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Abstract

We give a sufficient condition for the simplex of invariant measures for a hered-
itary system to be Poulsen. In particular, we show that this simplex is Poulsen
in case of positive entropy B-free systems. We also give an example of a positive
entropy hereditary system whose simplex of invariant measures is not Poulsen.

1 Introduction

Recall that given a homeomorphism T of a compact metric space X, the set P(T,X)
of probability Borel T -invariant measures on X is a Choquet simplex, with the set of
extremal points equal to Pe(T,X) – the subset of ergodic measures (see e.g. [24], [19] or
[10], page 95). Recall also that the set of invariant measures of a minimal flow may have
the affine-topological structure of an arbitrary metrizable Choquet simplex [7].1

Definition 1. We say that a simplex is Poulsen if it is non-trivial and the set of its
extreme points is dense.

Recall that every Choquet simplex is affinely homomorphic to a face of a Poulsen
simplex [16]. Moreover, up to affine isomorphism, there is only one Poulsen simplex [15].
A natural question arises:

Question 1. When is P(T,X) a Poulsen simplex?

We deal with Question 1 in case of hereditary subshifts, i.e., subshifts X ⊂ {0, 1}Z

with the additional property that for x, y ∈ {0, 1}Z such that x ∈ X and y ≤ x (coordi-
natewise), we have y ∈ X (recall that X ⊂ {0, 1}Z is called a subshift if it is closed and
invariant under the left translation S).2

∗Research supported by Narodowe Centrum Nauki grant UMO-2014/15/B/ST1/03736.
1Moreover, all such simplices are obtained for the class of zero entropy Toeplitz subshifts.
2In other words, the heredity of X means that this set is closed under coordinatewise multiplication

by arbitrary 0-1-sequences.
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Given a subshift X ⊂ {0, 1}Z, we define X̃ as the smallest hereditary subshift con-
taining X, i.e.

X̃ := {y ∈ {0, 1}Z : y ≤ x coordinatewise for some x ∈ X}.

Let M : X × {0, 1}Z → {0, 1}Z be given by

M(x, y)(n) = x(n) · y(n) for each n ∈ Z.

Clearly M(X × {0, 1}Z) = X̃ . Suppose now additionally that there exists ν ∈ Pe(S,X)
such that

(1) Pe(S, X̃) = {M∗(ρ) : ρ ∈ Pe(S × S,X × {0, 1}Z), ρ|X = ν}.

Our main result is the following:

Theorem 1. Suppose that (1) holds. Then P(S, X̃) is Poulsen provided that htop(S, X̃) >
0.

Notice also that in the zero entropy case, i.e., when htop(S, X̃) = 0, we have P(S, X̃) =

{δ(...,0,0,0,... )} (see [14]), in particular, P(S, X̃) is not Poulsen.
We apply Theorem 1 in the following two situations:

(i) for hereditary systems (S, X̃) with (S,X) being uniquely ergodic,

(ii) for B-free systems.

More precisely, in case (i), we have:

Corollary 1. Suppose that (S,X) is uniquely ergodic. Then P(S, X̃) is Poulsen, provided

that htop(S, X̃) > 0.

Proof. Given µ ∈ Pe(S, X̃), let x be a generic point for µ and let y ∈ X be such that
x ≤ y. Clearly, (y, x) ∈ X × {0, 1}Z is quasi-generic for some measure ρ with ρ|X = ν.
Moreover, M∗(y, x) = x and it follows immediately that M∗(ρ) = µ. It follows by
considering the ergodic decomposition of ρ that (1) holds and we can apply Theorem 1.

To state the result in case (ii), we need to recall first some basic notions. Let B ⊂ N.
The set FB := Z\

⋃
b∈B

bZ is called the B-free set. Let η := 1FB
∈ {0, 1}Z and consider

(S,Xη) with

Xη = {Skη : k ∈ Z} ⊂ {0, 1}Z.

Note that in this case X̃η ⊂ XB , where (S,XB) is the B-admissible subshift [2]: z ∈ XB

if and only if we have |{n ∈ Z : z(n) = 1} mod b| < b for each b ∈ B. There is a natural
S-invariant measure νη on Xη, called the Mirsky measure, for which η is quasi-generic [2].
This means that there exists an increasing sequence (Nk)k≥1 ⊂ N such that

1

Nk

∑

n≤Nk

f(Snη) =

∫
f dνη

for any continuous function f on Xη. Moreover, νη is of zero entropy and we have:
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Theorem 2 ([2], for B pairwise coprime with
∑

b∈B
1/b < ∞, see [12]). For any B ⊂ N,

Pe(S, X̃η) = {M∗(ρ) : ρ ∈ Pe(S × S,Xη × {0, 1}Z), ρ|Xη = νη}.

We also have:

Theorem 3 ([2]). For any B ⊂ N, htop(S, X̃η) = htop(S,XB) = d(FB).3

As an immediate consequence of Theorem 1, Theorem 2 and Theorem 3, we obtain:

Corollary 2. Let B ⊂ N be such that d(FB) > 0. Then P(S, X̃η) is Poulsen.

In many cases, the B-free system (S,Xη) itself is hereditary, i.e. X̃η = Xη . In
particular, using results from [2], we obtain the following:

Corollary 3. Let B ⊂ N be such that d(FB) > 0, with d(
⋃

b≥K bZ) → 0 when K → ∞.

Assume moreover that B contains an infinite pairwise coprime subset. Then (S,Xη) is

hereditary and the simplex P(S,Xη) is Poulsen.

In particular, P(S,Xη) is Poulsen in the following classical cases:

• when B is infinite, pairwise coprime and
∑

b∈B
1/b < ∞; for example, the result

holds for the square-free subshift given by B = {p2 : p is prime};

• when B = BA, where BA stands for the set of primitive abundant numbers [8].

Finally, we give an example of a hereditary system of positive entropy whose simplex
of invariant measures fails to be Poulsen.

Remark 1. For B pairwise coprime with
∑

b∈B
1/b < ∞ another proof of Corollary 2

has been presented in [11]. This proof is using a different method than ours.

Remark 2. Our original motivation for Theorem 1 was to study the simplex of invariant
measures for B-free systems, where the Mirsky measure νη that plays the role of ν in
condition (1) is of zero entropy. For this reason, we include a complete proof of Theorem 1
under the extra assumption that ν has zero entropy and then explain the necessary
changes to obtain the full version of our result.

Remark 3. While the name Poulsen simplex comes from [20], where a simplex with a
dense set of extreme points was constructed, this is historically not the first such example.
The most basic dynamical system with the simplex of invariant measures being Poulsen
is the full shift. For the 2-shift, the fact that any invariant measure can be approximated
by measures concentrated on periodic orbits (such measures are of course ergodic) follows
from [23] (see the proof of Theorem 3 therein, in particular, the comments on page 13).
For the full shift over any Polish space, the fact that ergodic measures are dense in the
space of all invariant measures was proved by Parthasarathy [18]. There is a further
discussion of this with a proof that measures concentrated on periodic orbits are dense
in the paper of Oxtoby [17]. Moreover, Sigmund [21, 22] gave a condition on (T,X) (so-
called periodic specification property) that implies that P(T,X) is Poulsen. His results
were applied in many situations, e.g., in [6, 13, 3, 4]. See [9] for more details.

3For A ⊂ Z, d(A) stands for the upper density of A ∩ N.
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2 Proof of Theorem 1 for ν of zero entropy

Lemma 1. Assume that (Xi,Bi, µi), i = 1, 2, are standard probability Borel spaces with

automorphisms Ti. Assume that A ⊂ X1 ×X2 is a Borel set and let ρ ∈ J(T1, T2).
4 Let

πX1
: X1×X2 → X1 stand for the projection onto the first coordinate. Then µ1(πX1

(A)) ≥
ρ(A).

Proof. Since πX1
is Borel measurable and A is Borel, the set πX1

(A) is µ1-measurable.
Moreover, A ⊂ πX1

(A)×X2 and the result follows.

Given a subshift Y ⊂ {0, 1}Z, let L(Y ) stand for the family of all blocks appearing
in a y ∈ Y .

Lemma 2. Given n ≥ 1, δ > 0, µ ∈ Pe(S, X̃), and An ⊂ {0, 1}n with µ(An) > 1− δ, let

Cn := {u ∈ L(X) : |u| = n and u ≥ w for some w ∈ An}.

Then ν(Cn) > 1− δ, where ν is as in (1).

Proof. Let ρ ∈ P(S × S,X × {0, 1}Z) be such that M∗(ρ) = µ and ρ|X = ν. It is not
hard to see Cn ⊃ πX(M−1(An)). The result follows from Lemma 1.

Fix ν1, ν2 ∈ Pe(S, X̃). All we need to show is that the measure 1
2(ν1 + ν2) can be

approximated by ergodic measures.5 By the definition of weak topology on measures, it
follows that, given k0 ≥ 1, ε0 > 0, we need to find η ∈ X̃ such that:

(2) η is generic for an ergodic measure,

(3)
the empirical distribution of k0-blocks on η is, up to ε0 > 0, equal to
1
2 (ν1|{0,1}k0 + ν2|{0,1}k0 ).

Fix k0 ≥ 1 and ε0 > 0. Fix also ε > 0 much smaller than ε0. Using the ergodic
theorem for ν1 and ν2 respectively, we can find n0 ≥ k0, Fi ⊂ {0, 1}n0 , νi(Fi) > 1− ε/2,
i = 1, 2 such that

(4) the empirical k0-distribution in any w ∈ Fi is ε-close to νi|{0,1}k0 .

Let

(5) Gn0
:= {u ∈ L(Xη) : |u| = n0 and u ≥ wi for some wi ∈ Fi, i = 1, 2}.

Note that, for i = 1, 2, we have

u ∈ L(X) and u ≥ wi for some wi ∈ Fi ⇐⇒ u ∈ πX(M−1(Fi)),

4ρ ∈ J(T1, T2) is a joining of T1 and T2, i.e. ρ ∈ P(T1 × T2, X1 ×X2) and has projections µ1 and µ2

respectively.
5It is enough to show that the closure of the ergodic measures is a convex set and for this it suffices

to verify the midpoint condition for ergodic measures.
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i.e.

(6) Gn0
= πX(M−1(F1)) ∩ πX(M−1(F2)).

Therefore, applying Lemma 2 to n = n0 and An = Fi, i = 1, 2, we obtain

ν(Gn0
) > 1− ε.

Based on (5), we define two maps Ri : Gn0
→ {0, 1}n0 , so that

(7) Ri(u) ∈ Fi, i = 1, 2.

Consider now the Markov chain with the states {1, . . . , n0, n0+1} and the transition
probabilities, i.e. the stochastic matrix P ′ = (p′ij), given by:

p′i,i+1 = 1 for i = 1, . . . , n0 − 1, p′n0,n0+1 = 1/2, p′n0,1 = 1/2, p′n0+1,1 = 1.

Let p′ = (p′1, . . . , p
′
n0
, p′n0+1) be the probabilistic vector in which

p′i =
1

n0 + 1/2
for i = 1, . . . , n0 and p′n0+1 =

1

2(n0 + 1/2)
.

We have p′ · P ′ = p′ whence the formula

κ′(a0, a1, . . . , am) = p′a0p
′
a0,a1 . . . p

′
am−1,am

for ak ∈ {1, . . . , n0, n0+1} yields an S-invariant (Markov) measure κ′ on W ′ := {1, . . . , n0, n0+
1}Z. It is not hard to see that (P ′)n0+1 has all entries positive, that is, P ′ is aperiodic,
and therefore the Markov measure κ′ yields a mixing Markov shift.

Let ην ∈ {0, 1}Z be a generic point for ν.

Lemma 3. If z′ ∈ {0, 1}Z is a generic point for κ′, then (ην , z
′) is a generic point for

the product measure ν ⊗ κ′ with the latter measure being ergodic.

Proof. Each mixing Markov subshift is a K-system, so the result follows directly from
disjointness of zero entropy systems with K-systems, see, e.g., [10].

Notice that z′ above consists of consecutive blocks

(1, 2, . . . , n0) or (1, 2, . . . , n0, n0 + 1).

Moreover, by Lemma 3,

(8) (1− ε)κ′([1]) ≤ ν ⊗ κ′(Gn0
× [1]) = lim

N→∞

1

N

∑

s≤N

1Gn0
×[1]((S × S)s(ην , z

′)).

5



Remark 4. The natural representation of z′ as a concatenation of blocks of length n0

and n0+1 induces the corresponding representation of ην as concatenation of block of the
same lengths. An interpretation of (8) is that when we look at the concatenation of ην as
n0- and (n0+1)-blocks, then for “most” of the blocks, we see that the either the n0-block
belongs to Gn0

or the beginning n0-block in case of length n0 + 1, belongs to Gn0
. Note

also that we cannot simplify this argument by representing ην as concatenation only of
n0-blocks. Indeed, we do not know whether (Sn0 ,X, ν) is ergodic, hence we cannot be
sure that for most of the blocks in such a concatenation, we are in Gn0

. For example, if we
consider the square-free case, (Sm,Xη , νη) is not ergodic for any m ≥ 2 as the spectrum

contains e2πi/p
2

, p ∈ P, hence the roots of all prime degrees.

Remembering that due to the natural representation of z as concatenation of n0- and
(n0 + 1)-blocks, the sequence ην is represented as a concatenation of blocks of length n0

or n0 + 1, let us now define a new sequence η′ = η′(ην , z) ∈ {∗, 0}Z in the following way:

(a) if in the above concatenation the block in ην is of length n0 and belongs to Gn0
, we

replace it by the all ∗ n0-block;

(b) if in the above concatenation the block in ην is of length n0 + 1 and the starting
n0-block is in Gn0

, we replace it by the all ∗ n0-block adding 0 at the end to obtain
a block of length n0 + 1;

(c) if in the above concatenation the block in ην is of length n0 and does not belong
to Gn0

or it is of length n0 + 1 but the starting n0-block neither belongs to Gn0
, we

replace it by the all 0 n0- or (n0 + 1)-block.

Lemma 4. The sequence η′ ∈ {∗, 0}Z is generic for an ergodic measure.

Proof. We simply show that η′ is obtained from (ην , z) by a (finite) code.6 Indeed, if we
want to determine η′(i) (i.e. ∗ or 0), we first look at z(i) and seek the first symbol 1 on
the left (we do not check more than n0+1 positions); we determined a position j in this
way, and we check now whether ην(j, j + n0 − 1) does or does not belong to Gn0

. Now
the η′(i) is determined by (a)-(c).

Consider now the following Markov shift: the set of states consists of

{1, . . . , n0, n0 + 1} and its disjoint copy {1, . . . , n0, n0 + 1}.

Let
p = (p1, . . . , pn0

, pn0+1, p1, . . . , pn0
, pn0+1)

6Formally, we should define a block map. This can be done for example as follows. Consider all
blocks (over the double alphabet) of length 4n0 + 1 that appear in (ην , z

′). Due to the special form of
z′, there will be at least 3 symbols 1 on the second coordinates of this block. Look for the first 1 on the
left of the middle of the block. This gives a certain position j. Look at the block on ην of length n0 (or
n0+1 if , as the symbol(!), n0+1 appears (on the second coordinate) on the right to the middle position
before 1 reappears), read whether the corresponding block on ην belongs or does not to Gn0

and code
the whole 4n0 + 1-block (over the double alphabet) by ∗ or 0, respectively.
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be the probabilistic vector for which pi = pi = 1
2n0+1 for i = 1, . . . , n0 and pn0+1 =

pn0+1 =
1

2(2n0+1) . The matrix P of transition probabilities is given by the following:

pi,i+1 = pi,i+1 = 1 for i = 1, . . . , n0 − 1,

pn0,n0+1 = pn0,n0+1 = 1/2,

pn0,1 = pn0,1
= pn0,1

= pn0,1 = 1/4

and
pn0+1,1 = pn0+1,1 = pn0+1,1 = pn0+1,1 = 1/2.

We have p · P = p whence the formula

κ(a0, a1, . . . , am) = pa0pa0,a1 . . . pam−1,am

for ak ∈ {i, i : i = 1, 2, . . . , n0} yields an S-invariant (Markov) measure κ on W :=
{1, . . . , n0+1, 1, . . . , n0 + 1}Z. It is not hard to see that P 2(n0+1) has all entries positive,
that is, P is aperiodic, and therefore the Markov measure κ yields a mixing Markov shift.

Fix z a generic point for κ. Then z is a concatenation of 4 types of blocks (of length
either n0 or n0 + 1): (1, . . . , n0), (1, . . . , n0, n0 + 1), (1, . . . , n0) and (1, . . . , n0, n0 + 1).
Moreover, on a sufficiently long initial part of z, the non-barred-blocks and the barred-
blocks are equally probable (as κ(1) = κ(1)). Similarly, to Lemma 4, we obtain the
following.

Lemma 5. If z ∈ {0, 1}Z is a generic point for κ, then (ην , z) is a generic point for the

product measure ν ⊗ κ with the latter measure being ergodic.

Moreover, the map which to i and i associates i, for i = 1, . . . , n0, n0 + 1 yields a
continuous factor map Λ between (S,W, κ) and (S,W ′, κ′); in particular, if z is generic
for κ then z′ := Λ(z) is generic for κ′.

We now fix z a generic point for κ and repeat the construction of η′ ∈ {0, 1}Z for z′.
Then, we transform η′ into η by replacing the n0-∗-block w by either R1(w) or R2(w)
(cf. (7)) depending on the fact whether on z we considered the non-barred- or the barred-
block. Up to density ǫ1 > 0, we have now replaced half of the ∗-blocks by blocks from F1

and the second half by blocks from F2. Clearly, η ≤ ην . Moreover, by (4), the empirical
distribution of k0-blocks on η is ε-close to the distribution of k0-blocks for the measure
1
2(ν1 + ν2). Finally, following the proof of Lemma 4, we obtain that η is generic for an
ergodic measure (it is obtained by a finite code from (ην , z)). We have proved (2) and (3),
so Theorem 1 follows.

3 Sketch of the proof of Theorem 1 for general ν

We explain now how to modify the proof from Section 2 after dropping the additional
assumption that ν has zero entropy. Instead of the Markov shift (S,W, κ), we consider an
arbitrary ergodic aperiodic automorphism (T,W, κ) disjoint from (S,X, ν) (the existence
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of such an automorphism follows from [5], in fact, a generic automorphism is disjoint
from (S,X, ν)). By the Alpern’s Lemma [1], W can be decomposed into two towers, say,
W0 and W1, of height n0 and n0+1, respectively. We split each of them into two further
towers of equal measure and of the same height as the original tower: W0 = WL

0 ∪WR
0 ,

W1 = WL
1 ∪W

R
1 . By assigning symbols 1, . . . , n0 and 1, . . . , n0+1 to the consecutive levels

of WL
0 and WL

1 , and symbols 1, . . . , n0 and 1, . . . , n0 + 1 to the consecutive levels of WL
0

and WL
1 , we obtain a coding of points from W by two-sided sequences over the alphabet

{1, . . . , n0, n0+1, 1, . . . , n0, n0 + 1}. The remaining part of the proof of Theorem 1 stays
the same as in Section 2.

4 Hereditary system of positive entropy whose simplex of

invariant measures is not Poulsen

In this section we will show that there are hereditary systems of positive entropy whose
simplex of invariant measures is not Poulsen. For this, we recall an example, which was
used in [12] to show that there are hereditary systems which are not intrinsically ergodic.

Given a block C ∈ {0, 1}n, let xC ∈ {0, 1}Z be the infinite concatenation of C and
let XC ⊂ {0, 1}Z stand for the orbit closure of xC (equal to its orbit). Let X̃C be the
smallest hereditary subshift containing XC . Finally, let νC be the periodic measure for
which xC is a generic point. Notice that if supp C 6= ∅ then νC 6= δ(...,0,0,0,... ).

Let A := 101001000, B := 101000100 and consider X := XA∪XB . Then the smallest
hereditary subshift X̃ containing X equals X̃A ∪ X̃B . Since both (S,XA) and (S,XB)
are uniquely ergodic (with zero entropy), it follows by Corollary 1 that both P(S, X̃A)
and P(S, X̃B) are Poulsen simplices (they are both non-trivial as νA, νB 6= δ(...,0,0,0,... )).

Suppose that P(S, X̃) is also Poulsen and take its arbitrary element ν. Since ν can
be approximated by ergodic measures and Pe(S, X̃) = Pe(S, X̃A)∪Pe(S, X̃B), it follows
that

(9) ν ∈ P(S, X̃A) ∪ P(S, X̃B).

Let now ν := 1
2(νA + νB). Since νA(XA) = νB(XB) = 1 and XA ∩ XB = ∅, it follows

that ν(X̃A) = ν(X̃B) = 1/2. This contradicts (9) and we conclude that P(S, X̃) cannot
be Poulsen.

Finally, notice that it is easy to modify the above example, so that (S, X̃) becomes
intrinsically ergodic (i.e. it has exactly one measure of maximal entropy). E.g., we can
take A′ := 111001000 instead of A and consider X ′ := XA′ ∪ XB . Then M∗(νA′ ⊗
B(1/2, 1/2)) (where B(1/2, 1/2) stands for the Bernoulli measure (1/2, 1/2) on {0, 1}Z)

is the unique measure of maximal entropy for (S, X̃ ′), see [12] for more details.
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