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Abstract. We establish existence and uniqueness of a canonical form for isometric
extensions of an ergodic non-singular transformation T . This is applied to describe

the structure of commutors of the isometric extensions. Moreover, for a compact

group G, we construct a G-valued T -cocycle α which generates the ergodic skew
product extension Tα and admits a prescribed subgroup in the centralizer of Tα.

0. Introduction

Let T be an ergodic non-singular transformation of a Lebesgue space (X,B, µ).
We consider isometric extensions of T , i.e. transformations S of X × G/H of the
form S = TG,H,α, TG,H,α(x,Hg) = (Tx,Hgα(x)), where H ⊂ G is a nested pair
of compact groups and α : X → G a Borel function. We show that every ergodic
isometric extension is conjugate to another one TG′,H′,α′ with the pair H ′ ⊂ G′

irreducible which means that H ′ contains no proper normal subgroups of G′. More
impotently, if this condition is satisfied then the corresponding triplet (G′,H ′, α′) is
determined uniquely up to cohomology (see §1 and Theorem 1.4 for details). This
extend the earlier results of T. Hamachi [Ha], where finite extensions are studied.

Denote by C(TG,H,α) the centralizer of TG,H,α, i.e. the group of all transfor-
mations commuting with it, and by C̃(TG,H,α) the subgroup of those commutors
which can be pushed down to X. We apply the above results to describe the struc-
ture of elements from C̃(TG,H,α). Namely, every such element has the form Sl,f ,
Sl,f (x,Hg) = (Sx,Hl(g)f(x)), where S ∈ C(T ), l is an automorphism of G with
l(H) = H and f : X → G is a measurable map with l(α(x)) = f(x)α(Sx)f(Tx)−1

(Proposition 2.1). This extends the well-known theorem from [Ne] (see also [Me],
[JLM], [D1]), where the particular case H = {1G} and T measure-preserving was
considered.

We also study (in §3) the problem of extending of a T -cocycle to a cocycle of a
larger group action which is related to the factor problem of isometric extensions
(cf. [Kw] and [Le]).

Let K be a compact (in the weak topology) subgroup of T -commutors, G an
Abelian compact group and α : X → G an ergodic cocycle. For simplicity, we
shall write Tα instead of TG,{1G},α. Let π : C̃(Tα) → C(T ) stand for the natural
projection. Clearly, G is embedded into C̃(Tα) as a closed normal subgroup acting
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on X ×G by left translations along the second coordinate. If K ⊂ π(C̃(Tα)) then
we obtain a short exact sequence of compact groups

(0-1) 1 → G→ π−1(K) π−→ K → 1.

As usual, this sequence determines a structure of K-module on G. In turn, this
structure plus a 2-cocycle of K with values in G (arising from a Borel cross-section
K → π−1(K)) determine completely the group structure on π−1(K).

In the final §4 we are concerned with the following question. Suppose that a
short exact sequence of compact groups is given:

(0-2) 1 → G→ E → K → 1

with G and K as above. Is it possible to find an ergodic cocycle α : X → G
such that (0-2) is congruent (i.e. identical) to (0-1)? We show that if such an α
exists then it must be a measurable solution of some functional equation (see (4-3))
which, in fact, is determined completely by a 2-cohomology class of the 2-cocycle
of K associated to (0-2). More precisely, α appears to be a transfer function for a
cocycle of a free measurable action of K (it is well known that every cocycle of a
free type I action is a coboundary). There is however, abundance of such solutions
even if we shall not distinguish T -cohomologous cocycles (in the dynamical system’s
sense). Thus our problem is to find out are there ergodic solutions? We consider
separately 3 cases.

First, let us assume that (0-2) has no splitting quotient-extensions. This means
that there are no K-invariant subgroups N of G, N 6= G, such that the N -quotient
sequence

1 → G/N → E/N → K → 1

splits. In the language of 2-cocycles this can be rephrased as follows: there are no
Borel cross-sections K → E such that the associated 2-cocycle of K takes values in
N . One of the simplest examples of such group extensions is

1 → Z/2Z → T → T → 1.

We show that—rather surprisingly—every measurable solution of (4-3) is an ergodic
T -cocycle.

Next, let us consider the opposite situation: (0-2) splits. Then it is easy to find
non-ergodic solution of (4-3). Nevertheless, we prove that ergodic ones also exists
(provided that the K-quotient of (X,µ) is not finite).

Finally, in the general—mixed—case we combine the arguments of both extremal
situations to deduce that our problem always has a positive solutions (provided that
the K-quotient of (X,µ) is not finite).

Notice that if the K-quotient of (X,µ) is finite, then T has pure point spectrum.
This case is also studied: we record necessary and sufficient conditions for positive
solution of our problem (Theorem 4.1).

The first named author expresses his gratitude to N. Copernicus University in
Toruń (Poland) for the worm hospitality during his work on this paper.
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1. Canonical group covers

Let T and S be non-singular invertible transformations of standard probability
spaces (X,B, µ) and (Y,C, ν) respectively. S is called an extension of T (and T is
a factor of S) if there exists a Borel onto map p : Y → X such that ν ◦ p−1 ∼ µ
and pS = Tp. Let S and S′ be two extensions of T . We write S′ � S if there is a
Borel onto map t : Y ′ → Y such that ν′ ◦ t−1 ∼ ν and the diagram

Y ′ −−− −−− Y ′

| X
T−−−−→ X |

Y −−− −−− Y

commutes. If t is invertible, then we say that S and S′ are conjugate and write
S′ ' S.

Let G be a compact metric group and λG probability Haar measure on G. Sup-
pose that T is ergodic. A Borel map α : X → G is called a cocycle of T with values
in G. (We do not distinguish between two maps if they agree almost everywhere.)
Let H be a closed subgroup of G and λH\G the probability G-invariant measure
on the homogeneous space H\G (the G-action by right translations is implicit).
Define a transformation TG,H,α of (X × (H\G), µ× λH\G) by setting

TG,H,α(x,Hg) = (Tx,Hgα(x)).

Clearly TG,H,α is an extension of T with the factor map p(x,Hg) = x. We call
TG,H,α an isometric extension of T with the group cover (G,H,α). TG,1G,α is said
to be a group extension of T and denoted by Tα if no confusion arises. Since
we study dynamical systems up to conjugation, extensions conjugate to isometric
(group) ones are also called isometric (group) extensions. It is well-known that
Tα is then conjugate to a group extension, more precisely H-extension, of TG,H,α.
We say that α has dense range in G if Tα is ergodic. Assume that β : X → G
is a cocycle cohomologous to α, i.e. there exists a Borel function φ : X → G
with β(x) = φ(x)−1α(x)φ(Tx). Then TG,H,β is conjugate to TG,H,α; the canonical
conjugacy map t : X × H\G → X × H\G is given by t(x,Hg) = (x,Hgφ(x)).
If N is a closed normal subgroup of G with N ⊂ H, we define an isomorphism
t : X × (H/N)\(G/N) → X × (H\G) by setting

t(x, (H/N) ·Ng) = (x,Hg).

Clearly, t ◦ TG/N,H/N,N ·α = TG,H,α ◦ t, where the cocycle N · α is determined by
(N · α)(x) = Nα(x). Thus TG/N,H/N,N ·α ' TG,H,α.

An inclusion H ⊂ G is called irreducible if the corresponding G-action on H\G
by right translations is faithful or, equivalently, H does not contain any nontrivial
normal subgroup of G. It follows from the above observation that every isometric
extension is conjugate to some TG,H,α with H ⊂ G irreducible (indeed, for every
pair H ′ ⊂ G′ there exists a biggest normal subgroup N ′ of G′ with N ′ ⊂ H ′).



4 ALEXANDRE I. DANILENKO AND MARIUSZ LEMAŃCZYK

Let TG,H,α be ergodic. By [Z1] that there exists a closed subgroup K of G and
an α-cohomologous cocycle β of T which takes values and has dense range in K.
Since TG,H,β is also ergodic, it follows that Hg0K = G for some g0 ∈ G. Without
loss in generality we may assume that HK = G (otherwise set K ′ = g0Kg

−1
0

and β′(x) = g0β(x)g−1
0 and consider TG,H,β′). Then TG,H,β ' TK,H∩K,β and the

conjugacy map t : X × (H\G) → X × ((H ∩K)\K) is defined by

t(x,Hk) = (x, (H ∩K)k)

for all k ∈ K. Notice that if H ⊂ G is irreducible, so is H ∩K ⊂ K. Thus we have
proved

Proposition 1.1. Let S be an ergodic isometric extension of T . Then there is a
group cover (G,H,α) such that H ⊂ G is irreducible, α has dense range in G, and
S ' TG,H,α.

We call (G,H,α) a canonical group cover of T , if H ⊂ G is irreducible (and
TG,H,α ergodic).

Remark 1.2. If T is measure-preserving then so is every isometric extension of T .
In this case M. Mentzen [Me, Theorem 1] proved Proposition 1.1 without claiming
that (G,H,α) is a canonical group cover. (He used techniques connected with
joinings of dynamical systems.)

Remark 1.3. Theorem 3.1 of [Ha] states that given an ergodic finite-to-one extension
S of T , there is a canonical group cover (G,H,α) of T such that S ' TG,H,α and
G is finite. We give here a short proof of this claim. It follows from the ergodicity
of S that there is n ∈ N such that the map X 3 x 7→ Card({y | p(y) = x}) is
equal to n a.e. Thus we can assume that Y = X × {0, . . . , n − 1} and S(x, j) =
(Tx, α(x)−1[j]), for a Borel function α : X → Σ(n), where Σ(n) stands for the
group of all permutations of J := {0, . . . , n− 1}. Without loss of generality we can
assume that α viewed as a T -cocycle takes values and has dense range in a subgroup
G ⊂ Σ(n) (otherwise replace α with a cohomologous cocycle β : X → Σ(n) with
this property. This results to a new S(β), however S(β) ' S). Since S is assumed
ergodic and for each j ∈ J ⋃

n∈Z
Sn(X × {j})

is S-invariant and of positive measure, we deduce that G acts ergodically (i.e.
transitively) on J . Set H = {g ∈ G | g[0] = 0}. Clearly H ⊂ G is irreducible.
Observe now that (G,H,α) is canonical and moreover S is isomorphic to TG,H,α
via (x,Hg) 7→ (x, j), where g[j] = 0.

Our purpose is now to prove

Theorem 1.4. Let T be an ergodic non-singular transformation of (X,B, µ). As-
sume that (G,H,α), (G′,H ′, α′) are two group covers of T , the first one canonical,
the second one with α′ having dense range in G′. If TG′,H′,α′ � TG,H,α and
t : X × (H ′\G′) → X × (H\G) is the corresponding factor map then:

(i) there are a continuous epimorphism l : G′ → G and a Borel function f :
X → G such that l(H ′) ⊂ H, t(x,H ′g′) = (x,Hl(g′)f(x)) and l(α′(x)) =
f(x)α(x)f(Tx)−1,
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(ii) l−1(H) = H ′ if and only if t is an isomorphism,
(iii) if l � H ′ is one-to-one then H ′ ⊂ G′ is irreducible,
(iv) if H ′ ⊂ G′ is irreducible and t is an isomorphism then l is one-to-one and

l(H ′) = H.

Proof. (i) Consider the product cocycle α×α′ of T with values in G×G′. By [Z1]
there exists a closed subgroup Π ⊂ G × G′ and two Borel functions φ : X → G
and ψ : X → G′ such that the cocycle β × β′ takes values and has dense range
in Π, where β(x) = φ(x)−1α(x)φ(Tx) and β′(x) = ψ(x)−1α′(x)ψ(Tx). Since α
and α′ have dense ranges in G and G′ respectively, the two coordinate projections
Π → G, Π → G′ are onto. Notice that t(x,H ′g′) = (x, t1(x,H ′g′)) for a Borel map
t1 : X × (H ′\G′) → H\G. Since tTG′,H′,α′ = TG,H,αt, the map ρ : X × (H ′\G′) →
X × (H ×G) given by

(1-1) ρ(x,H ′g′) = t1(x,H ′g′ψ(x)−1)φ(x)

satisfies

(1-2) ρ(Tx,H ′g′β′(x)) = ρ(x,H ′g′)β(x)

for µ×λH′\G′ -a.e. (x,H ′g′). Since Π → G′ is onto, λG′ is the pullback of the Haar
measure λΠ on Π. It follows that (1-2) holds for µ×λΠ-a.e. (x, g, g′) ∈ X ×Π. We
define a Borel function F : X × Π → H\G by setting F (x, g, g′) = ρ(x,H ′g′)g−1.
Then

F (Tx, gβ(x), g′β′(x)) = ρ(Tx,H ′g′β′(x))β(x)−1g−1 = ρ(x,H ′g′)g−1 = F (x, g, g′)

for µ × λΠ-a.e. (x, g, g′). Hence there is g0 ∈ G such that F (x, g, g′) = Hg0 and
thus

(1-3) ρ(x,H ′g′) = Hg0g

for µ × λΠ-a.e. (x, g, g′). Without loss of generality we may assume that g0 = 1G
(otherwise replace β by the cocycle β′′(x) = g−1

0 β(x)g0 and instead of Π consider the
group Π′ = {(g−1

0 gg0, g
′) ∈ G×G′ | (g, g′) ∈ Π}). Let NG = {g ∈ G | (g, 1G′) ∈ Π}.

Then NG is a normal subgroup of G. Moreover, it is easy to deduce from (1-3) that
for each n ∈ NG we have Hgn = Hg for λG-a.e. g ∈ G. Since H ⊂ G is irreducible,
n = 1G. Hence NG is trivial and Π = {(l(g′), g′) | g′ ∈ G′} for a continuous
epimorphism l : G′ → G. Thus

(1-4) β(x) = l(β′(x))

for a.e. x. Moreover, (1-3) (always with g0 = 1G) entails ρ(x,H ′g′) = Hl(g′) for
(µ×λG′)-a.e. (x, g′) ∈ X×G′. Hence ρ(x,H ′g′) = ρ̂(H ′g′) for a.e. (x,H ′g′), where
ρ̂ : H ′\G′ → H\G is a continuous map given by ρ̂(H ′g′) = Hl(g′). Notice that
l(H ′) ⊂ H and the diagram

G′ l−−−−→ Gy y
H ′\G′ −−−−→

ρ̂
H\G
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commutes. We deduce from (1-1) and (1-4) that t1(x,H ′g′) = Hl(g′)f(x) and
l(α′(x)) = f(x)α(x)f(Tx)−1, where f(x) = l(ψ(x))φ(x)−1, as desired.

(ii), (iii) are now obvious and (iv) follows from (i) and (ii). �

Remark 1.5. Consider the category of triplets (G,H,α), where G is a compact
group, H a subgroup of G and α : X → G an ergodic cocycle of T . We say that
there is a morphism of (G,H,α) onto (G′,H ′, α′) if there are non-singular maps
Φ : X × G → X × G′ and Ψ : X × H\G → X × H ′\G′ such that the following
diagram commutes

X ×G − − − − X ×G

| X ×H\G − − X ×H\G |

| | X
T−−−−→ X | |

| X ×H ′\G′− −X ×H ′\G′ |

X ×G′ − − − − X ×G′,

where the skew arrows are the natural projections along the second coordinate. It
follows from Theorem 1.4 that TG,H,α is a minimal object in this category if and only
if it is canonical. In the particular case of finite extensions, i.e. when G and G′ are
finite (see Remark 1.3), this criterion was proved by T. Hamachi [Ha, Theorem 5.1].
However our argument is different. Notice also that the existence of the minimal
objects (without the criterion) was established in [JLM, Proposition 1.1].

2. Centralizers of isometric extensions

Throughout this section T is an ergodic non-singular invertible transformation of
(X,B, µ) and (G,H,α) a canonical group cover of T . The centralizer C(T ) of T is
the monoid of all µ-non-singular transformations commuting with T . The subgroup
of invertible ones will be denoted by C∗(T ). T is called coalescent if C(T ) = C∗(T ).

We say that S ∈ C∗(T ) can be lifted to C(TG,H,α) if there is a µ × λH\G-non-
singular transformation S̃ of X × H\G with S̃ ∈ C(TG,H,α) and pS̃ = Sp, where
p : X ×H\G → X is the first coordinate projection. An easy modification of the
argument used in the proof of Theorem 1.4 implies

Proposition 2.1. Every lift S̃ of S ∈ C∗(T ) to C(TG,H,α) has the form

S̃(x,Hg) = Sl,f (x,Hg) := (Sx,Hl(g)f(x)),

where f : X → G is a measurable map and l : G → G is a continuous group
epimorphism with l(H) ⊂ H and

(2-1) l(α(x)) = f(x)α(Sx)f(Tx)−1.

Moreover, Sl,f is invertible if and only if so is l. If this is the case then l(H) = H.
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Corollary 2.2. If S can be lifted to C(TG,H,α) then it can also be lifted to C(Tα).

Proposition 2.3. Let T have pure point spectrum. Then
(i) Every element of C(TG,H,α) is a lift of some transformation from C∗(T ).
(ii) If Tα is coalescent then so is TG,H,α.
(iii) More generally, if TN ·α is coalescent for each closed normal subgroup N ⊂

G then TG,K,α is coalescent for each closed subgroup K ⊂ G (cf. [JLM,
Corollary 8.1]).

Proof. (i) One should slightly modify the argument of [D1, Proposition 6.1] and
apply Proposition 2.1.

(ii) follows directly from (i) while (iii) from (ii). �

Remark 2.4. Note that Propositions 2.1 and 2.3(i) extend the earlier results of
[Ne] and [Me, Theorem 4], where the case of group extensions (i.e. H = {1G}) of
measure-preserving transformations was studied.

Given k ∈ G, we denote by Adk the inner automorphism of G defined by k, i.e.
Adk(g) = kgk−1. Let NG(H) stand for the normalizer of H in G, i.e. NG(H) =
{g ∈ G | gHg−1 = H}.

Proposition 2.5. Every lift Ĩd of the identity Id of X to C(TG,H,α) is of the form

Ĩd(x,Hg) = (x,Hkg) = IdAdk,k(x,Hg)

for some k ∈ NG(H), where k is regarded as a constant function from X to G.
Moreover, IdAdk,k is the identity of X ×H\G if and only if k ∈ H.

Proof. The result follows from Proposition 2.1, Corollary 2.2 and [D1, Lemma 5.2]. �

This proposition implies that all lifts of the identity are invertible. Moreover,
if S ∈ C∗(T ) and S, S−1 can both be lifted to C(TG,H,α) then every lift of S is
invertible. Put

LH(T, α) = {S ∈ C∗(T ) | S, S−1 can be lifted to C(TG,H,α)},

C̃(TG,H,α) = {S̃ ∈ C(TG,H,α) | S̃ is a lift of some S ∈ LH(T, α)}.

The two sets are groups. We also notice that

σ : NG(H)/H 3 kH 7→ σ(kH) := IdAdk,k ∈ C̃(TG,H,α)

is a well defined one-to-one group homomorphism.
For S ∈ C∗(T ), consider a unitary operator US in L2(X,µ) given by USf(x) =

f(Sx)
√
dµ ◦ S
dµ

(x). The weak topology on C∗(T ) is inherited from the strong oper-

ator topology on the unitary group U(L2(X,µ)) via the embedding S 7→ US . It is
well known that C∗(T ) endowed with the weak topology is a Polish group. A se-

quence Sn ∈ C∗(T ) weakly converges to S ∈ C∗(T ) if and only if
dµ ◦ Sn
dµ

→ dµ ◦ S
dµ

in the L1(X,µ)-norm and µ(S−1
n A4S−1A) → 0 as n → ∞ for each A ∈ B. It is

easy to see that C̃(TG,H,α) is a closed subgroup of C∗(TG,H,α) and thus Polish.



8 ALEXANDRE I. DANILENKO AND MARIUSZ LEMAŃCZYK

Moreover, the map πH : C̃(TG,H,α) → C∗(T ) given by πH(Sl,f ) = S is a continuous
group homomorphism. By Proposition 2.5 the range of σ is equal to π−1

H ({Id}) and
hence closed. Furnish NG(H)/H with the quotient topology. Then it is easy to
verify that σ is continuous and hence bicontinuous by the open mapping theorem
for Polish groups. We endow LH(T, α) = C̃(TG,H,α)/π−1

H ({Id}) with the quotient
topology, say the LH -topology. By [Br], LH(T, α) is a Polish group and

(2-2) 1 −→ NG(H)/H σ−→ C̃(TG,H,α) πH−−→ LH(T, α) −→ 1

is a short exact sequence of Polish groups. Remark that the LH - topology is stronger
than the weak one restricted to LH(T, α). Hence LH(T, α) is a Borel subset of
C∗(T ).

Denote by AutG the group of all continuous automorphisms of G. It is Polish
when equipped with the topology of uniform convergence. Note that AutHG := {l ∈
AutG | l(H) = H} is a closed subgroup of AutG; InnHG := {Adk | k ∈ NG(H)}
and ĨnnHG := {Adk | k ∈ H} are closed normal subgroups of AutHG. We put
OutHG := AutHG/InnHG, ÕutHG := AutHG/ĨnnHG and endow them with the
(Polish by [Br]) quotient topologies. We also put

τ̃H : C̃(TG,H,α) 3 Sl,f 7→ l · ĨnnHG ∈ ÕutHG,

τH : LH(T, α) 3 S 7→ l · InnHG ∈ OutHG,

where the latter l is determined by (2-1). Proposition 2.5 implies that τH is well de-
fined. Notice also that τ̃H and τH are group homomorphisms. It is rather standard
to show that they are continuous (see [GLS, §4], [D1, §§5,6]).

We write WC(T ) for the weak closure of {Tn | n ∈ Z} in C∗(T ). T is said to
satisfy the weak closure property (WCP) if C∗(T ) = WC(T ). All ergodic rotations,
rank 1 transformations [Ki], Gaussian-Kronecker transformations [FL] satisfy the
WCP.

Corollary 2.6 (Weak Closure Theorem for Cocycles, cf. [GLS, Corollary 5.5]). Let
T satisfy the WCP and LH(T, α) = C∗(T ). Then C̃∗(TG,H,α) is equal to the weak
closure of {TnG,H,ασ(kH) | n ∈ Z, k ∈ NG(H)}.

Proof. Since LH(T, α) = C∗(T ) and the LH -topology is stronger than the weak
one, it follows that they are equal. Use (2-2) to complete the proof. �

By [GLS, Proposition 5.7] if T has pure point spectrum and L{1G}(T, α) =
C∗(T ) then Tα has pure point spectrum and G is Abelian. Since by Corollary 2.2
L{1G}(T, α) ⊂ LH(T, α), we deduce

Corollary 2.7. If T has pure point spectrum and H 6= {1G} then LH(T, α) 6=
C(T ).

3. Factors of isometric extensions

Let (G,H,α) be a canonical group cover of T . A compact subgroup K̃ ⊂
C∗(TG,H,α) is called diagonal if σ(NG(H)/H) ∩ K̃ = {Id}. Such groups were stud-
ied in [Kw] and [Le] in connection with the factor problem of group extensions (a
diagonal subgroup determines the factor of sets which are fixed by all its elements
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and under some additional assumptions, all factors arise in this way). In particular,
an important question is whether given a compact subgroup K ⊂ LH(T, α), there
is a diagonal subgroup K̃ ⊂ C̃(TG,H,α) with πH(K̃) = K? A partial answer to
this question was given in [Le] in the case of Abelian G and trivial H (see also an
earlier paper [Kw]). In this section we extend their results to arbitrary isometric
extensions.

Lemma 3.1. Let K be a weakly closed subgroup of LH(T, α). Then the restriction
of the LH-topology and the weak topology to K are the same.

Proof. One should repeat the argument used in the proof of Corollary 2.6. �

It follows that a subgroup of LH(T, α) is LH -compact if and only if it is weakly
compact. Given such a subgroupK, we consider the associated short exact sequence
of compact groups (cf. with (2-2))

(3-1) 1 → NG(H)/H σ−→ π−1
H (K) πH−−→ K → 1.

Actually, π−1
H (K) is compact as a topological group extension of a compact group

by another compact one. Remind some concepts of the cohomology groups theory.
Let s : LH(T, α) → C̃(TG,H,α) be a Borel normalized cross-section of πH (see (2-2)),
i.e. πH ◦ s = Id and s(Id) = Id. Define a Borel function c : LH(T, α)×LH(T, α) →
NG(H)/H by setting c(S1, S2) := s(S1)s(S2)s(S1S2)−1. Then c is a “noncommu-
tative” 2-cocycle, i.e.

c(S1, S2)c(S1S2, S3) = Ads(S1)[c(S2, S3)]c(S1, S2S3) and

c(S, Id) = c(Id, S) = 1NG(H)/H

for all S1, S2, S3, S ∈ LH(T, α). Notice that given another Borel cross-section s′ :
LH(T, α) → C̃(TG,H,α), we have s′(S) = d(S)s(S) for a Borel map d : LH(T, α) →
NG(H)/H and

c′(S1, S2) = d(S1)Ads(S1)[d(S2)]c(S1, S2)d(S1S2)−1,

i.e. the associated 2-cocycles c and c′ are 2-cohomologous. By a 2-coboundary we
mean a 2-cocycle 2-cohomologous to the trivial one.

Proposition 3.2. The following are equivalent :

(i) there exists a diagonal subgroup K̃ ⊂ C̃(TG,H,α) with πH(K̃) = K,
(ii) (3-1) splits,
(iii) the restriction of c to K × K is a 2-coboundary (this property does not

depend on the particular choice of a cross-section),
(iv) there is a Borel cross-section s whose restriction to K is a continuous ho-

momorphism into C̃(TG,H,α).

Proof. (i)⇐⇒(ii), (iii)=⇒(ii) are well known. (iv)=⇒(iii) is obvious. It suffices to
show that (i)=⇒(iv). For S ∈ K, we set s(S) := S̃ ∈ K̃ if πH(S̃) = S. Since K̃
is diagonal, s is well defined. Moreover, s is continuous. Now we extend it to the
entire LH(T, α) in an arbitrary Borel way such that πH ◦ s = Id. �
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Now we will show that the properties (i)–(ii) are closely related to the problem of
extending of Z-cocycles to cocycles of larger actions (studied in [DG], [GLS], [D1]).
For simplicity we shall assume that H is trivial.

Let a locally compact group A act (on the left) on (X,B, µ) via non-singular
automorphisms and v : A 3 a 7→ va ∈ AutG be a continuous homomorphism. A
Borel map β : A×X → G is an (A, v)-cocycle if

β(ab, x) = β(a, bx)va(β(b, x)) a.e.

for every a, b ∈ A. If v is trivial we call β an A-cocycle. Two (A, v)-cocycles β and
γ are cohomologous if there exists a Borel function f : X → G such that

β(a, x) = f(ax)γ(a, x)va(f(x))−1 a.e.

for each a ∈ A. β is called an (A, v)-coboundary if it is cohomologous to the
trivial (A, v)-cocycle. Given a non-singular transformation T and a Borel function
α : X → G, we define a Z-cocycle (or simply T -cocycle) α̂ by setting

α̂(1, x) := α(x)−1, x ∈ X.

Let K be a subgroup of C∗(T ). Assume that Tn /∈ K for every n 6= 0. We say that
α can be extended to K if there is a homomorphism l : K 3 S 7→ lS ∈ AutG and a
(K, l)-cocycle β such that

(3-2) α(Sx)−1β(S, x) = β(S, Tx)lS(α(x)−1) a.e.

for each S ∈ K. Actually, let A := Z×K act on X as (n, S)x := TnSx. Define a
homomorphism v : A→ AutG by setting v(n,S) := lS and put

δ((n, S), x) := α̂(n, Sx)β(S, x) for all (n, S) ∈ A, x ∈ X.

It is easy to verify that δ is a well defined (A, v)-cocycle and δ((1Z, Id), x) = α(x)−1.
A similar definition can be given in case of nonfree T -commuting actions of compact
groups.

Corollary 3.3. Let K be a compact subgroup of L{1G}(T, α) such that Tn /∈ K
for every n 6= 0. Then α can be extended to K if and only if one of (i)–(iv) from
Proposition 3.2 is satisfied. If this is the case then α is cohomologous to a T -cocycle
α′ with α′ ◦ S = lS ◦ α′ for all S ∈ K.

Proof. Let M(X,G) stand for the group of G-valued measurable functions on X
endowed with the (Polish) topology of convergence in measure. It is easy to deduce
from Proposition 2.1 that Proposition 3.2(iv) is equivalent to the following fact:
there exist two maps

l : K 3 S 7→ lS ∈ AutG,

f : K 3 S 7→ fS ∈M(X,G)

such that K 3 S 7→ SlS ,fS
∈ C̃(Tα) is a continuous group homomorphism. This

entails that l is a continuous group homomorphism and f a continuous map satis-
fying

(3-3) fSS′ = lS ◦ fS′ · fS ◦ S′ for all S, S′ ∈ K.
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We set β(S, x) := fS(x)−1, x ∈ X, S ∈ K. It follows from (3-3) that β is a
(K, l)-cocycle. Then α can be extended to K if and only if (3-2) is fulfilled, which
according to (2-1) is equivalent to saying that S ∈ L{1G}(T, α).

It is a well known fact that every cocycle of a free type I action is a coboundary
(see [Sc] and [Z2]). Remind that every measurable action of a compact group is of
type I. Hence there exists a function f : X → G with β(S, x) = f(Sx)−1lS(f(x))
a.e. for each S ∈ K. In view of (3-2)

(3-4) α(Sx)−1f(Sx)−1lS(f(x)) = f(STx)−1lS(f(Tx))lS(α(x)−1)

a.e. for each S ∈ K. Put α′(x) := f(x)α(x)f(Tx)−1, x ∈ X. It follows from (3-4)
that α′ is as desired. �

Remark 3.4. Let K be as above. We define an action of π−1
{1G}(K) on X by Sl,fx :=

Sx. It is not free and the stability group at each x ∈ X equals π−1
{1G}(Id), i.e.

G. We set β(Sl,f , x) := f(x)−1 for all x ∈ X, Sl,f ∈ π−1
{1G}(K). Then β is a

(π−1
{1G}(K), τ̃{1G})-cocycle. It is easy to verify that α always can be extended to

π−1
{1G}(K), since this is equivalent to (2-1). Notice that β(IdAdk,k, x) = k−1 at a.e.
x for each k ∈ G.

4. Constructing cocycles with
prescribed extensions of lifting groups

Let K be a compact subgroup of the centralizer of an ergodic non-singular au-
tomorphism T of (X,B, µ). We shall assume that G is Abelian and H = {1G}.
Consider a topological (compact) group extension of K by G:

(4-1) 1 → G→ E
p−→ K → 1.

Our purpose here is to find a cocycle α : X → G with dense range in G such
that K ⊂ L(T, α) and (4-1) is congruent to (3-1), i.e. there exists a continuous
isomorphism E → π−1(K) such that the diagram

(4-2)

1 −−−−→ G −−−−→ E
p−−−−→ K −−−−→ 1

Id

y y yId

1 −−−−→ G −−−−→ π−1(K) −−−−→ K −−−−→ 1

commutes. Assume that such an α exists. To simplify our notation we shall write
L(T, α), π, τ without the lower index {1G} (see §2). Notice that (4-1) determines
a continuous group homomorphism l : K → AutG (indeed, E acts on G by inner
automorphisms and since G is Abelian, this gives rise to a representation of E/G,
i.e. a representation of K). Since AutG = OutG, we deduce from (4-2) that l
equals τ (restricted to K). Recall that every transformation R ∈ π−1(K) is of the
form R = SlS ,f where S ∈ L(T, α) and the function f ∈ M(X,G) satisfies (2-1).
Moreover,

π−1(S) = {SlS ,f̃ | f̃ − f = const a.e.}.
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Hence any Borel cross-section r of the projection π : π−1(K) → K can be written
as r(S) = SlS ,F (S,.), where F : K ×X → G is a Borel map satisfying

(4-3) Fβ(S, x)− Fβ(S, Tx) = α(Sx)− lS(α(x))

at a.e. x for every S ∈ K. Next, r generates a 2-cocycle c : K ×K → G by the
standard formula

r(S1)r(S2) = Id1,c(S1,S2)r(S1S2),

which is equivalent to

(4-4) F (S1S2, x) + c(S1, S2) = F (S1, S2x) + lS1(F (S2, x))

at a.e. x for all S1, S2 ∈ K. It is well known that the 2-cohomology class of c is
independent of the particular choice of the cross-section r and determined by (4-1)
completely. To summarize we see that the main problem of this section can be
restated in equivalent terms as follows: are there an ergodic T -cocycle α : X → G
and a Borel function F : K ×X → G such that (4-3) and (4-4) hold?

Let us first solve (4-4). Denote by (Y,C, ν, R) the factor of (X,B, µ, T ) deter-
mined by K. Without loss in generality we may assume that:

(i) X = Y ×K, µ = ν × λK ,
(ii) K acts on X as S(y, S′) = (y, SS′) for (y, S′) ∈ X, S ∈ K,
(iii) T = Rφ for a cocycle φ : Y → K with dense range in K (the last condition

only for ν continuous).
It is easy to verify that the map F : K × (Y ×K) → G given by F (S, (y, S′)) =
c(S, S′) satisfies (4-4).

Next, since K ⊂ C∗(T ), it follows that the map

K ×X 3 (S, x) 7→ F (S, Tx) ∈ G

also satisfies (4-4). Then the difference

K ×X 3 (S, x) 7→ F (S, x)− F (S, Tx) ∈ G

is a (K, l)-cocycle. But every (K, l)-cocycle is a coboundary since K is compact
and acts freely. Hence there exists a Borel function α : X → G such that (4-3)
holds.

Thus our problem reduces to the following: is it possible to find such an α which
has dense range in G as a T -cocycle? (Remark that the set of T -cohomology classes
of the solutions of (4-3) does not change if one chooses another solution of (4-4)).

Theorem 4.1. Let be given an ergodic non-singular automorphism T , a compact
subgroup K ⊂ C(T ) and an extension (4-1) of K by a compact Abelian group G.
If K is of infinite index in C(T ) then there exists an ergodic T -cocycle α : X → G
such that K ⊂ L(T, α) and (4-2) commutes. If K is of finite index in C(T ) then
such an α exists if and only if G/N is monothetic and there is an ergodic rotation
T ′ : G/N → G/N with SpTm ∩ SpT ′ = {1}, where m = #(C(T )/K) and N is a
minimal E-normal subgroup N of G such that 1 → G/N → E/N → K → 1 splits.
In the second case both T and Tα have pure point spectrum.
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Proof. We proceed in several steps. Let us say that (4-1) has a splitting quotient-
extension if there is a proper closed subgroup N $ G which is normal in E and
such that the quotient extension of (4-1), namely 1 → G/N → E/N → K → 1,
splits. Equivalently, c is 2-cohomologous to a 2-cocycle with values in N .

(I) Suppose first that (4-1) has no splitting quotient-extensions. We claim that
α viewed as a T -cocycle has dense range in G. Suppose the contrary: there is a
proper subgroup G′ ⊂ G and a Borel function f : X → G such that the T -cocycle
γ(x) := f(Tx) + α(x) − f(x) takes values and has dense range in G′. Hence, in
view of (4-3)

(4-5) (−f(Sx) + F (S, x) + lS(f(x)))− (−f(STx) + F (S, Tx) + lS(f(Tx)))

= γ(Sx)− lS(γ(x))

for a.e. x ∈ X, S ∈ K. We need an auxiliary

Lemma 4.2 [Z1]. Let G1 and G2 be closed subgroups of G and δ1 : X → G1,
δ2 : X → G2 two T -cocycles with dense ranges in G1 and G2 respectively. If δ1
and δ2 are cohomologous (in G) then G1 = G2.

Continue the proof of Theorem 4.1. It is clear that γ ◦S and lS ◦γ are cocycles of
T with dense ranges inG′ and lS(G′) respectively. It follows from (4-5) that they are
cohomologous. By Lemma 4.2, G′ is lS-invariant for all S ∈ K, i.e. G′ is a normal
subgroup of E. Hence the quotient homomorphism of l, say l̃ : K → Aut (G/G′),
is well defined. Put f̃ = q ◦ f , F̃ = q ◦ F , c̃ = q ◦ c, where q : G → G/G′ is the
quotient map. Passing to the quotient group in (4-5) we obtain

−f̃(Sx) + F̃ (S, x) + l̃S(f̃(x)) = −f̃(STx) + F̃ (S, Tx) + l̃S(f̃(Tx))

for a.e. x ∈ X and S ∈ K. Since T is ergodic,

(4-6) F̃ (S, x) = f̃(Sx)− l̃S(f̃(x)) + a(S)

for µ× λK-a.e. (x, S), where a : K → G/G′ is a Borel map. It is easy to see that
F̃ satisfies (4-4) with c̃ being instead of c. Notice that c̃ is a 2-cocycle associated
to the cross-section q ◦ s : K → G/G′. It follows from (4-4) and (4-6) that c̃ is a
2-coboundary. This implies that c is 2-cohomologous to a 2-cocycle with values in
G′, a contradiction.

(II) We consider here another particular case: (4-1) splits. Then we can assume
that c is trivial. It follows that F is trivial and the left hand side of (4-3) is zero.
Hence we seek a T -cocycle α : X → G with dense range in G and such that
α(Sx) − lS(α(x)) = 0 a.e. for each S ∈ K. Let MK(X,G) = {α ∈ M(X,G) |
α◦S = lS ◦α for all S ∈ K}. Clearly, MK(X,G) is a closed subgroup of M(X,G).
It is easy to show that given α ∈ MK(X,G), there is a unique d ∈ M(Y,G) such
that

(4-7) α((y, S)) = lS(d(y))

for a.e. (y, S) ∈ X. Moreover, the map MK(X,G) 3 α 7→ d ∈ M(Y,G) is a
homeomorphism. Let K nl G stands for the semidirect product of K and G via l.
The following statement is a direct corollary of [D2, Theorem 4.4].
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Lemma 4.3. If ν is continuous (i.e. non-atomic) then the subset

E := {d ∈M(Y,G) | the R-cocycle ψ : Y 3 y 7→ (φ(y), d(y)) ∈ K nl G is ergodic}

is a dense Gδ in M(Y,G).

Continue the proof of Theorem 4.1. Take an arbitrary d from E (which is non-
empty by Lemma 4.3) and define a T -cocycle α by (4-7). Then α ∈ MK(X,G).
Moreover,

(Rφ)α((y, S), g) = (Ry, Sφ(y), g + lS(d(y))) = (Ry, (S, g) · (φ(y), d(y)))

= (Ry, (S, g) · ψ(y)),

i.e. (Rφ)α is conjugate to Rψ. Since the latter transformation is ergodic, so is
(Rφ)α. Hence α has dense range in G, as desired.

Now let ν be discrete. Remark that ν is necessary finite, since otherwise R
is a free (aperiodic) transitive transformation and hence has no ergodic cocycles.
Thus we may assume that there exists m ∈ N such that (Y, ν) = (Z/mZ, λZ/mZ)
and Ry = y + 1 for all y ∈ Z/mZ. Now φ should be viewed as a cocycle of a
nonfree Z-action generated by R. By [Z2] this cocycle is determined by a group
homomorphism from the stability group, namely pZ ⊂ Z to K. Since T is ergodic,
K is an Abelian monothetic group and T has pure point spectrum. More precisely,
we may assume that

(a) X = {0, 1, . . . ,m − 1} ×K is an Abelian monothetic group with multipli-
cation law as follows

(n, S) • (n′, S′) = (n
.
+ n′, S + S′ + S

[(n+n′)/m]
0 )

for some S0 ∈ K with {Sn0 | n ∈ Z} being dense in K, where
.
+ stands for

addition mod m and [.] for the integer part;
(b) µ is Haar measure on X;
(c) T acts by the formula T (n, S) = (n, S) • (1, 0).

Notice that ν is discrete if and only if K is of finite index in C(T ) and m =
#(C(T )/K).

Arguing in a similar way, we deduce that a desired T -cocycle α with dense range
in G exists if and only if

(i) l is trivial (i.e. E = K ×G),
(ii) there is g0 ∈ G such that the subgroup of K × G generated by (S0, g0) is

dense.
Remark that (ii) is equivalent to

(ii)’ there is g0 ∈ G such that the g0-rotation T ′ on (G,λG) is ergodic and
Sp(Tm) ∩ Sp(T ′) = {1}, where Sp(.) denotes the point spectrum (i.e. the
group of eigenvalues).

Notice that Tα has pure point spectrum.
(III) Now consider the remaining case.

Lemma 4.4. Let N1 ⊃ N2 ⊃ . . . be a countable chain of E-normal subgroups of G
such that the quotient short exact sequence 1 → G/Nn → E/Nn → K

pn−→ 1 splits
for every n ∈ N. Then for N :=

⋂∞
n=1Nn, the N -quotient sequence

1 → G/N → E/N → K → 1
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also splits.

Proof. Without loss in generality we may assume that N = {1G}. Thus we must
prove that (4-1) splits. Denote by qn,l : E/Nn → E/Nl and qn : E → E/Nn the
natural quotient maps, n > l. Clearly, qn,l ◦qn = ql for all n > l. By the hypothesis
of the lemma there are continuous homomorphisms sn : K → E/Nn with pn ◦ sn =
Id. Take a countable dense subset K ′ of K. Passing, if necessary, to a subsequence
we may assume that qn,l ◦sn(S) converges in E/Nl as n→∞ for every S ∈ K ′ and
l ∈ N (indeed, use a standard diagonal process). Since E (and hence every quotient
group of E) is compact, there are continuous homomorphisms s′n : K → E/Nn such
that qn,l ◦ sn(S) → s′l(S) as n → ∞ for every S ∈ K, l ∈ N. Clearly, pl ◦ s′l = Id.
Moreover, qn,l ◦ s′n = s′l for all n > l. We define a map s′ : K → E by setting
qn ◦ s′(S) = s′n(S) for all n ∈ N, S ∈ K. Since E = proj limn(E/Nn, qn,l), it follows
that S′ is a well defined continuous homomorphism and p ◦ S′ = Id, i.e. (4-1)
splits. �

Continue the proof of Theorem 4.1. Let N be the minimal E-normal subgroup
of G determining the (maximal) splitting quotient-extension of (4-1). Such a group
exists by Lemma 4.3 and Zorn lemma (indeed, since G is second countable, it is
enough to consider only countable chains of G-subgroups). Take any α satisfy-
ing (4-3). Like it was done in (II), we perturb α by adding a function f : X → G
such that

(a) f ◦ S = αS ◦ f a.e. for each S ∈ K,
(b) the T -cocycle q ◦α1 : X → G/N has dense range in G/N , where α1 = α+f

and q stands for the natural projection G→ G/N .
We claim that α1 has dense range in G. Suppose the contrary: there exists a

closed subgroup G′ ⊂ G such that α1 is cohomologous to a cocycle with dense range
in G′. As in (I) we see that G′ is normal in E and the associated quotient-extension

1 → G/G′ → E/G′ → K → 1

splits. We need the following simple lemma

Lemma 4.5. Let G be the direct product of two E-normal subgroups G1 and G2.
Suppose that the top and the bottom lines of the diagram

1 −−−−→ G1 −−−−→ E/G2 −−−−→ K −−−−→ 1

p1

x x xid

1 −−−−→ G1 ×G2 −−−−→ E −−−−→ K −−−−→ 1

p2

y y yid

1 −−−−→ G2 −−−−→ E/G1 −−−−→ K −−−−→ 1

split, where pi : G1 ×G2 → Gi is the natural projection, i = 1, 2. Then the middle
line also splits.

Complete the proof of Theorem 4.1. It follows from (b) that q(G1) = G/N , i.e.
G1 and N generate the whole G. Since G/(G1 ∩ N) = G/G1 × G/N , we deduce
from Lemma 4.5 that the sequence

1 → G/(G1 ∩N) → E/(G1 ∩N) → K → 1
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splits. By the choice of N we have G′ ∩ N = N , i.e. G′ ⊂ N . Let q′ stand for
the natural projection G → G/G′. By the assumption the T -cocycle q′ ◦ α1 is a
coboundary. But on the other hand q′ ◦ α1 is a quotient cocycle of q ◦ α1 and has
dense range in G/G′. It follows that G = G′, a contradiction. We leave the case of
discrete ν to the reader (combine the above argument with that of (II)).

Thus Theorem 4.1 is proved completely. �

Remark 4.6. Notice that the cohomological class of α is not determined uniquely
by (4-1). It is interesting to observe that in the case (I)—absence of splitting
quotient-extensions for (4-1)—every measurable solution α of (4-3) is a T -cocycle
with dense range in G.

Remark 4.7. IfG is totally disconnected but E (and henceK) is connected, then (4-1)
has no splitting quotient-extensions. Actually, otherwise there is a E-normal sub-
group N $ G such that

1 → G/N → E/N → K → 1

splits. Hence E/N is homeomorphic to the direct product G/N and K, a contra-
diction. We observe, in particular, that

1 → Z/nZ → T → T → 1

satisfies the conditions of the remark.

Remark 4.8. Suppose that K acts trivially on G, i.e. lS = Id for each S ∈ K.
Then G is contained in the center of E and hence each subgroup of G is E-normal.
Let c : K ×K → G denotes the 2-cocycle as above. Then ξ ◦ c is a multiplier (see
[Pa], [Le]) for every character ξ ∈ Ĝ. It is easy to see that (4-1) has no splitting
quotient-extensions if and only if ξ ◦ c is non-trivial, (i.e. non-2-coboundary) for
every character ξ ∈ Ĝ \ {1Ĝ}.

Remark 4.9. Let T have pure point spectrum and α be an ergodic G-valued cocycle
of T such that L(T, α) = C(T ). It is well known that then C̃(Tα) = C(Tα) ([Ne],
[D1]) and Tα has pure point spectrum [GLS]. Thus we have a short exact sequence
of compact Abelian groups

(4-8) 1 → G→ C(Tα) π−→ C(T ) → 1.

Hence G is a trivial C(T )-module. Denote by Ĥ2(C(T ), G) the set of all 2-
cohomology classes ofG-valued 2-cocycles of C(T ) associated to (4-8) for all possible
choices of ergodic α with L(T, α) = C(T ). The following follows from the argument
used in the proof of Theorem 4.1:

(i) if α, α′ are two ergodic T -cocycles which correspond to 2-cocycles c, c′ with
[c] = [c′] ∈ Ĥ2(C(T ), G) then the difference α − α′ is cohomologous to a
constant,

(ii) if α, α′ are two ergodic T -cocycles which correspond to 2-cocycles c, c′ with
[c] 6= [c′] in Ĥ2(C(T ), G) then α and α′ are non-cohomologous.
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Example 4.10. Let Z2 stand for the (compact) group of 2-adic integers and T ∈
Aut(Z2, µZ2) be the ergodic 2-adic translation. Clearly, C(T ) = Z2. Consider two
short exact sequences

1 → Z/3Z → Z/3Z× Z2 → Z2 → 1,

1 → Z/2Z → Z/2Z× Z2 → Z2 → 1.

It follows from Theorem 4.1 that for the first one (resp. the second one) there is
a (resp. there is not any) T -cocycle with dense range in Z/3Z (resp. Z/2Z) such
that (4-2) commutes.

Example 4.11. Note that H2(T,T) = 0, so each ergodic circle-valued cocycle α
over an irrational rotation T with L(T, α) = C(T ) is cohomologous to a constant,
while Ĥ2(T,Z/2Z) = H2(T,Z/2Z) 6= 0, so there is an ergodic Z/2Z-valued cocycle
over T which is not cohomologous to a constant.
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[GLS] P. Gabriel, M. Lemańczyk, and K. Schmidt, Extensions of cocycles for hyperfinite actions

and applications, Monatsh. Math. 123 (1997), 209–228.
[Ha] T. Hamachi, On a minimal group cover of an ergodic finite extension, preprint.
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