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Abstract

Koopman representations associated to some smooth, or singular with
�nitely many singularities, measure-preserving �ows on T2 are studied.
It is shown that they enjoy so called simple convolution property, i.e.

all Gaussian systems induced by the measures of the (reduced) maximal
spectral types of the �ows, have simple spectra.

We show that for a (continuous) unitary representation U = (Ut)t∈R
on a separable Hilbert space the function which to t ∈ R associates the
maximal spectral multiplicity of the unitary operator Ut is of the second
Baire class, answering a question raised by J.-P. Thouvenot.

Introduction

Let H be a separable Hilbert space. Suppose that U = (Ut)t∈R is a (weakly)
continuous unitary representation of R in U(H). This will be also referred to
as (Ut)t∈R is a unitary �ow in H. For each g ∈ H one associates its spectral
measure σg which is a �nite positive Borel measure on R whose Fourier transform
(σ̂g(t))t∈R is given by σ̂g(t) = 〈Utg, g〉, t ∈ R. Each unitary �ow on H is
determined by two invariants: the maximal spectral type, that is, the equivalence
class σU of the spectral measure σf for some f ∈ H which dominates all other
spectral measures σg, i.e. σg � σf for each g ∈ H, and a measurable function

MU : R = R̂ → N ∪ {∞} de�ned σU -a.e., called the multiplicity function. The
essential supremumMU of MU is called the maximal spectral multiplicity of U .
For more about spectral theory of unitary �ows we refer the reader to [5] and
[21].

We will be mostly interested in Koopman representations, that is, we are
given a measurable R-representation T = (Tt)t∈R in the group Aut(X,B, µ) of
measure-preserving automorphisms of a �xed probability standard Borel space
(X,B, µ); measurability of such a representation means that for each A,B ∈ B
that map t 7→ µ(A ∩ TtB) is Borel. Such a measurable representation induces
a unitary �ow UT = (UTt)t∈R (called a Koopman representation) on the space
L2

0(X,B, µ) of square integrable zero mean functions, here UTt(f) = f◦Tt, t ∈ R.
We will write σT instead of σUT and call it the (reduced) maximal spectral type
of T (while we consider Z-actions, i.e. a single automorphism T ∈ Aut(X,B, µ),
we write σT instead of σ{Tn: n∈Z}).
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Although classical, the spectral theory of dynamical systems, mainly in the
context of Z-actions, is still under intensive development, see e.g. the recent
monograph [21] and the survey articles [14] and [25]. On one side the spectral
theory provides natural invariants for objects considered in ergodic theory; on
the other side, it also provides tools for constructing systems with unexpected
dynamical properties. For example strong spectral properties of a system T
may lead to constructions of other dynamics with some �exotic� properties and
indeed such a spectral machinery have been presented in [18] (see also [13],
Chapter 7 and [43]). The main role in this machinery is played by the property
of pairwise disjointness of convolutions (PDC) of the maximal spectral type σT ;
in other words, constructions of interesting dynamics are done on the base of
some T ∈ Aut(X,B, µ) for which σ∗nT ⊥ σ∗mT for all m 6= n.

The PDC property is clearly opposite to Kolmogorov's group property of
the spectrum: the maximal spectral type is symmetric and dominates its con-
volution square. At a certain stage of development of ergodic theory, this latter
property was conjectured to hold for all dynamical systems (see the report [36]
and the appendix to the Russian translation of [16]). Historically, the �rst exam-
ple of T without Kolmogorov's group property appeared in [20] in 1967. Then
in 1980th, see [19] and [42], it turned out that it is the PDC property which
is generic in the class of automorphisms of a probability standard Borel space.
For the classical Chacon's transformation the PDC property has been proved
in [35]. Clearly, such a property may hold only for systems with continuous
singular spectra.

In the present paper, instead of the PDC property, we will consider a stronger
property1 which will be called the simple convolution property (SC property).
In the context of �ows, the SC property means that if we set σ = σT then
for each n ≥ 1 the conditional measures of the disintegration of σ⊗n over σ∗n

via the map Rn 3 (x1, . . . , xn) 7→ x1 + . . . + xn ∈ R are purely atomic with
n! atoms, and this de�nition can be easily adapted to Z− (and other group)
actions. In [1], [2], [3] and [40] it has been shown that a �typical� automorphism
with respect to the weak topology2 of the automorphisms group Aut(X,B, µ),
Chacon's automorphism as well as some mixing automorphisms enjoy the SC
property. The SC property is closely related to the theory of Gaussian systems
(see [5] for basic properties of such systems): indeed, the SC property of T is
in fact equivalent to the fact that the Gaussian R-action uniquely determined
by σT has simple spectrum, see e.g. [24] (the reader should notice however that
no Gaussian system itself enjoy the SC property). This fact in turn is inter-
esting from the point of view of harmonic analysis as the only known method
of constructing Gaussian systems with simple spectra is via continuous mea-
sures supported on �small� Borel sets, namely, sets without rational relations
(see [5]). It is a separate (and open) problem whether spectral measures of
systems from [1], [2], [3], [40] as well as those given in the present work are
concentrated on �small� Borel subsets. We also refer the reader to the recent
works [24] and [26] where it has been shown that the SC property implies some
strong joining property (we refer the reader to the monograph [13] for the join-

1It is not completely obvious that the SC property is stronger than the PDC property.
This fact seems to be a folklore, see [24] for some stronger assertions.

2Recall that this topology is Polish and can be de�ned by the metric d(S, T ) =∑
n≥1

1
2n

(
µ(SAn4TAn) + µ(S−1An4T−1An)

)
, where {An : n ≥ 1} is a dense family

in B.
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ing theory of dynamical systems) hence relating a purely spectral property with
measure-theoretic properties of the underlying dynamical system.

The main aim of this paper is to give new natural examples of systems with
the SC property, these are smooth or regular �ows on T2. In fact we deal with
examples of special �ows T f = (T ft )t∈R, where Tx = x + α and f : T → R+

(see Section 2 for formal de�nitions) giving rise to two classes of �ows with the
SC property:
(A) given f ∈ C∞, di�erent from any trigonometric polynomial we will show
that for �generic� α ∈ [0, 1) the resulting special �ow has the SC property;
(B) whenever f is piecewise absolutely continuous, with the sum of jumps dif-
ferent from zero, and α has unbounded partial quotients the SC property also
holds true.

Recall that examples from the class (A) are given by smooth reparametriza-
tions of the relevant linear �ows. The class (B) was already studied by von
Neumann in [31], where the weak mixing property of such special �ows was
shown. Many of them can be represented as smooth singular �ows with �nitely
many singularities, see [11].

We will also note that the SC property is �typical� in the class of �ows of a
�xed probability standard Borel space (X,B, µ). Moreover, the SC property of
a �ow implies the SC property of all its non-zero time automorphisms.

In Proposition 3 below we will show that the SC property of a �ow implies
that for each t 6= 0 the maximal spectral multiplicity of the Z-action Tt is equal
to the maximal spectral multiplicity of the whole �ow, i.e. MUTt

= MUT
3.

This provides a relationship with a problem raised by J.-P. Thouvenot in 1990th
which we now describe.

Suppose that (Ut)t∈R is a unitary �ow in a separable Hilbert space H. Given
t ∈ R \ {0} we have the corresponding Z-representation n 7→ Unt. While it is
obvious how the maximal spectral type of the Z- representation is related to the
maximal spectral type of U4, a possible relationship between the multiplicity
functions remains unclear. This problem was already considered by Mathew
and Nadkarni in [30], however no general result has been given there. Since it is
rather clear that the map which to t associates the maximal spectral multiplicity
is Borel, J.-P. Thouvenot asked, in the context of Koopman representations,
what can be said about the Baire class of such maps. We recall here that by
Lebesgue-Hausdor� theorem each Borel real-valued function on a metrizable
space is Baire (e.g. [41], p. 91).

A classical example of the Koopman representation UT = (UTt)t∈R, where
Tt(x) = x + t mod 1 on the additive circle [0, 1) in which the values M(t) :=
MUT1/t

are either 1 (for t irrational) or ∞ (for t rational) gives an example

of a Koopman representation for which the function M is indeed of second
Baire class. If we �x k ∈ Z then for each t ∈ R for the above �ow we have
e2πik· ◦Tt = e2πikt ·e2πik·, so this example is a special case of a unitary �ow with
simple and discrete spectrum (the group of eigenvalues is equal to Z), where the
relation betweenMUTt

andMUT
is well understood5. Since, the Baire category

3Note that in generalMUTt
≥MUT and the inequality can be strict. In particular, for the

�ow (Tt)t∈R with simple Lebesgue spectrum constructed recently in [34], we haveMUTt
=∞

for each t ∈ R andMUT = 1.
4It is the image of σU via the map x 7→ e2πitx.
5Indeed, let (Ut)t∈R be a unitary �ow in a separable Hilbert space H and suppose it has

discrete and simple spectrum. Let A ⊂ R be the (countable) set of eigenvalues (a ∈ R is an
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class �at most n� is closed under taking the function which is the maximum of
two functions, the problem of Baire category class of the functionM is reduced
to the case of continuous maximal spectral type.

We will show here that whenever σU is continuous then the function M
which to t ∈ R associates the maximal spectral multiplicity of U1/t is of the
second Baire class, in particular the same result holds for arbitrary σT . Since
the above result is purely Hilbertian, it is done in Appendix.

To our knowledge the question of whether one can construct a Koopman
representation UT of R with T weakly mixing and for which the functionM is
indeed of the second Baire class remains open. In fact, the mechanism described
above of �producing� some extra multiplicity of time-t automorphisms in view
of their non-ergodicity seems to be the only one which provides discontinuities
ofM.

1 Integral operators in the weak closure of times

of a �ow. An analytic �ow on T2 with the SC

property

When a �ow T = (Tt)t∈R acting on a probability standard Borel space (X,B, µ)
is given then its maximal reduced spectral type will be denoted by σ = σT .
We will always assume that the �ows under consideration are weakly mixing
(i.e. σ is continuous); this in particular implies that each hyperplane in Rn has
zero σ⊗n = σ ⊗ . . .⊗ σ︸ ︷︷ ︸

n

-measure (in fact more algebraic varieties enjoy the same

property, see e.g. Lemma 2 below). It follows that w.l.o.g. we can assume that

the conditional measures σ
(n)
c obtained from the disintegration

σ⊗n =

∫
R
σ(n)
c dσ∗n(c)

of σ⊗n over σ∗n = σ ∗ . . . ∗ σ︸ ︷︷ ︸
n

, which are concentrated on �bers of the map

(1) Cn : (x1, . . . , xn) 7→ x1 + . . .+ xn

are in fact concentrated on n-tuples (x1, . . . , xn) such that xi 6= xj whenever
i 6= j. If, additionally, the �ow under consideration has simple spectrum then

eigenvalue if for some non-zero y ∈ H, Uty = e2πiaty for all t ∈ R). Then, for each a ∈ A
there is exactly one (up to a multiplicative constant of modulus one) ya ∈ H, ‖ya‖ = 1 such
that Ut(ya) = e2πiatya for each t ∈ R. It follows that {ya} is an orthonormal base of H and
then if x =

∑
a∈A caya and Ut0x = λx (with |λ| = 1) then necessarily e2πiat0 = λ whenever

ca 6= 0. If by ∼t0 we denote the equivalence relation on A given by

a ∼t0 b if and only if e2πiat0 = e2πibt0

then it is easy to see that the maximal spectral multiplicity of Ut0 is equal to the maximal

cardinality of cosets given by ∼t0 . Moreover, the set { k
a−b : a, b ∈ A, a 6= b, and k ∈ Z} is

countable and for each t ∈ R belonging to the complement of this set the spectrum of Ut is
simple. It follows that the functionM is of at most second class of Baire, as it is a constant
function on a cocountable set (indeed, any function f which is zero on a cocountable set R\A
is the pointwise sum of the series

∑
a∈A f(a)χ{a}; clearly χ{a} is of the �rst Baire class).
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the symmetric tensor product representation U�nT = UT � . . .� UT︸ ︷︷ ︸
n

has simple

spectrum if and only if the conditional measures σ
(n)
c are purely atomic and

have exactly n! atoms in (σ∗n-a.e) �ber of the map (1) (see [5]).
Denote by P(R) the space of probability Borel measures on R (endowed with

the weak-∗-topology). Assume now that P ∈ P(R) and let tn →∞ with

(2) UTtn →
∫
R
UTt dP (t)6,

where the convergence takes place in the weak (operator) topology ofB(L2(X,B, µ))
and the righthand operator is understood weakly. Consider any cyclic subspace
of UT , say, generated by ξ ∈ L2

0(X,B, µ). On such a subspace this representa-
tion is isomorphic to the representation (Vt)t∈R acting on L2(R, σξ), and given
by the formula

(3) Vt(f)(x) = e2πitxf(x),

where σξ denotes the spectral measure of ξ. This cyclic space, as a closed
subspace, is also weakly closed, so the convergence (2) takes place also on it.
Denoting by J =

∫
R Vt dP (t), for f, g ∈ L2(R, σξ), we obtain that∫

R
Jf · g dσξ = 〈Jf, g〉L2(R,σξ) =

∫
R
〈Vtf, g〉L2(R,σξ) dP (t) =

∫
R

(∫
R
e2πitsf(s)g(s) dσξ(s)

)
dP (t) =

∫
R
P̂ (s)f(s)g(s) dσξ(s).

It follows that

(4) Jf(s) = P̂ (s)f(s).

Moreover, (2) means that e2πitk(·) → P̂ (·) weakly in L2(R, σξ).
For any n ≥ 2, V ⊗ntk

→ J⊗n when k → ∞ in the weak topology of

B(L2(Rn, σ⊗nξ )). This is equivalent to saying that

(5) e2πitk(x1+...+xn) → P̂ (x1) · . . . · P̂ (xn)

in the weak topology of L2(Rn, σ⊗nξ ). Denote BCn(Rn) := C−1
n (B(R)). Let

L2(BCn(Rn), σ⊗nξ ) be the subspace of L2-functions measurable with respect to

BCn(Rn); it is a closed subspace of L2
sym(Rn, σ⊗nξ ). Since the LHS elements in

(5) belong to L2(BCn(Rn), σ⊗nξ ) which is weakly closed, the RHS limit belongs
to the same subspace. In particular it follows that there exists a Borel function
F : R→ C such that

(6) P̂ (x1) · . . . · P̂ (xn) = F (x1 + . . .+ xn) for σ⊗nξ -a.e. (x1, . . . , xn).

Denote by Sn the group of all permutations π of {1, . . . , n}. In order to show
that the SC property holds for some �ows we will constantly make use of the
following simple lemma.

6The operator J =
∫
R UTt dP (t) is a Markov operator of L2(X,B, µ), i.e. J1 = J∗1 = 1

and Jf ≥ 0 whenever 0 ≤ f ∈ L2(X,B, µ); it also satis�es J ◦ UTt = UTt ◦ J and therefore it
corresponds to a self-joining of T , see e.g. [21], [27], [39].
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Lemma 1. Let σ ∈ P(R) be continuous. Fix n ≥ 1. Assume that F ⊂ CB(Rn)
(in particular F ⊂ L2(Rn, σ⊗n)) is a countable family of functions each of which
element is σ⊗n-a.e. equal to a function measurable with respect to BCn(Rn).
Assume moreover that there exists Ã ⊂ Rn, σ⊗n(Ã) = 1 such that for each
c ∈ R if

(x1, . . . , xn), (x′1, . . . , x
′
n) ∈ C−1

n (c) ∩ Ã

and
J(x1, . . . , xn) = J(x′1, . . . , x

′
n) for each J ∈ F

then (x1, . . . , xn) = (x′π(1), . . . , x
′
π(n)) for some permutation π ∈ Sn. Then for

σ∗n-a.e. c ∈ R the conditional measure σ
(n)
c is purely atomic concentrated on n!

atoms.

Proof. Let F = {J1, J2, . . .}. Then for each m ≥ 1 let Km be a Borel function
(de�ned everywhere) which is BCn(Rn)-measurable and such that Jm(x1, . . . , xn) =

Km(x1, . . . , xn) for each (x1, . . . , xn) ∈ Rn \ B̃m where σ⊗n(B̃m) = 0. Set

C̃ = Ã \
⋃
m≥1 B̃m. Then σ

⊗n(C̃) = 1 and the intersection of C̃ with any vari-

ety C−1
n (c) is either empty or is equal to a set of the form {(xπ(1), . . . , xπ(n)) :

π ∈ Sn}.

Remark 1. In our applications of Lemma 1, the set Ã will be obtained by
discarding from Rn a countable union of some algebraic varieties. Then we will
point out a certain family of functions which will �distinguish non-symmetric
points� in the �bers of Cn (in the sense as in the above lemma). In order to be
sure that the elements of the family are σ⊗n-a.e. equal to functions which are
BCn(Rn)-measurable they are taken as some natural tensors whose components
belong to the relevant weak closure of characters. For example, by (6) and (2),

a countable family of tensors of the form J = P̂ (·)⊗ . . .⊗ P̂ (·) (with P ∈ P(R)
satisfying (2)) is potentially a family for which the above method can work.

We will now concentrate on the weak closure of {UTt : t ∈ R} in case of a
�typical� �ow of a �xed probability standard Borel space (X,B, µ). Denote by
Flow(X,B, µ) the space of all (measurable) �ows acting on (X,B, µ). Recall,
see e.g. [38], that the Polish topology of Flow(X,B, µ) is given by the metric

D(S, T ) = sup
t∈[0,1]

d(St, Tt).

Assume that T = (Tt)t∈R acts on (X,B, µ). Denote by PT (R) the subset of
P ∈ P(R) such that the integral Markov operator J = JP (T ) :=

∫
R UTt dP (t)

belongs to the weak closure of the set {UTt : t ∈ R}. Notice that PT (R)
is closed in the weak topology of P(R). In [29] there has been constructed a
weakly mixing �ow T = (Tt)t∈R on T2 given by an analytic reparametrization
of a linear �ow such that PT (R) = P(R). Consequently, for each P ∈ P(R)

{T ∈ Flow(X,B, µ) : T is aperiodic and P ∈ PT (R)} 6= ∅.

The class {JP (T ) : P ∈ P(R)} of Markov operators has the following
property: For each S ∈ Aut (X,B, µ)

(7) S ◦ JP (T ) ◦ S−1 = JP (S ◦ T ◦ S−1)
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where S ◦ T ◦ S−1 = (S ◦ Tt ◦ S−1)t∈R. Assume that {Ai : i ∈ N} is a dense
family of sets in B (considered with the pseudo-metric ρ(A,B) = µ(A4B)).

For t ∈ R and ε > 0 denote

W(t, ε) = {T ∈ Flow(X,B, µ) :

∞∑
i,j=1

1

2i+j
∣∣µ(TtAi ∩Aj)− 〈JP (T )1Ai , 1Aj 〉

∣∣ < ε}.

Note that W(t, ε) is open7, and so is the set
⋃
t≥NW(t, ε) for each natural

number N ≥ 1. It follows that the set

W :=
⋂

Q3ε>0

⋂
N≥1

⋃
t>N

W(t, ε)

is Gδ. It is clear from the de�nition of W that

T ∈ W ⇔ (∃tn →∞) UTtn → JP (T ) weakly,

in other words

(8) W = {T ∈ Flow(X,B, µ) : P ∈ PT (R)}.

It follows from (8), (7) and the fact that the conjugation class of an aperiodic
�ow is dense in Flow(X,B, µ) (this is essentially proved in [15], see also [6])
that W is Gδ and dense.

By taking a countable a dense family of measures in P(R) and taking the
corresponding intersection of Gδ and dense subsets of �ows we obtain the fol-
lowing.

Corollary 1. There exists a Gδ and dense family D of �ows of a �xed probability
standard Borel space (X,B, µ) such that PT (R) = P(R) whenever T ∈ D.

We now come back to Lemma 1 to show how it can be used in a concrete
situation.

Example 1. Given x ∈ [0, 1] and y ∈ R denote by Px,y := xδ0 + (1 − x)δy.
Assume that Px,y ∈ PT (R), where x ∈ [0, 1], y ∈ R run over some countable
dense subsets of [0, 1] and R respectively. Notice that it follows immediately

that Px,y ∈ PT (R) for each x ∈ [0, 1] and each y ∈ R. We have P̂ (t) =

x+(1−x)e2πity. For arbitrary n ≥ 1 set F = Fn = {P̂⊗nx,y }x,y (F ⊂ L2(Rn, σ⊗n),
x and y run over arbitrary countable dense subsets of [0, 1] and R respectively).
Suppose that

P̂x,y(t1) · . . . P̂x,y(tn) = P̂x,y(t′1) · . . . P̂x,y(t′n),

that is

n∑
j=0

xj(1− x)n−jαj(t1, . . . , tn, y) =

n∑
j=0

xj(1− x)n−jαj(t
′
1, . . . , t

′
n, y).

7Note that the set of Markov operators of L2(X,B, µ) is a closed (hence compact) sub-
set in the weak topology of the relevant unit ball; it is then metrizable and the formula

d̃(J1, J2) =
∑∞
i,j=1

1
2i+j

∣∣∣〈J11Ai , 1Aj 〉 − 〈J21Ai , 1Aj 〉
∣∣∣ de�nes a metric compatible with the

weak topology; in other words, T ∈ W(t, ε) if and only if d̃(UTt , JP (T )) < ε.
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Since the functions xj(1 − x)n−j , j = 0, 1, . . . , n (de�ned on [0, 1]) are linearly
independent, αj(t1, . . . , tn, y) = αj(t

′
1, . . . , t

′
n, y) for each j (and each y from the

dense subset). Taking j = n−1 we obtain that αj(t1, . . . , tn, y) =
∑n
k=1 e

2πitky,
so

n∑
k=1

e2πitky =

n∑
k=1

e2πit′ky

for each y ∈ R. However the characters x 7→ e2πisx, s ∈ R, of the reals are
linearly independent and hence {t1, . . . , tn} = {t′1, . . . , t′n}. It follows that the
�ow T has the SC property.

If we now use Corollary 1 we obtain the following.

Corollary 2. A �typical� �ow of a �xed standard probability Borel space (X,B, µ)
has the SC property.

It is rather clear that the information given by the assumption in Example 1
is redundant. We now essentially weaken (cf. [1]) the assumption in the above
example; however the SC property will still hold.

Example 2. Assume that y1, y2 ∈ R \ {0} and

(9) y1/y2 /∈ Q.

Assume moreover that for i = 1, 2

(10)
the set of x ∈ (0, 1) such that
Px,yi ∈ PT (R) is in�nite.

Fix n ≥ 1. Recall that the polynomials τ0 = 1 and

τj(z1, . . . , zn) =
∑

1≤k1<...<kj≤n

zk1 · . . . · zkj , j = 1, . . . , n

(zi ∈ C) are called basic symmetric polynomials (in n variables) and whenever
zi, z

′
i ∈ C, i = 1, . . . , n, satisfy

τj(z1, . . . , zn) = τj(z
′
1, . . . , z

′
n) for j = 1, . . . , n

then {z1, . . . , zn} = {z′1, . . . , z′n}8. Since σ is continuous, the set

Ã = {(t1, . . . , tn) ∈ Rn : ti − tj /∈
1

y1
Z +

1

y2
Z whenever i 6= j}

has full σ⊗n�measure. Suppose now that (t1, . . . , tn), (t′1, . . . , t
′
n) ∈ Ã and that

P̂x,yk(t1) · . . . · P̂x,yk(tn) = P̂x,yk(t′1) · . . . · P̂x,yk(t′n)

8Indeed, for each 1 ≤ s ≤ n

Πni=1(zs − z′i) =
n∑
j=0

zjs · (−1)n−jτn−j(z
′
1, . . . , z

′
n)

=

n∑
j=0

zjs · (−1)n−jτn−j(z1, . . . , zn) = Πni=1(zs − zi) = 0.

8



for Px,yk ∈ PT (R). We have immediately

n∑
j=0

xj(1− x)n−jτn−j(e
2πit1yk , . . . , e2πitnyk)

=

n∑
j=0

xj(1− x)n−jτn−j(e
2πit′1yk , . . . , e2πit′nyk),

or equivalently

n∑
j=0

(
x

1− x

)j (
τn−j(e

2πit1yk , . . . , e2πitnyk)− τn−j(e2πit′1yk , . . . , e2πit′nyk)
)

= 0.

In view of (10),

τn−j(e
2πit1yk , . . . , e2πitnyk) = τn−j(e

2πit′1yk , . . . , e2πit′nyk)

for j = 0, 1, . . . , n and therefore

{e2πit1yk , . . . , e2πitnyk} = {e2πit′1yk , . . . , e2πit′nyk}.

It follows that
tsyk = t′

j
(k)
s
yk (mod 1) for s = 1, . . . , n

(the map s 7→ j
(k)
s is 1−1) but since (t′1, . . . , t

′
n) ∈ Ã, j(1)

s = j
(2)
s for s = 1, . . . , n.

Applying (9) we obtain that {t1, . . . , tn} = {t′1, . . . , t′n}.
It is now enough to consider

F = {(P̂x,yk(·))⊗n : k = 1, 2, x runs over relevant countable sets}

as a family which separates non-symmetric points in the �bers of Cn to conclude
that T has the SC property.

Example 3. Assume that for �xed a, b ∈ (0, 1) and r0 ∈ R \Q we have

Pa,m, Pb,mr0 ∈ PT (R) for all m ∈ Z.

Set Ms(x) = sx, (s, x ∈ R). Notice that Pa,s = (Ms)∗Pa,1. Moreover

P̂a,t(s) = P̂a,s(t) for each s, t ∈ R.

Since σ is continuous, the set

Ã = {(t1, . . . , tn) ∈ Rn :

n∑
i=1

miti /∈ Z + r0Z for mi ∈ Z and
∑n
i=1m

2
i > 0}

has full σ⊗n-measure. Take (t1, . . . , tn), (t′1, . . . , t
′
n) ∈ Ã and suppose that for

each m ∈ Z

P̂a,m(t1) · . . . · P̂a,m(tn) = P̂a,m(t′1) · . . . · P̂a,m(t′n).

Equivalently

P̂a,t1(m) · . . . · P̂a,tn(m) = P̂a,t′1(m) · . . . · P̂a,t′n(m)
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or else
(Pa,t1 ∗ . . . ∗ Pa,tn)̂(m) = (Pa,t′1 ∗ . . . ∗ Pa,t′n)̂(m).

The latter equality means that the images of the two measures Pa,t1 ∗ . . . ∗Pa,tn
and Pa,t′1 ∗ . . . ∗Pa,t′n via the map x 7→ e2πix are equal and since they are purely
atomic, the two sets{

n∑
i=1

εiti (mod 1) : εi = 0, 1, i = 1, . . . , n

}
,

{
n∑
i=1

εit
′
i (mod 1) : εi = 0, 1, i = 1, . . . , n

}
are equal (note that the representation of a point in any of these sets is unique).
It follows that modulo 1 we have

ti =

n∑
j=1

εijt
′
i and t′i =

n∑
j=1

ε′ijti

for i = 1, . . . , n. Denote by A = [εij ], A
′ = [ε′ij ] the corresponding matrices.

Since they are integer-valued t1
. . .
tn

 = AA′

 t1
. . .
tn

 (mod 1).

But (t1, . . . , td) ∈ Ã, so A′A = Id (and also AA′ = Id). Since A,A−1 are
matrices with frequencies 0, 1, they are matrices of permutations, and therefore
for each i = 1, . . . , n

(11) ti = t′ji +mi

for some unique ji and mi ∈ Z.
We now repeat the same arguments for Pb,mr0 and we obtain that for each

m ∈ Z
(Pa,t1 ∗ . . . ∗ Pa,tn)̂(mr0) = (Pa,t′1 ∗ . . . ∗ Pa,t′n)̂(mr0).

This equality means that the images of the two measures Pa,t1 ∗ . . . ∗ Pa,tn and
Pa,t′1 ∗ . . . ∗Pa,t′n via the map x 7→ e2πir0x are the same and as before we obtain
that for each i = 1, . . . , n

(12) ti = t′ki +m′ir0.

If eithermi 6= 0 orm′ir0 6= 0 we obtain a contradiction with the fact that we con-

sider points from Ã. Now, the SC property easily follows (F = {P̂⊗na,m, P̂⊗nb,mr0 :
m ∈ Z}).

Yet, we now will show that, in a sense, still the assumptions in Example 3
are redundant.
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Example 4. Assume that for some 0 < a < 1, 0 6= β ∈ R there exists a
sequence rn →∞ of real numbers such that for each m ∈ N

(13) UTmrn → aId+ (1− a)UTmβ .

(In particular, Pa,mβ ∈ PT (R).) By considering tn = rn/β and the �ow t 7→ Ttβ
we can simply assume that β = 1 and instead of (13) we have

(14) UTmtn → aId+ (1− a)UTm = Pa,m

for each natural m ≥ 1. By passing to a subsequence, and using the diagonal-
ization procedure we can select a subsequence (tik) of (tn) so that

(15) UTm(tik+1
−tik )

→ Pa,mP
∗
a,m.

If for 0 ≤ b ≤ 1 we denote Qb,m = 1−b
2 UT−m + bId+ 1−b

2 UTm then

Pa,mP
∗
a,m = Qa2+(1−a)2,m = Q∗a2+(1−a)2,m.

By passing to a further subsequence, if necessary, we can assume that {tik} →
γ ∈ [0, 1) and then since U{tik} → Uγ in the strong operator topology, we also
have

(16) UTm(nk+1−nk)
→ Pa,mUTmγ (Pa,mUTmγ )∗ = Qa2+(1−a)2,m,

where nk = [tik ] for k ≥ 1. Note that 0 < a2 + (1 − a)2 < 1 and 2a(1 − a) ≤
a2 + (1− a)2. We have obtained that for each m ≥ 1 the operator Qa2+(1−a)2,m

belongs to the weak closure of the set {UTl : l ∈ Z}. Now, �x m ≥ 1 and select
(lk) so that UTlk → Qa2+(1−a)2,m. It follows that

UTlk + UT−lk → 2Qa2+(1−a)2,m.

Thus
Qa2+(1−a)2,lk → (a2 + (1− a)2)Id+ 2a(1− a)Qa2+(1−a)2,m.

Therefore, in the weak closure of the set {UTl : l ∈ Z} we �nd the element

(a2 +(1−a)2)Id+2a(1−a)
(
(a2 + (1− a)2)Id+ a(1− a)UT−m + a(1− a)UTm

)
=: Qb1,m

and since m ≥ 1 is arbitrary in this reasoning, we can iterate this procedure
by replacing a by b1 to obtain b2 and so on. Note that a < b1 < b2 < . . . and
bk → 1 (the latter follows from the fact that bkId+ 1−bk

2 (UTs + UT−s) is in the
weak closure of {UTl : l ∈ Z} and bk ≥ 1− bk). It follows that

(17) the �ow (Tt) is rigid
9

and

(18)
the set of 0 < b < 1 such that bId+ 1−b

2 (UT−m + UTm)
is in the weak closure of {UTl : l ∈ Z} is in�nite.

9The assumption (16) is satis�ed for special �ows over irrational rotations by α with
unbounded partial quotients and roof functions having the bounded variation property, see
Remark 3. Moreover, it follows from [12] that there are many quasi-Hamiltonian �ows on T2

for which some smooth change of time leads to (singular) �ows satisfying the assumption (16).
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(This part of the proof is due to V.V. Ryzhikov.)
Now, set σ = σT and let σ1 :=

(
e2πi·)

∗ σ. Then σ1 = σT , where T = T1.
It follows from (18) that for in�nitely many 0 < b < 1 we can �nd a sequence
(nk) = (nk(b)) such that

(19) znk → b · 1 + (1− b)Re(z) =: Ra(z) weakly in L2(S1, σ1).

Let
Ã = {(z1, . . . , zn) ∈ (S1)n : zm1

1 · . . . · zmnn 6= 1

whenever

n∑
j=1

mn > 0, mj ∈ {0, 2}, 1 ≤ j ≤ n}.

Then, Ã has full σ⊗n1 �measure.

Suppose that (z1, . . . , zn), (z′1, . . . , z
′
n) ∈ Ã and that for all b under consider-

ation
Rb(z1) · . . . ·Rb(zn) = Rb(z

′
1) · . . . ·R(z′n).

Hence, as in Example 2

τj(Re(z1), . . . , Re(zn)) = τj(Re(z
′
1), . . . , Re(z′n)) for j = 1, . . . , n

and then {Re(z1), . . . , Re(zn)} = {Re(z′1), . . . , Re(z′n)}. It follows that for each
j = 1, . . . , n, zj = z′±1

sj and since the two points are in Ã, {z1, . . . , zn} =
{z′1, . . . , z′n}.

We have proved that the automorphism T = T1 has the SC property10. How-
ever, this implies that the (Tt) has the SC property, see Remark 4, Proposition 5
and 3.

2 Special �ows over irrational rotations

Assume now that Tx = x + α is an irrational rotation on the additive circle
T = [0, 1). Assume moreover that f : T → R is an L1 zero mean function, and
we will assume that F = f + c > 0 for some constant c > 0. We consider then
the special �ow TF which is de�ned on the space

XF = {(x, t) ∈ T× R : 0 ≤ t < F (x)}

with the natural (product) Borel and measure structure (see e.g. [5]). Under
the action of the �ow TF = (TFt )t∈R, for t > 0, a point (x, s) ∈ XF goes
vertically up with the unit speed until it reaches (x, F (x)) when it is identi�ed
with (Tx, 0).

Suppose now that (nt) is a rigidity sequence for T (i.e. UTnt → Id), P ∈
P(R) and assume moreover that

(20) (f (nt))∗(λT)→ P weakly, i.e. in the topology of P(R).

Under some additional assumptions on f (which will be satis�ed for all classes
of examples considered here) we have (see [9])

(21) (TF )ctn →
∫
R
TF−t dP (t).

10The fact that that in�nitely many polynomials of degree 1 in the weak closure of powers
of an automorphism implies the SC property was �rst proved in [1].
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We refer the reader to [7], [9], [10], [19], [29] and [44] for concrete examples
of special �ows when we obtain a measure P ∈ PTF (R) which is not a Dirac
measure.

3 Generic case for C∞ roof function

We suppose now that f is a C∞ function with in�nitely many Fourier coe�cients
di�erent from zero. Assume moreover that the Fourier coe�cients of f are
real, i.e. that f(x) = f(1 − x) for x ∈ T. Take any constant c > 0 so that
F := f + c > 0.

This section is devoted to a proof of the following.

Proposition 1. There exists a Gδ dense set of irrational numbers α such that
the special �ow TF (Tx = x+ α) is weakly mixing and it has the simple convo-
lution property.

Proof. Denote fq(x) = f(x) + f(x + 1/q) + . . . + f(x + (q − 1)/q). We easily
obtain that for l ∈ Z

(22) f̂q(lq) = qf̂(lq), and f̂q(n) = 0 when q does not divide n.

Because of C∞ assumption, for each n ≥ 1, qnf̂(q) → 0 when q → ∞. Since
in�nitely many Fourier coe�cients of f are di�erent from zero we can select a
subsequence (qn) so that

(23) qn|f̂(q)| ≤ qnn |f̂(qn)| for each q ≥ qn.

Then, for some sequence (Qn) of positive integers satisfying Qn > 2qn

(24) qnQn|f̂(qn)|2 → +∞

(in fact Qn > qjn eventually for each j ≥ 1). We will also assume that f̂(qn) > 0

(the case where f̂(qn) < 0 for the chosen subsequence is treated similarly).
Then, for a generic set of α in [0, 1) we see that ‖qnα‖ ≤ 1

2Qn
for an in�nite

subsequence of (qn). Now, we �x such an α and the corresponding subsequence
of (qn) will still be denoted by (qn). Note that by the Légendre Theorem such
a qn will be a denominator of α.

Fix δ > 0. We can choose a sequence (bn) of positive integers such that

(25) bnqnf̂(qn)→ δ

2
.

In view of (25), (24) and the fact that ‖qnα‖ < 1
2Qn

we have

b2nqn‖qnα‖ = O

(
(δ2/4)‖qnα‖
qn|f̂(qn)|2

)
= O

(
1

Qnqn|f̂(qn)|2

)
→ 0.

Now, since qn is a denominator, for some 1 < pn < qn (gcd(pn, qn) = 1) we have
|α− pn

qn
| < 1/(2qnQn) and therefore

|bnfqn(x)− f (bnqn(x)| =

∣∣∣∣∣∣
bn∑
j=1

(
fqn(x)− f (qn)(x+ (j − 1)qnα)

)∣∣∣∣∣∣ =

13



∣∣∣∣∣∣
bn∑
j=1

(
qn−1∑
s=0

(f(x+ s
pn
qn

)− f(x+ sα+ (j − 1)qnα))

)∣∣∣∣∣∣ ≤
‖f ′‖∞

bn∑
j=1

qn−1∑
s=0

(
s

∣∣∣∣pnqn − α
∣∣∣∣+ (j − 1)‖qnα‖

)
≤

‖f ′‖∞
bn∑
j=1

qn−1∑
s=0

j‖qnα‖ ≤ b2nqn‖qnα‖‖f ′‖∞ → 0.

It follows that |bnfqn(x)− f (bnqn)(x)| → 0 uniformly and hence by (22)

f (bnqn)(x)− bnqn
∞∑

l=−∞

f̂(lqn)e2πilqnx → 0 uniformly.

But, in view of (23), |f̂(lqn)| ≤ 1
ln |f̂(qn)|, whence (by (25))

bnqn
∑
|l|≥2

|f̂(lqn)| ≤ bnqn
∣∣∣f̂(qn)

∣∣∣ ∑
|l|≥2

1

ln
= O

∑
|l|≥2

1

ln

→ 0

when n→∞. It follows that

f (bnqn)(x)− bnqnf̂(qn)2Re(e2πiqnx)

= f (bnqn)(x)− 2bnqnf̂(qn) cos(2πqnx)→ 011

still uniformly in x ∈ T.
Since the map x 7→ qnx (mod 1) preserves Lebesgue measure λT, the function

2bnqnf̂(qn) cos(2πqnx) has the same distribution as the function δn cos(2πx)

where δn = 2bnqnf̂(qn). It follows that one obtains as the limit the measure Pδ
which is the distribution of the function δ cos(2πx).

The Fourier transform of this distribution is the �rst Bessel function J0:

ϕδ(t) =

∫
T
eitδ cos(2πx)dx = P̂δ(t) = J0(δt),

([4]). Note that J0 is a real analytic (real-valued) function and that J0 is even
(the statements are seen directly from the facts that the distribution of the
cos function is symmetric and supported on a bounded subset). Denote by
0 < u1 < u2 < . . . the sequence of positive zeros of J0.

Recall that σ denotes the maximal (reduced) spectral type of TF .
Let us notice that since σ is continuous,

σ⊗n

(
{(t1, . . . , tn) ∈ Rn :

n∑
i=1

εiti = 0, (ε1, . . . , εn) ∈ {0, 1, 2}n,
n∑
i=1

εi > 0}

)
= 0

and moreover

σ⊗n ({(t1, . . . , tn) ∈ Rn : |ti|/|tj | = uk/ul for 1 ≤ i 6= j ≤ n and k, l ≥ 1})) = 0.

11Since the sequence (bnqnf̂(qn)) is bounded, the sequennce (‖f (bnqn)‖∞) is also bounded;
moreover, bnqnα→ 0 modulo 1; therefore we can apply [9] and (21) holds with tn = bnqn.
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We now remove the two sets of σ⊗n-measure zero from Rn and take (t1, . . . , tn)
in the remaining part of Rn. We will show that once we know the sum t1+. . .+tn
and moreover, for each δ > 0, we know

Φ(δ) := ϕδ(t1) · . . . · ϕδ(tn) = ϕδ(|t1|) · . . . · ϕδ(|tn|)

then t1, . . . , tn are determined up to the order. To this end let us look at positive
zeros of Φ. We can assume that |t1| < . . . < |tn|. Then the �rst zero of Φ we
obtain when δ = u1/|tn|. It follows that

|tn| = u1/�rst zero of Φ.

Notice that all points uk/|tn| are zeros of Φ and moreover none of these points
is of the form u1/|tn−1|. It follows that

|tn−1| = u1/�rst zero of Φ di�erent from uk/|tn| for all k ≥ 1.

Similarly we obtain |tn−2| by dividing u1 by the �rst zero of Φ di�erent from
uk/|tn| and uk/|tn−1| for all k ≥ 1.

In this way, by an easy induction, we obtain that the numbers |t1|, . . . , |tn|
are determined up to the order. However their sum is also given, and the equality∑n
i=1 ti =

∑n
i=1 εiti with at least one εi = −1 has already been excluded, so

the set {t1, . . . , tn} is determined.
Given n ≥ 1, as the family F (see Lemma 1), it is enough to take

F = {P̂⊗nδi : {δi > 0 : i ≥ 1} is dense in R+}.

Indeed, if P̂⊗nδi (t1, . . . , tn) = P̂⊗nδi (t′1, . . . , t
′
n) then (by continuity of J0)

ϕδ(t1) · . . . · ϕδ(tn) = ϕδ(t
′
1) · . . . · ϕδ(t′n)

for each δ > 0 and the result follows.

Remark 2. It follows from [5] that all these smooth �ows have simple spectrum.

4 The class of von Neumann

As previously we assume that f : T→ R,
∫
T f dλT = 0 and we also assume that

F = f + c > 0. Assume moreover that f ∈ BV (T). Let α ∈ T be irrational
with the sequence (qn) of its denominators.

Remark 3. For every g ∈ BV (T) we have
∫
T |g(x + t) − g(x)|dx ≤ |t|V ar g.

We use this inequality (instead of the L∞-norm of the derivative of f we pass to∫
T |f(x+spnqn )−f(x+sα+(j−1)qnα| dx) in the part of the proof of Proposition 1
in which we have estimated |bnfqn(x)− f (bnqn)(x)| and we obtain an estimation
for ‖bnfqn − f (bnqn)‖L1 valid for all bounded variation functions.

By Remark 3, for each positive integer m and q = qn,

(26) ‖f (mq) −mfq‖1 ≤
1

2
m2q‖qα‖V ar(f).
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From now on we assume that α has unbounded partial quotients. For simplicity
of notation we assume that

(27) qn‖qnα‖ → 0.

By the Koksma inequality any weak limit of a subsequence of the distributions
(f (qn))∗ = (f (qn))∗(λT). n ≥ 1, is concentrated on a �nite interval, and the
same remains true for the sequence ((f (mqn))∗)n (for any m ≥ 1). By passing

to a subsequence of (qn) if necessary, we can assume that the sequence (f
(qn)
∗ )

converges weakly, and let ν = lims→∞(f (qn))∗, then for each k ∈ Z we have

(28) ν̂(k) = lim
s→∞

∫
R
e2πikxd(f (qns ))∗(x) = lim

s→∞

∫
T
e2πikf(qns )

dλT.

Given t ∈ R set νt = (Mt)∗ν (see Example 3). In view of (26) and (27), for each
m ∈ Z

(29) f
(mqns )
∗ → νm weakly, when s→∞

(indeed, for m ∈ Z, f (−mqns )(x) = −f (mqns )(x + mqnsα)). For t ∈ R set
ϕ(t) = ν̂(t). We have

(30) ν̂m(t) = ϕ(mt) = ν̂t(m) for each m ∈ Z.

Recall that σ denotes the maximal spectral type of TF , where Tx = x+ α.
Then by (29), (5) and (30)

(31) e2πimqn(t1+...+td) → ϕ(mt1) · . . . · ϕ(mtd)

weakly in L2(Rd, σ⊗d) for each non-zero integer m and arbitrary integer d ≥ 1.
Assume that f is piecewise absolutely continuous, with the sum of jumps

−S 6= 0. We then have f = g + h, where h is absolutely continuous on T, and
g is piecewise linear with (a.e.) constant derivative equal to S (we assume that
g is RHS continuous and that both functions g, h are of zero mean). By the
Koksma inequality, h(qn) → 0 uniformly (as well as for each m ∈ Z, h(mqn) → 0
uniformly). So in the computation of the limit distribution ν we can replace f
by g. In particular we can replace fqn by gqn and then gqn by g̃qn , where

g̃qn(x) = gqn(x/qn)

as the distributions of g̃qn and gqn are the same (indeed, the distributions of j(·)
and j(qn·) are the same; take j(·) = gqn(·/qn)). The functions g̃qn are piecewise
linear, with the constant derivative S on each interval of continuity. Moreover,
the discontinuity points for g̃qn are of the form qnβ with β a discontinuity point
of g (indeed, the discontinuity points of gqn are of the form β + i/qn) while the
value of the jump at qnβ is the sum of the values of the jumps at all discontinuity
points γ of g for which qnγ = qnβ. By passing to a subsequence, if necessary,
we can assume that (qnβ) converges for all discontinuity points β of g. Since
there is only a �nite set of possible values for jumps for all functions g̃qn and∫
T g̃qn dλT = 0,

g̃qn → g̃ in L1(T),

where the limit function has discontinuities at γ1, . . . , γk (and k is not bigger
than the number of discontinuity points of g) and moreover at each interval
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[γi, γi+1) the function widetildeg has the constant derivative equal to S. The

distribution of g̃ is hence the limit distribution of the sequence (f
(qn)
∗ ), i.e.

ν = g̃∗. It follows that

(32) ν̂(t) = ϕ(t) =

∫
T
e2πitg̃ dλT.

Recall that the characteristic function of the distribution of the function ξ de-
�ned on an interval [a, b) (considered with Lebesgue measure) by the formula
ξ(x) = C + S(x− a) is equal to 1

2πitS (e2πitξ(b) − e2πitξ(a)), which implies that

(33) ϕ(t) =
1

2πiSt

2k∑
j=1

aje
2πit∆j ,

for some integers a1, . . . , a2k (equal to ±1) and the numbers ∆j are obtained as
g̃(γi) and g̃(γ−i ) (g̃(γ−i ) stands for the LHS limit of g̃ at γi). We �rst replace
ϕ(t) by ψ(t) = 2πiSe−2πi∆tϕ(t), where ∆ = min{∆1, . . . ,∆2k} and we obtain
that for each m ∈ Z there exists a measurable function Hd,m : R→ R such that

(34) ψ(mt1) · . . . · ψ(mtd) = Hm,d(t1 + . . .+ td)

for σ⊗d-a.e. (t1, . . . , td) ∈ Rd. Setting ∆′j = ∆j − ∆ we have ∆′j ≥ 0, so by
renaming points if necessary, we obtain that

(35) 0 = ∆′1 < . . . < ∆′2k.

Set ν′t = 1
t

∑2k
j=1 ajδ∆′jt. This is a real purely atomic measure with atoms at

∆′jt and

(36) νt({∆′jt}) = aj/t for j = 1, . . . , 2k.

In view of (34) we obtain that the map

(t1, . . . , td) 7→ (ν′t1 ∗ . . . ∗ ν
′
td

)̂ (m)

is BCd(Rd)-measurable, which means that the map which to (t1, . . . , td) asso-
ciates the image of ν′t1 ∗ . . . ∗ ν

′
td

via the map x 7→ e2πix depends only on the

sum t1 + . . . + td (for σ⊗d-a.a. points (t1, . . . , td) ∈ Rd). Denote by J the sub-
group of R generated by all ∆′j 's, and all ∆′j∆

′
j′ 's, 1 ≤ j, j′ ≤ 2k. This group is

countable, so by continuity of σ the set

Ãd := {(t1, . . . , td) ∈ Rd : (∀(b1, . . . , b2k) ∈ J2k \ {0})
2k∑
j=1

bjtj /∈ Z + J}

has full σ⊗d-measure.
Assume e = (ei1,...,ik)1≤i1<...<ik≤d ⊂ R and e′ ∈ R. Set

(∗) Xe,e′ = {(t1, . . . , td) ∈ Rd :
∑

1≤i1<...<ik≤d

ei1,...,ikti1 . . . tik = e′}.

We need the following lemma about such algebraic varieties.
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Lemma 2. Assume that
∑

1≤i1<...<ik≤d e
2
i1,...,ik

> 0. Then for each continuous
measure σ

σ⊗d(Xe,e′) = 0.

Proof. The proof goes by induction on d ≥ 2. For d = 2 we consider the set of
(t1, t2) ∈ R2 such that

e12t1t2 + e1t1 + e2t2 = e′.

We can assume that e12 6= 0, otherwise we consider just a linear case. If we �x
t2 ∈ R, t2 6= − e1

e12
then we have

(e12t2 + e1)t1 = e′ − e2t2,

so there is only one t1 ∈ R satisfying this equation. By Fubini's theorem the set
under consideration has σ⊗2-measure zero.

Suppose the result being true for d − 1 ≥ 2. With no loss of generality we
can assume that there exist i2 < . . . < ik such that e1,i2,...,ik 6= 0 (otherwise we
already consider an algebraic variety of the form (∗) in Rd−1). Then we consider
Fubini's theorem with respect to the coordinates (t2, . . . , td). In other words,
we �x (t2, . . . , td) and we look at the set of t1 ∈ R so that (t1, t2, . . . , td) ∈ Xe,e′ .
Looking at the equation de�ning the variety we can see that the equation on t1
is of the form

A(t2, . . . , td)t1 = B(t2, . . . , td).

Hence, either there is exactly one solution, or it is the whole R. The latter case
however holds only if A(t2, . . . , td) = 0. Moreover the function A(t2, . . . , td) is
also of the algebraic form as in (∗), hence by the induction assumption the set
of (t2, . . . , td) satisfying A(t2, . . . , td) = 0 is of σ⊗(d−1)-measure zero, and the
lemma follows from Fubini's theorem.

Consider now the set

B̃d = {(t1, . . . , td) ∈ Rd : (∀(n1, . . . , nd) ∈ Zd \ {0}) Πd
i=1ti 6= Πd

i=1(ti +
ni
∆′2

)}.

In view of Lemma 2, σ⊗d
(
B̃cd

)
= 0. Hence the set Ãd ∩ B̃d has full σ⊗d

measure and in what follows we consider only (t1, . . . , td) ∈ Ãd ∩ B̃d. The
measure ν′t1 ∗ . . . ∗ ν

′
td

is purely atomic with the set of atoms

2k⊕
j=1

{∆′1tj ,∆′2tj , . . . ,∆′2ktj}.

It follows that the image (on the additive circle) of this measure is also atomic
with the set of atoms

Ω(t1, . . . , td) =

2k⊕
j=1

{∆′1tj ,∆′2tj , . . . ,∆′2ktj} (mod 1).

Furthermore the map

e2πi· : (R, ν′t1 ∗ . . . ∗ ν
′
td

)→
(
T,
(
e2πi·)

∗ (ν′t1 ∗ . . . ∗ ν
′
td

)
)
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is 1− 1 ν′t1 ∗ . . . ∗ ν
′
td
-a.e.

Since (t1, . . . , td) ∈ Ãd, it follows that

Ω(t1, . . . , td) = {
2k∑
j=1

εj∆
′
mj tj (mod 1) : εj ∈ {0, 1}, 1 ≤ mj ≤ 2k, j = 1, . . . , 2k}

and moreover the representation of a point in Ω(t1, . . . , td) is unique. Suppose
that ν′t1 ∗ . . . ∗ ν

′
td

= ν′t′1
∗ . . . ∗ ν′t′d , in particular

Ω(t1, . . . , td) = Ω(t′1, . . . , t
′
d).

For each 1 ≤ l ≤ 2k, 1 ≤ i ≤ d we have

∆′lt
′
i =

2k∑
j=1

εl,i,j∆
′
ml,i,j

tj (mod 1)

and similarly for 1 ≤ p ≤ 2k, 1 ≤ j ≤ d,

∆′ptj =

2k∑
i=1

ε′p,j,i∆
′
m′p,j,i

t′i (mod 1).

Thus

∆′ptj =

2k∑
j′=1

 2k∑
p′=1

d
(p,j)
p′,j′∆

′
p′

 tj′ (mod 1),

where d
(p,j)
p′,j′ are non-negative integers. Since

∑2k
p′=1 d

(p,j)
p′,j′∆

′
p′ ∈ J ,

∑2k
p′=1 d

(p,j)
p′,j′∆

′
p′ =

0 for j′ 6= j, and hence by (35), d
(p,j)
p′,j′ = 0 for p′ ≥ 2. For j′ = j we obtain that

∆′p =
∑2k
p′=1 d

(p,j)
p′,j ∆′p′ . It follows that d

(2,j)
2,j = 1 and d

(2,j)
p′,j = 0 if p′ ≥ 3. This

reasoning shows that

(37) ∆′2tj = ∆′mj t
′
ij (mod 1) for all j = 1, . . . , 2k

where the map j 7→ ij is univoque. But ∆′2t
′
i =

∑2k
j′=1 ε2,i,j′∆

′
m2,i,j′

tj′ (mod 1),
so

(∆′2)2tj = ∆′2 (∆′2tj) = ∆′2(∆′mj t
′
ij + sj) = ∆′mj

(
∆′2t

′
ij

)
+ ∆′2sj

=

2k∑
j′=1

ε2,ij ,j′∆
′
mj∆

′
m2,ij ,j

′ tj′ +
(

∆′mjmij + ∆′2sj

)
(with some sj ,mij ∈ Z) where the last summand belongs to J . It follows that
(∆′2)2 = ∆′mj∆

′
m2,ij ,j

. Using once more (35) we have mj = m2,ij ,j = 2, and

therefore
∆′2tj = ∆′2t

′
ij (mod 1) for all j = 1, . . . , d.

In other words there are n1, . . . , nd ∈ Z such that

(38) tj +
nj
∆′2

= t′ij for j = 1, . . . , d.
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Now, the �masses� of the atoms of the circle image of ν′t1 ∗ . . . ∗ ν
′
td

and of
ν′t′1
∗ . . . ∗ ν′t′d must also be the same, so in view of (36), by looking at the mass

of the atom at 0 ∈ R (for ν′t1 ∗ . . . ∗ ν
′
td
) we �nd

ad1
t1 · . . . · td

=
ad1

t′1 · . . . · t′d
,

hence t1 · . . . · td = t′1 · . . . · t′d. By (38) we obtain Πd
i=1ti = Πd

i=1(ti + ni
∆′2

). Since

(t1, . . . , td) ∈ B̃d, the latter is possible only if n1 = . . . = nd = 0 and we have
{t1, . . . , tk} = {t′1, . . . , t′k}.

By taking as F = Fd the family {ψ(m·)⊗d : m ∈ Z} we have proved the
following.

Proposition 2. Assume that f is piecewise absolutely continuous with the sum
of jumps di�erent from zero. The for each α with unbounded partial quotients
the special �ow arising from TF (Tx = x+ α, F = f + c) is weakly mixing and
has the simple convolution property.

5 Remarks

In Appendix we will answer the question raised by J.-P. Thouvenot and show
that given a measurable �ow (Tt)t∈R the function

(v) R 3 t 7→ maximal spectral multiplicity of UTt

is of the second Baire class (in fact this is a purely unitary representation theory
result). The question whether the function (v) can be oscillatory on R \ {0}
in case of weakly mixing �ows seems to be open, and, it looks as if in all
known examples of weakly mixing �ows the function (v) is in fact constant on
R \ {0}. This latter phenomenon certainly holds for large classes of �ows. The
proposition below being our �rst sample of result in a more general theory.

Proposition 3. For each �ow (Tt) with the SC property, the function (v) is
constant on R\{0} equal to the maximal spectral multiplicity of the unitary �ow
(UTt)t∈R.

Proof. Denoting by σ the maximal spectral type of (Tt), all we need to show
(see Appendix) is that the set

A(σ) = {t ∈ R : σ 6⊥ σ ∗ δt}

consists solely of 0. This is however already noticed in [27], see Corollary 4
therein.

In order to say more about time-t automorphism we will need a stronger
assertion.

Lemma 3. Assume that (Tt) has the SC property. Then for each n ≥ 1

A(σ∗n) = {0}.
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Proof. (cf. [24]) Recall �rst that for each k ≥ 2 we can �nd Xk ⊂ Rk so that

(39) σ⊗k(Xk) = 1 and (x1, . . . , xk) ∈ Xk ⇒ xi 6= xj for i 6= j.

Denote
sk : Rk → R, sk(x1, . . . , xk) = x1 + . . .+ xk,

mk : (S1)k → S1, mk(z1, . . . , zk) = z1 · . . . · zk.

Denote

σ⊗k =

∫
R
δc ⊗ ν(k)

c dσ∗k

the disintegration of σ⊗k over σ∗k.
Suppose that for some t 6= 0 and n ≥ 2, σ∗n 6⊥ σ∗n ∗ δt. Then we can �nd

Borel subsets A,A′ ⊂ R such that

σ∗n(A) > 0, σ∗n(A+ t) > 0, A ∩ (A+ t) = 0.

σ∗n(A′) > 0, σ∗n(A′ + t) > 0, A′ ∩ (A′ + t) = 0.

Notice that

σ∗2n(A+A′) = σ∗n ∗ σ∗n(A+A′) = (σ∗n ⊗ σ∗n)(A×A′).

Hence
σ∗2n((A+ t) + (A′ − t)) = σ∗2n(A+A′) > 0.

It is not hard to see that if (x1, . . . , xn) is an atom of ν
(n)
c (in particular, x1+. . .+

xn = c) and (y1, . . . , yn) is an atom of ν
(n)
d then for σ∗n⊗σ∗n-a.e. (c, d) ∈ R×R

we have (x1, . . . , xn, y1, . . . , yn) is an atom of ν
(2n)
c+d , so, in particular, the xi 6= yj

for i, j = 1, . . . , n.
It follows that for σ∗n ⊗ σ∗n-a.e. (c, d) ∈ A × A′ if (x1, . . . , xn) is an atom

of ν
(n)
c , (y1, . . . , yn) is an atom of ν

(n)
d , (x

(t)
1 , . . . , x

(t)
n ) is an atom of ν

(n)
c+t,

(y
(t)
1 , . . . , y

(t)
n ) is an atom of ν

(n)
d−t then the sets {x1, . . . , xn}, {x(t)

1 , . . . , x
(t)
n },

{y1, . . . , yn}, {y(t)
1 , . . . , y

(t)
n } are pairwise disjoint (with no loss of generality the

numbers c, d, c+ t, d− t are di�erent). It follows that

(x1, . . . , xn, y1, . . . , yn) and (x
(t)
1 , . . . , x(t)

n , y
(t)
1 , . . . , y(t)

n )

are now atoms of ν
(2n)
c+d and we obtain at least 2 · (2n)! atoms of ν

(2n)
c+d which is

a contradiction.

Proposition 4. Assume that (Tt) has the SC property. Then for each t 6= 0
the automorphism Tt has also the SC property (as Z-action).

Proof. Notice that the diagram

(40)
Rn

(e2πit·)
⊗n

→ (S1)n

sn ↓ ↓ mn

R
→

e2πit· (S1)n
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is commuting. In view of Lemma 3 we can choose Borel subsets Wn ⊂ Rn and
W (n) ⊂ R so that

σ⊗n(Wn) = 1, σ∗n(W (n)) = 1

and the maps
Wn 3 (x1, . . . , xn) 7→ (e2πitx1 , . . . , e2πitxn),

Wn 3 y 7→ e2πity

are 1-1 σ⊗n- and σ∗n-a.e. respectively. Indeed,

(e2πitx1 , . . . , e2πitxn) = (e2πitx′1 , . . . , e2πitx′n)

is equivalent to saying that

xi = x′i + li/t for some li ∈ Z,

for i = 1, . . . , n, so we use the fact that σ ⊥ σ ∗ δli/t whenever li 6= 0 (select
Wi,n ⊂ R so that Wi,n ∩ (Wi,n + l/t) = ∅ for each l 6= 0 and set Wn = W1,n ×
. . . ×Wn,n). For the second assertion we use the fact that σ∗n ⊥ σ∗n ∗ δl/t for
each l 6= 0.

It follows that in the diagram (40) the horizontal maps can be assumed to
be 1-1 (a.e.), and the result immediately follows.

Remark 4. Assume that σ ∈ P(R) is continuous and symmetric and denote
by (Gσt ) the corresponding the corresponding Gaussian �ow. Assume moreover
that (Gσt ) has simple spectrum. It follows from the proof of Proposition 4 that
for each t 6= 0 the Gaussian automorphism Gσt has also simple spectrum.

The other direction is trivial: if for some t 6= 0, Gσt has simple spectrum then
the more the whole �ow has simple spectrum. Note in passing that whenever
(Gσt ) has simple spectrum, then A(exp(σ)) = {0}. Indeed, we have almost
proved it except that we should show that whenever n 6= m

σ∗n ⊥ σ∗m ∗ δy for each y ∈ R.

We know this already for y = 0. Denote by ν̃ the measure given by ν̃(A) =
ν(−A). Then if ρ � σ∗n and ρ � σ∗m ∗ δy then ρ ∗ ρ̃ � σ∗2n (since σ is
symmetric) and

ρ ∗ ρ̃� σ∗m ∗ δy ∗ ˜σ∗m ∗ δy
� σ∗m ∗ δy ∗ σ∗m ∗ δ−y = σ∗2m

and hence ρ = 0.
It follows that if T has the SC property then A(σT ) = {0}.

Corollary 3. T = (Tt)t∈R has the SC property if and only if for each t 6= 0, Tt
has the SC property if and only if T1 has the SC property and 1 /∈ A(σ).

Proof. Suppose that T1 has the SC property and 1 /∈ A(σ). Consider L2(R, σ)
and the �ow Vtf(x) = e2πitxf(x), t ∈ R. Under the above assumption, the ac-
tion of V1 on that space is isomorphic to the unitary operatorWσ1

: j(z) 7→ zj(z)
on L2(S1, σ1), where σ1 =

(
e2πi·)

∗ (σ) (see Appendix). Moreover, the corre-

sponding unitary operator
⊕∞

m=0W
�m
σ1

acting on the symmetric Fock space⊕∞
m=0 L

2(S1, σ1)�m is isomorphic to the unitary operatopr
⊕∞

m=0 V
�m
1 acting

on
⊕∞

m=0 L
2(R, σ)�m. Since the former automorphism has simple spectrum,

this is the same for the latter one and the whole Gaussian �ow has the more
simple spectrum.
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We will now try to derive more information about A(σT ) under the assump-
tion of having a special operator in the weak closure of {UTt : t ∈ R}. Our
analysis is along the lines of [17] with an additional assumption that a func-
tion which is in the weak closure of characters has some additional topological
properties.

Lemma 4. Assume that ξ : R→ C and set

TL(ξ) = {t ∈ R : (∃|ct| = 1)(∀x ∈ R) ξ(x+ t) = ctξ(x)}.

Then TL(ξ) is a subgroup of R. Moreover, ξ|TL(ξ) is a multiple of a trans-
lation of an algebraic character of TL(ξ).

Proof. Without loss of generality we can assume that ξ is not a constant, in
particular that ξ is not a zero function.

I. Assume additionally that ξ(0) 6= 0 and set

ξ̃(x) =
ξ(x)

ξ(0)
for x ∈ R.

Then
TL(ξ) = {t ∈ R : (∀x ∈ R) ξ̃(x+ t) = ξ̃(x)ξ̃(t)}

(indeed, ct = ξ(t)/ξ(0)). It is elementary to check that the RHS set is a subgroup
of R on which ξ̃(y1 + y2) = ξ̃(y1)ξ̃(y2).

II. If ξ(0) = 0 then �x x0 ∈ R so that ξ(x0) 6= 0. Then de�ne ξ1(x) =
ξ(x+ x0), notice that TL(ξ) = TL(ξ1) and use the �rst part of the proof.

Proposition 5. Assume that σ is a positive �nite continuous Borel measure
on R. Assume moreover that for some sequence rn → ∞ and some analytic
function ξ : R→ C

(41) e2πirn· → ξ(·) weakly in L2(R, σ).

(i) If ξ is not a multiple of a character of R then A(σ) is included in a cyclic
subgroup of R. In particular, H(σ) (see Appendix) is cyclic.

(ii) If additionally, the topological support of σ is R, and ξ is not the product
of a character and a periodic analytic function, then A(σ)=0. In particular, the
result holds if σ is the maximal spectral type of an aperiodic �ow.

Proof. Fix t ∈ A(σ). Then �nd a positive �nite Borel measure λ so that λ� σ,
λ ∗ δ−t � σ. In view of (41) for each ρ� σ

(42) e2πirn· → ξ(·) weakly in L2(R, ρ).

Passing to a subsequence if necessary, we can assume that e2πrnt → c, |c| = 1.
By (42) it follows that∫

e2πirn(x+t) dλ(x) =

∫
e2πirnx d(λ ∗ δ−t)(x)→

∫
ξ(x) d(λ ∗ δ−t)(x) =

∫
ξ(x+ t0) dλ(x).
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On the other hand ∫
e2πirn(x+t) dλ(x)→ c

∫
ξ(x) dλ(x).

Since (by (42)) the above convergences also take place for each λ1 � λ,

(43) ξ(x+ t) = cξ(x) for λ-a.e. x ∈ R.

Since λ is continuous and ξ is analytic ξ(x + t) = cξ(x) for all x ∈ R. In other
words t ∈ TL(ξ).

(i) Suppose now that t1, t2 ∈ A(σ) and suppose that they are not in the same
cyclic subgroup of R. Since (by Lemma 4) TL(ξ) is a subgroup of R, it is dense
in R. Since (again by Lemma 4) for some complex κ and a real x0, κξ(· + x0)
is a group homomorphism on TL(ξ), κξ(·+ x0) is a continuous character on R,
whence ξ is a multiple of a character.

(ii) In view of (41), |ξ(x)| ≤ 1 for σ-a.e. x ∈ R and hence by the assumption
on the topological support, |ξ| ≤ 1. We can also assume that ξ(0) 6= 0. Assume
that t ∈ A(σ). We have

ξ̃(x+ t) = ξ̃(x)ξ̃(t) for all x ∈ R.

Moreover |ξ̃| ≤ M (where M = 1/|ξ(0)|). If ξ̃(t) = 0, then ξ̃ = 0. Otherwise
ξ̃(−t) = ξ̃(t)−1 as clearly ξ̃(0) = 1. Suppose that |ξ̃(t)| 6= 1. Then by replacing
t by −t if necessary we have |ξ̃| < 1 and

|ξ̃(x+ tn)| ≤M |ξ̃(t)|n

which implies ξ̃ = 0.
Now write ξ(t) = e2πiα and consider the character g(x) = e2πiαx. We then

clearly have
ξ̃(x+ t)/g(x+ t) = ξ̃(x)/g(x)

and the result follows.

Looking at the proof of this proposition we obtain the following.

Corollary 4. If additionally, for some probability measure P on R,

ξ(x) =

∫
e2πitx dP (t),

i.e. ξ is the Fourier transform of P then P is concentrated on a coset of a cyclic
subgroup of R.

Proof. Denote by m � P the complex measure f(s)dP (s) with f(s) = ct −
e2πits. Now the equality (43) gives m̂(x) = 0 for all x ∈ R which means that m
is the zero measure, or equivalently that

ct = e2πist for P -a.e. s ∈ R

and the result follows.
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Corollary 5. Assume that σ is a positive �nite continuous Borel measure on R
with full topological support. Assume moreover that for some sequence rn →∞
and some continuous function ξ : R→ C

(44) e2πirn· → ξ(·) weakly in L2(R, σ).

(i) If ξ is not a multiple of a character of R then H(σ) is cyclic.
(ii) If ξ is not the product of a character and a periodic continuous function,

then H(σ)=0.
In particular the result holds if σ is the maximal spectral type of an aperiodic

measurable �ow.

Proof. We repeat the proof of Proposition 5 with λ = σ and obtain (43) for
σ-a.e. x ∈ R. Since the topological support of σ is full and ξ is continuous we
obtain ξ(x+ t) = cξ(x) for all x ∈ R provided that t ∈ H(σ).

Consider now the family K of those T ∈ Aut (X,B, µ) such that there exists
a measurable �ow (Tt)t∈R ⊂ Aut (X,B, µ) such that T1 = T and such that
EACH Markov operator J : L2(X,B, µ) → L2(X,B, µ) commuting with UT is
in the weak closure of {UkT : k ∈ Z}. It follows from [38] and [22] that K is a
residual subset of Aut (X,B, µ).

Corollary 6. Assume that T is an ergodic automorphism such that each Markov
operator J : L2(X,B, µ) → L2(X,B, µ) commuting with UT is in the weak
closure of {UkT : k ∈ Z}. Assume moreover that T is embeddable in a measurable
�ow T = (Tt)t∈R, T1 = T . Then A(σT ) = 0. In particular, the assertion of
Proposition 3 holds.

Proof. Take any continuous measure P ∈ P(R) with bounded topological sup-
port and de�ne J =

∫
R UTt dP . Then J is a Markov operator commuting with

UT and hence by our standing assumption J is in the closure of {UTt : t ∈ R}.
Since P̂ is analytic, the result follows from Corollary 5.

It follows from Proposition 3 that the same assertion follows for T = T f

where T f is a special �ows from the class (A). It is the same result for the von
Neumann class of special �ows T f (see class (B)) where Tx = x + α with α
arbitrary irrational. The reason is that, as shown in Corollary 6 in [28], each
accumulation point P ∈ P(R) of {(f (qn))∗ : n ≥ 0} is an absolutely continuous
measure (here (qn) stands for the sequence of denominators of α and there are
no Diophantine restrictions on α). However, the results of [28] show actually
more. The fact that A(σT f ) = {0} is stable under small variation perturbations.

Corollary 7. Assume that T f is a von Neumann's �ow. Then for each g : T→
R of su�ciently small variation (f + g > 0) we have A(σT f+g ) = 0.

Proof. The proof of Theorem 3 in [28] says that whenever g is of su�ciently
small variation then

lim sup
n→∞

∣∣∣∣∫
T
e2πikf(qn)

dµ

∣∣∣∣ ≤ c < 1

for k ∈ Z large enough and therefore for each accumulation point P of {(f (qn))∗ :
n ≥ 0} the measure P cannot be discrete (see the proof of Proposition 12 in
[28]).
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Another class of examples comes from smooth change of time of linear �ows
on T2 and is based on results from [8] and [33]. Given k ≥ 1 take a linear �ow
Tt(x, y) = (x+ tα, y + t) on T2 where

(45) lim inf
n→∞

qk+1
n ‖qnα‖ = 0.

The �ow (Tt) is given by the system of di�erential equations:

dx

dt
= α,

dy

dt
= 1.

Take F ∈ Ck−1(T2), F > 0 and consider the �ow S = (St) (which preserves
FdλT2) coming from

dx

dt
= α/F (x, y),

dy

dt
= 1/F (x, y).

Assume that ∂
kF
∂xk

is piecewise absolutely continuous, which means that for some

�nite partitions into intervals on both coordinates x, y the function ∂kF
∂xk

is ab-
solutely continuous on all resulting closed rectangles, and

(46)

∫ 1

0

∫ 1

0

∂k+1F

∂xk+1
(x+ sα, s) dsdx =

∫
T2

∂k+1F

∂xk+1
dλT2 6= 0.

De�ne f(x) =
∫ 1

0
F (x+ sα, s) ds. Then f ∈ Ck−1(T) and (St) is represented as

a special �ow over the rotation by α and under f . Due to our assumptions on
F , Dk−1f is absolutely continuous and Dkf is piecewise absolutely continuous
with the sum of jumps di�erent from zero: indeed, by (46)∫

T
Dk+1f dλT =

∫
T2

∂k+1F

∂xk+1
dλT2 6= 0.

Then as an analysis in [9] shows in the weak closure of {USt : t ∈ R} we will
�nd an operator

∫
R USt dP (t) such that the measure P is not discrete.

Corollary 8. Under the above assumptions on the smoothness of time change
of the linear �ow, A(σS) = {0} whenever (45) holds.

Remark 5. We would like also to notice that in two classical cases, namely the
Gaussian and the Poissonian case the function (v) is also constant. Indeed, it is
enough to consider only the Gaussian case (as from the spectral point of view
Poissonian systems form a subclass of Gaussian systems). If a Gaussian �ow
given by σ has simple spectrum then as we have already noticed A(exp σ) = {0}.

If the spectrum is not simple then the maximal spectral multiplicity of the
�ow is in�nite (and so it must be for each Ut, t 6= 0).

6 Appendix

6.1 Saturated subgroup of a measure

Let σ ∈ P(R). Set

H(σ) = {t ∈ R : σ ∗ δt ≡ σ}, A(σ) = {t ∈ R : σ ∗ δt 6⊥ σ}.
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In [17], B. Host, J.-F. Méla and the second author of the paper have shown the
following results:

(47)
H(σ) is Borel subgroup of R;
it has a natural metric (stronger than Euclidean metric)
which makes it a Polish group; moreover this group is saturated;

(48) if σ is H(σ)-ergodic then A(σ) = H(σ),

(49)
if σ is ergodic, then there exists a unique measure ν
such that σ � ν, ν is H(ν)-ergodic and H(ν) = gp(A(σ))

(D-ergodicity of σ means that the only set of positive σ-measure which is in-
variant under all translations by d ∈ D equals R, σ-a.e.);

(50)
suppose that σ is singular, then A(σ) is contained in
a countable union of weak Dirichlet sets, and in particular
ρ(A(σ)) = 0 for each full measure ρ.

Recall that a weak Dirichlet set E is a closed subset of R such that for each
τ ∈ P(R) concentrated on E we have τ̂(nt) → 1 for some increasing se-
quence (nt) of integers; ρ ∈ P(R) is full if for each probability ρ′ � ρ we
have lim supt→∞ |ρ̂′(t)| < 1.

6.2 Spectral multiplicity at instance t

The analysis given here is not original, and can be found in [30]; we recall it
for completeness. Since any spectral decomposition of H under U is invariant
under each unitary operator Ut0 in order to determine the Baire category class
of the functionM we need to consider only simple spectrum case.

From now on we suppose that U = (Ut)t∈R has simple spectrum, so by using
Spectral Theorem we can assume that

Ut : L2(R, σ)→ L2(R, σ), (Utf)(x) = e2πitxf(x).

Let s ∈ R \ {0}. Given k ∈ Z we denote

Hs,k = L2
(
R, σ|[ ks , k+1

s )

)
=

{
f ∈ L2(R, σ) : f = 0 on

[
k

s
,
k + 1

s

)c}
.

Clearly each subspace Hs,k is closed and Us-invariant. We also have

(51) L2(R, σ) =
⊕
k∈Z

Hs,k.

If we set ps,k : (R, σ|[ ks , k+1
s ))→ (T, σs,k), ps,k(x) = e2πisx and

σs,k = (ps,k)∗

(
σ|[ ks , k+1

s )

)
,

we obtain that ps,k is 1-1 a.e. and moreover we have:
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Lemma 5. For each k ∈ Z, the spectrum of Us on Hs,k is simple.

Proof. Let V denote the unitary operator on L2(T, σk,s) given by (V f)(z) =
zf(z) (where we have the correspondence z ↔ e2πisx). Then, letW : L2(T, σk,s)→
Hs,k, (Wf)(e2πisx) = f(x). Since ps,k is injective, W is unitary. Now for every
f ∈ L2(T, σs,k), we have

W (Usf)(e2πisx) = Usf(x) = e2πisxf(x)

while
V (Wf)(e2πisx) = e2πisx(Wf)(e2πisx) = e2πisxf(x),

so UsWf = WV f and the result follows.

In view of (51) and Lemma 5, for each s 6= 0, we have:

(52)

the maximal spectral type of U1/s is equal to σ1/s := (e2πi 1s (·))∗σ
and the multiplicity functionM(U1/s) =M(s) =M(s, z)
is given by the formula

M(s, z) =
∑
k∈Z

dσ1/s,k

dσ1/s
(z).

Remark 6. Let us notice that Lemma 5 can be rephrased in the following way:
For each s 6= 0

(53)
U1/s on L

2(R, σ|ks,(k+1)s) has simple spectrum and is isomorphic
to U1/s on L

2
(
R, σ ∗ δ−ks|[0,s)

)
for each k ∈ Z.

Indeed, the isomorphism is given by

W : L2
(
R, σ|[ks,(k+1)s)

)
→ L2

(
R, σ ∗ δ−ks|[0,s)

)
, (Wf)(x) = f(ks+ x).

It follows from (53) that the maximal spectral multiplicity of U1/s is at least
m if and only if there exist ν ∈ P(R) concentrated on [0, s) and integers k1 <
. . . < km such that

(54) ν � σ ∗ δ−kis|[0,s), i = 1, . . . ,m.

By replacing in (54) the measure ν by ν ∗ δk1s and ki by ki − k1 we can assume
that k1 = 0 < k2 < . . . < km and ν � σ ∗ δ−kis, for i = 1, . . . ,m, k1 = 0.
Suppose now that ν is a probability measure on R such that

ν � σ ∗ δnis, i = 1, . . . ,m, n1 = 0 < n2 < . . . < nm.

With no loss of generality ν is concentrated on [ls, (l + 1)s). Then

ν′ := ν ∗ δ−ls � σ ∗ δ(ni−l)s

and ν′ is concentrated on [0, s). Thus

ν′ � σ ∗ δ(ni−l)s|[0,s), i = 1, . . . ,m.

It follows that U1/s has the maximal spectral multiplicity at least m if and only
if there exist ν ∈ P(R) and integers 0 = n1 < n2 < . . . < nm

(55) ν � σ ∗ δ−nis, i = 1, . . . , s.
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We now have the following two direct corollaries.

(56)
If s ∈ H(σ), then U1/s has the uniform in�nite multiplicity

(and its spectral type equals (e2πi 1s (·))∗σ|[0,s));

and

(57)
U1/s has no simple spectrum
if and only if s ∈

⋃
p 6=0

1
pA(σ).

It follows from (50):

Corollary 9. If σ is singular, then for each full measure ρ ∈ P(R), Ut has
simple spectrum for ρ-a.e. t ∈ R.

6.3 Continuous measures on the real line

Let σ ∈ P(R). Assume additionally that σ is continuous. Denote Fσ : R→ [0, 1]
the distribution function of σ, i.e. Fσ(x) = σ((−∞, x]). Denote by λ Lebesgue
measure on [0, 1]. Since σ((−∞, x]) = λ((0, Fσ(x)]),

(58)
Fσ is continuous, strictly increasing and
it establishes an isomorphism between (R, σ) and ([0, 1], λ).

Notice also that Fσ preserves the Lebesgue decomposition: if ν ∈ P(R) and
ν = νa+νs is the Lebesgue decomposition of ν with respect to σ, then (Fσ)∗ν =
(Fσ)∗ν

a + (Fσ)∗ν
s is the Lebesgue decomposition of (Fσ)∗ν with respect to λ.

Recall (see [37]) that a family Ω ⊂ 2R of open sets is called an essential
family for σ if:
(i) there exists β > 0 such that for each E ∈ Ω one can �nd an interval P
containing E such that σ(P ) ≤ βσ(E);
(ii) for each x ∈ R, for each δ > 0, there exists E ∈ Ω such that diamE < δ and
x ∈ E.

Note that the image of an essential family for σ via Fσ is an essential family
of λ (and F−1

σ enjoys the same property with the roles of σ and λ interchanged).
This allows us to carry over the classical results on derivation well-known in case
of Lebesgue measure (see [37]) to σ. Indeed, let ν ∈ P(R). If we set

∆r(x) = sup

{
ν(E)

σ(E)
: x ∈ E,E ∈ Ω, diamE < r

}
,

∆r(x) = inf

{
ν(E)

σ(E)
: x ∈ E,E ∈ Ω, diamE < r

}
,

then for σ-a.e. x ∈ R

lim
0<r→0

∆r(x) = lim
0<r→0

∆r(x) =: Dν,σ(x).

Indeed, ν(E)
σ(E) = (Fσ)∗ν(FσE)

λ(FσE) , so we simply apply a relevant result for Lebesgue

measure. Similarly we obtain that for each Borel B ⊂ R,

ν(B) = νs(B) +

∫
B

Dν,σ dσ,
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in other words Dν,σ = dν
dσ for σ-a.e. x ∈ R. In particular we have proved the

following.

Corollary 10. If σ is continuous, then for each ν ∈ P(R) we have

dν

dσ
(x) = lim

n→∞

ν((x− 1
n , x+ 1

n ))

σ((x− 1
n , x+ 1

n ))

for σ-a.e. x ∈ R.

6.4 Maximal spectral multiplicity as a function of time

Assume that U = (Ut)t∈R is a �ow with simple spectrum whose maximal spectral
type is σ. We constantly assume that σ is continuous. Given s ∈ R set σs =
σ ∗ δs. If si → s in R, then σsi → σs weakly and since all measures under
consideration are continuous,

(59) σsi

((
x− 1

k
, x+

1

k

))
→ σs

((
x− 1

k
, x+

1

k

))
when i→∞

for each x ∈ R and k ≥ 1.
Fix t ∈ R \ {0}. Let m ∈ N. Then (see Remark 6) the maximal spectral

multiplicity of U1/t is at least m if and only if there exist n1, . . . , nm ∈ Z such
that one can �nd ν ∈ P(R) absolutely continuous with respect to each measure
σnit, i = 1, . . . ,m; in other words

(60) σ

({
x ∈ R :

dσn1t

dσ
(x) · . . . · dσnmt

dσ
(x) 6= 0

})
> 0.

By Corollary 10, the condition (60) is equivalent to saying that

(61) σ

({
x ∈ R : lim

k→∞
Πm
j=1

σnjt
(
(x− 1

k , x+ 1
k )
)

σ
(
(x− 1

k , x+ 1
k )
) 6= 0

})
> 0.

If we denote Gk,t(x) = min

(
1,Πm

j=1

σnjt((x− 1
k ,x+ 1

k ))
σ((x− 1

k ,x+ 1
k ))

)
, then we obtain that the

sequence (Gk,t)k≥1 is convergent σ-a.e. and we have (61) held if and only if

σ

({
x ∈ R : lim

k→∞
Gk,t(x) > 0

})
> 0

or, which is the same,
∫

limk→∞Gk,t dσ > 0. Since this integral is equal to
limk→∞

∫
Gk,t dσ, the inequality (60) is equivalent to saying that limk→∞ Jk(t) >

0, where Jk(t) =
∫
Gk,t dσ. It follows from (59) that the map t 7→ Jk(t) is con-

tinuous.

Proposition 6. If (Ut)t∈R is a unitary �ow with simple continuous spectrum,
then the function M = M(t) which to t ∈ R associates the maximal spectral
multiplicity of U1/t is of second Baire class.
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Proof. If we set J(t) = Jn1,...,nm(t) = limk→∞Gk(t), then the set {t ∈ R :
Jn1,...,nm(t) > 0} is of type Fσ (it is equal to

⋃
p,q

⋂∞
r=q[Jr ≥

1
p ]). If we take the

union (which will be countable) with respect to all choices n1 < . . . < nm we
obtain that the set Am of those t ∈ R for which the maximal spectral multiplicity
of U1/t is at least m is always of type Fσ. For t 6= 0 we have

M(t) =
∑
m≥1

χAm(t)

and Am = ∪l≥1Fl,m, where each Fl,m is closed. By the Urysohn lemma, every
indicator function χFl,m is a function of the �rst Baire class. If one �xes m, for
each l large enough

χFl,1 + . . .+ χFl,l ≥ χFl,1 + . . .+ χFl,m .

The sums of the RHS of the above inequality converge pointwise to the multi-
plicityM(·) when l→∞. On the other hand, the limit of the sums of the LHS
of the above inequality exists. Therefore,

(62) lim
l→∞

(
χFl,1(·) + . . .+ χFl,l(·)

)
≥M(·).

But
χFl,1(t) + . . .+ χFl,l(t) ≤ χA1

(t) + . . .+ χAl(t) ≤M(t).

Hence we obtain the equality in (62) andM(·) is of the second Baire class which
completes the proof.

Remark 7. It follows from the proof that A2 is of type Fσ, so the set of t for
which U1/t has simple spectrum is of type Gδ. If σ is singular, then this set is
also dense by (50) and by (57).

Remark 8. If σ is singular and ergodic, then H(σ) is a dense subgroup of R.
Therefore the function M = M(·) has no continuity points. It follows that in
this caseM(·) is not of the �rst Baire class.

Most of the results of this paper have been obtained during two visits of the
�rst author at the University Paris 13 in 2001 and 2006.
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