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Abstract. We survey selected advances in spectral theory of dynamical systems, present
perspectives and discuss some open problems.

1. Introduction

Historically, spectral invariants were the �rst due to which, intuitively di�erent measure-
theoretic systems gained rigorous proofs of being non-isomorphic as dynamical systems.
During decades a vision of spectral classi�cation of dynamical systems considerably evolved:
from a belief in serious restrictions imposed by dynamics to a present belief that it is
rather common to have little restrictions (compared to general and well-known classi�cation
of unitary operators on separable Hilbert spaces). This, in practice, is observed in the
prevalence of constructions and, using Anatole Katok's expression (shared by the author of
the article): �a weak hope for theorems�. Spectral theory does not only provide invariants
for dynamics, but also serves as an �engine� for complicated measure-theoretic constructions
of dynamical systems with interesting (sometimes �exotic�) properties, perhaps [27] is the
most illustrative article in this direction. Moreover, via regarding measures on product
spaces as relevant Markov operators of L2-spaces, spectral theory is closely related to the
joining theory, hence Furstenberg's disjointness, of dynamical systems, the most modern
tool in contemporary (abstract) ergodic theory.

Many interesting spectral questions turned out to be di�cult and remain unsolved � our
current understanding of spectral classi�cation of dynamical systems is de�nitely unsatisfac-
tory. In this article we discuss classical invariants of spectral theory like maximal spectral
type and multiplicity function, but also concentrate on selected latest achievements and
discuss perspectives and open problems concerning spectral properties of �ows, especially
in the smooth context. The present material is written on the base of my joint article [35]
with Anatole Katok. It also uses survey articles by A.I. Danilenko [12] and myself [45]. For
a nice introduction to spectral theory of dynamical system, see monographs [8], [49] and
[55].

2. Spectral theory. Koopman operator

Assume that (X,B, µ) is a probability, standard Borel space (non-atomic!), so up to a
Borel isomorphism, we may think of X = [0, 1] considered with the σ-algebra of Borel
sets and Lebesgue measure. In particular, L2(X,B, µ) is separable. Let T : (X,B, µ) →
(X,B, µ) be an invertible, measure-preserving transformation; we will write T ∈ Aut(X,B, µ).



2 MARIUSZ LEMA�CZYK

We can now de�ne the associated Koopman operator UT : L2(X,B, µ)→ L2(X,B, µ) by the
following formula:

(1) UT f := f ◦ T for f ∈ L2(X,B, µ).

In spectral theory of dynamical systems we study properties of UT , that is, properties of T
that are stable under spectral isomorphism in Aut(X,B, µ).1 Note that ergodicity, weak
mixing, mixing are spectral properties while entropy is not (see Example 4.1) and whether
mixing of all orders so is, remains an open problem. Note also that Aut(X,B, µ) is a Polish
group, when we consider the strong operator topology on it (indeed, the group Aut(X,B, µ)
is closed under pointwise convergence: if UTnf → V f for each f ∈ L2(X,B, µ), then V is
also Koopman).

Before we enter into the subject, let us brie�y discuss the �Koopman� operators on Lp-
spaces for p 6= 2, which are de�ned by the same token as in (1) for f ∈ Lp(X,B, µ). On one
hand side, based on the classical fact that there are not too many isometries of Lp([0, 1])
for p 6= 2, the following result shows that this problem is too strong and in fact, Lp-spectral
classi�cation of measure-preserving automorphisms is the same as metric classi�cation:

Proposition 2.1 ([28], [45]). Assume that 1 ≤ p < +∞, p 6= 2. Let T ∈ Aut(X,B, µ) and
S ∈ Aut(Y, C, ν) be ergodic. Assume that V : Lp(X,B, µ)→ Lp(Y, C, ν) is an isometry such
that V ◦ UT = US ◦ V . Then T and S are measure-theoretically isomorphic.2

On the other hand, there are interesting open problems when p 6= 2, from which perhaps
mostly known is the following:

Problem 1 (Thouvenot's problem, 1986). Is is true that for each ergodic T ∈ Aut(X,B, µ)
there exists f ∈ L1(X,B, µ) such that L1(X,B, µ) = span{f ◦ T k : k ∈ Z} for some
f ∈ L1(X,B, µ)? 3

Iwanik [26], in 1991, proved that for each Bernoulli automorphism T and 1 < p < +∞,
each n ≥ 1 and all f1, . . . , fn ∈ Lp(X,B, µ), we have

span{fj ◦ T k : k ∈ Z, j = 1, . . . , n} 6= Lp(X,B, µ)

which we can interpret as �Bernoulli automorphisms have in�nite multiplicity� in all Lp

spaces whenever 1 < p < +∞.

3. Classification of unitary operators on separable Hilbert spaces

Spectral classi�cation of unitary operators on separable Hilbert spaces is based on the
following:

1If Ti ∈ Aut(Xi,Bi, µi), i = 1, 2, then a unitary operator V : L2(X1,B1, µ1)→ L2(X2,B2, µ2) establishes
a spectral isomorphism of T1 and T2 if V ◦ UT1 = UT2 ◦ V .

2 The proof of the above result uses Lamperti's theorem to obtain that (V f)(y) = j(y) · f(Jy), where
J : Y → X is non-singular. Then the equivariance yields: j(y)f(TJy) = j(Sy)f(JSy); take f = 1, to
obtain that j = const by the ergodicity of S. Finally, we note that the image J∗(ν) is a T -invariant, ergodic
measure satisfying J∗(ν)� µ, and we use the ergodicity of T to conclude.

3The problem is also open in the category of Bernoulli automorphisms.



ON SOME SPECTRAL PROBLEMS IN ERGODIC THEORY 3

Theorem 3.1 (Herglotz's theorem). If U : H → H is a unitary operator on a Hilbert space
H and f ∈ H, then the sequence Z 3 k 7→ 〈Ukf, f〉 is positive de�nite and therefore there
exists a unique (positive, �nite, Borel) measure σf on S1 such that

σ̂f (k) :=

∫
S1
zk dσf (z) = 〈Ukf, f〉 for each k ∈ Z.

σf is called the spectral measure of f . Let us consider the following example: Hσ :=
L2(S1, σ), where σ is a (positive, Borel) �nite measure on the circle, and Vσ : Hσ → Hσ,
(Vσf)(z) = zf(z) which is clearly unitary. We then have Hσ = Z(1) := span{V k

σ 1 : k ∈ Z}
and one says that Hσ is equal to the cyclic space Z(1), where 1(z) = 1. Vσ is an example of
a unitary operator (de�ned on a separable Hilbert space) with simple spectrum. Returning
to the abstract setting, if H is a (separable) Hilbert space and U is a unitary operator on
it such that H = Z(f) for some f ∈ H, then the map

Ukf 7→ V k
σf

(1) = zk, k ∈ Z,

extends to a (linear) isometry intertwining U and Vσf . If the above holds, we say that U
has simple spectrum.

Theorem 3.2 (Spectral theorem). Assume that U : H → H is unitary on a sepa-
rable Hilbert space H. There exists a decomposition, called a spectral decomposition,
H =

⊕
n≥1 Z(fn) 4 such that

(2) σf1 � σf2 � . . .

For any other spectral decomposition H =
⊕

n≥1 Z(f ′n), we have

(3) σfn ≡ σf ′n for each n ≥ 1.

The sequence (2) is called a spectral sequence. The type5 of σf1 is called the maximal
spectral type of U and is denoted by σU . To obtain a spectral decomposition we choose any
cyclic space Z(f) and extend it to a maximal cyclic space, say Z(f1). Such an extension
exists by separability and it has the property that its spectral measure σf1 dominates all

other spectral measures. Then we pass to Z(f1)
⊥ and repeat the previous argument. Again,

it is separability which yields the existence of a spectral decomposition.
Then, we de�ne MU (z) :=

∑
n≥1 1supp

dσfn
dσf1

(z) which is called the spectral multiplicity

function of U ; it is de�ned σU -a.e. and its values in N∪ {+∞}, where N = {1, 2, . . .}. Note
that when we know σU and MU then we can reconstruct a spectral sequence (2) (up to
equivalence of measures). It follows that:

• Any sequence σ1 � σ2 . . . can be realized as a spectral sequence of some U (indeed,
take U = Vσ1 ⊕ Vσ2 ⊕ . . .).

4Note that if a Hilbert space admits such a decomposition then it must be separable.
5By the type of σ we mean the class of measures equivalent (i.e. having the same null sets) to σ. In fact,

unless a confusion may arise, in what follows, we will not distinguish between a spectral measure and its
type. Note, for example, that the topological support of a measure σ is the same for all measures equivalent
to σ.
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• Equivalently, given σ and M : S1 → N ∪ {+∞} which is measurable and de�ned
σ-a.e., we can �nd U so that σ = σU and M = MU .
• Two unitary operators are (spectrally) isomorphic if and only if they have the same
spectral sequence (2) (up to equivalence od spectral measures); equivalently, if and
only if they have the same maximal spectral types and the same multiplicity func-
tions.

Remark 3.3. For Koopman operators, we will rather use notation σT , MT instead of σUT ,
MUT , respectively.

4. Basic questions of spectral theory of Koopman operators

One of classical unsolved problems of spectral theory is the following:

Problem 2. Which sequences σ1 � σ2 � . . . appear as spectral sequences of Koopman
operators UT |L2

0(X,B,µ) for an ergodic T ∈ Aut(X,B, µ)? 6

Instead of considering Problem 2 whose solution is hard to see in a reasonable perspective,
out of it, we can separate the following two natural questions:

Problem 3. Which measures appear as the maximal spectral type of an ergodic automor-
phism?

Problem 4. Which subsets of N (see Remark 4.1 below) appear as the set essval(MT ) 7 of
essential values of an ergodic automorphism T? (Such sets are called Koopman realizable).

Example 4.1. (i) Assume that T is Bernoulli. Then λ ≡ λ ≡ . . . is its spectral sequence,
so σUT = σT = [λ] and essval(MT ) = {+∞}. It follows that all Bernoulli automorphisms
are spectrally isomorphic.
(ii) If T is an irrational rotation then its spectral sequence is given by: σ � 0 ≡ 0 ≡ . . .,
where σT = σ =

∑∞
`=1

1
2`
δe2πi`α and essval(MT ) = {1}. In particular, ergodic automor-

phisms with discrete spectrum have simple spectrum.

Remark 4.1. Of course, in Problem 4, we should consider subsets of N∪{+∞} as possible
sets of essential values of the multiplicity function. However, as all constructions below will
have singular maximal spectral types, by considering their product with a Bernoulli shift,
we only add +∞ as the new essential value (corresponding to Lebesgue measure), see [12].

We would like to emphasize that spectral problems are essentially zero entropy problems
because of the classical Rokhlin-Sinai theorem: If T ∈ Aut(X,B, µ) then in the orthocom-
plement of L2(π(T )), where π(T ) ⊂ B stands for the Pinsker σ-algebra,8 the spectrum is

6By an obvious reason, we consider only the UT -invariant subspace L2
0(X,B, µ) which is the orthocom-

plement of constant functions. Ergodicity is assumed to avoid �cheap� tricks with repetitions of the same
space, say L2(X,B, µ)⊕ L2(X,B, µ) when, for example, we consider the spectral multiplicity problem.

7Formally, n ∈ essval(MT ) if σT ({n}) > 0.
8Pinsker σ-algebra is the largest σ-algebra such that the corresponding factor automorphism has zero

entropy.
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countable Lebesgue.9 For a generalization of this result to actions of other groups, see [17]
(the result was also obtained independently by Thouvenot (unpublished)).

5. Maximal spectral type

5.1. Restrictions. The following result describes restrictions on the maximal spectral type
of an ergodic automorphism T :

Proposition 5.1. (i) Topological support supp(σT ) of σT is S1.
(ii) The measure σ̃T (A) := σT (A) is equivalent to σT .
(iii) If e2πiα is an eigenvalue of UT then the measure σT,α(A) := σT (e2πiα ·A) is equivalent
to σT .

To show the symmetry of the maximal spectral type, i.e. (ii), notice that each Koopman
operator preserves the space of real functions. To obtain (iii) note that if f ∈ L2

0(X,B, µ)
and g is an eigenfunction corresponding to an eigenvalue c ∈ S1 then |g| = 1, so fg ∈
L2(X,B, µ) and, for each n ∈ Z, we have∫

(fg) ◦ Tn · (fg) dµ = cn
∫
f ◦ Tn · f dµ,

so σfg = δc ∗ σf . Finally, (i) requires the following observations: supp(σT ) = {z ∈ C :
z · Id− UT is not a bijection} (i.e. the topological support is equal to Gelfand spectrum of
UT ), then (because of normality of UT ) {z ∈ C : z · Id − UT is not a bijection} = {z ∈
C : z is an approximative eigenvalue}, so the problem is reduced to solving �inequalities�
‖UT (f) − zf‖L2 < ε (more precisely: for each z ∈ S1 and ε > 0 we seek f ∈ L2(X,B, µ)

of norm 1) which can be done using Rokhlin lemma and considering
∑h−1

i=0 z
i1T iF for a

Rokhlin tower F, TF, . . . , T h−1F which almost ful�lls the whole space.

5.2. Exponentials of measures as maximal spectral types. If σ is a continuous sym-
metric measure on the circle and U = exp(Vσ) :=

⊕
`≥0 V

�`
σ , then U is a Koopman operator

via the classical Gaussian construction. Indeed, take a centered, real stationary Gaussian
process (Xn)n∈Z with spectral measure σ, i.e. E(Xn ·X0) = σ̂(n) for each n ∈ Z, with joint
distribution µσ on RZ and consider the shift T on (RZ, µσ). The following is classical:

Theorem 5.2. We have σUTσ =
∑

n≥1
1
2nσ

∗n. 10 In particular,
∑

n≥1
1
2nσ

∗n is a measure

of maximal spectral type for an ergodic (in fact, weakly mixing) automorphism.

We also recall the following (for a new proof, see [42]):

Theorem 5.3 (Girsanov's theorem, 1950th). Either essval(MUTσ
) = {1} or MUTσ

has to
be unbounded.

9There are zero entropy automorphism with countable Lebesgue spectrum: time-1 map of horocycle
�ows, see Section 8.1, or the even factor of a Gaussian automorphism given by σ ⊥ λ with σ ∗ σ ≡ λ, see
e.g. [46].

10σ∗n means the convolution σ ∗ . . . ∗ σ (n times).
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We can have essval(MUTσ
) = {1,+∞} (take σ ⊥ λ with σ ∗ σ ≡ λ). In 2010, Danilenko

and Ryzhikov [15] proved that every multiplicative sub-semigroup of N has a Gaussian
�realization�. However, they also proved that, in general, essval(UTσ) need not have such a
multiplicative structure.11 More than that, Ryzhikov in [63] showed that for an arbitrary
E ⊂ N, the set E ∪ {+∞} is the set of essential values for the multiplicity function of a
(mixing) Gaussian automorphism (it is unknown whether this can be done without ∞ as
an essential value).

Remark 5.4. Gaussian systems are also useful to show that conditions (i)-(iii) for a mea-
sure σ are not su�cient to realize σ as the maximal spectral type of a Koopman operator.
Indeed, we can �nd a (continuous, with full topological support) so called Kronecker mea-
sure σ, i.e. satisfying: For each f ∈ L2(S1, σ) and ε > 0 there exists k ∈ Z such that
‖f − zk‖L2(σ) < ε. Then the famous Foia³-Stratila theorem from 1967 [19] tells us that

whenever T ∈ Aut(X,B, µ) is ergodic and a real-valued f ∈ L2(X,B, µ) has σf ≡ σ then
the process (f ◦ Tn)N∈Z has to be Gaussian; then f will be in the �rst chaos of the cor-
responding L2-space, each σ∗j is also a spectral measure and also σ ⊥

∑
j≥2

1
2j
σ∗j , so σ

cannot be a measure of maximal spectral type.

Note that, essentially, our knowledge about the maximal spectral types of Koop-

man operators has not changed since the 1960th!

6. Spectral multiplicity

6.1. Maximal spectral multiplicity. Because of limited number of examples, for quite a
long time there had been a belief that the maximal spectral multiplicity (that is, the essential
supremum of the multiplicity function MT ) is ether 1 or +∞. However, in 1966 Oseledets
[51] proved that: There exists an ergodic T ∈ Aut(X,B, µ) such that 1 < esssup(MT ) <
+∞. In fact, in [51] he introduced the concept of interval exchange transformations (IETs),
showed that IETs of d intervals have maximal spectral multiplicity ≤ d − 1 and use the
idea of double group extension of such to create a relevant example. Re�ning Oseledets
construction, in 1983, Robinson (a student of Katok) proved the following:

Theorem 6.1 ([57]). For each n ≥ 1, there exists an ergodic T such that esssup(MT ) =
n. 12

Recall that for T ∈ Aut(X,B, µ), essval(MT ) stands for the set of essential values of the
multiplicity function MT .

(4) General multiplicity conjecture: Each subset E ⊂ N is realizable as essval(MT ).

11For example, the double factorials set {(2n − 1)!! : n ∈ N} has a Gaussian �realization�. This shows
that Proposition 6.4.4. claiming the multiplicativity of multiplicity function in the Gaussian case, given in
the book Katok-Thouvenot [37] (also in [57]), is false.

12Robinson also used double group extensions constructions; moreover, Katok-Stepin's theory of periodic
approximation to apply a generic type arguments has been used.
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Recall also that, generally, we are interested to answer the question which sequences
σ1 � σ2 � . . . are realizable as spectral sequences of Koopman operators, cf. Problem 2.
In such a sequence we have either ≡ or � (without equivalence). It is not hard to see that
n ∈ essval(MU ) if and only if σfn � σfn+1 (which, at this moment, means that that we
have absolute continuity without equivalence). We can hence reformulate (4) as follows:

Problem 5. Which sequences (sn)n≥1 ∈ {≡,�}J are Koopman realizable (J ∈ N or
J = N)?

6.2. Essential values of the multiplicity function. 1 ∈ E. The problem of Koop-
man realization of a subset E containing 1 has been solved in a series of papers by
Robinson (1986), Goodson-Kwiatkowski-Lema«czyk-Liardet (1992) and Kwiatkowski (jr.)-
Lema«czyk (1995), the latter with �nal result:

Theorem 6.2 ([58],[24],[44]). Each subset 1 ∈ E ⊂ N is Koopman realizable, i.e. there
exists an ergodic T such that essval(MT ) = E.

While [58] still used the idea of double extension, in [24], there is only one group extension
step to create some symmetries. We now detail on that. Let T ∈ Aut(X,B, µ) and G be a
compact, Abelian group. Assume that φ : X → G a cocycle (a measurable function). We
de�ne the corresponding group extension:

Tφ : X ×G→ X ×G, Tφ(x, g) = (Tx, φ(x) + g)

(considered with product measure µ⊗mG, where mG stands for Haar measure). We have

(5) L2(X ×G,µ⊗mG) =
∑
χ∈Ĝ

L2(X,µ)⊗ χ,

where Ĝ denotes the group of characters of G. Note that the (closed) subspaces in the
Fourier decomposition (5) are UTφ-invariant: UTφ(L2(X,µ) ⊗ χ) = L2(X,µ) ⊗ χ. Assume
that S ∈ C(T ), that is S ∈ Aut(X,B, µ) with ST = TS, and for some continuous v ∈
Aut(G) we can solve the equation

φ(Sx)− v(φ(x)) = ξ(Tx)− ξ(x)

for a measurable ξ : X → G. It is not hard to see that the above equation is equivalent
to saying that the (measure-preserving) Sξ,v(x, g) := (Sx, ξ(x) + v(g)) is an element of the
centralizer C(Tφ) of Tφ. However, the Tφ-invariant subspaces in (5) are (in general) no
longer Sξ,v-invariant as

USξ,v(L
2(X,µ)⊗ χ) = L2(X,µ)⊗ (χ ◦ v).

It easily follows that the lengths of the orbits of the dual automorphism v̂ on Ĝ yield a lower
bound on the multiplicity. Finally, note that instead of Tφ, we can consider its so called
natural factor Tφ+H acting on X ×G/H by the formula (x, g +H) 7→ (Tx, φ(x) + g +H)
for a closed subgroup H ⊂ G. Passing to L2(X ×G/H), this yields LESS subspaces of the
form L2(X,µ)⊗χ to be involved and the key observation in [44] was the following algebraic
fact:
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Lemma 6.3 ([44]). For each set E ⊂ N containing 1 there exist a countable (discrete)
group G , its algebraic automorphism V and a subgroup H such that

E = L(G , V,H ) := {|{V jχ : j ∈ Z} ∩H | : χ ∈H }.

The data we need for a relevant construction are obtained from the lemma by duality

(in particular, H is the annihilator of H in G = Ĝ).

6.3. Essential values of the multiplicity function. Rokhlin problem. Let us recall
�rst the classical

(6)
Rokhlin′s homogeneous spectrum problem :

Is it true that for each n ≥ 2 there is an ergodic automorphism T
such that essval(MT ) = {n}?

Essential ideas toward a solution of this problem are due to Katok who already in the
mid 1980 proved that for a generic13 automorphism T , essval(MT×T ) ⊂ {2, 4} (this was
obtained via Katok's linked approximation theory). He also formulated the following:

(7) Katok's conjecture: Generically, we have essval(MT×n) = {n, n(n− 1), . . . , n!}
(note that for n = 2 it yields positive answer to Rokhlin's question). Katok's conjecture has
been proved in 1999 by Ageev [2], [3] in the general case and Ryzhikov [59] for n = 2 (see
also Anosov's presentation in [5]). In 2005, Ageev fully answered Rokhlin's question (6):

Theorem 6.4 ([4]). For each n ≥ 2 there is an ergodic T ∈ Aut(X,B, µ) with homogenous
spectrum of multiplicity n.

To obtain the above result, Ageev exploited a new idea of using actions of non-Abelian
groups and showing that a �xed �direction� automorphism ful�lls our spectral requirement.
The original proof of Ageev was simpli�ed in [61] and [9]. In fact, Danilenko in 2006,
combining methods leading to Theorems 6.2 and 6.4, obtained the following:

Theorem 6.5 ([9]). For each n ≥ 2, and 1 ∈ E ⊂ N there is an ergodic T ∈ Aut(X,B, µ)
such that essval(MT ) = n · E.

Remark 6.6. An interesting problem is �nding Koopman realization (of the constructions
from Theorem 6.5 and other) in the smooth category - see Question (5) in Section 10
[12]. I was informed by A. Danilenko that the question about smooth realization of the
homogenous problem for n = 2 was originally asked by A. Katok. See a solution of this
problem in the analytic category by Banerjee and Kunde [7].

6.4. Essential values of the multiplicity function. 2 ∈ E. Realization of subsets
containing 2 has been done in three papers, one by Katok-Lema«czyk in 2009 and two by
Danilenko in 2010 and 2012, the latter two with �nal result:

Theorem 6.7 ([35], [10], [11]). Each set 2 ∈ E ⊂ N is Koopman realizable.14

13Generic is meant topologically: a dense Gδ set in the Polish group Aut(X,B, µ).
14The papers [10] and [11] are about weakly mixing and mixing realizations, respectively.
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The main idea behind the proof of the above result is to combine techniques giving
a solution of Rokhlin's problem (6) for n = 2 and returning to Oseledets double group
extension idea. Moreover, the technique of weak limits15 is exploited to obtain simplicity of
the spectrum of tensor products operators of the form eV ⊗W with a simultaneous control
of homogenous multiplicity for the W ⊗W . It is also important that Danilenko was able
to prove Lemma 6.3 without the awkward assumption 1 ∈ E.
Remark 6.8. For other sets which are Koopman realizable: {k, `, k`}, {k, `,m, k`, km, `m, k`m},
etc.: see [61], [64].

7. Related results

7.1. In�nite measure-preserving automorphisms. In this context we study the L2-
space of a standard Borel space (X,B, µ) with µ in�nite (and σ-�nite). We consider here
Koopman operators on the whole L2(X,B, µ) as the constant functions are no longer
integrable. Somewhat surprisingly Danilenko and Ryzhikov proved the following result:

Theorem 7.1 ([14],[15]). For each subset E ⊂ N ∪ {+∞} there exists an ergodic in�nite
measure-preserving automorphism T such that essval(MT ) = E.16

7.2. Flows. The spectral theory for �ows is similar to that for automorphisms: we assume
that a �ow T = (Tt) acting on a probability standard Borel space (X,B, µ) is measurable,
so the associated Koopman one-parameter group:

R 3 t 7→ UTt(f) = f ◦ Tt
is continuous for each f ∈ L2(X,B, µ). Bochner's theorem tells us that the function t 7→∫
f ◦ Tt · f dµ is positive de�nite, so there exists a unique (positive, �nite, Borel) measure

σf on R̂ = R 17 such that

σ̂f (t) :=

∫
R
e2πits dσf (s) =

∫
X
f ◦ Tt · f dµ, for each t ∈ R.

The cyclic space R(f) is de�ned as the smallest, closed (Tt)-invariant subspace containing
f , i.e. R(f) = span{f ◦ Tt : t ∈ R}. As before, we obtain that on the unitary level all is
determined by the maximal spectral type σT (a measure on R) and the multiplicity function
MT : R→ N ∪ {+∞} de�ned σT -a.e.

Interesting questions arise when we study relations between spectral properties of the �ow
and the Koopman operators corresponding to non-zero time automorphisms Tt. Some an-
swers belong to folklore. As a sample, consider the multiplicity problem of time-automorphisms,
in which the crucial object turns out to be the (Borel) group

H(σT ) = {t ∈ R : δt ∗ σT ≡ σT }.
Now, if t ∈ H(σT ) then Tt has necessarily uniform countable multiplicity (and its maximal
spectral type is given by the image (e2πit·)∗(σT )), see e.g. [47]. In particular, for �ows

15A wide use of this technique has been originated by Moscow school.
16The papers [14] and [15] are about weakly mixing and mixing realizations, respectively.
17The natural isomorphism between R̂ and R is given by t 7→ e2πit·, for t ∈ R.
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having Lebesgue measure as the maximal spectral type, we obtain that each non-zero time
automorphism have countable Lebesgue spectrum. One more sample of such a result is
the observation from [23] that if a �ow T has simple singular spectrum then a typical time
automorphism has also simple spectrum.

Another result of the folklore kind is to consider induced (unitary) representations: in this
classical construction we pass from unitary operators (Z-actions) to one-parameter groups
of unitary operators (R-actions). In fact, if T ∈ Aut(X,B, µ) then induced (from UT )
representation is also Koopman and given by the classical construction of the suspension
�ow (special �ow under the constant function 1). However, inducing introduces always
1 ∈ R as an eigenvalue (for the one-parameter group). We hence obtain the following:

Corollary 7.2 (e.g. [13]). For each E ⊂ N which is Koopman realizable (i.e. E = UT )
there is an ergodic �ow T such that essval(T ) = E ∪ {1}.

However, the ergodic �ow in the above corollary cannot be replaced by a weakly mixing
�ow, and to obtain stronger (and more natural) results, we must leave the case of folklore
results and rather try to adapt proofs. In [13], some methods from the Z-action case have
been adapted to R-actions and they lead to the extensions of Theorems 6.2 and 6.7 to �ows.
Moreover, Danilenko and Solomko [16] answered positively Rokhlin's question (6) in the
class of R-actions.

It would be interesting to understand some continuity in possible variations of spec-
tral properties of Koopman operators corresponding to non-zero time automorphisms. For
example, in [47] it has been proved that the function

t 7→ esssup(MTt)

is of second Baire class answering a question of Thouvenot from the 1990th.

Remark 7.3. See also the article [62] by Ryzhikov about �unusual� behaviour of the max-
imal spectral multiplicity for powers of a weakly mixing automorphism.

8. Other spectral problems raised by Anatole Katok. Time changes of

flows

8.1. Time changes of horocycle �ows. Let Γ be a lattice in SL(2,R). We consider
X = SL(2,R)/Γ with the image µ (which is �nite) of Haar measure of SL(2,R). The
action

ht(xΓ) :=

[
1 t
0 1

]
xΓ for x ∈ SL(2,R)

is the corresponding horocycle �ow. Horocycle �ows have Lebesgue spectrum of in�nite
multiplicity (Parasyuk, 1953 [53]). Given a function v : X → R+, we can consider the
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corresponding time change �ow (hvt )t∈R.
18 Smooth time changes of horocycle �ows are

mixing (Kushnirenko [43], Marcus [48]).
In 2006, Katok and Thouvenot [37] formulated the following:

(8)
Katok-Thouvenot's Conjecture: All �ows obtained by a su�ciently

smooth time change of horocycle �ows have countable Lebesgue spectrum.

Maximal spectral type Lebesgue part was proved by Forni and Ulcigrai in 2012 [20],
and (the absolute continuity of the maximal spectral type) independently by Tiedra de
Aldecoa (2012) [66]. However, the problem of multiplicity turned out to require a new
approach as the standard representation theory of SL(2,R) (which is used to prove in�nite
multiplicity for horocycle �ows themselves) cannot be used after a time change. Finally,
countable Lebesgue spectrum for smooth time changes has been proved by Fayad, Forni
and Kanigowski (in 2019) [18].

8.2. Time changes of linear �ow on the torus. We now consider special �ows over
irrational rotations, so let Tx = x + α for x ∈ T. Let f : T → R+ be piecewise smooth,
with the sum of jumps di�erent from zero. The weak mixing property of the special �ow
T f was already proved by von Neumann in 1932(!) [50]. In what follows, we refer to �ows
obtained as above as to von Neumann �ows. Recently, they became of particular interest
after a discovery in [22] that if α has bounded partial quotients then they enjoy a (variation
of) celebrated Ratner's property. This latter property19 was discovered by Ratner in the
1980th in [56] for horocycle �ows. In 2004, A. Katok formulated the following conjecture:

(9) Katok's Conjecture Von Neumann's special �ows have �nite multiplicity.20

This conjecture is still open. However, Kanigowski and Solomko in 2016 [31] proved that
these �ows have no �nite rank, so there is no �easy� way to prove possible �nite maximal
spectral multiplicity by seeing a kind of measurable approximation by �nitely many towers.

9. Summarizing comments and questions

This section is in large part (except for the last paragraphs) taken, sometimes in extenso,
from [35]. Returning to the multiplicity problem, we notice that in all known constructions,
appearance of nonsimple �nite multiplicity spectrum is due to some symmetries:

• symmetry of double skew products with a group structure in the second extension,
�rst noticed by Oseledets [51], originally systematically explored by Robinson and
further developed Goodson-Kwiatkowski-Lema«czyk-Liardet [24],

18If (Rt) is a (measurable) �ow on (Z,D, κ) and v : Z → R+, v ≥ ε0 > 0, is integrable, then, for κ-a.e.
z ∈ Z and all t ∈ R there is a unique solution u = u(t, z) of

∫ u
0
v(Rsz) ds = t. Then we set Rvt (z) = Ru(t,z)(z)

and we obtain a new �ow (Rvt ) which preserves the measure
(

v∫
v dκ

)
dκ. Note that special �ows over an

automorphism T are time changes of the suspension of T .
19This property roughly describes a polynomial way of divergence of nearby points which are not in the

same orbit.
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• the obvious symmetry of the Cartesian powers, �rst used in the unpublished version
of Katok's notes (cf. [34]) which has circulated since mid-eighties, and brought to
the �nal form by Ageev [3] and Ryzhikov [59] and
• symmetry involving a certain non-Abelian �nite extension of a cyclic group discov-
ered by Ageev [4].

These symmetries, especially when they meet together in constructions, lead to a consider-
able progress in our understanding of the multiplicity function of Koopman operators but
the following cases certainly need new ideas:

Problem 6. Are the simplest unsolved cases {3, 4}, {3, 5}, {3, 7} realizable?

Let us now come back to classical questions of spectral theory:

Problem 7. Can the maximal spectral type be absolutely continuous but not Lebesgue?

Problem 8. Can the maximal spectral type σ = σT for UT be absolutely continuous with
respect to its convolution σ ∗ σ but not equivalent to it?

Recall that Kolmogorov's group property conjecture of the spectrum21 was disproved in
Katok and Stepin's article [36] in 1967, but see also Oseledets [52] and Stepin [65]. Notice
that for σ = σT there are three known possibilities:

• σ is equivalent to σ ∗ σ, as for Lebesgue spectrum or for Gaussian systems;
• σ and σ∗σ are mutually singular, as for a generic measure preserving transformation
T ;
• σ and σ ∗ σ have a common part but neither is absolutely continuous with respect
to the other, as for T × T for a generic T (as σT×T = σT + σ∗2T + σ∗3T + σ∗4T , and
typically all convolutions of the maximal spectral type are mutually singular [65]).

Note that Problem 8 might be related to Problem 7 as for each absolutely continuous
measure its certain self-convolution is equivalent to Lebesgue measure.

Returning to Proposition 5.1 (i), it is natural to ask the following:

Problem 9. Is it true that all spectral types in a spectral sequence of a measure preserving
transformation with continuous spectrum are dense?

Fr�aczek (unpublished) answered positively this question for some group extensions of
rotations.

The following problem is closely related to the famous Banach problem on the existence
of simple Lebesgue spectrum automorphism.

Problem 10. Does there exist an ergodic measure preserving transformation whose max-
imal spectral type is absolutely continuous but the spectrum is not Lebesgue with countable
multiplicity?

The di�erence from Problem 7 is that it is conceivable that the maximal spectral type
is Lebesgue while not all others are.

21Kolmogorov's group property for T ∈ Aut(X,B, µ) states that σT � σT ∗ σT .



ON SOME SPECTRAL PROBLEMS IN ERGODIC THEORY 13

An account of research around Banach problem was published in 2008 [45]: the main
achievement consisted in exhibiting constructions with all possible even multiplicities of
Lebesgue component in the spectrum. Not much has changed since then. Recall also that
Guenais [25] proved that there is a generalized Morse sequence for which the associated
dynamical system (subshift) has a Lebesgue component22 if and only if there exists a se-

quence of L1-ultra�at23 trigonometric polynomials Pnk(z) =
∑nk

j=−nk a
(k)
j zj (|z| = 1) with

a
(n)
j = ±1. Recently, on arXiv there appeared the paper [6] in which the authors prove Lit-

tlewood conjecture on the existence of �at (in the uniform sense) trigonometric polynomials:

there are c, C > 0 such that for each n ≥ 1 we can �nd a polynomial Qn(z) =
∑n

j=−n b
(n)
j zj

with b
(n)
j = ±1, such that c

√
n ≤ |Qn(z)| ≤ C

√
n for each |z| = 1. This remarkable progress

does not seem however to imply the existence of a sequence of L1-ultra�at trigonometric
polynomials with coe�cients ±1.

While there was no a substantial progress in Banach problem in the framework of Koop-
man operators, there were advances in a similar problem for Koopman �ows. Prikhodko in
[54] published a construction of a rank one �ow having Lebesgue spectrum. As rank one
implies simplicity of the spectrum, the result yields solution of Banach problem for Koop-
man �ows. To do this, he proved the following version of Littlewood conjecture: For all

[a, b] ⊂ R+ and n ≥ 1, one can �nd polynomials Pn(t) =
∑n−1

j=0 e
2πiw

(n)
j t for some real w

(n)
j ,

so that ‖Pn‖L1([a,b])/
√
n → 1. However, although the article has been published in 2013,

some details were rather cryptic and no further developments of methods/results/ideas from
[54] have appeared so far. 24 Of course, as we have noticed in Section 7.2, a solution of
Banach problem for �ows does not imply it for automorphisms (as all non-zero time auto-
morphisms have countable Lebesgue spectrum). It seems to be an important task for

the ergodic community to convincingly explain the status of Banach problem. 25

Lebesgue spectrum (plus a discrete component) is characteristic for algebraic systems
(a�ne transformations, nil-systems, horocycle �ows, or more generally, unipotent actions),
hence continuous singular part is absent. Whether one can expect some restrictions on spec-
tral types by looking at smooth systems in dimension 2, say, �ows on surfaces or billiards,
is de�nitely less clear. Typically, these dynamical systems have special representations as
special �ows over irrational rotations or (more generally) interval exchange transforma-
tions. Roof functions have singularities which correspond to singularities of the original
�ows on surfaces. For the simplest case - when the roof function is of bounded variation,

22All subshifts given by generalized Morse sequences have simple spectrum (and they have a discrete
component in the spectrum). Therefore, if ultra�at polynomials with coe�cients ±1 do exist, also there
are dynamical systems with Lebesgue component of multiplicity 1.

23That is, ‖Pnk‖L1/
√
nk → 1 when k →∞.

24This is to be compared with a solution of Rokhlin's problem for n = 2, after which Anosov's book [5]
appeared and explained all details.

25The status of [1] claiming solution of the original Banach problem, i.e. of the existence of an ergodic
in�nitemeasure-preserving automorphism whose Koopman operator has simple Lebesgue spectrum, posted
�rstly on arXiv in 2015 is even less clear.
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mixing is excluded as shown by Kochergin [39] and Katok [33]. In fact, when the base is
an irrational rotation, the �ows are spectrally disjoint with all mixing �ows as shown
by Fr�aczek-Lema«czyk [21]. The absence of mixing persists for �ows with symmetric log-
arithmic singularities over a typical IET as proved by Ulcigrai [67].26. On the other hand,
mixing is �typical� in the asymmetric case, e.g. Kochergin [41] and Khanin-Sinai [38]. Also,
mixing appears in case of so called power singularities [40]. While it was rather expected
(including the author of the article) that the spectrum in dimension 2 is singular, Fayad-
Forni-Kanigowski [18] showed that for some class of special �ows with power singularities
(and over irrational rotations) the spectrum is countable Lebesgue. One can of course spec-
ulate that �ows with such singularities are simply either horocycle �ows or their smooth
time changes in �di�erent coordinates� 27, but it follows from [29] and [32] that special
�ows with power singularities are not isomorphic to horocycles �ows. 28 Moreover, in the
recent paper of Kanigowski-Lema«czyk-Ulcigrai [30] it was shown that (for some class of)
�ows under a function with logarithmic singularities are disjoint with horocycle �ows. Full
understanding of spectral theory of smooth �ows on surfaces seems to be one

of main challenges in ergodic theory in forthcoming years.
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