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Abstract
Let f : T → R be of class C1+δ for some δ > 0 and let c ∈ Z. We show

that for a generic α ∈ R, the extension Tc,f : T2 → T2 of the irrational
rotation Tx = x+α, given by Tc,f (x, u) = (x+α, u+ cx+ f(x)) (mod 1)
satisfies Sarnak’s conjecture.
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1 Introduction
Recall that the Möbius function µ : N→ {−1, 0, 1} is a multiplicative function1

defined as µ(p1 · . . . · pk) = (−1)k for distinct prime numbers pj , µ(1) = 1
and 0 otherwise. Its importance is reflected in the fact that the prime number
theorem2 is equivalent to the condition

∑
k≤x µ(k) = o(x) and the Riemann

hypothesis is equivalent to the condition
∑
k≤x µ(k) = Oε(x

1
2 +ε) for any ε > 0

∗Research supported by Narodowe Centrum Nauki grant DEC-2011/03/B/ST1/00407.
1Recall that ν : N→ Z is said to be multiplicative if ν(mn) = ν(m)ν(n) for n,m relatively

prime.
2Recall that the prime number theorem states that π(x) = x

ln x
+ o( x

ln x
), where π(x) is

the number of primes less than x.
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(when x → ∞). The Möbius function appears to behave rather randomly and
this statement was formalized in the following conjecture of Sarnak:

Conjecture 1 ([26]). Let X be a compact metric space and let T : X → X be
a homeomorphism of zero topological entropy. Let x ∈ X, g ∈ C(X). Then∑

n≤N

g(Tnx)µ(n) = o(N). (1)

Whenever condition (1) is true for some T for each x ∈ X and each g ∈ C(X),
we say that Sarnak’s conjecture holds for T or that T is disjoint from the Möbius
function.3

Sarnak’s conjecture is known to hold in several situations, including rota-
tions [9], nilsystems [15], horocycle flows [7], large class of rank one maps [6, 2]
and certain subclasses of dynamical systems generated by generalized Morse
sequences [19], including the classical Thue-Morse system: [1, 5, 8, 14, 16, 24]
and the dynamical system generated by the Rudin-Shapiro sequence [25].

One of the most fruitful tools used for proving disjointness with the Möbius
function turns out to be the following orthogonality criterion of Katai-Bourgain-
Sarnak-Ziegler (we will refer to it as KBSZ criterion).

Theorem 1.0.1 ([17, 7]). Let F : N→ C be a bounded sequence. Suppose that∑
n≤N

F (rn)F (sn) = o(N) (2)

for any pair of sufficiently large primes r 6= s. Then∑
n≤N

F (n)ν(n) = o(N), (3)

for any multiplicative function ν with |ν| ≤ 1.

In order to use this theorem for proving Conjecture 1 for a given homeomor-
phism T : X → X, one takes

F (n) := g(Tnx) for n ∈ Z, x ∈ X and g ∈ C(X). (4)

Notice that the expression (2) (for F (n) given by (4)) takes the form

1

N

∑
n≤N

g ⊗ g ((T r × T s)n(x, x)) =

∫
X2

g ⊗ g d

 1

N

∑
n≤N

δ(T r×T s)n(x,x)

 ,

where x ∈ X. It follows that we are interested in the limit measures ρ =
limk→∞

1
Nk

∑
n≤Nk δ(T r×T s)n(x,x) which are clearly T r × T s-invariant. There-

fore, to prove disjointness of T with the Möbius function, it suffices to show that
the following holds for T , for r, s relatively prime:

3Notice that it suffices to show that (1) holds for a linearly dense set of continuous functions
to obtain disjointness with the Möbius function.
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(a) The ergodic components of T r × T s are pairwise disjoint closed sets filling
up the whole space.4

(b) The ergodic components are uniquely ergodic (this implies that all points
are generic for T r × T s for relevant invariant measures).

(c) There exists a linearly dense set5 of continuous functions F ⊂ C(X) such
that for each g ∈ F , g ◦ T 6= g, we have

∫
X2 g ⊗ g dρ = 0 for any T r × T s-

ergodic measure ρ, whenever r, s are sufficiently large.

We will use the strategy (a), (b), (c) to study disjointness with the Möbius
function in the following setting. Denote by T = R/Z = [0, 1) the additive circle
and consider

T2 3 (x, y) 7→ Tc,f (x, y) := (x+ α, y + cx+ f(x)) ∈ T2. (5)

where c ∈ Z and cx + f(x) is a lift of a continuous circle map, i.e. f : R → R
is continuous, periodic of period 1, and c is the degree of the map in question.
In other words, we consider continuous case of the classical Anzai skew product
extensions of a rotation on the circle [3].

Liu and Sarnak in their recent paper [23] proved the following.

Theorem 1.0.2 ([23]). Assume that in (5), f : R → R is an analytic periodic
function of period 1. Assume additionally that |f̂(m)| � e−τ |m| for some τ > 0.
Then Tc,f satisfies Conjecture 1.

The technical condition on the Fourier transform, namely |f̂(m)| � e−τ |m|,
seems to be necessary for the methods of [23] to work. On the other hand,
there is no condition on α. Moreover, for some αs, the result is obtained using
Theorem 1.0.1. Under some additional assumptions, also a quantitative version
(i.e. concerning the speed of convergence to zero in (1)) of Theorem 1.0.2 is
proved in [23]. This is achieved by treating the problem in a more direct way
than applying Theorem 1.0.1.

A natural question arises whether the strong assumptions on f in Theo-
rem 1.0.2 can be relaxed. We do so in the main result of the paper (Theo-
rem 1.0.3 below) to obtain Sarnak’s conjecture for each sufficiently smooth f at
the cost of reducing “for each α” in Theorem 1.0.2 to “for a generic α”. Hence,
our result can be viewed as a complementary to Liu-Sarnak’s result.

Theorem 1.0.3. Let f : R → R be a function of class C1+δ for some δ > 0,
periodic of period 1. Let c ∈ Z. Then for a generic set6 of α, the automorphism
Tc,f of T2 given by (5) satisfies Conjecture 1.

4The proof of the main result of the paper (Theorem 1.0.3 below) says also that the ergodic
decomposition will be the same as the decomposition into minimal components which seems to
be a fact of independent interest. In case of continuous compact group extensions the existence
of the decomposition into minimal components is guaranteed by a result of Auslander [4] and
Ellis [10] on distal systems.

5Notice that we do not aim to prove (2) (for F (n) given by (4)) for each g ∈ C(X) (and
each x ∈ X) – as a matter of fact (2) (for F (n) given by (4)) is not satisfied for some
continuous functions already for an irrational rotation; we provide examples in Appendix, see
Proposition 3.3.1. Our aim is to prove (2) for a linearly dense set of g ∈ C(X) (and each
x ∈ X), as it implies that (3) holds for each g ∈ C(X).

6The question of whether an analogous result to Theorem 1.0.3 is true for f which is only
assumed to be continuous, remains open. We recall that under the continuity assumptions on
f , even, it is open whether f is not a quasi-coboundary for a generic set of α.
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Before we give the proof of Theorem 1.0.3, we will first show that Con-
jecture 1 holds in the following two natural cases: the case of an arbitrary
continuous extension of a rational rotation (see Proposition 2.3.3 below)7 and
to get an independent proof of the purely affine case (i.e. when f = 0) for each
α, first proved in a larger context in [23].

Theorem 1.0.4 ([23]). For any α, γ ∈ R and for any c ∈ Z, the automorphism
(x, y) 7→ (x+ α, cx+ y + γ) satisfies Conjecture 1.

Let us now describe how we check conditions (a), (b) and (c). Let α 6∈ Q and
let Tx = x+α. In either setting (purely affine or with a non-trivial perturbation)
the base rotation T r × T s is the same. Its ergodic components are obtained by
taking the partition of T2 into closed invariant sets Ac1 = Ar,sc1 := {(x, y+ c1) ∈
T2 : sx = ry}, c1 ∈ [0, 1

r ). In fact, these sets are at the same time the minimal
components of T r × T s and they are uniquely ergodic. Thus, we are interested
in the action of (Tc,f )r × (Tc,f )s on the sets Ic1 = Ir,sc1 := Ac1 ×T2. It turns out
that this is equivalent to dealing with extensions of T by the following T2-valued
cocycles:

ψc1(x) = (ψ(r)(rx), ψ(s)(sx+ c1)),

where ψ(x) = f(x) + cx and c1 ∈ [0, 1
r ). The cocycle ψc1 is ergodic if and only

if
e2πi(Aψ(r)(rx)+Bψ(s)(sx+c1)) is not a multiplicative coboundary8

for A,B ∈ Z, A2+B2 6= 0 (see Remark 3.2.2). This is the situation we aim for in
course of the proof of Theorem 1.0.3. For a generic α we indeed obtain ergodicity
of ψc1 for all c1 – for the details see Corollary 2.5.8. Statement (b) follows from
the fact that we deal with compact group extensions of rotations. Finally, we
show that also (c) holds: given a non-trivial character χ ∈ T̂2, we prove that for
r and s relatively prime and large enough, the corresponding integrals of χ⊗ χ
are zero. In case of Theorem 1.0.4, the problem is in a sense more delicate – some
of the sets Ic1 are too large to be the ergodic components and they need to be
partitioned further into smaller subsets. This refined partition will be however
satisfying (a). Condition (b) is proved in the same way as in Theorem 1.0.3. To
prove that also (c) holds, we take again F = T̂2.

For reader’s convenience, we added Appendix collecting some necessary facts
concerning cocycles.

2 Results

2.1 On the strategy of the proofs
Our approach to proving disjointness with the Möbius function was described
in (a), (b) and (c). We will now make some more comments on this method.
Recall that in view of Theorem 1.0.1, for a linearly dense set F of g ∈ C(X)

7Liu and Sarnak [23] prove such a result for f smooth.
8We identify T with the multiplicative circle S1 = {z ∈ C : |z| = 1}. We will use both,

the additive and the multiplicative notation, whichever is more convenient for us at the mo-
ment. In particular, e2πix is to be understood multiplicatively and x in the exponent is to be
understood additively.
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and each x ∈ X, what we want to prove is

1

N

∑
n≤N

g(T rnx)g(T snx)→ 0 as N →∞ (6)

for distinct, sufficiently large prime numbers r, s. When this is realized through
(a), (b) and (c), we prove more. Namely, for each g ∈ F and for sufficiently
large primes r 6= s, the following holds for all x, y ∈ X:

1

N

∑
n≤N

g(T rnx)g(T sny)→ 0 as N →∞ (7)

(the condition on r, s is independent of the choice of x and y).

Remark 2.1.1.

(i) In view of the above discussion, in order to prove that Sarnak conjecture
holds for T , it suffices to check conditions (a), (b) and (c) for T k for some
k ≥ 1. Indeed, by applying (7) to T k, we obtain∑

n≤N

g(T r(kn+j)x)g(T s(kn+j)x) =

=
∑
n≤N

g((T k)rnT rjx)g((T k)snT sjx) = o(N) for 0 ≤ j < k,

which implies that (6) holds for T .

(ii) Notice that whenever the conditions (a), (b) and (c) are satisfied for some
homeomorphism T then they are also satisfied for T−1. However,

(iii) It is unclear how to prove directly that if T k for some k ∈ Z \ {0} is
disjoint from µ then also T is disjoint from µ, or even to show that if the
assumptions of the KBSZ criterion are satisfied for T k for some k ∈ Z\{0}
then they are satisfied for T .

Let now Tϕ : X × T → X × T be a continuous circle group extension of a
homeomorphism T : X → X by ϕ : X → T.

Remark 2.1.2. Suppose that Tϕ satisfies Sarnak’s conjecture. Then for any
k ≥ 1 also Tkϕ satisfies Sarnak’s conjecture as it is a topological factor of Tϕ.

In the case of affine extensions of rotations, Remark 2.1.1 (i) and Remark 2.1.2
are complementary in the following sense. Let T (α) stand for the rotation
T (α)x = x + α and let ψ(x) = x. Then (T

(αk )

ψ )k = T
(α)

kψ+ k−1
2 α

and, by Re-
mark 2.1.1 (i), the following implication holds:

(a), (b) and (c) hold for T (α)

kψ+ k−1
2 α
⇒ T

(αk )

ψ satisfies Conjecture 1.
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2.2 General remarks
From now on, our assumption will be that

r, s ≥ 3 are odd and relatively prime.

Let α 6∈ Q and denote by T : T → T the irrational rotation Tx = x + α. For
c1 ∈ [0, 1

r ) let

Ic1 = Ir,sc1 := Ac1 × T2, where Ac1 = Ar,sc1 := {(x, y + c1) ∈ T2 : sx = ry}.9 (8)

Lemma 2.2.1. The decomposition of T2 into minimal components of T r × T s
consists of sets Ac1 , c1 ∈ [0, 1

r ). It is the same as the ergodic decomposition.
Moreover, (T r × T s)|Ac1 is topologically isomorphic to T . The isomorphism is
given by

W = Wc1 : Ac1 → T, W (x, y + c1) = ax+ by, (9)

where a, b ∈ Z are such that ar + bs = 1.

Proof. Notice first that the sets Ac1 are closed and invariant under T r×T s and
∪c1∈[0, 1r )Ac1 = T2. Fix c1 ∈ [0, 1

r ), let a, b ∈ Z be such that ar + bs = 1 and let
W be given by (9). Then W ◦ (T r × T s)|Ac1 = T ◦W . For (x, y+ c1) ∈ Ac1 , we
have r(ax + by) = x and s(ax + by) = y. Therefore, W is bijective. Moreover,
W preserves the measure, as rotations are uniquely ergodic.

For a measurable function ψ : T→ T, let Ψ: T2 → T2 be given by

Ψ(x, y) = (ψ(r)(x), ψ(s)(y)). (10)

Then clearly the automorphism (Tψ)r × (Tψ)s is topologically isomorphic to
(T r × T s)Ψ.

Lemma 2.2.2. For c1 ∈ [0, 1
r ) the sets Ic1 are invariant under (T r × T s)Ψ.

Moreover, (T r × T s)Ψ|Ic1 is topologically isomorphic to Tψc1 , where ψc1(x) =

(ψ(r)(rx), ψ(s)(sx+ c1)). The isomorphism is given by

V = Vc1 : Ic1 → T3, V (x, y + c1, u, v) = (ax+ by, u, v), (11)

with a, b ∈ Z such that ar + bs = 1.

Proof. Fix c1 ∈ [0, 1
r ), let a, b ∈ Z be such that ar + bs = 1 and let V be given

by (11). Then

V ◦ (T r × T s)Ψ(x, y + c1, u, v)

= V (x+ rα, y + sα+ c1, u+ ψ(r)(x), v + ψ(s)(y + c1))

= (ax+ by + α, u+ ψ(r)(x), v + ψ(s)(y + c1))

and

Tψc1 ◦V (x, y + c1, u, v) = Tψc1 (ax+ by, u, v)

= (ax+ by + α, u+ ψ(r)(r(ax+ by)), v + ψ(s)(s(ax+ by) + c1)).

Moreover, r(ax+ by) = x and s(ax+ by) = y, which completes the proof.
9Whenever r, s are fixed, we will write Ic1 and Ac1 . For r, s varying, we will use Ir,sc1 and

Ar,sc1 .
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Remark 2.2.3. The inverse of Vc1 : Ic1 → T3 is given by

V −1
c1 (t, u, v) = (rt, st+ c1, u, v).

Moreover, art+ bst = t for a, b ∈ Z such that ar + bs = 1.

2.3 Continuous extensions of rational rotations
We will now show that all continuous extensions of rational rotations satisfy
Sarnak’s conjecture.

Lemma 2.3.1. Assume that S(x, y) = (x, f(x) +y) with f : T→ T continuous.
Then for each (xi, yi) ∈ T2, i = 1, 2, χ ∈ T̂2 we have

1

N

∑
n≤N

χ(Srn(x1, y1))χ(Ssn(x2, y2))→ 0 as N →∞ (12)

for sufficiently large prime numbers r 6= s, whenever χ 6= η ⊗ 1T (η ∈ T̂) and
f(x1) /∈ Q or f(x2) /∈ Q.

Proof. Note that for each m ≥ 1,

Sm(x, y) = (x,mf(x) + y).

Let χ(x, y) = e2πi(ax+by) for some a, b ∈ Z, with b 6= 0 by assumption. Hence

1

N

∑
n≤N

χ(Srn(x1, y1))χ(Ssn(x2, y2))

= e2πi(a(x1−x2)+b(y1−y2)) 1

N

∑
n≤N

e2πib(rf(x1)−sf(x2))n.

If exactly one of the numbers f(x1) and f(x2) is irrational then the result follows
from Weyl’s criterion. If both f(x1) and f(x2) are irrational then there is at
most one pair (r, s) of relatively prime numbers such that rf(x1)− sf(x2) ∈ Q
and we can again make use of Weyl’s criterion, this time for r, s sufficiently
large.

Remark 2.3.2. Notice that the above proof says more. Namely, the conver-
gence in (12) does not depend on y1, y2.

Proposition 2.3.3. Each continuous extension R(x, y) = (x+ p
q , f(x) + y) of

a rational rotation x 7→ x+ p/q satisfies Sarnak’s conjecture.

Proof. We need to check (1) only for F = χ ∈ T̂2. First, note that

Rq(x, y) = (x, fq(x) + y), (13)

where fq(x) = f(x) + f(x+ 1
q ) + . . .+ f(x+ q−1

q ). Given n ≥ 1, we take n′ such

that n = qn′ + j with 0 ≤ j < q. Then, for each χ ∈ T̂2, we have

χ(Rrn(x, y))χ(Rsn(x, y)) = χ(Rqrn
′
(Rrj(x, y)))χ(Rqsn′(Rsj(x, y))),

7



where the first coordinates of the points Rrj(x, y), Rrj(x, y) belong to the finite
set {x, x+ 1

q , . . . , x+ q−1
q } (hence do not depend on r, s). Hence, to show

1

N

∑
n≤N

χ(Rrn(x, y))χ(Rsn(x, y))→ 0

for sufficiently large prime numbers r 6= s, we need to show that

1

N

∑
n′≤N/q

χ(Rqrn
′
(x1, ∗))χ(Rqsn′(x2, ∗))→ 0,

for x1, x2 ∈ {x, x + 1/q, . . . , x + q−1
q }. This is the case by Lemma 2.3.1, Re-

mark 2.3.2 and (13), provided that χ 6= η ⊗ 1T and fq(x1) 6∈ Q or fq(x2) /∈ Q.
If χ = η⊗1T, (1) follows from Sarnak’s conjecture for finite systems. Suppose

now that fq(x + jrp/q), fq(x + jsp/q) ∈ Q. This is possible only if fq(x) ∈ Q
since fq(·) is constant on the orbit of x under the rotation x 7→ x+ p

q . Moreover,
if n = qn′ + j with 0 ≤ j < q then

f (n)(x) :=

n−1∑
i=0

f(x+ip/q) = f (j)(x)+f (qn′)(x+jp/q) = f (j)(x)+n′fq(x). (14)

It follows that
1

N

∑
n≤N

χ(Rn(x, y))µ(n)

=

q−1∑
j=0

1

N

∑
n′≤N/q

χ(x+ (qn′ + j)p/q, f (j)(x) + n′fq(x) + y)µ(qn′ + j)

=

q−1∑
j=0

1

N

∑
n′≤N/q

χ(x+ jp/q, f (j)(x) + n′fq(x) + y))µ(qn′ + j)

=

q−1∑
j=0

e2πi(a(x+jp/q)+bf(j)(x)) 1

N

∑
n′≤N/q

e2πibfq(x)n′µ(qn′ + j)

=

q−1∑
j=0

e2πi(a(x+jp/q)+bf(j)(x)) 1

N

∑
n′≤N/q

e2πib cdn
′
µ(qn′ + j),

where χ(x, y) = e2πi(ax+by), fq(x) = c
d with a, b, c, d ∈ Z, b 6= 0 and d > 0. By

seting n′ = dn′′ + k with 0 ≤ k < d, we obtain qn′ + j = qdn′′ + (qk + j) and
rewriting the sum to the form

q−1∑
j=0

d−1∑
k=0

1

N

∑
n′′≤N/(dq)

Aj,kµ(qdn′′ + kq + j),

the result again follows from Sarnak’s conjecture for finite systems.

2.4 Affine case
Recall that we are interested in the disjointness with the Möbius function of
(x, y) 7→ (x+ α, cx+ y + γ), where c ∈ Z and α, γ ∈ R.
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Remark 2.4.1. If c 6= 0, it follows immediately from Remark 2.1.2 that instead
of (x, y) 7→ (x + α, y + cx + γ), we can consider (x, y) 7→ (x + α, y + x + γ

c ).
By Proposition 2.3.3, this shows that it suffices to consider only the cases c = 1
and c = 0, with α 6∈ Q.

2.4.1 Case c = 1, α 6∈ Q

We will now deal with (x, y) 7→ (x+α, y+x+γ), i.e. with Tψ, where ψ(x) = x+γ.
Let Ψ be given by (10), i.e.

Ψ(x, y) =

(
rx+

(r − 1)r

2
α+ rγ, sy +

(s− 1)s

2
α+ sγ

)
.

Recall that given r, s ∈ N (odd and relatively prime) and c1 ∈ [0, 1
r ), we have

Ic1 = Ir,sc1 =
{

(x, y + c1, u, v) ∈ T4 : sx = ry
}
.

For c1 such that rs((s− r)γ − rc1) ∈ αQ + Q and c2 ∈ [0, 1
r2 ), define

Jc1,c2 = Jr,sc1,c2 :=
{

(x, y + c1, u, v + c2) ∈ T4 : sx = ry and

l0s
2u = l0r

2v +

(
l0rs

r − s
2
− k0

)
(ax+ by)

}
,

where l0 = lr,s,c10 is the smallest positive integer such that

l0rs((s− r)γ − rc1) ∈ αZ + Z (15)

and k0 = kr,s,c10 ∈ Z is such that

l0rs((s− r)γ − rc1)− k0α ∈ Z. (16)

Lemma 2.4.2. For c1 ∈ [0, 1
r ) the homeomorphism Tψc1 : T3 → T3, where

ψc1(x) = (ψ(r)(rx), ψ(s)(sx+c1)), is topologically isomorphic to Tϕc1 : T3 → T3,
where ϕc1 : T → T2 is given by ϕc1(x) = (r2x + rγ, s2x + sc1 + sγ). The
isomorphism is given by

U = Uc1 : T3 → T3, U(x, u, v) =

(
x, u− r(r − 1)

2
x, v − s(s− 1)

2
x

)
. (17)

Proof. We have

ψc1(x) =
(
ψ(r)(rx), ψ(s)(sx+ c1)

)
=

(
r2x+

r(r − 1)

2
α+ rγ, s(sx+ c1) +

s(s− 1)

2
α+ sγ

)
.

Since for θ(x) =
(
− r(r−1)

2 x,− s(s−1)
2 x

)
we have(

r(r − 1)

2
α,
s(s− 1)

2
α

)
= θ(x)− θ(x+ α),

it follows that U given by (17) is indeed the required isomorphism. Notice that
θ is continuous, whence U is a homeomorphism.

9



Proposition 2.4.3. The decomposition of T4 into minimal components for
(T r×T s)Ψ is the same as the decomposition into ergodic components. It consists
of sets of the form Ic1 for c1 6∈ αQ + Q and Jc1,c2 for c1 ∈ αQ + Q, where c1 ∈
[0, 1

r ), c2 ∈ [0, 1
r2 ). Moreover, on each such component, (T r × T s)Ψ is uniquely

ergodic. In particular, each point in T4 is generic (for a relevant invariant
measure).

Proof. In view of Lemma 2.4.2, instead of (T r × T s)Ψ, we may consider Tϕc1 ,
with ϕc1(x) = (r2x+ rγ, s2 +sc1 +sγ). By Remark 3.2.7, Proposition 3.2.1 and
Proposition 3.2.4, for the first part of the assertion, we need to show that the
equation

χ ◦ ϕc1 = ξ − ξ ◦ T. (18)

has a measurable solution ξ : T → T for χ(u, v) = Au + Bv for A,B ∈ Z with
A2 +B2 6= 0 if and only if it has a continuous one. We have

χ ◦ϕc1(x) = χ(r2x+ rγ, s2x+ sc1 + sγ) = (Ar2 +Bs2)x+ (Ar+Bs)γ +Bsc1.

By [3], χ ◦ ϕc1 can be a measurable coboundary only if

Ar2 +Bs2 = 0 and (Ar +Bs)γ +Bsc1 ∈ αZ + Z. (19)

Then the solution to (18) is given by ξ(x) = −kx, where k ∈ Z is such that
(Ar + Bs)γ + Bsc1 − kα ∈ Z. In particular, all measurable solutions to (18)
are continuous. It follows by Remark 3.2.7 that the decomposition into mini-
mal components for (T r × T s)Ψ is the same as the decomposition into ergodic
components.

We will now describe the ergodic (i.e. minimal) components of each Tϕc1
and show that they are uniquely ergodic. Suppose that χ ◦ϕc1 is a coboundary.
It follows from (19) (recall that r 6= s are coprime) that r2|B and s2|A, and
therefore A = A′s2 and B = −A′r2 for some A′ ∈ Z. Hence, the second part of
condition (19) takes the form

A′rs((s− r)γ − rc1) ∈ αZ + Z. (20)

Having this in mind, we consider two cases:

(i) (s− r)γ − rc1 6∈ Qα+ Q,

(ii) (s− r)γ − rc1 ∈ Qα+ Q.

In case (i), it follows immediately from the first part of the proof that (T r ×
T s)Ψ|Ic1 is ergodic and minimal. Unique ergodicity follows from Proposition 3.2.8.

We consider now case (ii). We will describe characters χ, such that (18) has
a (measurable and continuous) solution. In view of and (15) and (20), A′ = al0
for some a ∈ Z. Therefore, a measurable solution ξ : T → T to (18) exists
precisely for the characters χ of T2 of the form

χ(u, v) = al0s
2u− al0r2v for a ∈ Z. (21)

Denote the set of such characters by Γ = Γtop. It is easy to see that

ann Γ =
{

(u, v) ∈ T2 : l0s
2u = l0r

2v
}
.
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We claim that

J̃r,sc1,c2 :=
{

(t, u, v + c2) ∈ T3 : l0s
2u = l0r

2v − k0t
}

for c2 ∈ [0, 1/r2)

are minimal components of Tϕc1 . Indeed:

• each J̃r,sc1,c2 is closed,

• by (16), each J̃r,sc1,c2 is Tϕc1 -invariant,

•
⋃
c2
J̃r,sc1,c2 = T3 (notice that the projection of J̃r,sc1,c2 onto the first two

coordinates is equal to T2),

• (u, v) ∈ ann Γ if and only if J̃r,sc1,c2 + (0, u, v) = J̃r,sc1,c2

(see Proposition 3.2.4). Unique ergodicity follows, as in the previous case, from
Proposition 3.2.8.

To find the minimal component corresponding to each of the sets J̃r,sc1,c2
described above, we need to find the preimage of J̃r,sc1,c2 via Uc1 ◦ Vc1 . We have

U−1
c1 (J̃r,sc1,c2) =

=

{
(t, u, v + c2) : l0s

2

(
u− r(r − 1)

2
t

)
= l0r

2

(
v − s(s− 1)

2
t

)
− k0t

}
=

{
(t, u, v + c2) : l0s

2u = l0r
2v +

(
l0rs

r − s
2
− k0

)
t

}
,

whence, by Remark 2.2.3,

(Uc1Vc1)−1(J̃r,sc1,c2) = {(rt, st+ c1, u, v + c2) :

l0s
2u = l0r

2v +

(
l0rs

r − s
2
− k0

)
t

}
=
{

(x, y + c1, u, v + c2) : sx = ry and

l0s
2u = l0r

2v +

(
l0rs

r − s
2
− k0

)
(ax+ by)

}
.

Therefore (Uc1Vc1)−1
(
J̃r,sc1,c2

)
= Jr,sc1,c2 , which completes the proof.

Remark 2.4.4. The sets Ir,sc1 are translates of Ir,s0 , which is a subgroup of
T4. Therefore, the conditional measures given by the ergodic decomposition of
(T r×T s)Ψ, which are supported on the sets Ic1 for c1 such that (s−r)γ−rc1 6∈
Qα+ Q, are translates of Haar measure on Ir,s0 .

For c1 with (s − r)γ − rc1 ∈ Qα + Q, the sets J̃r,sc1,c2 are translates of J̃r,sc1,0,
which is a subgroup of T3. As before, the conditional measures given by the
ergodic decomposition of Tϕc1 , are translates of Haar measure on J̃r,sc1,0. Notice
that Vc1 carries a translate of Haar measure to Haar measure. Therefore, also
the conditional measures given by the ergodic decomposition of (T r × T s)Ψ,
which are supported on the sets Jr,sc1,c2 , are translates of the corresponding Haar
measures.
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Remark 2.4.5. Let G be a compact Abelian group. Let χ ∈ Ĝ and let H =
kerχ. Then χ is constant on each coset of H. Moreover, if x+H 6= y+H then
χ(x+H) 6= χ(y +H).

Remark 2.4.6. Let χ ∈ Ĝ and let H ⊂ G be a subgroup. Then the integral of
χ with respect to Haar measure on each coset of H is zero if and only if χ|H is
not constant.

Lemma 2.4.7. Let G be a compact metric Abelian group. Let χ ∈ Ĝ. Then
there exists δ > 0 such that whenever {y1, . . . , yn} ⊂ G is a δ-net and χ(yi) = 1
for i = 1, . . . , n then χ ≡ 1.

Proof. Let d stand for the metric on G. Since χ is uniformly continuous, there
exists δ > 0 such that d(x, y) < δ implies |χ(x)− χ(y)| < 1

4 . Since {y1, . . . , yn}
is a δ-net, it follows that |χ(G) − 1| < 1

2 . This is however possible only when
χ ≡ 1, as χ(G) is a closed subgroup of S1.

Lemma 2.4.8. Let χ ∈ T̂4 be a non-trivial character. If r, s ∈ N are large
enough then χ|Ic1 is not constant for c1 ∈ [0, 1

r ).

Proof. Fix 1 6≡ χ ∈ T̂4 and let δ > 0 be as in Lemma 2.4.7. In view of
Lemma 2.4.7, we need to show that whenever r, s are large enough then there
exists a δ-net of T4 contained in Ir,sc1 for c1 ∈ [0, 1

r ). Since Ir,sc1 is a translate of
Ir,s0 and the third and fourth coordinate in I0 is arbitrary, it suffices to prove
that for r, s sufficiently large we can always find a δ-net of T2 contained in
the set Ar,s0 . To complete the proof it suffices to consider sets of the form{(

i
s ,

j
r

)
: 0 ≤ i < s, 0 ≤ j < r

}
.

Lemma 2.4.9. Let χ ∈ T̂4 be a non-trivial character. If r, s ∈ N are large
enough then χ|Jr,sc1,c2 is not constant for c1 ∈ [0, 1

r ) such that c1 ∈ αQ + Q and
c2 ∈ [0, 1

r2 ).

Proof. Fix 1 6≡ χ ∈ T̂4 and let δ > 0 be as in Lemma 2.4.7. Since Jr,sc1,c2 is a
translation of Jr,sc1,0, by Lemma 2.4.7, it suffices to prove that for r, s sufficiently
large there exists a δ-net of T4 in Jr,sc1,0.

Notice first that the projection of Jr,sc1,0 onto the first two coordinates is equal
to Ar,sc1 . Indeed, for any z ∈ T the equation l0s

2u = l0r
2v + z has a solution

(u, v) as T is an infinitely divisible group. By the proof of the previous lemma,
we can find a δ-net of T2

{(xi, yj) : 0 ≤ i, j < n} ⊂ Ar,sc1 .

Moreover, by the infinite divisibility of T, for each (i, j) there exist ui,j , vi,j such
that (xi, yj , ui,j , vi,j) ∈ Jr,sc1,0. Moreover, for 0 ≤ a, b < l0s

2(
xi, yj , ui,j +

a

l0s2
, vi,j +

b

l0s2

)
∈ Jr,sc1,0.

Therefore, whenever r, s are sufficiently large, the set{(
xi, yj , ui,j +

a

l0s2
, vi,j +

b

l0s2

)
: 0 ≤ i, j < n, 0 ≤ a, b < l0s

2

}
is the required δ-net.10 This completes the proof.

10Notice that since l0 ≥ 1, the condition on r, s is independent of c1.
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Proposition 2.4.10. For any 1 6≡ χ ∈ T̂4 whenever r, s ∈ N are odd, relatively
prime and large enough then

∫
I
χ dλI = 0 for each ergodic component of (T r ×

T s)Ψ, where λI is the relevant invariant measure.

Proof. The assertion follows immediately from Proposition 2.4.3, Lemma 2.4.8
and Lemma 2.4.9.

Proof of Theorem 1.0.4 in case c = 1, α 6∈ Q. We only need to check that (a),
(b), (c) hold. Conditions (a) and (b) follows from Proposition 2.4.3. It follows
by Proposition 2.4.10 that also condition (c) is satisfied (we take F = T̂2).

2.4.2 Case c = 0, α 6∈ Q

Proof of Theorem 1.0.4 in case c = 0, α 6∈ Q. We have Tψ(x, u) = (x+α, u+γ),
i.e. Tψ is a rotation on T2. The decomposition into minimal components of
(T r × T s)Ψ consists of the cosets of I0 = Ir,s0 = {(x, y, 0, 0) ∈ T4 : sx = ry}.
They are at the same the ergodic components which are moreover uniquely
ergodic, and we conclude as previously.

2.5 Generic case – compact group extensions
Let f : R→ R (periodic of period 1) be in L2(T). Denote by

f(x) =
∑
n∈Z

f̂(n)e2πinx

the Fourier expansion of f . Recall that our goal is to prove disjointness of

T2 3 (x, y) 7→ (x+ α, y + cx+ f(x)) ∈ T2,

with the Möbius function µ for a generic set of α (under some additional as-
sumptions on f).

Recall the following result.

Theorem 2.5.1 ([18], [21]11). Suppose that f(x) =
∑
n∈Z f̂(n)e2πinx is in

C1+δ(T) for some δ > 0, and has zero mean. Denote by T : T → T the ir-
rational rotation x 7→ x+α. Assume that for a sequence (pn/qn)n∈N of rational
numbers we have

|f̂(qn)|∑
k≥1 |f̂(kqn)|

> c > 0 (22)

and ∣∣∣α− pn
qn

∣∣∣ qn
|f̂(qn)|

→ 0. (23)

Then for each λ ∈ S1 the cocycle λe2πif(·) is not a T -coboundary.

We will now prove a modified version of the above theorem. It will be our
main tool in course of the proof of Theorem 1.0.3.

11In [18] f is assumed to be of class C2 and the proof in fact requires that
∑
n|f̂(n)| <∞.

See [21] for the proof of Theorem 2.5.1 with f ∈ C1+δ(T) for some δ > 0.
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Theorem 2.5.2. Suppose that f(x) =
∑
n∈Z f̂(n)e2πinx is in C1+δ(T) for some

δ > 0, and has zero mean. Denote by T : T → T the irrational rotation x 7→
x + α. Let r, s ∈ N (r > s) be relatively prime. Assume that (pn/qn)n∈N is a
subsequence of convergents of α in its continued fraction expansion such that

|f̂(qn)|∑
k≥1 |f̂(kqn)|

> c0 > 0, (24)

|f̂(qn)|
|f̂(qn)|+

∑
k≥1 |f̂(k rsqn)|

> c0 > 0, whenever s|qn, (25)

and ∣∣∣α− pn
qn

∣∣∣ qn
|f̂(qn)|

→ 0. (26)

Then for each λ ∈ S1, h ∈ R and A,B ∈ R with A2 + B2 6= 0 the cocycle
λe2πi(Af(r)(rx)+Bf(s)(sx+h)) is not a T -coboundary.

Proof. Fix A,B ∈ R with A2 + B2 6= 0, relatively prime numbers r > s and
h ∈ R. Set

F (x) := Af (r)(rx) +Bf (s)(sx+ h).

For any k ∈ N we have

f (k)(x) =
∑
n∈Z

f̂(n)
1− e2πinkα

1− e2πinα
e2πinx.

Therefore,

F (x) = A
∑
n∈Z

f̂(n)
1− e2πinrα

1− e2πinα
e2πinrx+B

∑
n∈Z

f̂(n)
1− e2πinsα

1− e2πinα
e2πin(sx+h). (27)

Suppose first that A ·B = 0. We may assume without loss of generality that
A = 0 and B 6= 0. Then, for all n ∈ N, by (27), we have

F̂ (sn) = Bf̂(n)
1− e2πinsα

1− e2πinα
e2πinh.

Therefore, since ∣∣∣∣1− e2πiqnsα

1− e2πiqnα

∣∣∣∣→ s as n→∞, (28)

|F̂ (sqn)| ≥ |B| · s
2
· |f̂(qn)| for n sufficiently large (29)

and

|F̂ (msqn)| = |B| · |f̂(mqn)| ·
∣∣∣∣1− e2πimsqnα

1− e2πimqnα

∣∣∣∣ ≤ |B| · s · |f̂(mqn)| (30)

for all n ∈ N, m ∈ Z. It follows immediately by (29) and (30) that for n
sufficiently large

|F̂ (sqn)|∑
m≥1 |F̂ (msqn)|

≥
|B| · s2 · |f̂(qn)|∑

m≥1 |B| · s · |f̂(mqn)|
=

|f̂(qn)|
2
∑
m≥1 |f̂(mqn)|

(31)
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∣∣∣α− spn
sqn

∣∣∣ sqn
|F̂ (sqn)|

≤ 2

|B|
·

∣∣∣α− pn
qn

∣∣∣ qn
|f̂(qn)|

. (32)

Now, (31) and (32) and the assumptions (24) and (26) imply that for n suffi-
ciently large

|F̂ (sqn)|∑
m≥1 |F̂ (msqn)|

>
c0
2
> 0 and

∣∣∣α− spn
sqn

∣∣∣ sqn
|F̂ (sqn)|

→ 0.

In view of Theorem 2.5.1, this completes the proof in case A ·B = 0.
Suppose now that A · B 6= 0. Applying the fact that for any absolutely

summable sequence (yn)n∈Z∑
n∈Z

yn =
∑
r|n

yn +
∑
r-n

yn =
∑
n∈Z

ynr +
∑
r-n

yn =
∑
s|n

yn rs +
∑
r-n

yn
12

to the second summand in formula (27), we obtain

F (x) =
∑
s|n

(
Af̂(n)

1− e2πinrα

1− e2πinα
+Bf̂(n

r

s
)

1− e2πinrα

1− e2πin rsα
e2πin rsh

)
︸ ︷︷ ︸

arn

e2πinrx

+A
∑
s-n

f̂(n)
1− e2πirnα

1− e2πinα
e2πinrx +B

∑
r-n

f̂(n)
1− e2πinsα

1− e2πinα
e2πinhe2πinsx. (33)

For m ∈ N, let Bm := {n ∈ N : m - qn}. We will consider the following cases:

(i) Br or Bs is infinite,

(ii) both sets Br and Bs are finite.

We will cover first case (i). Without loss of generality we may assume that Br
is infinite. Suppose that

λe2πi(Af(r)(rx)+Bf(s)(sx+h)) is a coboundary. (34)

Since f (r)(rx) is 1
r -periodic, it follows immediately that

λe2πi(Af(r)(rx)+Bf(s)(sx+ s
r+h)) is also a coboundary. (35)

Hence, dividing the expression from (34) by the one from (35), we conclude that

e2πiB(f(s)(sx)−f(s)(sx+ s
r )) is a coboundary as well. (36)

We will show that this is impossible in view of Theorem 2.5.1. Indeed, we have

g(x) := f (s)(sx)− f (s)
(
sx+

s

r

)
=
∑
n∈Z

f̂(n)
1− e2πinsα

1− e2πinα
(1− e2πin sr )e2πinsx.

12These equalities hold for all r, s ∈ N.
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We claim that for n ∈ Br,

|ĝ(sqn)|∑
k≥1 |ĝ(ksqn)|

> c1 for some c1 > 0 (37)

and ∣∣∣α− spn
sqn

∣∣∣ sqn
|ĝ(sqn)|

→ 0. (38)

Indeed, for n ∈ Br, we have

|ĝ(sqn)| = |f̂(qn)| ·
∣∣∣∣1− e2πisqnα

1− e2πiqnα

∣∣∣∣ · |e2πiqn
s
r − 1|. (39)

Since r - qn and r and s are relatively prime,∣∣e2πiqn
s
r − 1

∣∣ ≥ ∣∣∣e2πi 1r − 1
∣∣∣ =: c2 > 0. (40)

Using again (28), we obtain from (39) and (40) that for n sufficiently large,

|ĝ(sqn)| ≥ c2s

2
· |f̂(qn)|. (41)

On the other hand, since
∣∣∣ 1−e2πiksqnα1−e2πikqnα

∣∣∣ ≤ s,
∑
k≥1

|ĝ(ksqn)| =
∑
k≥1

|f̂(kqn)| ·
∣∣∣∣1− e2πiksqnα

1− e2πikqnα

∣∣∣∣ · |e2πiqn
s
r − 1|

≤
∑
k≥1

|f̂(kqn)| · s · |e2πiqn
s
r − 1| ≤ 2s

∑
k≥1

|f̂(kqn)|.
(42)

Thus, using (41), (42) and (24) we obtain, for n large enough,

|ĝ(sqn)|∑
k≥1 |ĝ(ksqn)|

≥ c2s|f̂(qn)|
4s
∑
k≥1 |f̂(kqn)|

>
c0c2

4
,

which shows that (37) holds. Using (41) and (26), we obtain that (38) also
holds: ∣∣∣α− spn

sqn

∣∣∣ sqn
|ĝ(sqn)|

≤
2
∣∣∣α− pn

qn

∣∣∣ sqn
c2s|f̂(qn)|

=
2

c2
·

∣∣∣α− pn
qn

∣∣∣ qn
|f̂(qn)|

→ 0.

It follows from Theorem 2.5.1 that λe2πiB(f(s)(sx)−f(s)(sx+ s
r )) cannot be a cobound-

ary, contrary to (36). This completes the proof in case (i).
We cover now case (ii). We claim that for n 6∈ Bs (i.e. n such that s|qn), for

some c3 > 0, we have
|arqn |∑

m≥1 |amrqn |
> c3 > 0 (43)

and
|α− rpn

rqn
|rqn

|arqn |
→ 0. (44)
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To prove (43), we will estimate |arqn | from below and
∑
m≥1 |amrqn | from above

in an appropriate way. We begin by estimating |arqn |. We have

|arqn | ≥ |A| · |f̂(qn)| ·
∣∣∣∣1− e2πirqnα

1− e2πiqnα

∣∣∣∣− |B| · ∣∣∣f̂ (qn rs)∣∣∣ ·
∣∣∣∣ 1− e2πiqnrα

1− e2πiqn
r
sα

∣∣∣∣
≥ |A| · |f̂(qn)| · r

2
− |B| ·

∣∣∣f̂ (qn r
s

)∣∣∣ · ∣∣∣∣ 1− e2πiqnrα

1− e2πiqn
r
sα

∣∣∣∣ , (45)

where the latter inequality follows from (28) and is valid for n sufficiently large.
It follows by (25) that for n 6∈ Bs,∣∣∣f̂ (qn r

s

)∣∣∣ < 1

c0
|f̂(qn)|. (46)

We will now estimate |1− e2πiqn
r
sα|. Notice that

2

π
<
|e2πix − e2πiy|
|x− y|

< 1 (47)

for x, y ∈ R such that 0 < |x− y| < 1. Since |1− e2πiqnα| → 0, for n sufficiently
large, ∣∣1− e2πiqnα

∣∣ < s

πr

∣∣∣1− e2πi 1s

∣∣∣ .
Therefore and by (47), for such n, we have∣∣∣e2πi

[qnα]
s − e2πiqn

1
sα
∣∣∣ < ∣∣∣∣ [qnα]

s
− qn

1

s
α

∣∣∣∣ =
1

s
· |[qnα]− qnα|

<
π

2s
· |e2πi[qnα] − e2πiqnα| = π

2s
· |1− e2πiqnα|

<
π

2s
· s
πr
· |1− e2πi 1s | = 1

2r
·
∣∣∣1− e2πi 1s

∣∣∣ .
(48)

Since for all x, y ∈ R and all k ∈ N

|e2πikx − e2πiky| ≤ k|e2πix − e2πiy|,

it follows from (48) that

|e2πi
[qnα]r
s − e2πiqn

r
sα| < 1

2
|1− e2πi 1s |.

Since qn is a denominator of α and s|qn, we have |c− qn
s α| > |pn − qnα| for all

0 ≤ c ≤ qn
s (see(52) in Section 3.1). Using this inequality and (47), we obtain

π

2
|1− e2πi qns α| > |c− qn

s
α| > |pn − qnα| > |1− e2πiqnα|. (49)

By the first two lines of (48) and (49), we have∣∣∣e2πi
[qnα]
s − e2πiqn

1
sα
∣∣∣ < π

2s
|1− e2πiqnα| < π

2s
· π

2
|1− e2πi qns α|. (50)

Suppose that s|[qnα]. Then (50) implies 1 < π
2s ·

π
2 , i.e. s < (π/2)2. This is

however impossible, as s ≥ 3. Therefore s - [qnα], which implies s - [qnα]r, i.e.∣∣∣1− e2πi
[qnα]r
s

∣∣∣ ≥ |1− e2πi 1s |.
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Therefore∣∣1− e2πiqn
r
sα
∣∣ ≥ ∣∣∣1− e2πi

[qnα]r
s

∣∣∣− ∣∣∣e2πi
[qnα]r
s − e2πiqn

r
sα
∣∣∣

≥
∣∣∣1− e2πi

[qnα]r
s

∣∣∣− 1

2

∣∣∣1− e2πi 1s

∣∣∣ ≥ 1

2

∣∣∣1− e2πi 1s

∣∣∣ =: c4 > 0.

It follows that∣∣∣∣ 1− e2πirqnα

1− e2πiqn
r
sα

∣∣∣∣ ≤ 1

c4
|1− e2πirqnα| ≤ r

c4
|1− e2πiqnα| → 0.

This and (45), (46) imply that for n sufficiently large

|arqn | ≥ c5|f̂(qn)| for some c5 > 0. (51)

We will estimate now
∑
m≥1 |amrqn |. By (24) and (25) we have

∑
m≥1

|f̂(mqn)| < 1

c0
|f̂(qn)| and

∑
m≥1

∣∣∣f̂ (mqn r
s

)∣∣∣ < 1

c0
|f̂(qn)|.

Hence ∑
m≥1

|amrqn | ≤
|A|r + |B|s

c0
· |f̂(qn)|.

Using this estimate and (51), we obtain

|arqn |∑
m≥1 |amrqn |

≥ c5|f̂(qn)|
|A|r+|B|s

c0
|f̂(qn)|

=
c0c5

|A|r + |B|s
> 0

and (43) follows. Notice that (51) together with (26) implies that also (44) is
true. By Theorem 2.5.1, we conclude that λe2πiF (x) cannot be a coboundary,
which completes the proof in case (ii).

Remark 2.5.3. Recall that if f ∈ C1+δ(T) for some δ > 0 then f̂(n) =
o(1/n1+δ′) for 0 < δ′ < δ (the speed of convergence to zero depends on δ′).

Lemma 2.5.4 (cf. Lemma 4 in [21]). Let g : N → (0,∞) be a non-increasing
positive function such that g(mn) ≤ g(m)g(n) for allm,n ∈ N and

∑
m≥1 g(m) =

C <∞. Let (xn)n∈N ⊂ [0,∞) be a summable sequence such that xn = o(g(n)),
n ∈ N. Let (xnk)k∈N be a subsequence of (xn)n∈N such that xnk > 0. Let b ≥ 1
and let

εk =
xnk

xnk +
∑
m≥1 xm[bnk]

.

Then εk 6→ 0.

Proof. We will choose a subsequence of (εk)k∈N recursively. Let k1 ≥ 1 and
δ1 > 0 be such that

xnk1
g(nk1)

> δ1 and
xn
g(n)

≤ δ1 for n > nk1 .

18



Suppose first that [bnk1 ] = nk1 . Then

xnk1 +
∑
m≥1

xm[bnk1 ] = 2xnk1 +
∑
m≥2

xm[bnk1 ] ≤ 2xnk1 +
∑
m≥2

g(m[bnk1 ])δ1

≤ 2xnk1 + g([bnk1 ])δ1
∑
m≥2

g(m) ≤ 2xnk1 + g(nk1)δ1C < (C + 2)xnk1 .

Suppose now that [bnk1 ] > nk1 . In a similar way as before, we obtain

xnk1 +
∑
m≥1

xm[bnk1 ] ≤ xnk1 + g(nk1)δ1
∑
m≥1

g(m) < (C + 1)xnk1 .

Once we have chosen k1, . . . , kj , we pick kj+1 > kj and δj+1 > 0 such that

xnkj+1

g(nkj+1
)
> δj+1 and

xn
g(n)

≤ δj+1 for n > nkj+1 .

As before, we obtain ∑
m≥1

xm[bnkj+1
] < (C + 2)xnkj+1

which completes the proof.

Remark 2.5.5. Given b1, . . . , bl ≥ 1, under the assumptions of the above
lemma, by a diagonalizing procedure we can find an increasing sequence (nk) ⊂
N such that

εnk(bi) > c > 0 for 1 ≤ i ≤ l.

Corollary 2.5.6. Suppose that f ∈ C1+δ(T) for some δ > 0 and it is not
a trigonometric polynomial. Then for a generic α and any A,B ∈ R2 with
A2 +B2 6= 0, any relatively prime numbers r and s, any h ∈ R and any λ ∈ T,
the cocycle λe2πi(Af(r)(rx)+Bf(s)(sx+h)) is not a T -coboundary for Tx = x+ α.

Proof. Let (qn)n∈N be such that f̂(qn) 6= 0. Then by (53), for a residual set of
irrationals α, we have ∣∣∣α− pn

qn

∣∣∣ qn
|f̂(qn)|

→ 0

along some subsequence of (qn)n∈N which, for convenience, we will still denote by
(qn)n∈N. In other words, (26) holds. It follows from Remark 2.5.3, Lemma 2.5.4
and Remark 2.5.5 (for l = 2, b1 = 1, b2 = r

s ) that (24) and (25) also hold.
Therefore, we can apply Theorem 2.5.2 to complete the proof.

Remark 2.5.7. Let c 6= 0, r, s, A,B ∈ Z be such that Ar2 + Bs2 6= 0. Let
ϕ(x) = cx + f(x), where f : R → R is of class C1+δ for some δ > 0 and
periodic of period 1. Since the topological degree of e2πi(Aϕ(r)(r·)+Bϕ(s)(s·+h)) is
equal to (Ar2 + Bs2)c, an immediate consequence of (56) is that the cocycle
e2πi(Aϕ(r)(r·)+Bϕ(s)(s·+h)) is not a coboundary for all h ∈ R. On the other hand,
if Ar2 +Bs2 = 0, then for some λ of modulus 1, we have

e2πi(Aϕ(r)(r·)+Bϕ(s)(s·+h)) = λ · e2πi(Af(r)(r·)+Bf(s)(s·+h)).
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Corollary 2.5.8. Let c ∈ Z and suppose that f ∈ C1+δ(T) for some δ > 0 and
it is not a trigonometric polynomial. Let ϕ(x) = cx+ f(x). Then for a generic
α the cocycle (e2πiϕ(r)(r·), e2πiϕ(s)(s·+h)) is ergodic (as a cocycle over Tx = x+α)
for all relatively prime numbers r 6= s and any h ∈ R.

Proof. In view of Remark 3.2.2, the assertion follows immediately from Corol-
lary 2.5.6 and Remark 2.5.7.

Proof of Theorem 1.0.3. Recall that Tc,f (x, y) = (x + α, y + cx + f(x)). We
can assume that f is not a trigonometric polynomial. Indeed, otherwise f is
a coboundary with the transfer function also being a trigonometric polynomial
and the problem is reduced to the affine case.

It follows from Lemma 2.2.2 and Corollary 2.5.8 that for a generic α the
decomposition of T4 into minimal components of (Tc,f )r × (Tc,f )s is the same
as the decomposition into ergodic components: it consists of sets Ic1 , c1 ∈ [0, 1

r )
(see (8) on page 6). Moreover, each ergodic component is uniquely ergodic. It
follows that all points are generic for (Tc,f )r× (Tc,f )s (for the relevant invariant
measures). Thus, conditions (a) and (b) are satisfied.

To complete the proof, it suffices to show that the set T̂2 satisfies condi-
tion (c). This is however true by Lemma 2.4.8 and the result follows.

3 Appendix

3.1 Notation and basic facts
Automorphisms of standard Borel spaces Let (X,B, µ) be a probabil-
ity standard Borel space. By Aut(X,B, µ) we will denote the space of all
bi-measurable measure-preserving bijections of X which we will call automor-
phisms.

Irrational rotation We will identify the multiplicative circle S1 = {z ∈
C : |z| = 1} and T = R/Z with X = [0, 1) with addition mod 1. Therefore,
real functions defined on the circle will be identified with one-periodic functions
defined on R. Let λT denote Lebesgue measure on X.

Assume that T : X → X is an irrational rotation, Tx = x + α (mod 1),
x ∈ X. Clearly T ∈ Aut(X,B(X), λT). Let α = [0; a1, a2, . . . ] be the continued
fraction expansion of α. Let

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1

for n ≥ 1. The rationals pn/qn are called the convergents of α.
Recall (see e.g. [20]) that every convergent pn/qn is a best approximation of

α in the following sense:

if
c

d
6= pn
qn

and 0 < d ≤ qn then |c− dα| > |pn − qnα|. (52)
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Recall also (see e.g. [21]) that given an infinite set {qn}n∈N ⊂ N and a
positive real valued function R = R(qn) the set

A =

{
α ∈ [0, 1) : for infinitely many n we have

∣∣∣∣α− pn
qn

∣∣∣∣ < R(qn),

where
pn
qn

are convergents of α
}

is residual in T. (53)

Cocycles and group extensions Let T ∈ Aut(X,B, µ). For a locally com-
pact second countable Abelian group G13 with a Haar measure λG, a measurable
map ϕ : Z×X → G is called a cocycle if

ϕ(n+m)(x) = ϕ(n)(x)ϕ(m)(Tnx) for each n,m ∈ Z.

The generator ϕ(x) = ϕ(1)(x) determines ϕ(n)(x) for any (n, x) ∈ Z×X:

ϕ(n)(x) =


ϕ(x) · ϕ(Tx) · . . . · ϕ(Tn−1x), if n > 0,

1, if n = 0,

(ϕ(Tnx) · . . . · ϕ(T−1x))−1, if n < 0.

Thus, we will call a cocycle any measurable function ϕ : X → G as well. Given
ϕ, we consider a G-extension of T , acting on (X × G,µ ⊗ λG), defined by the
formula

Tϕ(x, g) = (Tx, ϕ(x)g).

A cocycle ϕ is called a T -coboundary (or simply a coboundary) if it is of the
form

ϕ(x) = ξ(x)(ξ(Tx))−1

for some measurable function ξ : X → G (called a transfer function). Two
cocycles φ, ψ : X → G are cohomologous if for some measurable function f : X →
G we have

(f(Tx))−1φ(x)f(x) = ψ(x). (54)

Analogous notions to the above ones are also present in topological dynamics.
Let T : X → X be a minimal homeomorphism of a compact metric space. Let
ϕ : X → G be a continuous function. We say that ϕ is a topological T -coboundary
if it is a measurable T -coboundary with a continuous transfer function.

3.2 Compact group extensions: ergodicity and minimality
Let G be a compact Abelian metrizable group and assume that T ∈ Aut(X,B, µ)
is ergodic. Let ϕ : X → G be a cocycle. Then

Tϕ is ergodic if and only if the equation
χ ◦ ϕ = ξ/ξ ◦ T has only trivial solution χ = 1, ξ = const

in χ ∈ Ĝ and a measurable ξ : X → S1.
(55)

For example, see [11],

if Tx = x+ α, ϕ : T→ S1 is Lipschitz with non-zero degree
then Tϕ is ergodic. (56)

13We use multiplicative notation in G.
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If Tϕ is ergodic, we will also say that ϕ is ergodic (for T ).
Recall that G acts on X ×G via g 7→ Rg, where:

Rg(x, h) := (x, hg−1) for (x, h) ∈ X ×G, g ∈ G.

Ergodic components Let ϕ : X → G be a cocycle. Let P(Tϕ,B, µ) stand
for the set of Tϕ-invariant Borel measures whose projection on X is µ. Fix an
ergodic measure λ ∈ P(Tϕ,B, µ). Denote by H be the stabilizer of λ in G, i.e.

H := {g ∈ G : λ ◦Rg = λ}.

Notice that
Γ := {χ ∈ Ĝ : χ ◦ ϕ is a coboundary}

is a (closed) subgroup of Ĝ and let

F = ann Γ := {g ∈ G : for each χ ∈ Γ, χ(g) = 1}.

Proposition 3.2.1 (see e.g. [22]). The system (X ×G,Tϕ, λ) is isomorphic to
(X ×H,Tψ, µ⊗ λH) for some ergodic ψ : X → H. Moreover, F = H.

Remark 3.2.2. In view of (55), Tϕ is ergodic if and only if Γ = {1}.

Minimal components Let T : X → X be a minimal homeomorphism of a
compact metric space. Let ϕ : X → G be a continuous function and let M be
a minimal component of Tϕ, i.e. M ⊂ X × G is closed and invariant with no
proper subsets having the same properties. Let Htop be the stabilizer of M in
G, i.e.

Htop := {g ∈ G : Rg(M) = M}

(this definition is independent of the initial choice of M). Notice that

Γtop := {χ ∈ Ĝ : χ ◦ ϕ is a topological coboundary}

is a closed subgroup of Ĝ and let

Ftop := ann Γtop = {g ∈ G : for each χ ∈ Γtop, χ(g) = 1}.

Lemma 3.2.3 ([27]). There exists a continuous map τ : X → G/Htop such that

τ(Tx) = ϕ(x)τ(x). (57)

Moreover, M := ∪x∈X{x} × τ(x) is a minimal set.

The proof of the following result is analogous to the one in the measure-
theoretical case. We include it here for the sake of completeness.

Proposition 3.2.4. Htop = Ftop.

Proof. Let g0 ∈ Htop and let χ ∈ Γtop, i.e.

χ ◦ ϕ(x) = h(Tx)/h(x)

for some continuous function h : X → S1. We define w : X ×G→ S1:

w(x, g) = h(x)−1χ(g).
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This function is continuous and Tϕ-invariant, whence it is constant on each
minimal component. It follows that h(x)−1χ(g)χ(g0) = w(x, gg0) = w(x, g) =
h(x)−1χ(g), which implies χ(g0) = 1. Therefore g0 ∈ Ftop.

Suppose now that there exists g0 ∈ Ftop \ Htop. Then there exists χ ∈ Ĝ
such that χ(g0) 6= 1 and χ(Htop) = {1}. Let τ : X → G/Htop satisfy (57). It
follows that χ ◦ τ is well-defined and we obtain

χ ◦ τ(Tx) = χ ◦ ϕ(x) · χ ◦ τ(x)

which implies

χ ◦ ϕ(x) =
χ ◦ τ(Tx)

χ ◦ τ(x)
,

i.e. χ ∈ Γtop and consequently χ(g0) = 1 which is a contradiction.

Relation between the ergodic and the minimal components Let T be
a minimal homeomorphism of a compact metric space X and let µ be a T -
invariant probability Borel measure, ergodic with respect to T . Let ϕ : X → G
be continuous. Then Tϕ is a homeomorphism of X × G and Tϕ ∈ Aut(X ×
G,B ⊗ B(G), µ ⊗ λG). Let λ ∈ P(Tϕ,B, µ). There are two natural partitions
associated to Tϕ:

• Perg – the partition into the ergodic components of Tϕ,

• Pmin – the partition into the minimal components of Tϕ.

Partition Perg is clearly measurable.

Proposition 3.2.5. Partition Pmin is measurable.

Proof. Let M ⊂ X × G be as in Lemma 3.2.3, in particular, M is a minimal
component of Tϕ. Let s : G/Htop → G be a Borel selector of the canonical
projection π : G→ G/Htop. Consider η : X → G given by η = s ◦ τ . We obtain

ϕ′(x) := ϕ(x)η(x)(η(Tx))−1 ∈ Htop

and
M =

⋃
x∈X
{x} × (η(x)Htop),

so the map
(x, h) 7→ (x, η(x)h) (58)

settles an equivariant Borel isomorphism of X × H (considered with Tϕ′) and
M (considered with Tϕ). Moreover, (58) can be naturally extended to a Borel
isomorphism of X ×Htop × G/Htop and X × G. Clearly the partition of X ×
Htop × G/Htop given by relevant translations of X × Htop × {1} (indexed by
G/Htop) is measurable for the product measure µ ⊗ λHtop ⊗ λG/Htop . Hence
its image by the Borel extensions of (58) is also a measurable partition for the
image of the measure µ ⊗ λHtop ⊗ λG/Htop . This image is equal to µ ⊗ λG, so
the partition into minimal components is indeed measurable.

Remark 3.2.6. Since the partition into the ergodic components can be defined
as the finest measurable partition whose atoms are invariant under the action
of the homeomorphism in question, Perg is finer than Pmin.

23



As a direct consequence of the above remark we obtain the following:

Remark 3.2.7. We have H ⊃ Htop. The condition H = Htop is necessary
and sufficient for the ergodic components of Tϕ to be the same as its minimal
components. Moreover, H = Htop if and only if Γ = Γtop.

Unique ergodicity

Proposition 3.2.8 (Furstenberg, see the proof of Theorem I.4 in [12] and
Proposition 3.10 in [13]). Let T : X → X be uniquely ergodic and let ϕ : X → G
be a continuous cocycle with values in a compact Abelian group. If Tϕ is ergodic
with respect to µ⊗ λG then it is uniquely ergodic.

3.3 A remark on the KBSZ criterion for Tx = x+ α

Let Tx = x+ α be an irrational rotation on T.

Proposition 3.3.1. Let A ⊂ Z.

(i) If A is such that

rA ∩ sA = ∅ for sufficiently large prime numbers r 6= s, (59)

then (6) holds true for every f ∈ C(T) such that supp f̂ := {n ∈ Z :

f̂(n) 6= 0} = A.

(ii) Suppose that A contains infinitely many primes. Let f ∈ C(T) be such that
supp f̂ = A and all nonzero Fourier coefficients are positive. Then (6) fails
for f .

Remark 3.3.2. Note that every finite set satisfies (59), so all trigonometric
polynomials satisfy (6); the set {2n : n ≥ 1} is an example of an infinite set
satisfying 59.

Proof of Proposition 3.3.1. We will consider the behavior of the sums in (6) at
(0, 0). Given r, s, two different prime numbers, we set Ir,s := {(x, y) : sx = ry},
which is a closed subgroup of T2 (of course (0, 0) ∈ Ir,s), invariant under T r×T s.
It is not hard to see that

1

N

∑
n≤N

δrnα,snα → λIr,s (60)

and that

W : Ir,s → T, W (x, y) = ax+ by (ar + bs = 1)

is a continuous group isomorphism,
(61)

in particular, it sends λIr,s to λT. In view of (60),

1

N

∑
n≤N

f(T rn0)f(T sn0)→
∫
Ir,s

f ⊗ f dλIr,s .
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Since W−1(t) = (rt, st), it follows that∫
Ir,s

f ⊗ f dλIr,s =

∫
T
(f ⊗ f) ◦W−1(t) dt =

∫
T
f(rt)f(st) dt. (62)

Now, if f(t) =
∑
n∈Z cne

2πint then

f(rt) =
∑
n∈Z

cnne
2πirnt, f(st) =

∑
n∈Z

cne
2πisnt (63)

and we can compute
∫
Ir,s

f ⊗ f dλIr,s using (62), (63) and Parseval’s formula.
(ii) Fix infinitely many pairs (rj , sj) ∈ A × A of distinct prime numbers,

rj , sj →∞. Take j ≥ 1. It is enough to show that
∫
Irj,sj

f ⊗ f dλIrj,sj 6= 0. By
Parseval’s formula, and the fact that all Fourier coefficients of f are positive, we
have

∫
Irj,sj

f⊗f dλIrj,sj ≥ 0. Since rjsj = sjrj , the sjrjth Fourier coefficient of
f(rj ·) is csj > 0, while the rjsjth Fourier coefficient of f(sj ·) is crj > 0. Hence,
by Parseval’s formula,

∫
Irj,sj

f ⊗ f dλIrj,sj > 0.

(i) Each (x, y) ∈ T2 belongs to a coset of Ir,s. The proof for an arbitrary
coset of Ir,s goes along the same lines as for Ir,s itself (on the cosets of Ir,s,
we consider translations of Haar measure λIr,s and W is practically the same).
Since rA∩ sA = ∅, the supports of the Fourier transforms of f(r·) and f(s·) are
disjoint, whence

∫
T f(rt)f(st) dt = 0.
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