergodic if and only if X has the following ergodic decomposition

N={yeX: Ty=ylal-T)X ()

We denote by F(T) the set of fixed points of the linear operator 7.

A Banach space X will be called mean ergodic if every power-bounded operator
T € B(Y) satisfies (). Lorch [5] proved that all reflexive Banach spaces are mean
ergodic. We refer the reader to [4] for additional references (to which [8] should
be added). Sucheston [7] posed the following question, concerning the converse of
Lorch’s result: If every contraction in a Banach space X s mean ergodic, is X

" Joint work with V. Fonf and P. Wojtaszcezyk

T



reflezive? Even under the stronger assumption, that all power-bounded operators
are mean ergodic, i.e., X is mean ergodic, the problem is still unsolved.

Main Theorems. Let X be a Banach space with a Schauder basis.

(i) X is finite-dimensional if and only if every power-bounded operator is uniformly
ergodic.

(ii) X is reflezive if and only if every power-bounded operator is mean ergodic.

(iii) X is quasi-reflexive of order one (i.e., dim X**/X = 1) if and only if for every
power-bounded operator T', T' or T* is mean ergodic.

The basis is used in the paper for the constructions of operators in the proofs of
the “if” parts.

Corollary 3.25.1. A Banach space X is reflezive if and only if every closed subspace
of X 1s mean ergodic (i.e., each power bounded operator defined on a closed subspace
is mean ergodic).

Proof. Suppose that X is non-reflexive. By a result of Pelczynski [2, p. 54], X has a
non-reflexive (separable) closed subspace with a basis, which yields a contradiction
to Main Theorem (ii). The converse follows from Lorch’s Theorem. d

Butzer and Westphal [1] proved that every power-bounded operator S in a re-
flexive Banach space Y satisfies

{y: R HZS‘“yII e oo} = ([ =S¥ (% % %)

k=0

This equality was further studied in [3], where additional references are given.

Theorem. A Banach space X is reflezive if and only if every power-bounded oper-
ator S defined on a closed subspace Y C X satisfies (x * *).

Proof. 1If X is reflexive, the result follows from |[1].

For the converse, we show that every power-bounded T on a closed subspace
Z is mean ergodic, and apply the previous corollary. Assume T is power-bounded
on Z, and let S be the restriction of T" to the invariant subspace ¥ = (I —T)Z.
For z € Z, the vector yp = (I — T)z obviously satisfies sup,, || > r_y S*yol| < oo,
0 by (# * *) there is y; € ¥ with (I — S)y; = yy. Hence (I — T)(z — y1) = 0, so
z —y1 € F(T), which yields z € F(I')& (I = T)Z. Hence Z = F(T) & (I - T)Z,
and T is mean ergodic. O

The previous proof can be used to show the following

Proposition 3.25.1. Let T' be power-bounded on X. If (I — T)X is reflezive, then
T is mean ergodic.

An equivalent formulation of the proposition is:

Proposition 3.25.2. Let A be a bounded operator from a Banach space X into a
reflexive subspace. If T'= I + A is power-bounded on X, then T is mean ergodic.
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IL. In this paper, we obtain a positive solution to this last problem for Banach
spaces with bases (throughout this paper, a basis means a Schauder basis). From
this result we conclude that a Banach space X is reflezive if and only if every closed
subspace is mean ergodic. Our construction also yields that a Banach space with
basis is finite-dimensional if and only if every power-bounded operator is uniformly
ergodic. We show that a non-reflexive Banach space with basis is I-quasi-reflexive
if and only if for every power-bounded T, T or T* is mean ergodic, and such a space
is not mean ergodic.

Recently, Emel’yanov and Wolff 8] have proved that on any (not necessarily
separable) Banach space X which contains ¢, there is a power-bounded operator
which is not mean ergodic. Our methods vield a different proof of this result.

We mention that Eeml’yanov [7] proved that if every power-bounded operator
on a Banach lattice £ is mean ergodic, then E is reflexive. For a dual Banach
lattice, Zaharopol [22] proved that if all power-bounded positive operators are mean
ergodic, then the Banach lattice is reflexive.

2. Ergodic characterizations of reflexivity and l-quasi-reflexivity

Definition 3.25.1. A Schauder decomposition of a Banach space X is an infinite
sequence {Ej}72, of closed subspaces {0} # E, C X such that each z € X has a
unique representation x = Y 27y, with z, € Ej, (k=1,2,...). We denote it by
X =% E.

The corresponding “coordinate” projectors @, : X — E). are defined for z =
>.z; (z; € E;) by Qpz = z (k =1,2,...,). The “partial sum” operators P, =
he Qe (n=1,2, ...) satisfy lim, P,z = z for every z. An adaptation of the proof
given in [20, vol. I, pp. 18-20] for bases shows that the partial sums operators

i)



are continuous and uniformly bounded (see |20, vol. II, p. 499]). Hence also the
coordinate projectors are continuous and uniformly bounded. By introducing the
following norm (which is equivalent to the original one)

Izl = sup{[iQkzll, || Pezll : k& =1,2,..},
we get
@l = IIPll =1 V&> 1. (1)
Since power-boundedness of a linear operator is the same in all equivalent norms,
whenever necessary we may assume that the original norm || - || satisfies (1).

Definition 3.25.2. A Schauder decomposition X = 3,7, F is called shrinking if
for each f € X* we have lim,, o || fix-= g || =0.

i=n

Note that if each subspace Ej of a Schauder decomposition is spanned by one
vector ey, then {e.} is a basis of X, and when this decomposition is shrinking we
call {ex} a shrinking basis.

Lemma 3.25.1. Let X = Y, X} be a non-shrinking Schauder decomposition of
a Banach space X. Then there is a Schauder decomposition X = 3, E, with the
following property: there exist a linear functional h € X* and a sequence {e;}, such
that for every k > 1 we have e, € Ey, |lex|| < 1, and h(e;) = 1.

Proof. Since the decomposition X = >, X is not shrinking, there is a functional
f € X* with ||f|| = 1 and limsup, ||fiss,.. x./| = @ > 0 (obviously a < 1). Take a
vector y; such that -

_ 03
Zah Ve X fwll=1  Ifw)l>

k=ni+

Find ny > ny with || 3202, a"z{"|| < /4, and take a vector y, such that

. &
Yo = Z ak J, ; -731(;2) = ‘\k, ||y2|| =1, |f(7J2)| > 9°

2
k=no-+

We continue inductively and obtain a strictly increasing sequence of integers {n;}
and a sequence of vectors {y;}, such that for each j,

o0

- " 8
= aled, o eXe lyll=1 If@)l>3,
k=n;-+1

g
and || S5, o0 V27V < §

Define E1 = 2121){1, dnd Ej = Z:“;’ X for 7 > 2. Clearly {£;} is a
Schauder decomposition. Put z; = ?“ﬂnf“agf)mgf}. Then z; € E;, and, by the

construction, 1 — /4 < ||z5]| < 14 a/4 and a/4 < |f(z;)| £ 1+ «/4. Finally, let
/.r, = 2 ¢ and define e; = m% Then |le;|| < 1, and h(e;) = 1 for evelé
j.
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Theorem 3.25.1. If a Banach space X admits a non-shrinking Schauder decom-
position, then there ezists a power bounded linear operator T' € B(X') which is not
mean ergodic.

Proof. Let X = 332 Ej be the decomposition given by the Lemma, so we have
h € X* and a sequence {e;} such that e, € Ej, hier) =1, |lex|| <1, k=1,2,....
The change to a norm satisfying (1) yields that llexl| < M, so we replace e, by
M~te;, and h by Mh. Thus, we can assume that the norm satisfies (1) (for the
projectors defined by {E}}).

Take an arbitrary sequence g = {a;}22, of positive numbers with

o0

Zﬂljzl, a; > 0, j=1,2,..., (2)

=1
and denote A, = Z?:l a;. For x € X and m > n > 2 we then have

m

m n—1 k n—1 m m m
Y AQrz = D QD e+ Y aja = O e Qua) + > a; () Qia).
i=1 j=n k=n J=n k=j

k=n k=n ] j= i=1
Since ), @z converges, we see that {2 ke AxQra}m is a Cauchy sequence in the
norm, hence converges. Denoting Py = 0, we obtain by (1) that

m

1D A@uell = 13" a3 Qua)ll = 1> a5(Po — Pry)all < 20zl (3)
k=1 i=1 k=j j=1

We now define an operator 7, : X — X by

[o.o] oG
A0 = Z ApQrx + Z h(Pj_1x)aje;. (4)
k=1

=2

Since |le;|| <1 for every j, (1), (2) and (3) yield ITaz]| < (2 + ||A]])]|z||, so
ITall < 2+ ||| (5)

The bound (2 + ||4||) for ||T,|| does not depend on the choice of the sequence

{a;} satisfying (2), so in order to prove that the operator 7, is power-bounded, it
is enough to show that for sequences a and b satisfying (2), the composition 7,7}, is
of the same type (say T,). We formulate it precisely:
Claim. Let the sequences a = {a;} and b = {b;} satisfy (2), and define the operators
Io and Ty by (4) (with By = 0 aend B, = >i=1bi). Then the sequence ¢ = {c;},
defined by ¢; = Ajbj+Bj_ja;5, j=1,2, .., satisfies (2), and the composition satisfies
1,7.=T,

Proof. Clearly C, = A;B,. We obtain that ¢ satisfies (2), since for n > 2 we have

n—1 n k

On = ZCj = Z(Bjilaj T {)jAj) = Zbi‘ Z a; + Zbk Zaj
i=1 =1 k=1

k=1 }:L+I = _]:1
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n—1

= Z bk-An -+ {)nfln &= /ilan'
k=1

Now we show that T,T;, = T,. In view of the decomposition X = >k Bk, it is
enough to show that T,Tye = T.e for each vector e € Fy, k = 1,2,.... Fix k, and
take z; € Ej. The definition (4) yields

> Ta.’l.'k = Ak.'L‘k + Z h.(ﬂ:k)ajej = AkIL‘k + h(’Lh) Z a;e; (6)

j=k+1 j=k+1

We apply (6) to T, and to T, and obvious computations yield

TQ(T(,.’Ek) = T (BKJ;L -+ h ’LL Z b 83, = A;‘B; Ty -+ h,(’E,;) Z (Bj_laj + bjAj)Ej
j=k+1 j=k+1

Since A;By, = C}, an application of (6) to ¢ yields 7, (Tyzy) = T.z, and the claim
is proved. O

‘To prove that the power-bounded operator 7, is not mean ergodic, it is enough
to show (by the above mentioned Sine’s criterion [17]) that the non-zero functional
h is a fixed point for T}, while zero is the only fixed point for T},.

Suppose that T,z = z. Using the definition (4), we have

Z hor=g=Tr= Z ApQrx + Zh(Pk_lsL‘)akek.

k=1 k=2

We look at the components in each Ey. For k = 1 we have Q1 = A;Q 1z, 50 Q12 = 0
since A} =a; < 1. For £ > 1 we obtain (1 — A;)Qrz = h(Pr_,z)are;. Assume now
that Q;z = 0 for every j < k; then P,_,z = 0, and thus (1 — 4;)Qz = 0, yielding
(Qrr = 0. Hence by induction we have Q .z = 0 for every k > 1, so T,z = z implies
n =1

Fix an arbitrary & > 1 and take an arbitrary e € Ej. Applying h to (6) and
using h(e;) = 1 for every j, we obtain

(Trh)(e) = h(T,e) = h(Are + h(e) Z aje;) = Aghle Z fly =
j=k-1 j=k+1

In view of the decomposition X = )", Ei, we have T*h = h. The Theorem is now
proved. O

Remark 3.25.1. Clearly, Z 1 a; Pj_1x converges in norm for {a,} satisfying (2), and
the equality of the vector sums appearing in the first and third terms of (3) yields

Z hQ;erZaJ )8 =T — ZGJ -1r Vz e X, (7)

k=1



Remark 3.25.2. In fact, the functional h of the previous proof is the only fixed point
for T (up to a scalar multiplier). We now prove this fact, though not needed for
Themem 1, since it will be important for Theorem 4.

So, we assume that T f = f, and prove that f = th for some scalar t. With
Py = 0, we can write (4) as

s3]

T e Z(AQO.r F Pt 0mEn)

m=1

Duality yields (with w*-convergence of the series)

T f Z mQ f+amf(em) m—1 ) (8)

m=1

Since f =3 > _ Q. f (again, w* -convergence of the series), the assumption T f =
[ and (8) yield

> (1~ An)Qinf — amf(em) Py h] = 0. 9)

m=1
Now fix an integer n, and apply the functional of the left side of (9) to a vector
2y Bl

Z[(l — An)( :nf)(zn) - amf(em)(Pr;—lh)(zﬂ)] =

Z[(l - Am).f(szn) - amf(em)h(Pm_lzn)] =
(1= An)f(zn) - Z a.mf(em)h(zn) = 0. (10)

Since fi(e,) = 1, (10) with z, = e, yields the following system of linear equations
in the unknowns ¢, = f(e,) m=1,2,...:

(1—A4,) Z mtm n=1,2, ... (11)

m=n+-1

Subtraction of equation number n from equation number (n + 1) shows that the
only solution of the system (11) is ¢, =t, = ... = £, s0

flen) =t =thlen), n=1,2,... (12)

In order to prove that f = th, we show the equality on each E,. Fix z € E,. Then
Maz — h(x)en) = h(z) — h(z)h(e,) = 0 since h(e,) = 1. Denote z = 2 — h(z)e,. By
(10) with z, = z we have

o0

(1-4)f(z) = > amflem)h(z) = 0.

m=n-+1

Since h(z) = 0, this yields f(z) =0, so f(z) = h(z)f(e,) = th(zx).
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Corollary 3.25.2. Let X be a (separable) Banach space with a basis. Then X is
reflezive if and only if every power-bounded operator in X is mean ergodic.

Proof. Zippin [23] proved that if a non-reflexive Banach space has a basis, then it has
a non-shrinking basis. Thus, if X is not reflexive, Theorem 1 yields a power-bounded
operator which is not mean ergodic. If X is reflexive, apply Lorch’s Theorem. [

Corollary 3.25.3. For every Banach space X the following assertions are equiva-
lent:

(i) X is reflezive.

(ii) Every closed subspace of X is mean ergodic (i.e., each power bounded operator
defined on a closed subspace is mean ergodic).

Proof. (ii) = (i) : Suppose that X is non-reflexive. By a result of Pelczynski [6, p.
54], X has a non-reflexive (separable) closed subspace with a basis, and Corollary 1
yields a contradiction.

(i) = (it) follows from Lorch’s Theorem, since a closed subspace of a reflexive
Banach space is reflexive. O

Theorem 3.25.2. If an infinite-dimensional Banach space X admits a Schauder
decomposition, then there is a mean ergodic power-bounded operator T € B(X)
which is not uniformly ergodic.

Proof. We may assume that the norm satisfies (1). For a sequence {a;} satisfying
(2), let Tox = 3 07 ApQrz (T, is defined as in (4) with A = 0). By the proof of
Theorem 1, T, is power-bounded, and has no fixed points except 0 ( this part of the
proof did not require the special properties of h, which were used only to show that
Ty had h as fixed point).

Let f € X" satisfy T, f = f. Then for z, € E, we have

f(z) = f(Tazn) = ) Acf(Qizn) = Anf(2n)-

k=1

Since A, < 1 for each n, we have f(z,) =0 for any z, € E,. Hence T f = f implies
f =0, which yields (Hahn-Banach) that (I — T,)X = X, so T, is mean ergodic.

Since T, has no non-zero fixed points, it is uniformly ergodic if and only if I — T,
is invertible on X [19]. By definition,

U-T)r=2-) A=Y 1-A)Qu=» (Y a;)Qsz.
k=1 k=1 k=1 j=k-+1

We now take a; =277 for j > 1, and put 7 = T,. Then (I — T)z = Y 2, 27 Q.
Take a sequence e € Ey, with |lex|| = 1 for every k. Then > 7, k%ek converges, say
to y. When we try to solve (I — T")z = y, we obtain the equations Q .z = i—.iek,
which imply ||@Qrz|| = co. Since for z € X we have Qpz — 0, there isnoz € X
with (I — T)x = y, so I — T is not invertible, and therefore T' is not uniformly
ergodic. ]



Remark 3.25.3. The existence of 7" which is not uniformly ergodic in X' with an
unconditional basis was proved in [12].

Corollary 3.25.4. Let X be a Banach space with basis. Then the following condi-
tions are equivalent:

(i) X is finite-dimensional.

(ii) Every power-bounded operator is uniformly ergodic.

(iii) Every mean ergodic power-bounded operator is uniformly ergodic.

Proof. Clearly, if X is finite-dimensional, every power-bounded T € B(X) is uni-
formly ergodic. Obviously, (i) = (441), and (éit) = (i) follows from Theorem 2. [

The ideas in the proof of Theorem 1 can be used to obtain the following gener-
alization, which applies also to non-separable spaces:

Theorem 3.25.3. Let a Banach space X admit a sequence of projectors { P} such
that

(1) sup || Pl < o0

(11) PPy = min(m,n)

(iii) There ezists a functional h € X* such that for each n > 1 there is a vector
en € (P — Pu1) X with |le,|| < 1 and h(e,) = 1.

Then, for a sequence {a,} which satisfies (2), the operator

o0 [ 0]
Syr=g— ZanPn_i.’I: + Z il Py i) B (13)
n=2

n=2
is power-bounded and not mean ergodic.

Proof. Tt is immediate from the assumptions that S is well defined. Denote Y, =
P, X. By (ii), {Ya} is an increasing sequence of subspaces, and ¥ = ., Y, is
a S-invariant subspace. By (ii), lim, P,y = y for y € Y}, so by (i) lim, Py =y
for every y € Y. Let Q, = P, and Qe =F— P fork > 2 Itis easily
checked, using (i), that each Q, is a projection, and @Q;Q; = 0 for j # k. Since
D k=1 Quy = Poy — y for every y € Y, the sequence {Ey.} with B, = QX = Q.Y
is a Schauder decomposition of V. Assumption (iii) allows us to apply the proof of
Theorem 1 to ¥ - the restriction of S to V is the operator 7, constructed in that
proof, when we substitute (7) into (4). Hence there is a vector y € Y such that the
sequence { > ' Ty} does not converge, which shows that S is not mean ergodic.

To complete the proof, we have to show that S is power-bounded on all of
X (this does not follow from the proof of Theorem 1, since Y is not necessarily
complemented in X).

Denote S by S, to indicate the dependence on {a;} (which satisfies (2)). Clearly

1Sazl] < llll + flzll (1 + [|A]) sup || Py

s0 we have an estimate of the norm of S, which is independent of a. As in the proof
of Theorem 1, the power-boundedness follows from the following claim. |
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Claim. Let the sequences a = {a;} and b = {b;} satisfy (2), and define the sequence
¢ = {c;} by ¢; = A;b; + Bj_aj, 7 = 1,2,...,. Then {c;} satisfies (2), and the
operators S,, Sy and S, defined by (13) satisfy S,S, = S,.

Proof. {c;} satisfies (2) by the claim in the proof of Theorem 1. Apply property (ii)
to (13), we obtain

Puls#) = Pt — Z b;P,P,_z + Z bih(P_1x) Pye;
i=2 i=2

= .Pn.’L' = Zbi-Pi——l-T — (1 — Bn)Pn.’l: + Zbih(ﬂ_lm)ei.

=1 i=1

We substitute this into

Sal(S) = Spx— z anPp_1(Spz) + Z anh(Pr_1(Spz))en,

n=2 n=2
and some straight forward (tedious) calculations prove the claim. O

Corollary 3.25.5. Let X be a Banach space which contains a closed subspace iso-
morphic to ¢y. Then there exists a power-bounded T' € B(X) which is not mean
ergodic.

Proof. Let Y be a closed subspace of X isomorphic to ¢y, and let y, € Y be the
image of the of the unit vector e, € ¢;. Then {y,} is a basis of Y, and there is K" > 0
such that || > 72 a;y;]l < K sup, |aj|. Let {y;} C Y™ be the coefficient functionals,
which are uniformly bounded, and take f, € X* a Hahn-Banach extension of yr.
We now define =, = 377 ,9; and g, = f, — fur1. Then ge(zn) = Ok, and the
operators P,x = ) ! . gi(z)z; are commuting projections satisfying assumption
(ii) of Theorem 3. The functional h = f; satisfies assumption (iii) since h(z,) = 1.
Finally, the isomorphism of Y and ¢ yields that sup, ||P.|| < 2K sup,, || f.||, since

Pn:L‘ = fl (-T)yl - .fnﬁfl(m)l‘n + Z fk(-T) (-Tk - -Tk—l) = Z[.flz(w) - fn-[-l(m)]yk-
k=2 k=1

O

Remark 3.25.4. The Corollary was first proved in [8] using a different method. Note
that if X' is separable (as any space with a basis is) and contains ¢, then (even
without a basis), there is a power-bounded operator T € B(X) which is not mean
ergodic, since ¢y is complemented in X [6, p. 71|, and Ty € B(cy) defined by
To(ar, a2,as, ...) = (a1, a1, a2, ...) is power-bounded and not mean ergodic. Thus, the
novelty of the result is for non-separable spaces, in which ¢y need not be comple-
mented.

For a basis {x;} of a Banach space X, we denote by {z!} the associated coefficient
functionals. Recall [20, vol. I p. 268 that a basis {;} is called k-shrinking if
codim [27]22, = k (where [y;]32, denotes the closed linear manifold generated by the
sequence {y;}32,). It is well known [4],[20, vol. I p. 272| that a basis is 0-shrinking
if and only if it is shrinking in the sense of Definition 2.
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Definition 3.25.3. A Banach space X is called quasi-reflezive of order k if
dimX**/X =k < oo (we identify X with its natural embedding in X**). The
original construction of the James space [15], valid over the real or complex field,
yields an example of a Banach space with basis which is quasi-reflexive of order 1.

Theorem 3.25.4. Let X be a Banach space with a basis, such that dim X** /X > 2.
Then there exists a power-bounded operator T € B(X) such that neither T nor T*
are mean ergodic.

Proof. According to Zippin’s result [23] mentioned above, the (non-reflexive) space
A has a non-shrinking basis, say {u:}; that is, {w;} is a basis which is not O-shrinking.
If {;} is k-shrinking with & > 2, we keep it. If {u;} is 1-shrinking, we use Theorem
1 of [5]: Let X be a Banach space which is not quasi-reflezive of order k (in our
case dim X**/X > 2, so X is not quasi-reflexive of order 1). If X has a k-shrinking
basis, then X has a (k 4 1)-shrinking basis. Thus, we have established that there
exists in X a basis {z;} such that

codim [z}]2, > 2. (14)

Since this basis {z;} is not shrinking, the Lemma (with Xp = {tzx : t € R})
yields a Schauder decomposition X = > B with the following property: there
exist a functional ~ € X* and a sequence {er}, e € Ey, k = 1,2,... such that
hler) = 1, |le]l < 1,k = 1,2, ... By the construction in the proof of the Lemma,
each Ej is finite-dimensional, and the decomposition X =}~ E} has the following
additional property: the “partial sum” operators P, are of the form

Froiftims Zr:(;r)'c“ rEeEX; m=1.2...
i=1
This yields P, f = 3" f(z;)xf for f € X*, and so, Ny ker B =212+, By (14),

i=1

dim ﬂ ker PUY = dim(X™/[27]2,)* > codim [z]]2, > 2. (15)

m=1
We now proceed as in the proof of Theorem 1. For a sequence a = {a;} satisfying
(2), define the operator T, according to (4). It was shown that T, is power-bounded
and not mean ergodic, F(T,) = {0}, and F(T*) = {th}. We will choose {a;}
satisfying (2) such that 377 (1 - 4,) < oo (e.g., a; = 277). Since dim F(T) = 1,
to prove that the operator T is not mean ergodic we have to show (by Sine’s

criterion) that dim F(7}*) > 2. By (15), it is enough to show
F(T;") = () kerPy;. (16)
From (4), (1), and the condition Yo (1 —A,) < oo, it follows that

oC o0
T =+ Z(Am —1)Qi b + Z Bl () B

m=1 m=2
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Hence ¢ € F(T;*) is equivalent to

] o0
Z(l - Arn)Q;:"rb — Z arxlpr;i17r’l)(13)€nlv (17)
m=1 m=2

If Py*p = 0 for every n > 1, then clearly (17) holds, so ¢ € F(T:*). Suppose now
that ¢ € F(T,*); we apply the operators Q%" to both sides of (17), and obtain

the equations (1 — A,)Q}* % = a, P ;w(h)e,, n = 1,2,.... Solving successively,
we obtain Q;*1 = 0 for n > 1, which proves (16) and completes the proof of the
theorem. |

Remark 3.25.5. Every operator T' on X is the restriction of T** to its invariant
subspace X, so if T** is mean ergodic, so is T". Hence, if both operators T and T*
are not mean ergodic, then automatically all the next conjugates (7%, T***,...) are
not mean ergodic.

Theorem 3.25.5. Let X be a non-reflexive Banach space with a basis. Then the
following assertions are equivalent:

(i) X is quasi-reflezive of order one.

(ii) For each power-bounded operator T € B(X), T or T* is mean ergodic.

Proof. (ii) = (#): If dim X** /X > 2, then Theorem 4 yields a contradiction to (ii).

(1) = (4) : Let T be a power-bounded operator on X which is not mean ergodic.
By Sine’s criterion, F'(T") does not separate F'(T*), so there is fy € F(T*) such that
fo(y) =0 for every y € F(T'). To show that T* is mean ergodic, we will prove that
F(T*) separates F(T**). As mentioned in the introduction, F'(T™) always separates
F(T). Hence F(T**) separates F(T*), so there is 1)y € F(T**) such that v;(fy) # 0.
By the definition of fy, %y is not in F'(T), so 1y ¢ X. Since dim X**/X =1, every
¢ € X** is of the form ¢ = ardy + z with z € X, so each ¢ € F(1"*) is of the form
Y = anfy +y with y € F(T). We then have ¢(fo) = ayo(fo) # 0 for ¢ € F(T*)
with o # 0. If @ = 0, then % is in F(T), and the separation of F(T') by F(T")
provides an f € F(T") with ¥(f) = f(v) # 0. Hence F(T*) separates F(T**), so
1™ is mean ergodic by Sine’s criterion. O

Remark 3.25.6. The implication () = (ii) does not require a basis for X,

It T € B(X) is power-bounded, then it is easily shown that
(I-T)X C{y: L | iT"yII <oo} C (I -T)X.
Tk=1
When T is uniformly ergodic, then [19] (I — T')X is closed, which yields
> (I-T)X = {y: sup|| 3 Ty < oo} (18)
=

If X' is a dual space and T is a power-bounded dual operator, then (18) holds [18].
It now follows from Theorem 2 that in every infinite-dimensional reflexive Banach
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space .X' with a basis there is a power-bounded T which is not uniformly ergodic, but
satisfies (18). It was shown in [12] that if X is a separable Banach space which does
not contain infinite-dimensional dual spaces, then (18) implies uniform ergodicity.
This result is true also in complex Banach spaces, since the needed result of [11],
stated for real spaces, is valid also in complex spaces, with the same proof.

Proposition 3.25.3. Let Z be an infinite-dimensional Banach space which is the
dual of a separable Banach space (e.g., Z is a separable dual space). Then there exists
an infinite-dimensional Banach space E with a basis such that E* is wsomorphic to
a closed subspace of 7.

Proof. This proposition is an immediate consequence of the results of [16]: Let F be
separable, with F* = Z. Since the unit ball of Z is compact in the weak-* topology
and not in the norm, there is a sequence {vn} in Z which is weak-* convergent to 0,
such that lim sup,, ||y,|| > 0. Combining Theorem III.1 and Proposition I1.1(a) of
[16], we obtain a separable Banach space £ with a basis, such that £ is isometrically
isomorphic to the weak-* closed subspace generated in Z by a subsequence {y,, }. O

Theorem 3.25.6. Let X be a Banach space. Then the following conditions are
equivalent:

(i) X does not contain an infinite-dimensional closed subspace isomorphic to the
dual of a separable Banach space.

(ii) Every power-bounded operator T defined on a closed subspace Y, which sat-
wfies F(T) = {0} and (I - T)Y = {y € Y : sup, || > et TRyl < 00}, is uniformly
ergodic.

If X is separable, each of the previous conditions is equivalent to

(iii) Every power-bounded operator T defined on a closed subspace Y which sat-
wsfies ([ =T)Y ={y €Y : sup, || XL, TFy|| < oo} is uniformly ergodic.

Proof. The proof of (i) = (ii) is the same as that of Corollary 3.4(ii) of [12], noting
that the results of [9], [10] used there yield a dual of a separable space. For the
complex case, we observe that the proofs of Proposition 7.1 and Corollary 7.2 in
[14] are valid also for complex Banach spaces, and these results imply the required
result of [9]. (The result of [10], proved for real spaces, is more general than needed
here; see also Theorem 3.2 in [13])

We now assume that (i) holds. If (i) does not hold, then X has an infinite-
dimensional closed subspace Z which is isomorphic to the dual F'* of a separable
Banach space F'. By the Proposition, there is an infinite-dimensional Banach space
E with a basis, such that E* is isomorphic to a subspace of F*. Hence E* is
isomorphic to a closed subspace of Z, say Y. By Theorem 2, there is a power-
bounded S € B(E) which is not uniformly ergodic, with F(8*) = {0}. Let T €
B(Y') correspond to S*. Then (I —T)Y = {y € Y : sup, || >op=q T*yll < o<} by
[18], but T is not uniformly ergodic since S is not — contradicting (ii). Hence (i)
must hold.

When X is separable, (i) = (i) follows from Theorem 3.3 of [12], applied to
any closed subspace Y (which also satisfies (i) ). Clearly (3ii) = (i1). O

89



References

[1] A. Brunel and L. Sucheston, Sur quelques conditions éguivalentes  la super-
reflezivité dans les espaces de Banach, Com. Rend. Acad. Sci. Paris Sér. A
275 (1972), 993-994.

[2] A. Brunel and L. Sucheston, On B-convex Banach spaces, Math. Systems The-
ory 7 (1974), 294-299.

[3] W. Davis, Separable Banach spaces with only trivial isometries, Rev. Roumaine
Math. Pures Appl. 16 (1971), 1051-1054.

[4] M. M. Day, Normed Linear Spaces, 3rd ed., Springer, Berlin, 1973.

[5] D. Dean, B-L Lin, and 1. Singer, On k-shrinking and k-boundedly complete bases
in Banach spaces, Pacific J. Math. 32 (1970), 323-331.

[6] J. Diestel, Sequences and series in Banach spaces, Springer, New York, 1984.

[7] E. Emel'yanov, Banach lattices on which every power-bounded operator is mean
ergodic, Positivity 1 (1997), 291-296.

[8] E. Emel’'vanov and M. Wolff, Mean ergodicity on Banach lattices and Banach
spaces, Arch. Math. 72 (1999), 1-5.

[9] V. Fonf, Injections of Banach spaces with closed image of the unit ball, Func-
tional Anal. and Appl. 19 (1985), 75-77.

[10] V. Fonf, Dual subspaces and injections of Banach spaces, Ukrainian Math. J.
39 (1987), 285-289.

[L1] V. Fonf, On semi-embeddings and G; embeddings of Banach spaces, Mat. Za-
metki 39 (1986), 550-561 (in Russian); English transl. in Math. Notes 39
(1986).

[12] V. Fonf, M. Lin, and A. Rubinov, On the uniform ergodic theorem in Banach
spaces that do not contain duals, Studia Math. 121 (1996), 67-85.

[13] V. Fonf and J. Lindenstrauss, Some results on infinite-dimensional convezity,
Israel J. Math. 108 (1998), 13-32.

[14] V. Fonf, J. Lindenstrauss and R. Phelps, Infinite-dimensional convezity, to ap-
pear in Handbook on Banach spaces, Elsevier Science, Amsterdam.

[15] R. C. James, Bases and reflezivity in Banach spaces, Ann. Math. (2) 52 (1950),
018-527.

[16] W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applica-
tions to the study of Banach spaces, Studia Math. 43 (1972), 77-92.

[17] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.

[18] M. Lin, On quasi-compact Markov operators, Ann. Proba. 2 (1974), 464-475.
[19] M. Lin, On the uniform ergodic theorem, Proc. AMS 43 (1974), 337-340.

[20] L. Singer, Bases in Banach spaces, Springer, Berlin, vol. 1 1970, vol. II 1981.
[21] L. Sucheston, in Probability in Banach spaces, Springer Lecture Notes in Math.

526 (1976), 288-290.

90



[22] R. Zaharopol, Mean ergodicity of power-bounded operators in countably order
complete Banach lattices, Math. Z. 192 (1986), 81-88.

[23] M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math.
6 (1968), 74-79.

3.26 Waclaw Marzantowicz
Homotopy minimal periods for nilmanifold
maps and number theory

A natural number m is called the homotopy minimal period of a map f: X — X if
it is a minimal period for every map g homotopic to f. Of course the set HPer(f) is
a subset of the set of all minimal periods Per(f) . In a work with Jezierski [1] we give
a complete description of the set HPer(f) of homotopy minimal periods of a map
of a compact nilmanifold X, dim X = d, which extends a previous result of Jiang
and Llibre for the torus ([3]). The main theorem of is the following. Let 4 = Ay be
the integral matrix of linearization of f given by the Fadell-Husseini construction
(cf. [1]), N(f) the Nielsen number, L(f) the Lefschetz number, and

Ty = {n e N|det(l — A™) # 0}.

Theorem 3.26.1. Let f: X — X be a map of a compact nilmanifold X of dimen-
sion r, A a matriz associated with f and called the linearization of f (cf Thm. 2.1
of [1]), and Ty C N the subset defined above.

Then HPer(f) C Ty and it is in one of the following three (mutually ezclusive)
types, where the letters E, F, and G are chosen to represent “empty”, “finite” and
“generic” respectively:

(E) HPer(f) is empty if and only if N(f) = L(f) = 0;

(F) HPer(f) is nonempty but finite if and only if all eigenvalues of A are either
zero or roots of unity;

(G) HPer(f) us infinite and T,y \ HPer(f) is finite.

Moreover, for every dimension r of X, there are finite sets P(r), Q(r) of integers
such that HPer(f) C P(r) in Type F and T, \ HPer(f) C Q(r) in Type G.

The proof follows the approach of Jiang and Llibre and uses the Nielsen theory.
It is based on the motion of the Nielsen number of m-periodic points, denoted
by NPy(f). It is defined as the number of essential Reidemeister classes of fixed
points of f™ which are irreducible, i.e. are not in the Reidemeister relation with a
fixed point of f* n < m. Remind that two fixed points z, ¥ € X of f are in the
Reidemeister relation if there exist a path w, in X such that w(0) =z, w(l) = y,
and w ~ f(w) rel {z, y} . A class [z] of the Reidemeister relation is called essential if
the fixed point index of f at [z] is different from 0 . and by the definition the Nielsen
number N(f) is equal to the number of essential classes. The main geometric
ingredient is a theorem on cancelling m-periodic points of a local homeomorphism
which leads to the following.
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Theorem 3.26.2. Let f : X — X be a selfmap of a compact nilmanifold X and
P,(f) denote the of the set of all points with the minimal period equal to n.
If NP,(f) = 0 then f is homotopic to a map g : X — X such that P,(g) = 0.

For a map of a nilmanifold the general case reduces to it by a homotopy argument.
The remaining arguments of the proof, combinatorial and number theory, are taken
from [3|. It is worth of pointing out that the fact that in an infinite essential case (G)
we have N(f™) > N(f") for n < m, n|m if m > my, my depending on r = dim A
only, is the main and most difficult algebraic step in the proof such a theorem in
[3]. It is a theorem which says that powers of an algebraic number of module 1 not
being a root of unity can not converge to 1 too fast. We observed also that the
above inequality for Nielsen numbers can be also deduced from an earlier result of
Schinzel on primitive divisors in algebraic number fields.

Note that the set HPer(f) of all minimal homotopy periods is an invariant of the
dynamics of f which is the same for a small perturbation of f. In the forthcoming
paper [2] we give a complete description of the sets of homotopy minimal periods
of self-maps of nonabelian three dimensional nilmanifold which is a counterpart of
the corresponding characterization for three dimensional torus proved by Jiang and
Llibre ([3]). As a corollary we get a Sarkovskii type theorem:

If a self map of a 3-nilmanifold different than 3-torus is such that 3 € HPer(f)
then N\ 2N C HPer(f) C Per(f). If 2 € HPer(f) then N = HPer(f) = Per(f).
In particular the first assumption is satisfied if L(f3) # L(f) and the second if

L(f?) # L(f).

References

[1] J. Jezierski, W. Marzantowicz, Homotopy minimal periods for maps of three
dimensional nilmanifolds, Faculty of Math. and Comp. Sci, UAM, preprint Nr
96, July 1999, to appear in Math. Zeitschrift.

[2] J. Jezierski, W. Marzantowicz, Homotopy minimal periods for maps of three
dimensional nilrmanifolds, manuscript, October 2000.

[3] B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete and
Continuous Dynamical Systems 4 No.2, (1998), 301-320.

3.27 Christian Mauduit
Correlations in infinite and finite words

The aim of this talk is to present a new notion of measure of correlation for finite
and infinite sequences introduced by A. Sarkézy and myself in a series of papers.
More precisely if Exy = (e:)1cicn € {—1,1}" we consider for any positive integer
k< N the quantity

Cr(EN) = max  Vi(En, M, Dy,
Ar -o‘—":ff‘,lng N
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where D = (dy,ds, ..., d;) with 0 < d; < dy < -++ < dj and

M
Vi(En, M, D) =) envasCurds - Ena-

n=1

A first probabilistic result shows that for any positive integer £ and any £ > 0,
there exist Ny € N and d > 0 such that if N = Ny, then we have with probability
greater than 1 — ¢

§VN < Ci(Ey) < 51/kNlog N.

Then, we focus our interest on the study of correlations in the case of the following
constructions:

— the Rudin-Shapiro sequence (Rn)nzo defined by the relations Ry = 1, Hou =
R, and Ry = (=1)"R,, for n > 0, for which we have for any positive integers d
and M

2M
Y RaRniq < 2d + 4dlog, e

n<M

— a construction suggested by P. Erdés, defined for any o € R \ @ by

1 if 0L
9 =

for which we show that for D fixed and & = 2 or odd Vi(En(a), M, D) = o(M),
whereas

1
{nzcx} < Gl
{n?a} <1,

M
.1
lim H Z en(a)en.|.1(C\C’)Cn,|_2(a)en_|_3(af) ?é 0

n=1
for a set of & with positive measure;
— the Liouville sequence A(n) = (~1)™" where Q(n) denotes the number of
prime factors of the positive integer n for which it seems to be hopeless to prove
that

N
o1
lim ; An)A(n +1) < 1,

but for which we proved, in collaboration with J. Cassaigne, S. Ferenczi and J. Rivat
that

N
—— 1 2
im-—— , 2) < =,
th ,?zl Am)A(n +1)A(n+2) < 3

In a recent work, we introduce a new combinatorial function, defined for any positive
integer k by
M (N)= min C(Ey) forN > k.

Eye{-1,1}¥
If k is odd, then M (N) =1 for N > k, and we proved that if k is even, then

My(N) > @ log . for N > 2k and we ask the following questions:
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Problem 3.27.1. Is it true that there are positive constants ¢ and + such that
M5(N) =2 eN7 for N big enough.

The various examples we studied and computations we made lead us to ask the
following questions:

Problem 3.27.2. Are there sequences Ey such that Cy(Ey) = O(v/N) and
Cf‘;j(EN) = O(N) for N — +o0?

Problem 3.27.3. What are the connections between M, (N) and M,(N)? Is it true
for example that My(N) > M,(N) and even that (My(N) — My(N)) — 400 when
N — 4007

3.28 Milosz M. Michalski
Some problems in statistical mechanics of
superadditive lattice systems

The subject of this report is a multidimensional generalization of so-called sub-
additive thermodynamic formalism developed by Falconer [3,4] in the context of
dimension theory for nonconformal repellers (cf. also [1]). We are mainly interested
in the statistical mechanics of Z< lattice systems of interacting particles, the poten-
tial energy being given by a superadditive net of functions on configuration space
(self-adjoints of an appropriate C*-algebra in quantum formulation, respectively)
— local Hamiltonians of the system in question rather than by an explicit interac-
tion [2,5,6]. We introduce an appropriate Banach space of Hamiltonians and study
the properties of free energy density functional P on this space: similarly as in the
case of standard “additive” statistical mechanics, the free energy density is shown
to be convex and Lipshitz.

Using the technique of coarse graining, we define also the entropy and the mean
energy densities for a superadditive system. This allows us to formulate an analogon
of variational principle binding the above mentioned quantities. However, unlike in
the additive case, in general no equilibrium states can be found: probability mea-
sures realizing the variational extremality condition need not obey any translational
invariance, thus precluding a sound definition of entropy. Our results conform with
those of Falconer.

We conclude this report with a list of problems yet to be addressed in detail.

Basic notions and properties

We consider classical and quantum lattice systems on Z¢. In the classical case, the
configuration space is X = XDZJ with product topology, where &y = {1,2,...,p}
represents particle species in the model (e.g. possible spin orientations).

Classical observables form the commutative real C*-algebra C(X'). Macroscopic
states of the system are represented by probability measures on /X, identified with
respective elements of the dual space C*(X'). In quantum formulation, X is a
finite dimensional Hilbert space, and for each finite A C Z? the corresponding local
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observables are self-adjoint elements of the C*-algebra 2, of linear operators on
&, Ao. The appropriate inductive limit of such C*-algebras is the algebra 2 of
quantum observables. Quantum macrostates are represented by density operators
in 2.

Definition 3.28.1. A superadditive classical hamiltonian is a net H = {Hj}rcrin
of functions Hy € C(X) satisfying the following properties:
1° superadditivity: Hpuny 2 Hy + Hy,, for AyN A, =0
2° translation invariance: Hy,, = Hyo7 " forall A € Fin, r € Z%
|| Hall

3° uniform bound: ||H|| = sup -8 < o0
A A

Quantum systems are made up of nets of self-adjoint elements H, of local C*-
algebras 2. The superadditivity condition reads:
1° HA1UA2 > HA1®11A2 + HA1®HA2, for A\NA;=0.
In what follows, we deal with the classical case only, yet the transition to the quan-

tum one is straightforward.

Proposition 3.28.1. Nets H possessing the properties 2° and 3° form a Banach
space B. The collection S of superadditive nets is a closed cone in B. Those H for
which Ha/|A| are equicontinuous form a closed subspace B, of B.

Given r € Z¢ with strictly positive com onents, we use the following notation:
P P

o II{r) a4 {qEZd: 0<q <y, 'é:l,...,d}

o r|A (r divides A) < A can be tessellated by' rZ*-translates of TI(r)
f

o |r| = |II(r)| and Al £ |Al/]r| when r|A.
Free energy

The free energy density for a superadditive net H — {H4} is defined by the limit
4 Mlim L Iy
PH) = v/I:I‘}lécm A log [L ™4,

where vH-lim denotes the van Hove limit, 7 is a fixed reference probability measure
representing the state of noninteracting particle system (usually a product measure

on X, n=Qn).
For any r € Z* (r > 0) we also define the coarse-grained free energy

1 C g

izt (Hn(,.)) = vH-lim —— log/ e Ha dn,
Alioo IAIr X

with A % 0o meaning that A tends to co through regions divisible by » and

B = Z Hryr)1s = Z Hygyor™

SEANTEA sEANFLd



(compare this with local Hamiltonians of the standard “additive” theory,
dd :
Hy = ) Hiy = 3 Hoor™,
SEA SEA

all arising from a single function Hy which gives the “per head” interaction energy
of a particle at site 0 with the rest of configuration).

Proposition 3.28.2. For a superedditive net H = {H,}
1
P(H) = ll[Il — R(Hn(r))

T—}OOlI

Moreover, P( - ) is conver on & and Lipshitz with constant 1 there, i.e. for any
G,HeS
|P(G) — P(H)| < |IG-H]|.

Entropy and mean energy

Entropy density is defined for p € (J, A,, where A, is the collection of rZ%invariant

probability measures on X'. In what follows 7 is a fixed reference (product) measure.
We have

Proposition 3.28.3. Let ¢ € A,. Then the following limit exists:
d
’” - log

1\

vH 11m — ,u dn

defining the entropy density 5(,u|n). Moreover,

S(pln) = | | Se(pe|m),

where S, s the corresponding coarse-grained limit.

We also obtain, along similar lines, the existence of superadditive mean energy
density E for p € [J_ A, and its relation with the respective coarse-grained quantity
E‘."?

A—roo

1
E(H; ,u) = VH lim / Hidp = E.(H; p).
[Al rl

Superadditive variational principle

We have the following
Theorem 3.28.1. Let H = {H,} € SN B,. Then

P(H) = sup {S(uln) — E(H; p) },
pelUA,

yet the supremum need not be attained in the set |, A,.
The lack of equilibrium states, i.e. the ones realizing the supremum above, is the
consequence of the noncompactness of | J, A, even though the entropy is an upper

semicontinuous function of p. The wk-* closure of this set contains states without
any translational symmetry, for which the entropy is not defined.

96



Some further problems

Problem 3.28.1. To reformulate the subadditive variational principle in terms of
P-bounded and P-tangent functionals in B* using the convexity of P. This would

provide a rigorous background for approximation of “pseudo-equilibrium” states by
those in | . A,.

Problem 3.28.2. To develop a superadditive Gibbs state theory and study relations
between Gibbs and “pseudo-equilibrium” states.

Problem 3.28.3. In the one-dimensional setting, to study spectral properties of
transfer operator families corresponding to superadditive Hamiltonians. To investi-
gate properties of “superadditive” zeta functions.
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3.29 Mahendra Nadkarni'®
Sets with doubleton sections, good sets, and
ergodic theory

Let X and Y be two non-empty sets. Let S be a non-empty subset of X’ x V. We
say that S is good, if every complex valued function fon S can be expressed in the
form

F(2,9) = (@) + o(y). (2,9) €S,

where u and v are functions on X and Y respectively.

If one looks for some qualitative properties of Borel support of a probability
measure p on R? such that the co-ordinate functions span L*(R?, 1), one is led to
sets of the above type. Good sets can be characterized as follows: Say that two

5 Talk based on joint work with A. Klopotowski, H. Sarbadhikari, and S. M. Srivastava
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points (z,y), (z,w) € S € X x Y (S is not necessarily good) are linked (and write
(z,y)L(z,w)), if there exists a finite sequence of points {(z1,y1),. .., (Tn,yn)} in S
such that:

(I) (1'1,?}1) = ('T’y)a (a:myn) = (Z,’U));
(ii) for any 1 < i < n—1 ezactly one of the following equalities holds:

T = Tig1y Wi = Yig1s

(iii) for any ¢, 1 < ¢ < m — 2, it is not possible to have z; = =4, = T4 or
Yi = Yit1 = Yit2.

An equivalence class of the relation L is called a linked component of S. A link
L is said to be uniquely linked if any two points (z,y), (z,w) € L are joined by one
and only one link. A set S C X x Y is good if and only if each linked component
of S is uniquely linked. A good set can be written as a union if two graphs G and
H, G being the graph of a function on a subset of X with values in ¥ and H being
the graph of a subset of ¥ with values in X. Some natural questions arise:

(1) If S € R x R is a Borel set which is good and if f is a Borel measurable
function on S, can one choose the function u, v to be Borel measurable?

(2) If S is good and Borel measurable, can one choose the graphs G and H
mentioned above to be Borel measurable?

The answer to both these questions is affirmative if we assume that the partition
of S into linked components admits a Borel cross-section. On the other hand if the
partition into linked components is not countably generated, the answer to both
the questions above is, in general, negative. The counter-examples are provided
by the mathematics of subsets of R* with doubleton sections. A subset S of R?
is said to have doubleton sections if each section S, = {(¢,5) € S : t = z} and
S5Y={(t,s) € S:s=y} of S is a two point set.

To a set with doubleton sections are associated groups G and Gy defined as
follows: if (x,y) € S then there is a unique (z,y') € S with y # y' which we denote
by v(z,y) and there is a unique (2, y) € S with 2 # 2’ which we denote by h(z, ).
Clearly v* = h? = identity map. We write G for the group generated by v and h
and Gy the subgroup of G generated by hv. G/Gy is a two point set. G and Gy
act on S in a natural fashion. One observes that a set S with doubleton sections is
good if and only if all the G orbits (hence Gy orbits) are infinite.

M. Laczkovich has given an example of a Borel set S C [0, 1] x [0, 1] with dou-
bleton sections such that its partition into G-orbits is not. countably generated and
that S does not admit a Borel subset which is the graph of a one-one function on
[0,1]. (Closed Sets Without Measurable Matchings, Proc. Amer. Math. Soc., Vol.
103, No.3, July 1988, pp. 894-896.) One can show that this set can not be written
as a union two Borel graphs G' and H as above and that there are Borel measurable
functions f on this set for which u and v can not be chosen to be Borel.

We raise some question connected with the above theme.

Problem 3.29.1. If S is a good Borel subset of R? whose linked components are
not countably generated, does S admit a Borel subset with doubleton sections whose
linked components are not countably generated?
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Problem 3.29.2. Call a probability measure z on R? good if every f € L2(R? 1) is
of the form f(z,y) = u(z) + v(y), with u,v € L2(R?, p). If one tries to characterize
such s, one is led to the following question. Let p = (p1,p2,---) be an infinite
probability vector viewed as a probability measure on natural numbers N. For &
function f € L*(N,p), write S(f) = (f(1), /(1) + £(2), f(1) + £(2) + F(3),---)
Describe p for which f € L*(N,p) implies that S(f) is in L2(N, p).

A characterization of good subsets in product X, x X, x - -- x X, of n non-
empty sets Xy, Xp,--- Xy, n > 2 is given by K. P. S. Bhaskara Rao. Let S C
X1 X Xy x X and let M = {z(1) = (z},z,---zl),--- s (k) = (2F, 2k, -« 28))
be a set £ points in S. We say that M forms a loop in S if there exist non-zero
integers py,- - -, py such that p;z(1) + - ‘prz(k) =0, ie, for each j,1 < j < n the
formal sum nle + poxg + -+ nkmf is zero. A subset S of X} X Xy x -+ x X, is
good (in the sense that every complex valued function f(zi,---,z,) on S can be
written as a sum u;(z,) + -+ - + u,(z,) of n functions of one variable) if and only if
S does admit a loop.

The above discussion has a consequence for measures arising from stochastic
processes of “multiplicity one.

Let 1 be a measure on R” such that the co-ordinate functions span LY(RZ, 1)
(multiplicity one). Let Z = A, U Ay U---U A, with AinA; =0if i #£ 5. Write
Xi = R%. Then y admits a support which is good in X, x Xy x oo x X,.

3.30 Hitoshi Nakada
On a transformation associated to mediant
convergents of Rosen’s continued fractions

Let H be the Hecke group of index 4, i.e. H is the group of linear fractional trans-

formations generated by (1) _01 ) and ( (1) \{5 ) We consider the following

generalized Diophantine inequality for a fixed ¢ > 0:

P c
1) lz - =| < =,
( ql 7

q >0,

where 5 = g(oo) for some ¢ € H. Since H is a discontinuous group, ¢ is uniquely
determined for each g(oo). It is known that there exists the Hurwitz constant cy:
(1) has infinitely many solutions g(oo) for each z € R \ {g(00), g € H} if ¢ > ¢y
and has at most finitely many solutions for some z € R\ {g(00), g € H} if e < cy.

Each z has the Rosen continued fraction expansion, which is the nearest-integer
type continued fraction with Z - v/2-valued coefficients. This expansion is given by

the following transformation T of [~ 75 )

To = ||~ (1]l
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where [ -], denotes the nearest point in Z - V2. There exists a Legendre constant c;.:
for any =,

2) o -2 < 5
q q
implies 5 is the principal convergent of Rosen continued fraction whenever ¢ < ¢;
and this property does not hold for some x3 when ¢ > ¢, .

It is possible to show that ¢, = /2—1 by the individual ergodic theorem with the
natural extension of T. This means that ¢, is determined by an almost everywhere
property. It is easy to see that ¢y < ¢y, which implies that we can not determine
the explicit value of the Hurwitz constant only by the Rosen continued fractions.

Let S be the map of [~ v/2) defined by

1
. V2
( —;';C\/i IG[—%,*T)
_ TN
v2r+1' vel=%.0
S35 = 4 0, 0
% . Vi
—. T € |0,%=
—1\/§a:+1' [ '*)
- -V, :L‘E[ﬁ,\/i).
\ :L‘ 3

Ii is easy to get the mediant convergents of Rosen continued fractions by this map
S. If we take the jump transformation of S with J = [—-]—2, —@) U [‘/TE, \%2) (one
Jump after hitting J), we get T'. It is possible to construct the natural extension of
S on a subset of R*. With this, we see that the Legendre constant cy, associated to
the mediant convergents is equal to % Since S is infinite measure preserving, we
use the ratio ergodic theorem to get this value.

As an application, we can show that ¢y = 1. Moreover this method holds for
the Hecke group of index k for any k& > 4. A. Haas and C. Series('86) calculated
these Hurwitz constants by consideration of the maximum height. of the congruence

class of geodesics.

3.31 Gunter Ochs
One more proof of the multiplicative er-
godic theorem
Abstract
The Multiplicative Ergodic Theorem of Oseledets is a fundamental tool in the local
analysis of deterministic and stochastic dynamical systems. There are several pub-
lished proofs. Here we present a new approach which relies on the construction of

“‘random” invariant measures on the projective space (resp. on Grassmannians)
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Introduction

Our goal is to give a short proof of the following result due to V. I Oseledets 3]
well known as the Multiplicative Ergodic Theorem (MET):

Theorem 3.31.1. Let (Q, F,P) be a probability space, 0 : Q — Q an invertible and
ergodic P preserving transformation, and A : Q — Gl(d,R) a measurable map, where
Gl(d,R) denotes the space of invertible d x d matrices endowed with any matriz
norm | - | and corresponding Borel o-algebra. Assume [log™ |A(w)|P(dw) < oo,
where log™ & = max{logz,0}. Then there exist numbers (independent of w)

00>A > M >..>A, > 00 called Lyapunov exponents

and linear subspaces E\ (w), ..., Ey(w) (called Oseledets spaces, they depend measur-
ably on w) with (P a.s.)

e RI=FE(w®..& Ey(w),
® Ey, ..., Ey are invariant in the sense A(w)Ey(w) = Ej(6w),

o they are dynamically characterized by
i
z € Ep(w)\ {0} & lim —log|A(n,w)z| = A,
n—+too 7

where A(n,w) denotes the cocycle generated by A, which is defined by

, _ A" W) Aw), if n >0,
iy = { A" w) L AB W), ifn <0

This theorem is a fundamental result in smooth ergodic theory, where the situa-
tion {2 a smooth manifold and @ a diffeomorphism preserving any Borel probability
measure P is considered. In this setup the application of Oseledets’ theorem to the
tangent cocycle A(n,w) = D,6" serves as a basis for the construction of invariant
(stable, unstable,...) manifolds.

Another important application lies in the analysis of linear stochastic dynamical
systems, where the MET provides a substitute of linear algebra. In the case of
nonlinear stochastic systems it can be applied to the linearization (for an extensive
description of the role of the MET in stochastic dynamics see Arnold [1]).

Before we pass to the main ideas of our proof we make some remarks on the
assumptions.

Remark 3.31.1. (i) Here we deal exclusively with discrete time. A continuous time
version could be derived by considering the time-one mapping and controlling “what
happens in between” by an additional integrability condition.

(ii) Invertibility and ergodicity of # is not an essential restriction. If # is not
ergodic, one can use an ergodic decomposition and apply the theorem to each ergodic

component separately. In this case the Lyapunov exponents in general depend on
w. In the non-invertible case it is possible to consider a canonical extension.
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(iii) The case of non-invertible (even rectangular) matrices A(w) can be handled
by restriction to the invariant subbundle

F(w):= () Aln,60"w)R".

n>0

Then A(w) : F(w) — F(fw) is invertible.

There are at least 16 published proofs of the MET (cf. [1], page 112). The orig-
inal one of Oseledets relies on triangularization of the cocycle. In the today most
established way of proving the MET (following Ragunathan [4], Ruelle [5] and oth-
ers) Kingman's subadditive ergodic theorem is used to derive the existence of the
Lyapunov exponents. The construction of the Oseledets spaces is “hard work” con-
sisting of matrix calculations such as singular value decomposition. An alternative
approach is due to Walters [7], who uses some properties of invariant measures on
the projective space.

The following section is devoted to a sketch of the main ideas of our proof. It
consists of a “direct” construction of invariant measures on the projective space re-
spectively on suitable Grassmannians (in contrast to Walter's approach, who uses
the existence of some invariant measures without studying there structure explic-
itly), whose supports will be the Oseledets spaces. The main ingredient of our
proof besides standard results in ergodic theory like Poincaré recurrence, Birkhoff’s
Ergodic Theorem and Kingman’s Subadditive Ergodic Theorem (which was not
available for Oseledets when he found his original proof, but is an important tool in
later proofs of the MET) is a “random version” of the Krylov-Bogolyubov theorem
due to H. Crauel.

Sketch of the proof

We start with some notation. For 1 < k < d
Gr(k) :={U C R* : dim U = k}

is a compact manifold called Grassmannian (Gr(1) coincides with the projective
space P41). A skew product is well defined by

O : 2 x Gr(k) = Q x Gr(k), (w,U)— (fw, A(w)U).

The following statements on random measures can be found in Crauel [2], see also
Arnold [1], Chapter 1.5. The space

My, := {p probability on Q@ x Gr(k) : mqu = P},

where g denotes the projection onto €, is compact in the topology of weak con-
vergence (for a definition see below). Each 2 € M}, can be identified with a random
measure (ft,)uen (P-a.s. uniquely defined by ) via the disintegration ji(dw,dU) =
po(dU)P(dw). The invariant measures

Iioi={pe M :Ouu=p}
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form a closed (and hence compact) subset of M. We have p € Iy if and only
if A(w)ps = pgo P-as., which in turn implies AW)K(w) = K(w), where K (w)
denotes the support of p,,. Finally set

Pk X Gr(k) 5 R, (w,U) > log|det (A(w)|y)],

where |det (A(w)y)| is the growth rate of the & dimensional volume in U/ under
application of A(w). Then we have

log |det (A(n, w)]y)]
= log |det (A(w)]y) - det (A(fuw)

Awyr) - det (A(6%w) [ a@uww)| -
L

= log|det (A(#'w) agupw)| = 3 ¢ (6'w, A(i,w)U)
1=0 i=(
n—1

=) 6 (8L, 1)) =: Sud(w, U).
i=(0

Now we are prepared to perform our proof in three steps.

Step 1. We start with the construction of an invariant subspace, where the highest
exponential growth rate is realized, i.e. the Oseledets space E\(-). Note that this is
In contrast to the usual proofs of the MET, which start “from below”, i.e. with Ap
and Ep(-).

For simplicity we assume the additional integrability condition

/logIA_l(w)HP(dw) < 00,
which implies
/H(ﬁk(w, MeoP(d) < 00 : ¢y, € L' (B; C(Gr(k), R)

the space of functions from Q x Gr(k) to the reals which are measurable in the
first and continuous in the second coordinate, and whose supremum norm over {/ is
integrable with respect to P

||¢’k(w1 )”oo = sup ¢k(wa U)
UEGr(k)

We emphasize that we do not really need this second integrability condition, but it
makes the argumentation easier.
For 1 < k < d define

.1
Y= lim —log sup |det (A(n,w)|v)|.
n—oon UeGr(k)

The limit exists and is P-a.s. independent, of w by the Subadditive Ergodic Theorem.
Furthermore, convergence holds also in L' (IP).
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The relation
|det (A(n, w)|peyv)| < |det (A(n,w)|v)] - |det (A(n, w)|v)]

for orthogonal subspaces U,V implies v, < kA, with A; := 7. Choose now £
maximal with v, = kA, (such a k exists, since equality holds at least for £ = 1).

For each n > 0,w € (1 choose a subspace U(n,w) € Gr(k), which maximizes
|det (A(n,w)|y)|. Define a measure v, € M), via its disintegration

Vn(dw, dU) = 8y w1y (dU ) P(dw)

and set
1 n—1 )
o =~ > Olu, € M.
i=0
Then

n—1

| 1 ' . 1
/(Pkd}u’n = E Zﬂ/ tp © @;cdun = E/S,;(/ﬁ];dbﬁ

1
= / Yo et o) T

1
=— /log sup |det (A(n,w)|y)| P(dw),
L UeGr(k)

which converges by the Subadditive Ergodic Theorem to v, as n — oo.

At this point we have to go a little bit deeper into the theory of random measures.
We say (fin)nen C M, converges weakly to pp € My, if lim, oo [ ¥dpt, = [ thdp for
every ¢ € L' (P; C(Gr(k),R)).

Theorem 3.31.2. (Crauel [2], see also |1] Theorem 1.5.8) (i) Every sequence in M
has an accumulation point with respect to weak convergence.

(ii) (“random” Krylou-Bogolyubov theorem)
Let (Vn)n>0 C My, and p, = %Z?:_DI L

Then every accumulation point p of (1) lies in Iy, t.e. it is invariant under the
skew product ©y.

Of course Gr(k) could be replaced with any compact metric space X and A(w)
with any continuous map f(w): X — X depending measurably on w.

To continue Step 1 of our proof choose any accumulation point g of (u,). It
follows [ ¢pdp = limy—e0 [ Gredptn = Vi

By Birkhoff’s ergodic theorem we have for p-a.e. (w,U)

o L ;
lim. - log |det (A(n, w)v)| = 7. (*)

If (#) holds for (w, U) and (w, V'), then one can show that the angle between A(n,w)U
and A(n,w)V converges to 0 as n — oo (otherwise it would be possible to construct
an (k + 1) dimensional subspace with “too large” volume growth, i.e. then .., >
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T+ A= (k+1)A;, which contradicts the choice of k). This in turn implies, that p,,
must be concentrated in one point, i.e. there exists Ei(w) € Gr(k) with p, = 0B, (w)
P-a.s. The invariance of y implies the invariance of E; (-), i.e. A(w)E (w) = E|(0w).

Since the asymptotic growth rate of & dimensional volumina in FEi(-) under
application of the cocycle A(n,w) equals v, = kA, and the growth rate of one
dimensional volumina is bounded from above by A; (by the definition of A} = ),
all one dimensional subspaces within £, (-) must have asymptotic growth rate exactly
Ar. In addition the growth rate of I dimensional subspaces of E\(-) (with 1 <1< k)
must be (.

Step 2. Here we construct a higher dimensional invariant random subspace which
will turn out to be the direct sum of the Oseledets spaces Ei(-) and Es(-). To do
this we apply Step 1 to the projection of our system to the orthogonal complement
of E1 ()

Denote by P(w) the orthogonal projection onto E;(w)* and set

A(n,w) = P(0"w)A(n,w) : B\(w)* = E\(0"w)*.
The invariance of E(-) implies that A defines a cocycle, i.e.
An+m,w) = A(m, T'w)A(n,w) forn,meZ, we .

Using the arguments of Step 1 we derive the existence of Ay € R and of an /
dimensional subspace E(w) C B (w)* such that all j dimensional volumes within

E() for 1 < j < I have asymptotic growth rate JAs under the application of the
cocycle A(-). This implies that F(w) := Ei(w) ® F(w) is invariant under A(). If
Ey(w) CU C F(w) and dimU = k + 3, then the growth rate of (k + 7) dimensional
volumes within U equals kX, + jX,. This in particular implies (by the choice of k)
that /\2 < Al-

Step 3. Here we construct an invariant subspace F, (w) C F(w), which is “comple-
mentary” to E\(w).

In order to do this, choose V(n,w) € Gr(l), V C F(w), which minimizes
det (A(n,w)|y)]. Define v, € M, via

yn(dw, dU) = (51,-'(71’{_0] (dU)IP(dLU),

set
n—1

1 A
Hn = ; ;G)EVTL € M,

and choose an accumulation point of (#). In a similar way as in Step 1 it is possible
to show f tidp = [Xy and that p,, is supported in one point £3(w), which yields the
desired invariant subspace.

Further steps. Now repeat Steps 2 and 3 in order to constrict As, EV(-) @ Ey(-) @
E?l('): E?()a ’\-'11'“
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Concluding remarks

We did not only give another proof of Oseledets’ result, but also a slight generaliza-
tion. Namely, we are able to establish the full Oseledets splitting (in place of a flag
of invariant subspaces) without integrability condition on the inverse A(-)7Y, even
in the case that the inverse does not exist. We did not point out here how to argue
in this case, but the main idea is to restrict our attention to an invariant subbundle,
where the cocycle is invertible and the norm of the inverse is log integrable.

However, there are several other (and probably more important) generalizations
of the MET, which we did not consider up to now. There exists an infinite dimen-
sional version due to Ruelle [6]. It is not clear, if our approach carries over to this
case. The main problem seems to be that the proof presented here crucially depends
on compactness of the Grassmannians, which does not hold in infinite dimensions.
Other generalizations of the MET deal with more general group actions in place
of the action of Gl(d,R) on R?. It seems possible, that our proof works in a more
general (and more abstract) setup, but we haven’t tried this out yet.
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3.32 Francois Parreau
On the Foias and Stratila theorem

Let T' be an ergodic measure-preserving automorphism of a standard probability
space (.Y, B, u). The Foiag and Stratila theorem ([2]) asserts that, if the spectral
measure o of a non zero function f in L*(p) is continuous and supported by a
Kronecker set, then the process (f o 7") must be Gaussian (recall that a closed
subset K" of the circle group T is a Kronecker set if every modulus one continuous
function defined on K is a uniform limit of characters).
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This result of spectral determination is almost unique in ergodic theory. However
the assumption is very restrictive and the original proof does not really allow to
understand this phenomenon. So, it is natural to ask about possible extensions, and
to try to explain the role of harmonic properties of the spectral support. Another
motivation comes from recent common work of the author with M. Lemarczyk and
J.-P. Thouvenot ([3], [4]).

Our main results are the following:

Theorem 3.32.1. Let f be a non-zero function in Nocpe oo LP(12) such that

(©) >~ (1/11£1lp) = +oo.

If the spectral measure of f is continuous and concentrated on an independent com-
pact set, then (f o T") is a Gaussian process.

A closed set ' C T is said to be a Helson set with constant o 0<a<l1),ora
Helson-a set, if sup,,cz [6(n)| > a||o|| for every complex Borel measure o on K. A
Kronecker set is an independent Helson-1 set (|5], Chap. X).

Theorem 3.32.2. Let f be a non-zero function in L2(y). If the spectral measure
of f is continuous and concentrated on an independent Helson set, then (f oT™) is
a Gaussian process.

Besides, the Foiag and Stratila Theorem, as well as the results above, extend to
all ergodic measure-preserving actions (Ty)gec of alocally compact second countable
Abelian group G.

The problem remains open if we only assume that the spectral measure is contin-
uous and concentrated on an independent compact set. However, under the weaker
hypothesis that the corresponding Gaussian automorphism has simple spectrum,
there are counter-examples of measures o (e.g. the spectral type of the Chacon
transformation) which do not satisfy the spectral determination property.

While spectral measures concentrated on Kronecker sets lead to rigid Gaussian
automorphisms, a positive answer for all independent sets would yield mixing ex-
amples, by a well known result of Rudin.

The Helson hypothesis forbids mixing for the corresponding Gaussian processes
but it allows mild mixing, and even a spectral form of partial mixing (usual partial
mixing, without strong mixing, never occurs for Gaussian automorphisms). Indeed,
by a result of T. Kérner (see [5], Chap. X), for each « in (0, 1], there exists a Borel
probability measure o, concentrated on an independent Helson-a set K& of T, with
the property:

Jor every Borel set B C'T, limsup|(o|p) (n)| = ac(B).

Then the corresponding Gaussian automorphism T satisfies: for every zero-mean
square integrable function #,

lim sup [{T™h, h)| = lim sup |6, (n)| < o ||h[|3.

107



The basic idea of the proofs consists, as in [2|, in showing that the spectral pro-

cess associated to f has independent increments (for the extension to other Abelian
group actions, we construct an analogue of the spectral process with the same con-
tinuity properties). It is sufficient to show that, for every disjoint open sets U; and
Us in supp o, the factors B; generated by the spectral projections E(U;)f are inde-
pendent. Under the condition (C'), which is known as the Carleman condition for
Hamburger's moment problem, each L?(B;) is spanned by polynomials of functions
with spectral support in U;. Then Foiag' group property (if g, h and gh € L?, then
supp gg, C supp g - Supp oy, (1], Proposition 2) yields that the spectral type of T'|p,
is concentrated on the group generated by U;. If supp o is algebraically independent,
the factors are spectrally disjoint and Theorem 1 follows.

Now, in order to prove Theorem 2, it is enough to show that, when K is a Helson
set, the corresponding spectral subset is spanned by functions with property (C).
This follows from a result of independent interest:

Theorem 3.32.3. Let K be a Helson subset of T. Then, for every p > 2, the
speciral projector E(K') maps LP(u) into itself with, for every g € LP(u),

I1E(EK)gllo < Cllgll
where C' depends only on the Helson constant of K.

Theorem 3 is proved by approximation of E(K) by operators of the form (T,
where ¢ approximates the indicator function of K and ¢ € A(T) (the space of
functions with absolutely convergent Fourier series). A lower bound C(g) for the
A(T)-norm of such a ¢ equal to 1 on K and less than £ on a given closed set F
disjoint from K yields a bound for the norm of ©(T') on LP(z1). The main lemma in
the solution by 5. Drury and N. Varopoulos [7] of the long-standing union problem
for Helson sets gives a bound depending only on the Helson constant of KX and a
universal construction. Finally, a later work of J.-F. Méla [6] allows us to show
C(g) < C'|loge|, which is the best possible and precisely what we need to conclude,
using interpolation between the L spaces.
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3.33 Alexandre Prihod’ko
Stochastic constructions of mizing local
rank one flows

Let us consider a measure preserving flow (T*) on a Lebesgue probability space
(X, B,u). A Rokhlin-Halmos tower of length h for (T*) is a map ¢: U — (0, h),
U C X, such that for any Borel set B C (0,h) the pre-image ¢~'B € B, and if
B,t+ B C (0,h) then T'¢p~'B = ¢~'(t + B). Denote [bn] =U

A flow (T") is called a rank one flow if there is a sequence of towers ¢, of height h,,
with two properties: [¢,] — 1 and for any measurable A4 there are sets Ay = o518,
(B, are Borel subsets of (0, ,)) such that AN AL — 0.

The first example of a mixing rank one transformation was given by Ornstein
[2]. We propose a kind of stochastic construction of mixing rank one flows as well
as construction (pure) local rank one flows.

Let (T*) be a rank one flow given by a cutting-and-stacking construction with
heights h, and spacers s, ;. We consider a family of constructions for which 8.k
are equidistributed- random values with the distribution &n. The formal definition
is as follows. Let h, and &, be given and let ®,(t) be the stationary process,
®,(t) € (0, h,) U {}, which sample consists of disjoint intervals Z = (u,u + hy,)
of length h, separated by spacers independently distributed as &,, such that
B(t)=t—u if t€Z, and B(t) = * if ¢ does not belong to any interval Z. We
restrict @, to (0, h,41) and say that intervals of length A, which lies entirely inside
(0, hyq1) correspond to subcolumns of n th tower and the spacers between them in a
sample path of ®, correspond to spacers Sn,k- Thus, we have constructed a random
family of flows determined by the parameters hn and &,.

Suppose that &, < h, and has density p, which is a function of bounded varia-
tion. Let op = D&y, Rn = A2 /0% and G, = hyy1/hn.

Theorem 3.33.1. If for some constants e, 7, C1, Co > 0 and 0 < x < 1 the following
conditions hold

(1) N+ Cro72%) 2 py () oo = 13 @ [l_s<ca
(3) ”q_r?}lhnpn“oo — 0; (4) "_fn/q_rll—x_e — 0,
then the flow (T*) is mizing almost surely.

We say that a flow (T") has S-rank one if there is a sequence of towers ¢, of
height A, satisfying the following conditions: [#n] — B and for any measurable A
there are sets A, = ¢, !B, (B, are Borel subsets of (0, hy)) and C,, C X \ [¢,] such
that p(A A (A, UC,)) — 0 (see [1]).
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Modifying this construction as follows we’ll provide a construction of mixing
rank one flows. Fix 8 € (0,1). Letting I,, = (0, h,), consider a family of independent
stationary processes

OF R — (I, x {0,1,...,mPDU{*}, k=0,1,... 71,

which are defined in the same way as @,, the only difference is that all the points
in a non-# interval 7 of length h, in a sample path of &) have common second
coordinate which is distributed on the sequence of intervals T according to the
Bernoulli scheme with probability vector (3, (1 — 8)/rn,..., (1 — B8)/r,). As before
let rﬁff“}: (0, hng1) — (I, x {0,1,...,7,}) U {+} be the map (which coincides mainly
with Q)Sf‘)) such that qﬁgi)(t) = o{f) (t) iff ¢t belongs to an interval Z of length h, on
which (I),(f)(t) # s+ and Z C (0, h,+1), otherwise rﬂ&“(t) =% Lat

n: (Ing1 X {0,1,...,rp P U {} = (I, x {0,1,...,7. }) U {*)}
be the map coinciding with ¢% on Ing1 x {k}, and such that ¥, (x) = *.

Theorem 3.33.2. Assume that r, = n and h, and &, satisfy the conditions of Theo-
rem 1. Then almost surely we can define correctly a Lebesgue space (X, B, p) which
is the inverse limit of spaces (I, x {0,1,...,r,}) U {*} with respect to maps iy,
as well as a natural flow on it. This construction produces a family of pairwise
disjoint [F-rank one mizing flows (T"), which are of infinite rank and not of B-rank
one for any 3 > 5. Moreover, the flows (T*) have almost surely MSJ(2) property.

The author is very grateful to V. Oseledec, V. Ryzhikov, A. Stépin and
J.-P. Thouvenot for helpful discussions.
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3.34 Mary Rees
The resident’s view of parameter space

In holomorphic dynamics, it is natural to study parameter spaces of holomorphic
maps for which dynamics is constant on some finite forward-invariant set Z. The set
Z could be a periodic orbit, for example, or a subset of the full orbit of a periodic
orbit. Indeed, this is a common strategy in dynamics in general. For example,
take some hyperbolic periodic orbit Z(f) of a diffeomorphism f. Then Z(g) varies
isotopically for sufficiently small C! perturbations of f, as do compact subsets of
the unstable and stable manifolds. Then one might try to study movement of orbits
of other points under g, relative to Z(g), as g moves: for example, of homoclinic
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intersection points of the stable and unstable manifolds. Such studies have been
made. This is one example of what might be described loosely as the resident’s
view, that is , a local piece of parameter space viewed and analysed in terms of f.

Such an approach is particularly attractive in complex dynamics, because the
dynamics of a rational map is very much influenced by the behaviour of its critical
points, as the classical studies of Fatou and Julia show. The best-known param-
eter space, that of quadratic polynomials fel2) = 22+ ¢ is well-understood, at
least modulo some hard conjectures, because, conjecturally every polynomial in the
Mandelbrot. set can be viewed in terms of the map (and resident) f;. Of course,
the Julia set moves as the parameter is varied in the Mandelbrot set, but very of-
ten (whenever the Julia set is locally connected), the Julia set is a topological and
dynamical quotient of ({z : |2] = 1}, fo), and the view of fo is of the critical point
moving relative to the original circle. This gives rise to a conjectural description of
the Mandelbrot set, its topology and full variation of dynamical behaviour within
it

The quadratic family f. is unusually simple (although far from completely un-
derstood analytically) because there is a canonical choice of path between any two
polynomials in the Mandelbrot set, at least if one assume that the Mandelbrot set
is locally connected. In most parameter spaces, there is no “best” path between
two given maps, even up to crude homotopy. This is important, because it is often
possible to describe one map in terms of another given map, and a path between
the two in parameter space [1], that is, one resident can view another in terms of its
own dynamics and a chosen line of vision. The resident views paths in parameter
space as paths in its own dynamical plane.

As an example of the parameter spaces under consideration, consider rational
maps

Ged(2) =14 ¢/z 4 d/2*

for which the critical points are 0 and —2d/c, and the orbit of 0 starts 0 — oo s

1= 14+c+d. Let V(n) (n > 3) denote the set of geq for which 0 has period n. For
any map g € V(n) let

Zun(9) = ¢7"({g'(0) : i > 0}).
Let v3(g) = ge.u(—2d/c), the second critical value. Let

P(n,m) = {geq € V(n) : va(9) € Zm(g)},

Vi(n,m) =V(n)\ P(n,m).

Then V'(n,m) is a punctured variety whose points are rational maps ¢ such that
Zm(g)U{v2(g)} varies isotopically for g € V' (n, m), and the punctures of V/(n) are the
points P(n, m). Fix some basepoint hy € V(n,m). Consider m;(V (n,m), P(n,m), hy),
the set of paths in V(n,m) from hy to P(n,m), modulo homotopy. Consider also
the set 7?1(@ \ Zn(ho), Zin(ho), v2(hg)) of paths in C \ Zin(ho) from wy(hg) to Zy (ho)
modulo homotopy. There is a natural map (described briefly in the talk and also in
R1)

®:m(V(n,m), P(n,m), ko) = 7 (C\ Zp(ho), Zn(ho), va(hg))
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Both V' (n,m) and C\ Z,,(ho) are Riemann surfaces covered by the disc D, and the
two homotopy sets of paths to punctures above can be considered as subsets of the
boundary dD. Part of the Theorem we have is |2]

Theorem 3.34.1. ® is injective. Regarded as a map on a subset of D, the inverse
map is monotone and extends continuously to a monotone map of 8D to itself which
collapses countably many intervals.

One consequence of this is that the universal cover of V' (n, m) can be regarded as
a subset of the universal cover of C\ Z,(ho). So the resident kg views the universal
cover of the parameter space within the universal cover of its punctured dynamical
plane. The rest of the universal cover of the resident’s punctured dynamical plane is
a disjoint union of regions, each of which corresponds to the universal cover of a set
of branched coverings which, up to homotopy, has some geometric structure. For
example, if n = 4 and m = 0, there are regions corresponding to degree two branched
coverings which leave invariant some subsurface which is a four-holed surface, and
the branched coverings act as a pseudo-Anosov on this. All pseudo-Anosovs occur
in this way.
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3.35 Ben-Zion Rubshtein
Classifications of one-sided Markov shifts

One-sided Markov shifts, corresponding to positive recurrent Markov chains with
countable (finite or infinite) state spaces, are considered. A complete system of
explicit invariants for the isomorphism classes of the shifts is found. Every one-sided
Markov shift can be represented in a canonical form by means of a uniquely defined
stochastic graph and by a minimal n-point extension of the graph. It is shown that
two one-sided Markov shifts are isomorphic iff their canonical stochastic graphs
are isomorphic and the corresponding extensions are equivalent. OQur approach to
the isomorphic problem applies the theory of decreasing sequences of measurable
partitions (cofiltrations) and a classification of the cofiltrations generated by one-
sided Markov shifts is obtained.

3.36 Ryszard Rudnicki
Typical properties of fractal dimensions

We present some recent results concerning box and packing dimensions of typical
compact sets [4] and box and correlation dimensions of typical probabilistic measures
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5,6].

Let & be a complete metric space. Recall that a countable union of nowhere
dense sets is said to be of the first Baire category. A subset of a complete metric
space /X' is called residual in X if its complement is of the first Baire category. If
the set of all elements of X' satisfying some property P is residual in X, then the
property P is called typical or generic. We also say that the typical element of X
has property P.

The space C(X) of all non-empty compact subsets of a complete metric space
(X, p) endowed with the Hausdorff metric

d(A, B) = max{max p(z, B), max p(z, A)}

is a complete metric space. The study of typical properties of compact sets has a
long history starting with the works of Kuratowski [3] and Ostaszewski [7]. A survey
of many results on this subject is given in Renfro [8]. We recall some of them to
show that the typical compact set (t.c.s.) is simultaneusly “small” and “large”.

If 1 is a continuous Borel measure on X then t.c.s. has p-measure zero. If
h:[0,00) = [0,00) is a strictly increasing function and h(0) = O then t.c.s. has
Hausdorff h-measure zero. T.c.s. has also the lower box dimension zero. We recall
that the lower (upper) boz dimension of a compact set A is the lower (upper) limit
of the function a(r) = —log N(A,7)/logr as r — 0, where N(A,r) is the least
number of balls of radius 7 which cover the set A.

The above results show that t.c.s. is “small”. But t.c.s. is also “large”. Namely, if
the space X has no isolated points, then t.c.s. has no isolated points, which implies
that t.c.s. has cardinality > c. Moreover, t.c.s. in the space R? has the upper box
dimension d. More general result has been proved by Gruber |2]: if the collection
of compact sets in X having lower boz dimension al least § is dense in C(X), then
t.c.s. has upper box dimension at least 6.

We need two auxiliary notions. The number

sl-dim A = inf{dim (B(z,7) N A):ze€ A r>0}

is called the smallest local upper box dimension of the set A. Analogously, we define
the smallest local lower box dimension sl-dim A replacing in the above definition dim
by dim. Now we can formulate the Gruber theorem in a different way: if A is t.c.s.
then dim 4 > sl-dim X. In [4] we strengthen the Gruber’s result.

Theorem 3.36.1. If A is t.c.s. then dim A > sl-dim A > sl-dim X,

If dimp A is the packing dimension of a closed set A, then dimp A > sl-dim A.
From this inequality and Theorem 1 follows immediately

Corollary 3.36.1. If A is t.c.s. then dimp A > sl-dim X

Typical properties of measures has been studied in [1,5,6]. We present here some
results concerning box dimension [5] and correlation dimension [6] of probabilistic
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measures. By M we denote the set of all probability Borel measures on a complete
metric space (X, p). The space M is endowed with the Fortet-Mourier distance:

dist(u,u):supﬂ/Xf( (dz) — /f |: fel}, p veM,

where £ is the subset of C'(X') which contains all the functions f such that |f(z)] <
1 and |f(z) = f(y)| < p(z,y) for 2,y € X. The space (M, dist) is complete. The
sequence (i), pn € M, is weakly convergent to a measure p € M if and only if
limy, o0 dist(py, 1) = 0. The quantity

dimy = lim inf{dinE : F e B(X), u(E) >1 -k}

k—0F

is called lower boz dimension of p. Analogously, we define the upper box dimension
dim g replacing in the above definition dim by dim. The lower correlation dimension
of 1 is defined by

\ ) 1
dim, pp = lim,_,, e logf p(B(z, 7)) du(z).
e

Analogously, we define the upper correlation dimension dim, L.
Theorem 3.36.2 ([5]). If i is the typical probabilistic measure then
1. dimp =0,

2. dimp > inf{dim E : u(E) > 0} > sl-dim X,

3. if X is separable then suppu = X.

Theorem 3.36.3 ([6]). If i is the typical probabilistic measure then dim, pn = 0
and L L
sl-dim X' < dim, p < sl-dim X.
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3.37 Jorg Schmeling!'®
Applications of multifractal analysis to
number theory

We study the Hausdorff dimension of a large class of sets of real numbers satisfying
certain number-theoretical properties related to the representation in some base.
In particular, our results unify and extend classical work of Borel and Eggleston.
Our methods are based on recent results concerning the multifractal analysis of
dynamical systems.

Instead of trying to formulate general statements at this point, we want to discuss
explicit examples, which illustrate well the nature of our work. Given an integer
m > 1, for each number z € [0, 1] we shall denote by = 0.zy24--- a base-m
representation of x. It is easy to see that this representation is unique except for a
countable set of points. We remark that since countable sets have zero Hausdorff
dimension, the non-uniqueness of the representation does not interfere with our
study. Due to the non-uniqueness we shall always use the representation for which
the digits are the smallest possible.

For each k € {0,...,m — 1}, 2 € [0,1], and n € N we set

Te(z,n) = card{i € {1,...,n} : z; = k}.
Whenever there exists the limit

Tifz) = lim M,
n—od n

it is called the frequency of the number % in the base-m, representation of z. A
classical result of Borel [4], says that for Lebesgue-almost every x € [0,1] we have
T(x) = 1/m for every k. Therefore, Lebesgue-almost all numbers are normal in
every base.

This remarkable result does not mean that the set of non-normal numbers is
empty. In particular, it was established by Eggleston [5] that the set of numbers

Fnlag, ... amo1) = {z €[0,1] : TR(z) =ap for k=0,...,m—1},

composed of those numbers having a percentage oy, of digits equal to £ in its base-m
representation for each %, has Hausdorff dimension

Tri—|

dimy Fo(ag, ..., 00-1) = — Z oy log,, ., (3.1)
k=0
whenever ag + -+ + a,,_ | = 1 with o; € [0,1] for each i. Define

L = {(Q{D,.. -uﬂfrn—l) < [O, 1]m tog e +CY173,—1 = ]}

'“Tle talk is based on joint work with L. Barreira and B. Saussol
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and

n—od n—»oQ

-‘Mrk = {LE € [O, ]_] - lim lnfM < lim sup Tk(‘r: ’II) } .
n n
We have

m—1
LU= U  Fulas,-am) U | M (3.2)
(coyeo@m—1)EL k=0

An easy consequence of the work of Eggleston is that if 0 < o; < 1 for some 4, then
the set Fin(ap, ..., am_1) is non-empty, and is in fact everywhere dense in [0, 1], and
has positive Hausdorff dimension.

Here we want to provide further detailed information about the decomposition
n (3.2). In particular we shall establish the following statement.

Theorem 3.37.1. For each k the set M, is everywhere dense in [0,1], and

m—1

dim,-.; ﬂ ﬂ;i[k =1

k=0

This implies that the union (Jj—, Mj in (3.2) also has Hausdorff dimension equal
to 1, and thus from the point of view of dimension theory it is as large as the interval
[0,1]. On the other hand the set | Ji*- M; has zero Lebesgue measure as well as
zero measure with respect to any Bernoulli measure fiq, .. 4,,_, on m symbols. We
note that all these measures are mutually singular, and thus the set | J;'7 M, must
be considered rather small from the point of view of measure theory.

In order to simplify the exposition let us now consider m = 3, and the set

F={zel0,1]: n(z) = 57(x)}.

This is the set of number in [0, 1] such that its base-3 expansion has a percentage
of I’s which is five times the percentage of 0’s. The percentage of 2's is arbitrary.
It is easy to see that
F> |J Fla50,1-6a). (3.3)
a€lo,1/6]

We shall show that

log(1 + 6/5%/6)
log 3

dimy F = ~ 0.85880 - - - . (3.4)

We remark that it is easy to show that the number in (3.4) is a lower bound for
dimy F'. Namely, it follows from (3.1) and (3.3) that

« darlog(ba) 4 (1 — 6a) log(1 — 6o
fing P> mag ~2 log o + Sarlog(5a) -+ (1 — 6ar) log( 60/)' (3.5)
a€[0,1/0] log 3

The maximum is attained at o = 1/(5%° + 6), and it is a straightforward compu-
tation to show that it is equal to the right-hand side in (3.4). This establishes the
lower bound.
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The corresponding upper bound is more delicate, since the union in (3.3) is
composed of an uncountable number of non-empty mutually disjoint sets. Our
approach is based on a conditional variational principle, which we now formulate in
the particular case considered here.

Theorem 3.37.2. For each k # { and 8 > 0 we have

o(z)

m—1
x T() (478
dimg {1 € [0, 1] : el = 6} = max {— ]E:O ajlog,, iy | CE_g = [j’} .

An easy consequence of Theorem 3.37.2 and (3.1) is that for each k # ¢ and
B > 0, there exists (g, ..., am_) € L such that

Bl s.00., Oigy) £ {1 € [0,1]; % o= ﬁ}

with

dimy F, (o, ..., an 1) = dimy {3: €[0,1]: 7(2) = ﬂ} :
Te(z)
In particular, this implies that the inequality in (3.5) is in fact an identity, thus
establishing the claim in (3.4).

The statements formulated above are consequences of much more general state-
ments established in [1]. Our results are based on recent work concerning the mul-
tifractal analysis of dynamical systems, and in particular they require a multidi-
mensional version of the classical multifractal analysis. The multifractal analysis of
dynamical systems is in turn strongly based on the thermodynamic formalism. This
method allows to consider more advanced problems:

Let A be an m x m matrix and v € R*. Then we are able to compute the
dimension of the set of reals having the digit relation A7+ v = 7.
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3.38 Martin Schmoll
Pointwise asymptotic formulas on families
of translation surfaces

The aim of the talk is to describe new ways to obtain results on the quadratic
growth rate of geodesics on translation surfaces. Translation surfaces are pairs
(¥,w), where ¥ is a compact connected Riemann surface without boundary and w
is a holomorphic differential on £. w induces a flat Riemann metric |w|* := w ®g @
on ¥. |w| has conic singularities of total angle 2n7 (where n € N), in the zeros of w.
Away from the zeros of w the metric space (Z, |w|) is locally isometric to Euclidean
plane. Natural coordinates ¢ := f"r w of (X, w) are obtained by integrating w along a
path -, coordinate changes in this coordinates are obviously translations: ¢ = (' +¢
with ¢ € C. This causes the name “translation surface” or “translation structure”.
Examples for translation surfaces are the invariant surfaces in the phase space of
rational polygon billiard. Furthermore any translation structure can be viewed as
point in the cotangent space of the Teichmiiller space of ©. There is a family of vector
fields Xy dual to w parameterized by their “direction” 8 € S'. The leaves of these
vector fields are geodesics and they are isometric to straight lines in R?. The problem
is to count growth rates of certain types of geodesics with finite length. Examples
of interesting kinds are closed geodesics or saddle connections (:= geodesics which
start and end at singular points). Since the notion of direction makes sense on
translation surfaces one can associate to any geodesic of finite length a vector in R2
defined by the length and the direction of the geodesic. For simplicity from now
on we restrict to closed geodesics. If I/ 4(0,w) denotes the set of image vectors of
all closed geodesics on (¥,w) in R? (with multiplicity if they are not homotopic
(modulo singular points)), let

Neg((B,w), T) := [{v € Vey(Z,w) : |v| < T}
be the associated counting function. The question is, does the limit

lim Ng((E,w), T)
T—o0 T2

as a function of (X, w) exist? And if it exists, can one compute it? A result of Eskin
and Masur [1] shows that the existence question is equivalent to the existence of the
limit (where we use the shorthand u := (Z,w)):

2m >
lirn/ Z flagexp(if)v) df  with a, = ( == 0

0 e

{—00

) € SI®), 1 € o)
lU‘ ”Eyty(u)

and R} := R x R;. The SLy(R) action on translation surfaces which is used here
comes from post composition of natural charts with A € SLy(R). Moduli spaces of
translation surfaces (up to isomorphy) with fixed orders of singularities and normal-
ized volume are smooth manifolds in a natural way. On each connected component
M of such a space there is a natural SLy(R) invariant probability measure s which
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is ergodic with respect to the @, action. Veech [5] obtains (for more general setup)
the following formula: there exists a constant ¢y, such that for any f e Cg°(R2):

ff(u) dpe(u) =CV!#/If(:.':,y) drdy with f(u) = Z flv).
M B2 vEycg(u)

For the space (M, 1) Eskin and Masur [1] proved furthermore:

27

lim .fﬂ(at exp(if)u) df = /f(u) dp(u) pae.
M

{—+00 .

0

These results are valid only almost everywhere, but if the parameter space of trans-
lation structure is a homogeneous space, then Ratner’s classification theorem for
ergodic measures on homogeneous spaces be used to obtain pointwise results. Fam-
ilies of torus coverings branched over given points are examples for homogeneous
parameter spaces [2|. In the case of saddle connections (sc) on two marked tori, one
can use elementary methods to compute the function z — cse() (see [3]):

5 i 1 1
5 = o I (l‘ﬁ) 3 (;;5‘@) on @

pin prime ged(i,n)=1

(where we assume ged(p;, pa,n) = 1). This function is continuous at non rational
points, thus the above formula approaches g + m as (f;—‘,%) converges to a non
rational number. This continuity can be proven by a direct estimate, it is not
restricted to 2 markings. It also holds for general n markings (with other limiting
constants and sets, of course). For any n the limit quadratic growth constants
as functions of the marking are maximal exactly at the points of continuity. The
constant in the Siegel-Veech formula for the above example is the value % +m at the
continuity points. In view of the theory of polygonal billiards one question is:

Problem 3.38.1. Are the Siegel Veech constants cy , (at least in the case of saddle
connections) an upper bound for the growth rates in the spaces (M, 1), even if there
are no pointwise asymptotic growth rates in A7

If the Siegel Veech constants are maximal, the next question is:

Problem 3.38.2. Can one understand their behaviour as function of the genus and
singularity pattern of the underlying translation surface? The computation of the
Siegel Veech constants is of course a problem in its own right.
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3.39 Jacek Serafin'’
On the finite generator theorem

This is an abstract of an article, which will be submitted elsewhere, in which we
address the means to obtain a finite generating partition for an ergodic finite entropy
transformation of a probability space (the theorem of Krieger). We present an
elementary reduction of the cardinality of a generating partition from the countable
to the finite number, using a simple coding technique due originally to Shannon.

Let X be the set of all bilaterally infinite sequences () in which each coordinate
T, is a positive integer, S the (left) shift transformation on X, and let u be a proba-
bility measure 4 defined on the o-algebra A generated by the coordinate mappings,
which is S-invariant and ergodic. We define

prn=p({reX:z=n}) (neN).

and assume that,
— > palogp, < oo;

nelM
so the entropy of a countable generator is finite. Further, let A be a finite set
and denote by )" the set of all bilaterally infinite sequences (y) with coordinates v,
in A. Denote by T the (left) shift transformation on Y, and by B the o-algebra
on Y generated by the coordinate mappings. We prove the following statement,
which, together with the countable generator theorem implies the existence of a
finite generating partition.

Theorem 3.39.1. If the cardinality of A is sufficiently large, then there ezists a
mapping ¢ defined for p-almost every point v € X, taking values in Y, which is an
isomorphism between the dynamical systems (X, A, 1, S) and (Y, B, o ¢~ T).

We fix a positive integer M (which will be specified later). For each z € X define
the sequence
¢1(z) =z:=(...,2_1,20,21,. )
by setting
L _ ) if z, <M
= { * if x> M.

17 Joint work with Michael Keane
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The map ¢, is called the marker mapping and a symbol m > M a marker. We now
specify the alphabet A for Y. We set

A = fla.£) : e {1,...,M,%},e€ 10, 1%
We also improve on the description of the mapping ¢ of the theorem:
¢(z) = (¢1(2), (),

where ¢, (z) is as above, and where d2(x) will be (for p-almost every x) a sequence of
zeroes and ones, containing the necessary information to determine which symbols
m, (m > M) are hidden behind the *'s.

To each symbol (marker) m > M we associate a finite binary prefix code ¢(m)
of length I, by defining

6= 3 Pu>0gm =2 (m> M),

m>M

and setting

lm = [log(1/gn)] (m > M).

It is not difficult to prove that a prefix code with the length function I, as above
exists (it is usually called the Shannon code) and for this code we have the following
bound

Z lm@m i — Z Jm 1Og g+ 1 (31)

m>M m>M

(prefix code means that no code word is a prefix of another code word).
As § > 0, p-almost every € X will contain infinitely many markers occurring
at coordinates
N <0§t0 s <

The marker m; which occurs at ¢; has a prefix code c(m;) as described in the previous
section of length h; := /.. Thus we have also a doubly infinite sequence of binary
words, the 4-th word having length h;. We now produce, in a shift invariant manner,
a sequence

Po(z) = (..., e_1,€0,€1,...) = €

of zeroes and ones from the words c(m;),i € Z, so that given ¢ and ¢1(z), we can
recover the c(m;). We use the following algorithm:

L. For each i, start writing the code word c¢(m;) at coordinate #; into e. Stop if
either the code word has been exhausted (tig1 —t; > h;) or if coordinate t;.,
is reached. Do this for each i € Z.

2. Now shift all of the unwritten parts of the code words one place to the right
(from i to i+1), consider these as new code words and the remaining unwritten
e-places between ¢; and ¢, as new possible receptors, and repeat step 1.
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3. If, after an infinite number of iterations of steps 1 and 2 some unwritten e-
coordinates remain, write 0 into each such coordinate.

It is easy to see that the above procedure succeeds in writing all of the code word
c¢(m;) if and only if there exists a coordinate j > i such that

j-1
fj — fl‘ 2 Z h,k. (32)
k=i

The algorithm to recover the code words ¢(m;) and thus the markers m; from the
sequence € together with the knowledge of the ¢;, making essential use of the prefix
property of the code ¢, is the following:

1. For each ¢, start reading ¢ at #; and stop if either a code word has been
recognized or coordinate ¢;,; is reached. Do this for each 1.

2. Shift the symbols unead to the left (from i to i — 1 ) and continue reading as
in step 1, for each i.

Condition (3.2) is fulfilled for each 7 for almost every € X if M is sufficiently
large, by a simple application of the ergodic theorem. Namely, it will hold if the
average gap size t;.; — ¢; is larger than the average code length h;. We know that
the average length is given by (3.1), and from the Kac lemma, the average gap size
is 1/4. Hence a sufficient condition is

1
- Z f]mlong+1 < 5
m> M

or

S48 (= gmloggn) < 1.

m>M

A simple calculation shows that the left hand side converges to 0 as M tends to oo,
so our condition is satisfied for large enough M, and our theorem is proved.

3.40 Artur Siemaszko!®
Relative topological Pinsker factors

I. The existence of the largest factor of a topological dynamical system with zero
entropy (so called topological Pinsker factor) was shown in [3]. The idea was to find
the largest factor without entropy pairs (see [1] for the definition of an entropy pair).
In [8] another approach is presented. Let (X, T) be a topological dynamical system.
So X is assumed to be a g-compact Hausdorff topological space and T : X — X
to be a homeomorphism. In the sequel B(Y) denotes the g-algebra of Borel subset
of a topological space X.

"The talk is based on joint work with M. Lemariczyk



Let {R;}ic; be a family of closed (as subsets of X x X)) equivalence relations
on X. Put R = (Nic; Bi- Denote by m; (7) the canonical map m; : X — X/R;
(m: X = X/R), i€l Fix K C X a compact set. Denote K/R:=7(K)C X/R
and K/R; .= m;(K) C X/R;. Let p; : K/R — K/R; stand for the corresponding
canonical maps.

Let m be a probability measure on B(X/R). By m| denote its restriction to K/R.
Put B(K/R;) = p; i (B(K/R;)) and let the join Vies B(K/R;) denote the smallest
o-algebra of B(K/R) containing all B(K/R;), i € I. The main ingredient in the
approach of (8] is the following lemma.

Lemma 3.40.1. Assume that X 1s_a topological Hausdorff space (not necessarily
o-compact). Then B(K/R) =\/,.; B(K/R;) mod m for any compact set K C X.

If we assume in addition that X is o-compact we get the following corollary.
Lemma 3.40.2. B(X/R) =\/,., B(X/R;) mod m.

Using Lemma 3.40.2 for the family {R;} of all relations with h(X/R;) = 0 and
the variational principle (twice) we obtain the following result.

Proposition 3.40.1. If T is a homeomorphism of a o-compact Hausdor(f space X
and the variational principle holds for all factors then the topological Pinsker factor
of (X, T) exists.

IT. The first approach to the relativization of the notion of the topological Pinsker
factor was presented in [6] as a generalization of results of [3]. Now we assume
that the factor 7 : (X,T) — (¥, S) is given. Let R, denote the invariant closed
equivalence relation associated with 7 and E, = Ey NR,, where Ex denotes the set
off all entropy pairs of (X, T). In [6] a version of relative topological Pinsker factor
is defined by Xp|y = X/(E;), where (4) denotes the smallest invariant closed
equivalence relation containing 4. We call it a relative topological Pinsker; factor
of (X, T') with respect to (Y, 5). So Xpypy is the greatest factor between (X, T) and
(Y, S) with no entropy pairs in fibers. It is shown in [6] that A(Xp, ) = A(Y).

The idea described in Section I leads to another notion of a relative topological
Pinsker factor. Now consider the family {R;} of relations with ho(B(X/R:)|Y) =0
for every m € M(X,T) and R = [, R;. The similar methods to those used in the
proof of Proposition 3.40.1 show that X/R is the greatest factor between (X, T)
and (Y, S) with the property that hm(B(X/R)|Y') = 0 for every m € M(X,T). We
denote the factor X/R by Xp,)y and call it the relative topological Pinsker, factor
of (X, T) with respect to (Y, 5). It is shown in 8] that A(Xp,y-) = A(Y). Unlike
in the absolute case, where both notions become equivalent, it turns out that in
general Xp |y is a proper factor of Xpyy. In [8] Xp,y is described as the greatest
factor between (X,T) and (Y,S) with the property that for every v € M(Y,S),
MXpyy [T y)) = 0 v-a.e. Using the results of [6] one can easily show that the
“v-a.e” condition can actually be replaced by the “for every y € Y condition.

One may naturally raise the following question. Why do not we consider the
family {R;} of relations with ~(X/R;) = h(Y) instead of the more complicated
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condition with invariant measures given above? The answer is given by Downarowicz
example ([4]), presented in [8] which shows that it is possible to have two relations
R;, i =1,2 with A(X/R;) = h(Y) while A{X/R; N Ry) > h(Y). There is, however,
at least one natural case when both ways are equivalent. Namely when we assume
that (¥, S) has a constant entropy function property, i.e. h,(Y) = h,.(Y) for all
v, ' € M(Y,S) (for example all distal extensions of uniquely ergodic systems have
this property) then Xp,y is the greatest factor between (X,T) and (V,S) with
h(Xp,y) = h(Y).

ITII. The relative topological Pinsker; factor is defined in terms of entropy pairs. Is
it possible to describe Xp,y in a similar way? The affirmative answer is given in
[7].

Given m € M(X,T) a pair (z,z') € X x X is called a relative m-entropy pair
with respect to the factor Y if for every Borel partition F = {F, F'} of X with
x € Int(F) and 2’ € Int(F")

hon (F

See [2] for the definition in the absolute case. The set of all relative m-entropy pairs
we denote by E,y. Note that if ¥ is the one-point flow then Eny = En, where
E., denotes the set of all m-entropy pairs. It is worth to mention that the usual in
topological dynamics way of relativization according to which one should consider
Emyy = E N R, instead of the above definition does not work in this case. Let us
denote R,, = (Em|y>. We call X/R,, = Xpjy(m) the relative topological m-Pinsker
factor of (X,T) with respect to (Y,5). See 2| for the definition in the absolute
case. Let o, @ (X,m) — (Px;ym,v) be the measure theoretical Pinsker factor
of X' with respect to Y and let F,,, denote the relation given by (z,2') € P, if
I (r) = o (2’). Let R be the relation defining Xpy

i3 011

Proposition 3.40.2. (1) E,y = E, N Pg,.;

2) R= \/ BRa= \ Ra.

meM(X,T) meMe(X,T)
hence Xp,y is the greatest common factor of all Xppy(m)'s;

(3) R=< U Em|Y> - < U Em|}'>-
meM(X,T) meMe(X,T)
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3.41 Sergey Sinelshchikov!®
Complete positivity of entropy and non-
Bernoullicity for transformation groups

We present a construction of c.p.e. non-Bernoullian actions for a class of countable
amenable groups. The construction itself is quite plausible. Nevertheless, to prove
that it possesses the property of completely positive entropy (c.p.e.), we need a
reversion of a quite recent result by Rudolph and Weiss, which also makes some
independent interest,.

The following definition is due to D. Rudolph and B. Weiss. Let G be a countable
amenable group and K C G a finite set. A finite set S C & is said to be K -spread
if for all 7 # v, € S one has 117, ¢ K.

Recall also that the action of G is said to have a completely positive entropy
(c.p.e.) if for any finite partition &, the mean entropy h(€, G) is positive.

Theorem 3.41.1. A free action of a countable amenable group G on a Lebesgue
space (X, i) has c.p.e. if and only if for any finite partition € and any € > 0 there
evists a finite subset K C G such that for any finite set S which is K -spread

%H (\/ 95) — H(¢)

ges

< E.

Let I C G be a subgroup and (X, p) a free H-space which has c.p.e. and is non-
Bernoulli. Denote by 7 : G — H\G the natural projection and by s: H\G' — G a
section, which possesses the property s(H) =e.

Form the product space Y = X\C with the associated product measure v and
introduce an action of G on 1" by

(9y)y = s(v)gs(va) "y, yeyY, yeH\G, geg,

with the given action of H in each direct multiple of Y. An easy verification shows
that this action is well defined (in particular, s(v)gs(yg) € H). In some cases it

®This note presents an exposition of the results of the author’s joint work with V. Golodets,
Complete positivity of entropy and non-Bernoullicity for transformation groups, Coll. Math. 84/85
(2000), 412-429.
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is possible to prove that this G-action inherits the properties of c.p.e. and non-
Bernoullicity. So, starting from a Z-action with these properties produced by D.
Ornstein and P. C. Shields, one can arrange certain iteration of the above construc-
tion in order to prove the following theorems.

Theorem 3.41.2. Any countable Abelian group G containing an element of infinite
order has a non-Bernoullian c.p.e. action.

Theorem 3.41.3. Let G be a countable nilpotent group. There exists a c.p.e. non-
Bernoullian G-space.

Theorem 3.41.4. Let G be a countable solvable group whose commutant |G, G] is
nilpotent. Then G admits a non-Bernoullian action with completely positive entropy.
In particular, any countable solvable subgroup of GL(n,R) admits a non-Bernoullian
action with c.p.e.

3.42 Meir Smorodinsky
Necessary and sufficient conditions for a
process to admit independent extension®

Let X;,n < 0 be a stochastic process defined on a Lebesgue probability space. Such
a process defines a filtration F,, = o{X;,7 < —n}. Our goal is to classify processes up
to their filtration. We assume that Mn>oF5 is trivial. Among such processes there is
a distinguish class, the independent processes. An independent process process has
the property that the conditional distributions of F,_; given F, are a.e. equivalent.
We say that 2 distributions (say on the real line) are equivalent if there is a measure
preserving 1-1 map from one to the other. Among the distributions we single out
homogeneous which are either of finite number of atoms, all of equal probability,
or non atomic (continuous). We call a process conditionally homogeneous if for
each n the conditional distributions of F,_; given F, are a.e. equivalent, and are
homogeneous (the distribution can depend on n). It was discovered by Vershik
[4] that there are homogeneous processes which their filtration is not equivalent
to one generated by independent process. Let U, be an independent process. A
parameterization of X, by U, is a joining of U, and X,, with the following properties

(1) U_y,---,U_, are independent of F,, ;.
(2) The complete o-field generated by U_, and F, contains F,_,.
If also
(3) olu—p,tt—p_1,- -] contains F,_, for each positive n,
then we say the parameterization is generating. In such case we say that X, admits
an independent extension.

Let X, be a finitely homogeneous process i.e. for each n, the conditional distri-
butions consist of finitely many atoms say p,. Denote by C, the set {1,...p,}.
Let Q be a finite measurable partition. Let , be the space of n — 1 tuples

*Supported in part by ISF Grant # 366173
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Qi = {(€n-1,-16) : & € Ci}. The set Q, has a natural tree structure. De-
note by Ay, the set of the tree automorphisms of 2,. Now, given a point z, there
is an atom z,, € F,(x). A tree €, can be attached to T, in such a way so that for
each w, € (2, the pair (z,,w,) defines a point z(w,).

We define an n-distance n > 0, between any 2 points x,z’ as follows. Begin
by putting do(z,2') = 0 if z,2’ belong to the same atom of Q and dy(z,2') = 1
otherwise.

Definition 3.42.1.
da(,2') = (] [ pi) ' # min #{wlw € O, do(2(w), 2’ (a(w)) = 1}.

i<n
Theorem 3.42.1. A finitely homogeneous process X,, admits independent extension

if and only if for every finite partition Q, dy(x,2') tends weakly to 0 as n tends to
infinity.

Using Theorem 1, with appropriate approximation we get,

Theorem 3.42.2. (|2]) Homogeneous process X admits independent extension if
and only if its filtration is equivalent to independent filtration.
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3.43 Orjan Stenflo
Non-uniqueness of invariant probability
measures for contractive iterated func-
tion systems with place-dependent prob-
abilities

Let fy and f; be two maps from [0,1] into itself defined by

folz) =02 and fi(z)=a-+ (1 — ),
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where o and « are fixed parameters satisfying 0 < o, < 1. Let p be a real valued
continuous function on [0, 1] with 0 < p(z) < 1.

Suppose a point z € [0,1] moves randomly with probability p(z) to fo(z) and
with probability 1 — p(z) to fi(z). This procedure generates a Markov chain on
[0,1].

It is a natural question to ask whether a Markov chain generated in this way
necessarily has a unique stationary probability measure. We give an example, based
on a result by M. Bramson and S. Kalikow, Israel J. Math. 84 (1993), 153-160,
showing that this is not necessarily the case. This constitutes a counterexample to
a conjecture raised by an incomplete proof by S. Karlin from 1953.

Further details can be found in the paper “A note on a theorem of Karlin”,
electronically available at: http://www.math.umu.se/~stenflo/research.html

3.44 Anatole Stepin
A remark on Z*-actions of finite type with
phase transitions

Let A be a finite alphabet, G be a countable group and T : G x A® —3 A€ be the
natural G-action. Given G-invariant closed (with respect to the product topology on
A%) subset © C A€ consider the restriction of T to Q. This symbolic transformation
group is of finite type if configuration from Q are defined by universal local rules.
In the case G = Z these actions are also called subshifts of finite type or topological
Markov chains. It is well known that invariant probability measure of maximal
entropy for any transitive subshift of finite type is unique. This is not the case for
the class of transitive Z”-actions of finite type as R. Burten and J. Steiff showed
in [1]. In particular, they proposed an example (described below) of ZZaction of
finite type with #A = 8526 possessing two measures of maximal entropy (phase
transition). Our remark (joint work with S. Shepovalov) is that the number of
states can be reduced in this context.

Let n be a positive integer.

1

A = {~n,—-n4le. =Ll ogm = Lyn}

G = {(i,j) e Ax A|li-j<2}
Denote || - ||, the £;-metric on Z? defined by [(zy, 22)||1 = |z1| + |z2| and consider
subset

Q= {we A% (w(x),w(y) ¢ G if lz — yll, = 1}.

[t is translation invariant and T'|q is the required action.

Subset M C Z? is called connected if for every pair 2,y € M there exists a path
X = Lo, L1, ..., 2 =y in M such that ||z; —z;_(||; = 1, 1 €4 < n. Finite subset
M C 77 is called embracing if 0 € M and both M, 7.2 \ M are connected. Notation:

OM ={xe M|3yeZ*\M: ||a—y|, =1}

The following sufficient condition for the phase transition was given in [1].
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Theorem 3.44.1. Let N, be the number of embracing subsets M C Z* with |OM| =

oC
. : ) 32
. If n satisfies the inequality E N,g(—)l < 1 then T|q possesses exactly two prob-
n
=1
ability measures of mazimal entropy

Introducing (eo-metric on Z%, ||(z1, 5)||ee = max(|zy|, |zs|), we define subset
M C Z? to be #-connected if for every pair z,y € M there exists a path z =
To, T1,. .+, Tk =y in M, such that ||z; -z, ||c = 1,1 <7 < n. Our propose here is
1) to indicate that for every embracing subset A its boundary M is *-connected,
and
2) to use 1) for estimating V.

Notations:

By(z,2) = {ye sz ly — 2[eo < z},
B’oo(‘rﬁz) = Bm(-r'z)\{x”'

Lemma 3.44.1. For every embracing set M, #M > 1, and every xg € OM,
B! (z4,1) NG # 0.

One more notation: for M C Z2 let int M be the set of 2 € 72 such that there
are no connected path from z to oo which does not intersect M.

Lemma 3.44.2. If for *-connected paths Y1 and e, int v, Uint v, is connected and
Ity Nint 2 C 71 U e, then v, Uy is #-connected.

From two lemmas above it follows the
Proposition 3.44.1. If M c F2 is embracing then OM is +-connected.

In fact together with an estimate (cf. [2]) for the number of connected subgroups
of size | leads to the basic

[

Lemma 3.44.3. N, < 5(96)1.

The proof follows the arguments given in [1] for the estimate N; < =(49¢)!. Fur-

ther improvement seems plausible if one takes into account Dobrushin’s arguments
in [3].

b | =~
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3.45 Bernd O. Stratmann

Weak multifractal formalism for conformal
measures

For a large class of fractal sets the idea of an iterated function system has turned
out to be a very convenient and efficient concept. Traditionally, the development
of fractal geometry was always very much inspired by various phenomena which
appear in conformal analysis and number theory. The talk continued this tradition
by explaining how methods from metrical Diophantine number theory can be used
to study certain tame parabolic iterated function systems. These results generalize
results for geometrically finite Kleinian groups with parabolic elements (obtained in
[1] [2] [3]) and for parabolic rational rational functions (obtained in [4] [5] [6] [7]),
which represent complex analytic analogies of Jarnik’s classical number theoretical
theorem on the Hausdorff dimension of well-approximable numbers.

More precisely, let S = {¢; : i € I'} be a tame parabolic finite iterated function
system which satisfies the super strong open set condition (SSOSC) (see [6]). For
z; denoting the fixed point of one of the parabolic generators, for § > 0 and for a
hyperbolic word w € I, define

Bu(i) = B = B(du(@:), [¢,(w)l) and  BL(i) = B] = B(du(z:), (14, (x))+).

The main interest of this talk focused on the sets

IT=NU UBL, /=75

g2l nzq|w|=n 1€0Q)

We gave an outline of how to derive the following theorem of [SU3]. Furthermore,
we explained in which way this result leads to a complete description of the ‘weak-
multifractal spectra’ (see [S2]) of the h-conformal measure which is canonically asso-
ciated to S (where /i denotes the Hausdorff dimension of the limit set of the iterated
function system S).

Theorem 3.45.1. (a) If h <1, then

h
HD(J%) =
(7%) 144
(b) Ifh > 1, then
L if §>h—
HD(J}) = {1-3;:_“ {f 02 h-1

where p; denotes the number of petals at the parabolic fized point x;.
In particular, with py, == min{p; : i}, we have that

o ifé6>h—1

HD(J’) = { bt i )
ﬁﬁ ifd < h-—1.
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3.46 Yuri Tomilov?!
Strong stability of bounded evolution fam-
tlies and its relation to ergodic theorems

One very important task in the study of a linear nonautonomous Cauchy problem

{ u(t) = A@)ult), t>s>0, (3.1)

u(s) =z, z € X,

in a Banach space X, is the study of asymptotic behaviour of its solutions. Among

the most interesting types of asymptotic behaviour we would like to mention stability

in the sense that solutions vanish at infinity (see Definition below). However, a few

characterizations (if any) of this kind of asymptotics of solutions to (3.1) are known.
In the case of the autonomous Cauchy problem

{ u(t) = Au(t), ¢ >0,

W)= = T € X, (3.2)

quite a lot stability criterias have already been obtained. For example, assuming
that (3.2) is well-posed and that the operator A generates a bounded Cp-semigroup

*I'This report is based on the joint work with C. J. K. Batty and R. Chill
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(T'(t))e>0, there is the Arendt-Batty-Lyubich-Vu Theorem and all its generalizations
to bounded individual solutions or bounded uniformly continuous functions. One
typical assumption in results of this type is the countability of some spectrum, for
example, countability of the boundary spectrum o(A) N iR.

Another group of results, based on resolvent estimates rather than simple spec-
tral conditions, has developed recently, coming closer to a characterization of stable
semigroups. By means of unitary dilations (in Hilbert spaces) and limit isometric
groups there have been obtained growth conditions on the resolvent near the imag-
inary axis which are sufficient for stability, and which are close to being necessary.

We gave several characterizations of stability of evolution families such as arise
from well-posed, nonautonomous Cauchy problems. The characterizations are of
terms of bounded complete trajectories of the dual family, stability of associated
evolution semigroups and spectral properties of the generator of an evolution semi-
group. To formulate them, we have to introduce some concepts and notation.

Recall that a two-parameter family U = (U(t,5))i>s50 C L(X) is called an
evolution family if it satisfies the following three conditions:

(i) U(t,t) = I for all t > 0.

(ii) U(t,s)U(s,r) = U(t,r) forall 0 < r < s < .

(iii) U(+, -) is strongly continuous from {(¢,5) € R? : 0 < s < t} into L(X).

Evolution families usually appear in the context of the nonautonomous Cauchy
problem (3.1). Well-posedness of the Cauchy problem (3.1) is equivalent to the
existence of an evolution family U such that for all s > 0 and for all z € X the
unique mild solution » of (3.1) is given by u(#) = U(t, s)z. In the autonomous case,
i.e. when A(f) = A is constant, well-posedness is equivalent to the condition that A
generates a Co-semigroup (7'(£))»o. In that case we have U(t,s) = T'(t — s) for all
t>s.

Definition 3.46.1. We call an evolution family (U(Z, s));>s>0 on a Banach space
X (strongly) stable if for all s > 0 and for all 2 € X one has lim,_,o || U(t, s)z|| = 0.

Next we introduce the concepts of complete trajectory and evolution semigroup
which are basic in our study of stability.

A function g : R. — X" is called a complete trajectory for (U(—s, —1)")s<t<o
whenever it satisfies the condition U(—s, —t)*g(s) = g(t) for all s < ¢ < 0. One
can imagine a complete trajectory as a backward continuation of a trajectory of
an evolution family to the negative time. Note that this definition of a complete
trajectory differs from that in the literature in that g is only defined on the half-line
R_. However, in the autonomous case when U(t, s) = T'(t—s), a complete trajectory
in our sense can be uniquely extended to a complete trajectory on R by defining
g(t) =T(t)*g(0) for t > 0. We call a complete trajectory g : R. — X* nontrivial if
g is not identically 0.

Further, let 1 < p < o0, and let By, =LP(R; X)ifl <p< oo, and B, :=
Coo(Ry;X) (the space of continuous functions vanishing at 0 and at infinity). It is
well known that the family (T,(¢));>0 defined by

Uls,s—t)f(s—t), s>t

t,s >0,fekE,
0, § < 1, !

(Ty(£)f) (s) = {
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is a Cp-semigroup on the Banach space E,. We call (Ty(t))i>0 the evolution semi-
group associated with (U(t, 5))i>s>0 on the space E,, and we denote by G, its gener-
ator. The notion of an evolution semigroup allows to reduce the study of a nonau-
tonomous Cauchy problem to an autonomous one.

Finally, for an evolution family U = (U (t, $))i>s>0 and a function fe LL (R X),
let

(U7 % FY(E) = /0'5 U(t,s)f(s) ds for all t > 0.

When U(t,s) = T(t — s) for a semigroup T, U = f is the convolution of T and fin
the usual sense,

Our first main result is the following theorem which we believe is new even in
case X is finite-dimensional space.

Theorem 3.46.1. Let (U(t,s))i>550 be a bounded evolution family on a Banach
space X, and let (Ty(t)),>0 be the evolution semigroup associated with (U(t,5)) 520
on B, (1 < p < oo). Then the following assertions are equivalent:
(1) The evolution family (U(t, 5))izs>0 s strongly stable.
2) The semigroup (Ty(t))eso is stable for some 1 < p < oo.
) The semigroup (Tp(t))eso is stable for all 1 < p < oo.
) The range Rg G, of Rg Gy is dense in L' (R, ; X).
) The set

Fi={feLl'R;X):U+feL(R:;X)} (3.3)
is dense in L'(R, ; X).

The equivalences (1)«(4)<(5) should be compared to famous Datko’s charac-
terization of uniformly ezponentially stable evolution families in which density of
Rg G, has been replaced by surjectivity of Gy

Now, observing that, Po(G,), the point spectrum of G, is empty, we obtain the
following ergodic characterization of stability.

Corollary 3.46.1 (stability versus ergodicity). Let (U(t,5))i>s50 be a bounded
evolution family on a Banach space X, and let (T (t))i>0 be the evolution semi-
group associated with (U(t, s))i>s20 on Ey. Then the evolution family (U(t, 5))izs>0
is strongly stable iff the evolution semigroup (T1(£))i>0 is mean ergodic on E.

Thus, the study of strong stability of solutions to (1) can be reduced to the study
of mean ergodicity of the corresponding evolution semigroup in F;. Note the specific
role of the Banach space E; in this conclusion. For example, the corollary cannot
be true for £, where p € (1,00). In fact, if p € (1, 00) and X is reflexive, then E, is
reflexive. The fact that the point spectrum of G, is empty and the Mean Ergodic
Theorem imply that G, has dense range in Ey, even if (U(t, 5))1>550 is not a stable
evolution family. Similarly, whereas Datko’s Theorem is true for every p € [1, oq],
the equivalence (1)4(5) cannot be true for p € (1, oa).

The proof of the above results is based, in particular, on the following extension
of the well-known Lin-Derriennic theorem which has an independent interest,.
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Proposition 3.46.1. Let (U(t, s))i>s>0 be a bounded evolution family on a Banach
space X. Let B* be the closed unit ball in the dual space X* and define for fized
s>0

Js = (U, 9)(B*).
t>s
Then:
(i) For every x € X we have

1
— limsup [|[U(¢, s)z|| < sup [{z,2")| < liminf ||U(t, s)z]|, (3.4)
M e T eJy t—+oo

where M = supys .5, [|U(t, 5)|].
(ii) limyoe |U(2, s)z|| = 0 if and only if v annihilates J*.
(iil) For every x* € J§ there ezists a bounded complete trajectory g for the evolution

family (U(—s, —t)*)s<i<o such that g(0) = z*.

So, (U(t,8))i>s>0 Is strongly stable iff (U(-s, —t)*)s<t<o does not admit a
bounded nontrivial complete trajectory. To get Corollary one has to observe that
Ker G} can be identified with the set of all complete bounded trajectories for
(U(*S, —t)*)sgtg{).

Specializing the above technique for the semigroup case, i.e. when U(t, s) = T (t—
s) for all t > s, we obtain the criteria for strong stability of bounded Cy-semigroup
in terms of some algebraic properties of its generator. Before stating the result we
define A, (R; X) to be the image under Fourier transform of the space L'(R,;X),
Le. the space of all functions f : R — X for which there exists ¢ € LY(R,; X)
such that f(8) = [;" e #g(s)ds = Fg(8) (6 € R). By injectivity of the Fourier
transform the function g is uniquely determined and we put ||f||4, = |lg|lx

Theorem 3.46.2. (i) Assume that U(t,s) = T(t — s) for some bounded Cjp-
semigroup (T'(t))>0 on X, and denote by A the generator of (T'(t))i>0- Then
the strong stability of (T(t))i>0 is equivalent to:

Pa(A) iR = 0 and the multiplication operator M defined by

DM) = {fe A.(RX): f(B) € Rg(if — A) and
B (i — A)71F(B) € A,(R; X))
M/f(B) = (iB-A)"'f(P)

is densely defined.

(ii) The condition

the space [yep Rg(if — A) is dense in X
implies strong stability of (T'(t)):>0.

Whether the converse to the second statement (ii) is true? The answer is not
known.
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3.47 Reinhard Winkler
The dynamical behaviour of Kronecker se-
quences and compactifications of integers

Our Question: Given o € T = R/Z and a segment .S C R/Z. Let T = T(e, S)
denote the set of all integers & with ka € S. More generally we can consider
Kronecker sequences. This means that we have a vector @ — (v, ..., a,) € (R/Z)7,
a rectangle R =5) x ... x S, C T" and the set T = T'(a,R) of all k with ka € R.
Given just the sets T'(c, .S) or T'(a, R), how much do we know about a resp. a?

Sander’s number theoretic result: By the means of Kronecker's approxima-
tion theorem, J. Sander, cf. [2], proved that, with some obvious exceptions, T'(a, S)
and T'(a, R) cannot coincide. (In fact Sander’s result is much more general w.r.t.
S and R.) This means that in some way the sets 7" carry the essential information
about o and a. We are investigating how to get this information.

An abstract setting: The natural generalization of our question is to replace
T or T" and the embeddings k — ka resp. k ++ ka by arbitrary compactifications
(C,¢) of the integers. This means that C is a compact group and ¢ : Z — C is a
homomorphism such that (Z) is dense in C. Let ttc denote the normalized Haar
measure on C. The role of S and R is played by so-called continuity sets M C C,
i.e. sets whose topological boundary 6 M satisfies #c(0M) = 0. The corresponding
sets T' = +~'(M) have been investigated and called Hartman measurable sets in [4]
and [3]. A very important fact is that they form a Boolean set algebra # on Z and
T =7'(M) € H has a density coinciding with pe(M).

Furthermore the system of all compactifications has a natural structure. We
write (C'y, ;) < (Cq,12) whenever there exists a continuous homomorphism ¢ :
Cs — C with wia = ¢;. If furthermore (Ca,t2) < (Cy, 1) then ¢ is an algebraic and
topological isomorphism and we identity the compactifications. The resulting system
COMP is partially ordered by <. Its maximal element is the Bohr compactification.
Any compactification is a factor of the Bohr compactification.

Using Pontrjagin’s duality: By Pontrjagin’s duality, factors correspond to
subgroups of the dual. The dual of the Bohr compactification of Z is Ty, the one
dimensional torus with the discrete topology. Thus, if SUB denotes the system of
all subgroups of Ty, one can prove (SUB, <) = (COMP,C) by the isomorphism
®, sending the subgroup A C T, the compactification (Carta) ta: ks (ka)aes €
C_.z_ Q T“‘.

Furthermore we look at the structure FZLT consisting of all filters F on Z
coming from a (C,1) € COMP in the sense that F — F(C ) = B{Cu) (B
COMP — FILT) consists of all . Y(U), U C C neighbourhood of 0 € C'. Clearly
FILT is partially ordered by set theoretic inclusion. For F € FILT let U(F) be
the set of all & € Ty such that we have filter convergence limgeper bk =0 € T. It
turns out that ®, ¥ and ¥ form a commutative triangle diagram of isomorphisms
of partially ordered sets.

An auxiliary function: Given (C,1) € COMP and a continuity set M C (',
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the function f = fyy : C = R, ¢ puc(M A (M + ¢)) is continuous and the set
Z(M) = f~1(0) of zeros is a subgroup of C. The use of the function f is based on
the fact that, since «(Z) is dense in C', f is determined by the values on «(Z) and
can be computed only by means of T = +~'(M): f(:(k)) must coincide with the
density di.(T) of T A (T + k).

The filter induced by a Hartman sequence: The essential step to get
information from 7 is to use the above numbers di.(T") to define the sets F(T,e) =
{k €Z: di(T) < e}, € > 0, generating the filter F(T). It turns out that F(T) €
COMP and in many cases coincides with F(C, ).

The results: Using the continuity of fy, it is now an easy exercise to show
that 7(T') € F(C, ). The converse inclusion holds under the assumption that M is
aperiodic in the sense that Z(M) = {0} is trivial. Also the proof of this fact is now a
routine work of 5 lines. If Z(M) is arbitrary one gets F(I') = F(C/Z(M), si) with
the canonical mapping k : ¢+ c+ Z(M). Non degenerated sectors S or rectangles
R are aperiodic, hence this yields Sander’s result in the above stated version as a
consequence. Here we make use of the isomorphisms (COMP, <) = (FILT,C) =
(SUB, C). More generally it should be mentioned that there are aperiodic continuity
sets M C (' if and only if the corresponding group ¥(F(C, 1)) € SUB is countable.
Full proofs of these results and further references are contained in [4].
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3.48 Michiko Yuri
Weak Gibbs measures for certain non-hy-
perbolic systems

In this talk, first we present a new method for the construction of conformal mea-

sures v for infinite-to-one piecewise C-invertible Markov systems associated to po-
tentials ¢ which may fail both summable variation and bounded distortion, but
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satisfy the weak bounded variation (see below). Next we show the existence of equi-
librium states x for potentials ¢ of weak bounded variation which is equivalent to
the conformal measures v. The equilibrium states may fail the Gibbs property in the
sense of Bowen but satisfy a version of Gibbs property (so-called weak Gibbs) under
certain condition. In particular, we can observe the weak Gibbs property of equi-
librium states for typical mathematical models of intermittence which IS a common
phenomenon in the transition to turbulence, i.e., piecewise C''- invertible maps with
indifferent periodic points (Manneville-Pomeau maps, Brun’s map, Inhomogeneous
Diophantine algorithm, a complex continued fraction algorithm etc).

Definition 3.48.1. We say that a triple (T, X,Q = {X,}aer) is a piecewise C°-
invertible system if X is a compact metric space, T : X — X is a noninvertible
map which is not necessarily continuous, and @ = {X,}ser is a countable disjoint
partition @ = {X,}ase; of X such that Uaes it X, is dense in X and satisfy the
following properties.

(01) For each a € I with int X, s 0, T|im x, : int X, — T(intX,) is a homeomor-
phism and (T[;nex,) ™" extends to a homeomorphism #, on cl (T(intX,)).

(02) T(Uint;‘ﬂ,:@ Xﬂ) o Uint:\'a=ﬂ ‘Ya'
(03) {Xo}ees generates F, the sigma algebra of Borel subsets of X.
Definition 3.48.2. We say that ¢ is a potential of weak bounded variation (WBV)

if there exists a sequence of positive numbers {Cr}nz1 satisfying lim,_,(1/n)

logC,, = 0 and Vn > 1,VX,, ,. € V' T-iQ,
SUDgex,, ., eXP(11y ¢(T'x))
illf.?.‘e«\'al...n" CXP(Z;ZOL {I‘)(TI:I:)) B

Definition 3.48.3. A Borel probability measure v is called a weak G'ibbs measure
for ¢ with a constant — P if there exists a sequence {K,},-¢ of positive numbers
with lim, o (1/n) log K, = 0 such that v-a.e.z,

}'{;1 S yi‘}lul...a,-l (1)) S I{n,
exp(Q_;—g #7%(z) — nP)

where X, ,,(z) denotes the cylinder containing z.

T

Our method is based on the existence of a derived map 7™ (Schweiger’s jump
transformation) which is uniformly expanding and guarantees a weak Holder-type
property of the potential ¢* associated to ¢. For the construction of conformal
measures v, we observe a good relation between the topological pressure for ¢ and
the topological pressure associated to ¢* with respect to T". The key to the proof
of the weak Gibbs property of equilibrium states p for ¢ is to clarify the order of
divergence of the invariant density dir/dv near indifferent periodic points. Lastly,
we establish a version of the local product structure (weak local product structure)
for ergodic measures 7 which are the invertible extension of the ergodic weak Gibbs
measures p. As a special case, I possesses asymptotically “almost” local product
structure in the sense of Barreira-Pesin-Schmeling ([1]).
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3.49 Henryk Zoladek
Multi-dimensional Jouanolou system

Ordinary differential equations with polynomial right-hand side, when considered
in the complex domain, define holomorphic foliations of the projective space whose
leaves are open Riemann surfaces. It is known that a typical such foliation (in the
space of foliations of fixed degree) reveals a chaotic behaviour; the leaves are dense
in the phase space and the entropy is positive. Another aspect of this theory is the
problem of integrability of polynomial differential equations; here by integrability
we mean existence of one (or more) first integral expressed in resonable terms (in
quadratures, in elementary functions etc.) The necessary condition for such inte-
grability is the existence of invariant algebraic varietes (e.g. hypersurfaces, curves).

J.-P. Jouanolou was the first who has shown that holomorphic foliations of the
projective plane without any invariant algebraic curve (including the line at infinity)
form a dense subset in the space of foliations of fixed degree. (Later A. Lins-Neto
has shown that this subset is also open.) By standard arguments, which use Zariski
closeness of the space of foliations with an invariant algebraic curve of fixed degree,
the proof of the Jouanolou’s theorem relies on finding an example of a polynomial
vector field without algebraic leaves. He has chosen the following system, called the
Jouanolou system, written in the homogeneous coordinates in CP"

&y =utg, &) 7= Bgyes y By = 00

Here s > 2 is the degree of the corresponding foliation and n = 2 in the Jouanolou's
book “Equations de Pfaff algébriques” .

We have obtained the following generalization of that result to arbitrary dimen-
sion.

Theorem 3.49.1. Ifn > 2 and s > 2, then the Jouanolou system has no invariant
algebraic hypersurfaces.

This implies that the space of foliations of CP™ without invariant algebraic hy-
persurfaces is dense in the space of all foliations of given degree.
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There exist other results about invariant algebraic varietes. A. J. Maciejewski,
J. Moulin Ollagnier, A. Nowicki and J.-M. Strelcyn have proved that the thesis of
the above theorem holds when n+1 is a prime number and s > 2n/(n—1). A. Lins
Neto and M. Soares have shown that a generic foliation of CP*, n > 2 does not have
algebraic leaves and M. Soares has proved that a generic foliation of CP® does not
have invariant algebraic surfaces (he has not proved that the Jouanolou foliation
has this property). Lins Neto and Soares use methods of differential geometry
(characteristic classes); the methods of Maciejewski et al. are essentially algebraic.

In the proof of the theorem we use methods of analytic geometry. Firstly, fol-
lowing the paper of Maciejewski et al., the problem is reduced to showing that
another system o = yo(syn — vo),..., 00 = Yn(SYn—1 — yn) does not have homo-
geneous polynomial first integrals. Next, we expand the alleged first integral into
powers of the last variable y, ,with polynomial coefficients which satisfy a system
of differential equations. The latter (reduced) system, restricted to the hyperplane
Yn = 0, is integrable with n — 1 rational first integrals. This allows us to solve
partially the mentioned system of equations for the polynomials—coefficients. By
a careful estimation of degrees of some variables in these coefficients we obtain a
contradiction.
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4

Open problems

I Vitaly Bergelson

See page 30. See also Section 5 in: Ergodic Ramsey theory - an update, Ergodic
Theory of Z%Actions (edited by M. Pollicott and K. Schmidt), London Math. Soc.
Lecture Note Series 228 (1996), 1-61.

IT Maurice Courbage

See page 37.

IIT Yves Derriennic

See page 46.

IV Sébastien Ferenczi

See page 52

V  Sergey Gefter

Let G be a non-discrete locally compact second countable group with left Haar
measure /4, and I' be a countable dense subgroup of . T" acts on the measure space
(G, i) by left translations. Let us denote the -orbital equivalence relation by Ry.

Question V.1. Let G be a non-amenable as a discrete group. To which extent is
G determined by equivalence relation Rp?

It is known that if G is compact and ' contains a dense subgroup in G with
T-property and ICC-property, Rp determine G with precision up to a subgroup
of a finite index (see Theorem 3.9 in the paper S. L. Gefter and V. Ya. Golodets,
Fundamental groups for ergodic actions and actions with unit Jundamental groups,
Publ. RIMS, Kyoto Univ., 24 (1988), 821-847).
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VI Eugene Gutkin

In this contribution we formulate a few open questions in billiard dynamics. The
billiard flow takes place in a bounded, connected, planar domain, Y (the billiard
table) with a piecewise C' boundary, X = dY. The qualitate features of the dy-
namics crucially depend on the shape of the table. Three types of geometric shapes
have attracted most attention. These are the smooth and strictly convex tables,
the piecewise concave ones, and the polygons. We will refer to the corresponding
dynamics (and the billiard tables) as elliptic, hyperbolic, and parabolic respectively.
It is standard to pass from the billiard flow to the billiard map. See [7]. The phase
space of the billiard map is ® = X x [0,7]. In standara coordinates the Liouville
measure, j, is given by du = sin@dsdf 7). It is invariant under the billiard map.

For the elliptic billiard dynamics, the study of periodic orbits goes back to
G. D. Birkhoff. He obtained a quadratic lower bound on their number. The first
question concerns an upper bound of sorts on periodic orbits. Let ®, < @ be the
set of periodic points of the prime period n.

Problem VI.1. Prove that p(®,) = 0 for all n.

For n = 2 this is straightforward. For n =3 this is a theorem of M. Rychlik [5].
Simpler proofs were obtained by L. Stoyanov, Ya. Vorobets, and M. Wojtkowski.
See [7]. For n > 4 the question is open. By a result of V. Ivrii, a positive answer to
the question has nontrivial implications for the spectral asymptotics of the Dirichlet
Laplacean of Y. Although typically the set @, is finite for each n, N. Innami gave
examples when @3 is a continuum.

This class of hyperbolic billiard tables arose from the work of Ya. Sinai [6] which
was motivated by the ergodic hypothesis for the Boltzmann gas. It is much wider
than the original family of dispersing tables of Sinai [2]. The billiard dynamics in
these tables has strong chaotic properties [1]. Many open questions for hyperbolic
billiard tables have to do with the decay of correlations. We will discuss the statistics
of periodic orbits in dispersing billiards. Let fy(n) be the number of k-segment
periodic orbits, with £ < n. What is the asymptotics of this counting function? By
theorems of L. Stoyanov and N. Chernov, there are asymptotic bounds c_e"-" <
fv(n) < cpe™™, asn — oo,

Problem VI.2. Does the limit
h — lim lOg f}’(n)

T —+00 n

exists? Is h the topological entropy of the billiard map?

We refer to [3] for the background on polygonal billiards. A polygon Y is rational
if the angles between the sides of Y are of the form mm/n. Then the billiard Aow
decomposes into a one-parameter family of directional billiard flows b, 0 < § <
2. In the topological space of n-gons the set £(n) of ergodic n-gons is residual
in the sense of Baire category [4]. By a theorem of Vorobets, £(n), which is a
bounded subset in a Euklidean space, contains all polygons whose angles admit a
superexponentially fast approximation by rationals. Let p be the Lebesgue measure
in the ambient Euclidean space.
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Problem VL.3. Is u(£(n)) > 0?

The question is open even for n = 3, i.e., for triangles. The space of triangles is
identified with the unit square in R?, Acute triangles correspond to the mechanical
systems of three elastic point masses confined to a circle. The question above cor-
responds to the following: Is the system of three elastic masses on a circle ergodic
for almost all masses?
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VII Mariusz Lemarczyk

Let T : (X, B, ) — (X, B, 1t) be an ergodic automorphism of a probability stan-
dard Borel space. By J(T') (J¢(T)) we denote the set of all self-joinings (ergodic
self-joinings) of T that is all T'x T-invariant measures defined on (X' xX, B&B) whose
both natural projections are equal to z. To each element \ € J(T) we associate a
Markov operator @y : L*(X, p) — L*(X, u) given by Jxe(Ngdu= [, fadAr
We also have ®\T = T'®,. Moreover, each Markov operator on L?(X, p) that com-
mutes with T is necessarily of the form ®,. This introduces a semigroup law on
J(T'). Together with the weak topology and the natural simplex structure on J(T)
we obtain that J(T') is a compact semitopological affine semigroup.

In 1995, del Junco, Lemaiiczyk and Mentzen (|2|) introduced a notion of semisim-
plicity. We say that T is semisimple if for any A € J¢(T) the extension (T x T, \)
over (T, p) (given by the projection on the first coordinate) is relatively weakly
mixing (see [1] for definition of relative weak mixing). The notion of semisimplicity
generalizes the notion of minimal self-joinings (|5]) and simplicity ([3],]6]). Moreover
some Gaussian automorphisms turn out to be semisimple ([4]). It follows from basic
properties of relative products that J¢(T') is stable under composition whenever T
1s semisimple.
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Problem VIIL.1. Is it true that T is semisimple if and only if J¢(T) is a subsemi-
group of J(T)?
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VIII Emmanuel Lesigne

See page 76.

IX Christian Mauduit

See page 94.

X Milosz Michalski

See page 97.

XI Mahendra Nadkarni

See page 98.

XII Ryszard Rudnicki

Problem XII.1. Does there exist a (smooth) continuous time dynamical system
in R* which has a dense trajectory?

Problem XII.2. Let T': X — X be a bounded linear operator on a Banach space
Y. Assume that there exists a probability Borel measure y invariant with respect to
T. Assume that X is the linear support of . Does there exist a Gaussian measure
v invariant under 7" with topological support X'?
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Remark. Linear topological support of a probability Borel measure ;i is the
smallest closed linear subspace Y of X' such that 1(Y) = 1. The topological support
of p1 is the smallest closed set F' C X such that u(F) = 1.

Problem XII.3. Let {S;},50 be a semidynamical system generated by an evolution
equation z'(f) = Az in a Banach space X, i.e. A is the infinitesimal generator of the
continuous semigroup of linear operators {S;}i5o. Give sufficient (and necessary)
conditions for the existence of an invariant Gaussian measure p for {S;}i>g with
supp pu = X.

In order to formulate next problems we need some definitions.

Let X' be a compact space, m be a given Borel measure on X and T: X — X
be a nonsingular transformation with respect to measure m. Let P be the Frobenius-
Perron operator corresponding to T, i.e. [ Pfdm = ‘['T_I(A) fdm for every Borel
set A and every f € L'(X,m). The system (X, B(X),m;T) is called completely
mizing if for every f € L'(X,m) with [ fdm = 0 we have lim,_, P2 f| =1,
where || - || is the norm in L'(X,m). A probability Borel measure p is called limnat
measure for the system (X, B(X), m;T) if

lim [ p(a)P" 1) m{d) = [ @ atds) [ 1) miaz)

for every ¢ € C(X) and f € L'Y(X,m). If the limit measure 1 exists and is non-
trivial, i.e. suppp contains at least two points, then the system (X, B(X),m; T)
is called chaotic. If the system (XX, B(X), m; T) is completely mixing and chaotic
with the limit measure 4 then the pair (supp p, p) is called the stochastic attractor
for the system (X, B(X),m;T). A probability Borel measure it is called Bowen-
Ruelle measure for the system (X, B(X),m;T) if for every ¢ € C(X) we have
nl SR o(T(z)) — [ o du for m-a.e. z.

Problem XII.4. Let (X, B(X),m; T} be a completely mixing system on a compact
metric space X'. Does there exist the limit measure for this system?

Problem XIIL.5. Let (supp p, i) be a stochastic attractor for (X, B(X),m;T). Is
(¢ the Bowen-Ruelle measure?

Problems XIL.4 and XIL5 are given in the paper: R. Rudnicki, On a one-
dimensional analogue of the Smale horseshoe, Annales Polon. Math. 54 (1991)
147-153.

¥

XIIa Gerhard Keller — answers to problems by
R. Rudnicki

Completely mixing maps without limit measure

ABSTRACT. We combine some results from the literature to give examples of
completely mixing interval maps without limit. measure.
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Let X' be a compact metric space with Borel o-algebra B and equipped with some
Borel measure m. Consider a transformation T : X — X which is non-singular
with respect to m, which means that m(7~'A) = 0 if and only if m(A) = 0 for each
Borel set A. Let P : L}, — L. be the Frobenius-Perron operator of T so that

/c,o-P"fdm:/(gaoT”)-fdm erL:n‘v’(peLﬁ,
We adopt the following definitions:

o The system (X, B,m,T') is completely mizing, if lim,_,o || P"f|| = 0 for each
felL) with [ fdm=0.

e A probability measure p on B is a limit measure for the system (X, B,m,T),
if for each probability density h € L}, the measures P"h - m converge weakly
to p, in other words, if

lim /@-P"_fdm:/(pd,u-/fdm Vfe Ll VoeCX).

n—oo i

e If a system (X, B, m,T) is completely mixing and has a nontrivial limit mea-
sure £ (i.e. 4 is not a one point mass), then yu is called a stochastic attractor
for the system.

o A probability measure y on B is a Sinai- Ruelle- Bowen measure for the system
(X, B,m,T), if for each ¢ € C(X)

n—1

. k
’}Hgoagga(f" .1):/cpdp, m—ae. .

The problems

Rudnicki [8| posed the following problems:

Problem 1 Does each completely mixing system have a limit measure? If T has
an invariant probability density the answer is obviously “yes”. In general, however,
this is not true. In fact, we provide counterexamples in the class of quadratic inter-
val maps.

Problem 2 Is a stochastic attractor necessarily a Bowen-Ruelle-Sinai measure?
We give a counterexample in the class of piecewise C* interval maps with two sur-
jective branches and two neutral fixed points.

The counterexamples
1. A completely mizing quadratic interval map without limit measure
For 0 < a < 4 denote by T, : [0,1] — [0,1] the map T,(z) = ax(l — x). Given
a parameter a we denote by I the dynamical interval [T;(3), Tu(3)] and consider
henceforth the restriction of T}, to I.

The first ingredient to the construction of our counterexamples is a recent result
by Bruin and Hawkins [2, Theorem 4.2|. It says that if T, : I — I is topologically
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oo
n=0

mixing, then it is Lebesgue exact, i.e. the tail-o-algebra 7 = N
only sets of Lebesgue measure zero or full Lebesgue measure.!

The second ingredient is an old result of Lin [6], see also [1, Theorem 1.3.3].
It says that a system (X, B,m,T) is exact if and only if it is completely mixing.?
Hence, if T, is topologically mixing, then it is completely mixing.

The third ingredient are real quadratic maps without asymptotic measure con-
structed by Hofbauer and Keller [3]. Denote by @,(m) the set of all weak ac-
cumulation points of the sequence of probability measures (L5 hym OT_k)u>0
where m denotes the normalized Lebesgue measure on I. Theorem 1 of [3] pro-
vides an uncountable family of parameters a for which the set of ergodic measures
in @q(m) is infinite.® Such maps are, in particular, not completely mixing, because
moT % = P¥1.m so that complete mixing of T, (in the sense of the above definition)
would imply @e(m) = {u}.

The missing link that combines these results to produce examples of completely
mixing maps without limit measure is the observation that the maps constructed
in [3,4] are topologically mixing. For a unimodal interval map topological mixing
is equivalent to the nondecomposability of its kneading sequence (equivalently to
the nonrenormalizability of the map).* But this follows readily from equations (3.6)
and (3.7) in [3].

Finally we remark that we have obtained a bit more than only a negative answer
to the above problem. We showed:

T, "B contains

Theorem There are uncountably many maps 7}, in the quadratic family which are
completely mixing with respect to Lebesgue measure, but for which wa(m) is the
set of all Ty-invariant probability measures. In particular, the sequence of measures
(Lyigmo T*), ., does not converge weakly for these parameters.

2. A stochastic attractor which is not o Sinai-Ruelle-Bowen measure
The second example uses interval maps with two indifferent fixed points where the
contact of the graph of the map to the diagonal is of higher than second order. To
be definite we consider the map T : [0,1] — [0, 1],

T + 4z° forz e 0,1

T(.’E) — ) [1 2)

z—4(1-z) forze[l 1],
T has a smooth o-finite invariant density with non-integrable singularities at z = 0
and z = 1. Thaler [9, Theorem 1] proved that such maps are Lebesgue exact, so by

the result of Lin again, they are completely mixing. Since lim,,_, f;"s P*ldm =10
forall d > 0, the set of weak accumulation points of the measures P*1-m is contained

"More precisely, Bruin and Hawkins assume that the map T, has no Cantor attractor in the
sense of Milnor. But Lyubich [7] showed that a topologically mixing quadratic map T, never has
such an attractor. For our construction, however, this deep result need not be invoked, because the
denseness of the critical orbit in the examples below excludes the existence of a Cantor attractor.

*The reader should be warned that Lin [6] uses a different terminology concerning the notion
of complete mixing. The terminology used in this note is adopted from |[8].

*In [4] this construction is modified in such a way that, for uncountably many parameters a,
@a(m) is even the set of all invariant probability measures of T),.

1Recall that we restricted T, to its dynamical interval.
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in {ady + (1 —a)d; : 0 <a < 1}. Since T has the symmetry T(z) =1 - T(1 — ), it
maps symmetric densities 2 (i.e. h(z) = h(1 — z)) to symmetric ones. In particular,
all P"1 are symmetric. Hence P"l-m — pu = %(60 + 41) weakly so that p is a
stochastic attractor for (X, B,m,T). On the other hand, a recent result of Inoue
[5, Corollary 2.2| shows that j is not a Sinai-Ruelle-Bowen measure for the system.
Indeed, he proves

n—1

lim sup ! Z 14(T*z) =1 m—ae z
k=0

n—too T T

for all intervals A = (0,d) and A = (1 —4,1) and all § > 0.
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XIIT Martin Schmoll

See page 119.

XIV  Artur Siemaszko

Motivated by [1] and [2], with the notation as in the abstract 3.40 (page 122) we
say that homomorphism 7 : (X,T) — (Y, T) has entirely positive entropy (e.p.c.
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for short) if
er \ A.\' - U Em|)"‘

meM(X,T)

In such a case we also say that (X, T) is of relatively entirely positive entropy with
respect to (Y,T) (rel. e.p.e. for short). The above condition is apparently stronger
than rel. u.p.e. from [1]. The rel. u.p.e. does not imply neither rel. c.p.e. nor rel.
w.m. (see [1]).

Question XIV.1. Does rel. e.p.e imply rel. c.p.e. and/or rel. w.m.?

If yes, rel. e.p.e. would be a good counterpart for the notion of topological
K-homomorphism.
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