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Abstract

We give a new proof of Alexeyev’s Theorem on realization of the
maximal spectral type by a bounded function.

Introduction

In [1], Alexeyev has proved that whenever U is a unitary operator of the
Hilbert space L2(X,B, µ) with (X,B, µ) being a standard probability Borel
space then there exists a bounded function f ∈ L∞(X,B, µ) whose spectral
measure realizes the maximal spectral type of U . The proof in [1] uses spec-
tral theory and some arguments from the classical theory of analytic functions
of one complex variable. Later, using the same idea, Fra̧czek [2] extended
Alexeyev’s Theorem for realization of the maximal spectral type by functions
as “smooth” as is the “smoothness” structure of the underlying space X is.
In particular, all such results are satisfied for Koopman representations.

In this note we will show that Alexeyev’s Theorem holds for actions of
locally compact second countable (l.c.s.c.) Abelian groups. The proof looks
new, even in case of unitary representations of Z; it is based on an idea
different from [1] and uses only a basic measure theory. As for generality and
“smoothness” of results, we will follow [2].

For the spectral theory of unitary representations of l.c.s.c. Abelian groups
we refer the reader to [3].

1 Alexeyev’s Theorem for group actions

Assume that F is Fréchet space. Then for each sequence (xn) ⊂ F there is a
sequence (an) of positive numbers such that the series

∑∞
l=1 anl

xnl
converges

in F for each sequence n1 < n2 < . . .. Indeed, if · denotes the corresponding
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F-norm of F , then using the continuity of multiplication by scalars, for each
n ≥ 1 there is bn > 0 such that anxn < 1

2n for each 0 < an < bn, n ≥ 1.
Since F is complete and each numerical series

∑∞
l=1 anl

xnl
converges, the

series
∑∞

l=1 anl
xnl

converges in F .
Assume that A is an l.c.s.c. Abelian group. Assume that U = (Ua)a∈A

is a continuous unitary representation of A in a separable Hilbert space H.
Recall that, given x ∈ H, by the Bochner-Herglotz Theorem there exists a
unique positive finite Borel measure σx on Â such that for each a ∈ A

σ̂x(a) :=

∫
Â
χ(a) dσx(χ) = 〈Uax, x〉.

The measure σx is called the spectral measure of x. Among spectral measures
there are maximal ones with respect to the relation of absolute continuity of
measures. All maximal spectral measures are equivalent. The equivalence
class of maximal spectral measures is called the maximal spectral type of U
and is denoted by σU . Let

A(x) = span ({Uax : a ∈ A}) .

Recall that U|A(x) is spectrally equivalent to the representation Vσx = ((Vσx)a)a∈A
acting on L2(Â, σx) by the formula

(Vσx)a (f)(χ) = χ(a)f(χ).

Theorem 1 (Alexeyev’s Theorem) Let U = (Ua)a∈A be a (continuous)
unitary representation of A in a separable Hilbert space H. Assume that
F ⊂ H is a dense linear subspace. Assume moreover that together with a
certain F-norm · , stronger than the norm ‖ · ‖ given by the scalar product
of H, F becomes a Fréchet space. Then for each spectral measure σ (� σU)
there exists y ∈ F such that σy � σ. In particular, there exists y ∈ F
realizing the maximal spectral type of U .

Proof.
Assume σ = σx is the spectral measure of an x ∈ H. In view of Spectral

Theorem, there exists an isomorphism I, determined by Ix = 1 = 1Â, from

H = A(x)⊕G to L2(Â, σ)⊕G′ establishing equivalence of the relevant unitary
representations.
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Fix δ > 0. Then there exists z ∈ F such that ‖x − z‖ < δ. Hence

‖1 − Iz‖ < δ, and Iz = f ′ + g′, where f ′ ∈ L2(Â, σ) and g′ ∈ G′. Observe
that ‖1−Iz‖2 = ‖1−f ′‖2 +‖g′‖2, so in particular ‖1−f ′‖ < δ and ‖g′‖ < δ.
Let (εn) be an arbitrary sequence of positive numbers decreasing to zero.
Then, by selecting δn > 0 sufficiently small, we can find a sequence (zn) ⊂ F

(with the decomposition Izn = fn + gn, fn ∈ L2(Â, σ), gn ∈ G′) such that
‖x− zn‖ < δn and

σ
(
{χ ∈ Â; |1− fn(χ)| < εn}

)
→ σ(Â),(1)

when n→∞.
Let (an) be a sequence of positive numbers such that the series

∑∞
l=1 anl

znl

is convergent in F for an arbitrary subsequence n1 < n2 < . . . Note that,
without loss of generality, we can assume that the series

∑∞
n=1 an converges.

We claim that the subsequence (nl) can be selected so that

∞∑
l=1

anl
fnl

(χ) 6= 0 for σ-a.e. χ ∈ Â.(2)

The proof of (2) is contained in Lemma 1 below. We set f =
∑∞

l=1 anl
fnl

,

g =
∑∞

l=1 anl
gnl

(the two series are convergent in L2(Â, σ) ⊕ G′, since the
sequence (‖fn‖) is bounded and ‖gn‖ → 0, when n→∞). In view of (2), the
spectral measure of the function f (for the representation Vσ) is equivalent
to the measure σ. For the element y = I−1(f + g) we have σy = σf + σg, so

σy ≥ σf ≡ σ.

Finally I−1(f + g) = y =
∑∞

l=1 anl
znl
∈ F , because the series

∑∞
l=1 anl

znl
is

convergent in F and the F-norm · is stronger than the norm in H (so the
sum of the two series represents the same element in H).

We now prove the technical (standard) lemma.

Lemma 1 Let (Ω,F , P ) be a probability space. Assume that (jn) is a se-
quence of real measurable functions defined on Ω. Assume moreover that
jn → 0 in measure P . Let (an) be a sequence of positive real numbers con-
verging to zero and let 0 < εn → 0.

P ({ω ∈ Ω; |jn(ω)− an| < εnan})→ 1,(3)
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when n→∞. Then there exists a subsequence (nk) such that∑
k≥1

jnk
(ω) 6= 0 dla P -p.w. ω ∈ Ω.

Proof.
Step 1. We claim that there exist a set B ∈ F and an increasing sequence

of natural numbers (n
(1)
k ) such that

P (B) >
2

3
,(4)

ω ∈ B ⇒
∑

l jnkl
(ω) 6= 0

for an arbitrary subsequence (nkl
) of (n

(1)
k ).

(5)

To this end select first n
(1)
1 so that

P
(
{|j

n
(1)
1
− a

n
(1)
1
| < ε

n
(1)
1
a
n

(1)
1
}
)
>

3

4
.

Set A
(1)
1 = {|j

n
(1)
1
− a

n
(1)
1
| < ε

n
(1)
1
a
n

(1)
1
} and choose n

(1)
2 > n

(1)
1 in such a way

that
P
(
{|j

n
(1)
2
− a

n
(1)
2
| < ε

n
(1)
2
a
n

(1)
2
} ∩ A(1)

1

)
> (1− δ2)P (A

(1)
1 ),

where δ2 is a small positive number. Setting A
(1)
2 = {|j

n
(1)
2
− a

n
(1)
2
| <

ε
n

(1)
2
a
n

(1)
2
} ∩A(1)

1 and having one more small positive number δ3 select n
(1)
3 >

n
(1)
2 in such a way that

P
(
{|j

n
(1)
3
− a

n
(1)
3
| < ε

n
(1)
3
a
n

(1)
3
} ∩ A(1)

2

)
> (1− δ3)P (A

(1)
2 )

and set A
(1)
3 = {|j

n
(1)
3
− a

n
(1)
3
| < ε

n
(1)
3
a
n

(1)
3
} ∩ A(1)

2 . By continuing this process

it is clear that for a relevant choice of sufficiently small numbers δk > 0 and
a relevant choice of n

(1)
k it is sufficient to define B =

⋂∞
k=1A

(1)
k so that (4)

and (5) were satisfied.
Set B1 = Bc.
Step 2. We claim that there exist a subset F 3 B2 ⊂ B1 and a subse-

quence (n
(2)
k ) of (n

(1)
k ) (n

(2)
1 > n

(1)
1 ) such that

P (B2) >
2

3
P (B1),(6)
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ω ∈ B2 ⇒ j
n

(1)
1

(ω) +
∑

l jnkl
(ω) 6= 0

for arbitrary subsequence (nkl
) of (n

(2)
k ).

(7)

To justify the above assertion, consider the function j
n

(1)
1

on B1. There exists

δ > 0 such that

P
(
{j
n

(1)
1

= 0 ∨ |j
n

(1)
1
| > δ}

)
>

4

5
P (B1)

and let A
(2)
0 := {j

n
(1)
1

= 0 ∨ |j
n

(1)
1
| > δ} ∩B1. Select n

(2)
1 > n

(1)
1 so that

P
(
{|j

n
(2)
1
− a

n
(2)
1
| < ε

n
(2)
1
a
n

(2)
1
}
)
>

3

4
P (A

(2)
0 ).

Set A
(2)
1 = {|j

n
(2)
1
− a

n
(2)
1
| < ε

n
(2)
1
a
n

(2)
1
} and choose n

(2)
2 > n

(2)
1 in such a way

that
P
(
{|j

n
(2)
2
− a

n
(2)
2
| < ε

n
(2)
2
a
n

(2)
2
} ∩ A(2)

1

)
> (1− δ2)P (A

(2)
1 ),

where δ2 is a small positive number. Setting A
(2)
2 = {|j

n
(2)
2
− a

n
(2)
2
| <

ε
n

(2)
2
a
n

(2)
2
} ∩ A(2)

1 and having one more small positive number δ3 we select

n
(2)
3 > n

(2)
2 in such a way that

P
(
{|j

n
(2)
3
− a

n
(2)
3
| < ε

n
(2)
3
a
n

(2)
3
} ∩ A(2)

2

)
> (1− δ3)P (A

(2)
2 )

an we set A
(2)
3 = {|j

n
(2)
3
−a

n
(2)
3
| < ε

n
(2)
3
a
n

(2)
3
}∩A(2)

2 . By continuing this process

it is clear that for a relevant choice of sufficiently small numbers δk > 0 and
a relevant choice of numbers n

(2)
k it is enough to define B2 =

⋂∞
k=1A

(2)
k so

that (6) and (7) were satisfied.
Set B3 = (B ∪B2)

c.

Step 3. We claim that there exist F 3 B4 ⊂ B3 and a subsequence (n
(3)
k )

of (n
(2)
k ) (n

(3)
1 > n

(2)
1 ) such that

P (B4) >
2

3
P (B3),(8)

ω ∈ B4 ⇒ j
n

(1)
1

(ω) + j
n

(2)
1

(ω) +
∑

l jnkl
(ω) 6= 0

for each subsequence (nkl
) of (n

(3)
k ).

(9)
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To justify this assertion consider the function j
n

(1)
1

+ j
n

(2)
1

(ω) on B3. There

exists δ > 0 such that

P
(
{j
n

(1)
1

+ j
n

(2)
1

= 0 ∨ |j
n

(1)
1

+ j
n

(2)
1
| > δ}

)
>

4

5
P (B3)

and let A
(3)
0 := {j

n
(1)
1

+ j
n

(2)
1

= 0 ∨ |j
n

(1)
1

+ j
n

(1)
1
| > δ} ∩ B3. Select n

(3)
1 > n

(2)
1

so that

P
(
{|j

n
(3)
1
− a

n
(3)
1
| < ε

n
(3)
1
a
n

(3)
1
} ∩ A(3)

0

)
>

3

4
P (A

(3)
0 ).

Proceeding as above we will construct a set of full measure, namely B∪B2∪
B4 ∪ . . ., on which, for the sequence (n

(k)
1 )k≥1, the assertion of the lemma

holds.

Applying now Fra̧czek’s analysis [2] we can deduce that if H has an
additional structure then we can find elements belonging to specific subspaces
and realizing the maximal spectral type. For example, if H = L2(X,µ),
where (X,B, µ) is a measure space with finite or infinite measure, then we
can find a function y ∈ L∞(X,µ) ∩ L2(X,µ) realizing the maximal spectral
type of U . If X is a compact metric space and µ is a positive Borel measure
then the maximal spectral type of U is realized by a continuous function.
Similar assertion are obtained on manifolds, see [2].

Remark 1 By a small modification of the proof of Theorem 1 we can obtain
that if σ = σu and ε > 0 then y ∈ F in Theorem 1 can be found in the ε-
neighborhood of u.

Remark 2 It is possible to adapt the original Alexeyev’s proof from [1] to
obtain another proof of Theorem 1.

Remark 3 A similar proof of Alexeyev’s Theorem to the one presented here
has also been obtained by Andres del Junco.
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