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1 Introduction

Let (X,B, µ) be a standard Borel probability space. Moreover, let T :X → X be an (a.e.)

invertible, measurable and measure-preserving map, i.e. µ(A) = µ(T−1A) for each A ∈ B.
Then T induces on L2(X) a unitary operator UT , called a Koopman operator, defined by

UTf := f ◦ T for all f ∈ L2(X). One can ask for the converse: given a unitary operator

U on L2(X), how to recognize that it is a Koopman operator. The very classical answer

says that if U preserves multiplication of bounded functions, i.e. if

U(f g) = U(f)U(g) (1)

for all f, g ∈ L∞(X), then U is a Koopman operator by a combination of the multiplication

theorem in [Hal] (page 45) and [Kec] Theorem 15.9. Another type of questions one can ask

for is, given a unitary operator U on an abstract Hilbert space, how to recognize that it is

unitarily equivalent to a Koopman operator, see for example [CR], [Cho], [Rid] and [Den].

The problem which unitary operators can be realized as Koopman operator remains

one of important and still unsolved problems in ergodic theory, see e.g. the discussion on

this problem in [KL], [KT] and also the survey article [Lem]. Up to unitary equivalence

each unitary operator U is determined by the two invariants: the equivalence class [σ] of

a finite positive Borel measure σ on the circle, called the maximal spectral type σU of U ,

together with the (Borel) multiplicity function M = MU :T → {1, 2, . . .} ∪ {∞} which is

defined σ-a.e. Once a pair ([σ],M) is given, it is easy to construct on the abstract level

a unitary operator U for which (σU ,MU) = ([σ],M). Nevertheless, it is an open problem

whether there exists a (unitary) Koopman operator U such that (σU ,MU) = ([σ],M).

(Some restrictions must be imposed on σ, for example σ must be of symmetric type and

its topological support must be full if the construction is sought in the class of UT with

T ergodic.) While some progress has been made recently in the spectral theory of single

transformation, cf. [Lem], for unitary one-parameter groups still little is known.

A unitary one-parameter C0-group (Ut)t∈R is called a Koopman group if for all t ∈ R

there exists a measurable Tt:X → X such that Utf = f ◦ Tt for all f ∈ L2(X). It is

clear that a Koopman group must preserve L∞(X), but this latter condition is satisfied

also for many unitary one-parameter C0-groups which are not Koopman groups. By the

Stone theorem [Sto], the generator A of a unitary one-parameter C0-group is skew-adjoint.

Therefore each unitary one-parameter C0-group is determined up to unitary equivalence

by (σU ,MU), where σU = [σ] for some finite positive Borel measure on R. In order

to characterize those pairs ([σ],M) which can be realized by Koopman groups, it seems

to natural to characterize first those generators A for which (etA)t∈R is equivalent to a

Koopman group. Even the problem to characterize in terms of their generator which

unitary one-parameter C0-groups are Koopman groups seems to be, however, far from

obvious. Moreover, once such a characterization is done, one can consider the problem

whether a perturbation of a Koopman representation remains Koopman. The latter is of

independent interest.

In order to formulate the main results of the paper, first recall that if A is an operator

in a function space E and D ⊂ D(A) is an algebra, then we say that A is a derivation

on D if

A(f g) = (Af) g + f (Ag)
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for all f, g ∈ D. The main result of the paper is the following.

Theorem 1.1. Let (X,B, µ) be a standard Borel probability space. Let U be a unitary

one-parameter C0-group on L2(X) with generator A. Then the following are equivalent.

(i) For all t ∈ R there exists an a.e. invertible measurable and measure preserving map

Tt:X → X such that Utf = f ◦ Tt for all f ∈ L2(X).

(ii) The space L∞(X) is invariant under U . Moreover, the space D(A) ∩ L∞(X) is an

algebra and A is a derivation on D(A) ∩ L∞(X).

We are also able to prove in Corollary 2.9 a generalisation of the above theorem where

the group U is a C0-group which is not necessarily unitary and we do not require measure

preserving in Condition (i). Moreover we have a generalisation where the measure µ is

merely σ-finite, see Theorem 2.8 below.

A theorem of the same nature as Theorem 1.1 was given by Gallavotti and Pulvirenti,

[GP] Theorem 4.

Theorem 1.2 ([GP]). Let (X,B, µ) be a standard Borel probability space. Let A be a

self-adjoint operator and let D ⊂ D(A) ⊂ L∞(X). Suppose that D is a core for A, 1 ∈ D,

D is an algebra, D is self-adjoint (that is if f ∈ D then f ∈ D), A is a derivation on D
and Af = −Af for all f ∈ D. Then (i) in Theorem 1.1 is valid.

The theorem of Gallavotti and Pulvirenti does not have an extension where A is merely

a C0-group generator and it is essential in [GP] that the measure µ is finite.

The main application of Theorems 1.1 and 2.8 is a characterization of those C0-groups

on L2(X) which are pointwise the product of a Koopman operator and a multiplication

operator.

Theorem 1.3. Let (X,B, µ) be a standard Borel probability space. Let U be a unitary

C0-group on L2(X) preserving L∞(X). Assume that 1 ∈ D(A) with A1 ∈ L∞(X), where

A is the generator of U . Then the following are equivalent.

(i) For all t ∈ R there exists an a.e. invertible, measurable and measure-preserving map

Tt:X → X and a function ψt:X → C such that Utf = ψt · (f ◦Tt) for all f ∈ L2(X).

(ii) For all t ∈ R one has |Ut1| = 1 a.e. Moreover, D(A) ∩ L∞(X) is an algebra and

A− (A1)I is a derivation on D(A) ∩ L∞(X).

We also have an extension of this theorem for C0-groups which are not necessarily

unitary, see Theorem 3.10. The above result can be viewed as the one-parameter coun-

terpart of the classical Banach–Lamperti theorem, [Lam] Theorem 3.1, classifying that all

isometries of Lp(X) for all p ∈ [1,∞) \ {2} are of the form

f 7→ ψ · (f ◦ T ) (2)

for some pointwise map T :X → X and ψ:X → (0,∞). In [GGM] the authors also proved

that unitary positivity preserving maps are of the form (2).

In Section 2 we prove Theorem 1.1 and its extension for general C0-groups. As a tool

and byproduct we prove in Theorem 2.5 that if (X,B, µ) is a finite measure space and S
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is a C0-group in L2(X), then S extends consistently to a C0-group on L1(X) if and only

if the dual group S∗ leaves L∞(X) invariant. This is a new result in (semi)group theory.

In Section 3 we prove Theorem 3.10, characterizing weighted non-singular one-parameter

C0-groups, which has Theorem 1.3 as corollary. It turns out that in Theorem 1.3(i) one

has ψt ∈ L∞(X) and

ψt+s = ψt · (ψs ◦ Tt) a.e.
for all t, s ∈ R. Finally, in Section 4 we determine the form of such ψ, assuming a

differentiability condition.

2 Derivations

If (X,B, µ) is a measure space and f, g ∈ L2(X), then we denote the inner product by

(f, g) =
∫
X
f g dµ. Moreover, if f ∈ L∞(X) and g ∈ L1(X) then we denote the duality

by 〈f, g〉 =
∫
X
f g dµ. If the measure space is clear from the context, then we abbreviate

Lp = Lp(X) for all p ∈ [1,∞]. Further, let p, q ∈ [1,∞], let U be a one-parameter

(semi)group on Lp(X) and V be a one-parameter (semi)group on Lq(X). We say that U

and V are consistent if Utf = Vtf for all t ∈ R (or t ∈ (0,∞)) and f ∈ Lp(X) ∩ Lq(X).

For the proof of Theorem 1.1 we need several lemmas as preparation. The first two

seem to be folklore.

Lemma 2.1. Let (X,B, µ) be a measure space, c > 0 and E:L2(X) → L2(X) be a bounded

operator. Suppose that ‖Ef‖∞ ≤ c ‖f‖∞ for all f ∈ L2(X) ∩ L∞(X). Then there exist

unique Ê ∈ L(L1(X)) and Ẽ ∈ L(L∞(X)) such that Êf = E∗f for all f ∈ L1(X)∩L2(X)

and Ẽf = Ef for all f ∈ L∞(X) ∩ L2(X). Moreover, ‖Ẽ‖∞→∞ ≤ c and Ẽ = (Ê)∗.

Proof. Let f ∈ L1 ∩ L2. Then |(E∗f, g)| = |(f, Eg)| ≤ ‖f‖1 ‖Eg‖∞ ≤ c ‖f‖1 ‖g‖∞ for all

g ∈ L2 ∩ L∞. So E∗f ∈ L1 and ‖E∗f‖1 ≤ c ‖f‖1. Since L1 ∩ L2 is dense in L1 it follows

that there exists a unique Ê ∈ L(L1) such that Êf = E∗f for all f ∈ L1 ∩ L2. Choose

Ẽ = (Ê)∗. Then the existence follows. The uniqueness on L∞ is a consequence of the

w∗-density of L2 ∩ L∞ in L∞.

As a consequence one has the next lemma.

Lemma 2.2. Let (X,B, µ) be a measure space and S a semigroup on L2(X). Suppose that

for all t ∈ (0, 1] there exists a c > 0 such that ‖Stf‖∞ ≤ c ‖f‖∞ for all f ∈ L2(X)∩L∞(X).

Then there exist a unique semigroup S̃ on L∞(X) and a unique semigroup Ŝ on L1(X)

such that S̃ is consistent with S and Ŝ is consistent with S∗. Moreover, if there exists

a c̃ ≥ 1 such that ‖Stf‖∞ ≤ c̃ ‖f‖∞ for all t ∈ (0, 1] and f ∈ L2(X) ∩ L∞(X), then

‖S̃t‖∞→∞ = ‖Ŝt‖1→1 ≤ c et log c for all t ∈ (0,∞).

The next lemma is less known.

Lemma 2.3. Let (X,B, µ) be a measure space, c ≥ 1 and S a C0-semigroup on L2(X) with

generator A. Suppose that ‖Stf‖∞ ≤ c ‖f‖∞ for all t ∈ (0, 1] and f ∈ L2(X) ∩ L∞(X).

Then D(A) ∩ L∞(X) is dense in L2(X).
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Proof. Since L2 ∩ L∞ is dense in L2, it suffices to show that for all f ∈ L2 ∩ L∞ there

exists a sequence (fn)n∈N in D(A) ∩ L∞ such that lim fn = f in L2. Fix ϕ ∈ C∞
c (0,∞)

with
∫
ϕ = 1. For all n ∈ N define ϕ ∈ C∞

c (0,∞) by ϕn(t) = nϕ(n t). Let f ∈ L2 ∩ L∞

and n ∈ N. Define fn ∈ L2 by

fn =

∫

(0,∞)

ϕn(t)Stf dt.

Then fn ∈ D(A). Moreover, limn→∞ fn = f in L2 since S is a continuous semigroup. It

remains to show that fn ∈ L∞ for all n ∈ N. Let n ∈ N and g ∈ L1 ∩ L2. Then

|ϕn(t) (Stf, g)| ≤ |ϕn(t)| ‖Stf‖∞ ‖g‖1 ≤ |ϕn(t)| c et log c ‖f‖∞ ‖g‖1
for all t ∈ (0,∞). Hence

|(fn, g)| =
∣∣∣
∫

(0,∞)

ϕn(t) (Stf, g) dt
∣∣∣ ≤Mn ‖f‖∞ ‖g‖1,

where Mn =
∫
(0,∞)

|ϕn(t)| c et log c dt <∞. So fn ∈ L∞ as required.

Remark 2.4. Under the conditions of Lemma 2.3 the space D(A)∩L∞ is even a core for

A, since the space D(A) ∩ L∞ is invariant under S. See [EN] Proposition II.1.7.

It seems that the next theorem is new. Note that we do not assume a uniform bound

of the type (3) in Condition (ii).

Theorem 2.5. Let (X,B, µ) be a finite measure space. Let S be a C0-group on L2(X).

Then the following are equivalent.

(i) The group S extends consistently to a C0-group on L1(X).

(ii) The space L∞(X) is invariant under S∗, that is S∗
t (L∞(X)) ⊂ L∞(X) for all t ∈ R.

If these conditions are satisfied, then there exist M ≥ 1 and ω ≥ 0 such that

‖S∗
t f‖∞ ≤M eω|t| ‖f‖∞ (3)

for all t ∈ R and f ∈ L∞(X).

Proof. The implication ‘(i)⇒(ii)’ is trivial. (Cf. the proof of Lemma 2.1.) So it remains

to show ‘(ii)⇒(i)’.

Let t ∈ R. It follows from the closed graph theorem that there exists a c > 0 such

that ‖S∗
t f‖∞ ≤ c ‖f‖∞ for all f ∈ L∞. Note that we use here that the measure µ is finite.

Also note that c depends on t. Hence by Lemma 2.2 there exists a one-parameter group

Ŝ on L1 and a one-parameter group S̃ on L∞ such that Ŝ is consistent with S and S̃ is

consistent with S∗. Moreover, S̃t = (Ŝt)
∗ for all t ∈ R.

We shall show that {S̃t : t ∈ [2, 3]} is bounded in L(L∞). By the uniform boundedness

principle if suffices to show that {‖S̃tf‖∞ : t ∈ [2, 3]} is bounded for all f ∈ L∞. For

this we use the arguments as in the first step of the proof of [ABHN] Lemma 3.16.4. Fix

f ∈ L∞. If t ∈ R then

‖S̃tf‖∞ = sup{|〈S̃tf, g〉| : g ∈ L1 and ‖g‖1 ≤ 1}

= sup{|〈S̃tf, g〉| : g ∈ L2 and ‖g‖1 ≤ 1}

= sup{|(f, Stg)| : g ∈ L2 and ‖g‖1 ≤ 1}.

4



For each g ∈ L2 the map t 7→ |(f, Stg)| is continuous by the strong continuity of S on L2.

So t 7→ ‖S̃tf‖∞ is lower semicontinuous and therefore a measurable function on R. This

is the key assumption in the first step of the proof of [ABHN] Lemma 3.16.4. In order to

have the paper self-contained, we include the proof, with minor modifications. Suppose

that {‖S̃tf‖∞ : t ∈ [2, 3]} is not bounded. Then there are t0, t1, t2, . . . ∈ [2, 3] such that

limn→∞ tn = t0 and ‖S̃tnf‖∞ ≥ n for all n ∈ N. Since t 7→ ‖S̃tf‖∞ is measurable, there

are M > 0 and a measurable set F ⊂ [0, t0] such that µ(F ) > 1 and ‖S̃tf‖∞ ≤ M for all

t ∈ F . Let n ∈ N. Then

n ≤ ‖S̃tnf‖∞ ≤ ‖S̃tn−t‖ ‖S̃tf‖∞ ≤M ‖S̃tn−t‖

for all t ∈ F . So ‖S̃s‖ ≥M−1 n for all s ∈ En, where

En = {tn − t : t ∈ F ∩ [0, tn]}.

Note that En is measurable and µ(En) ≥ 1 if |tn−t0| < µ(F )−1. Let E = lim supn→∞En =⋂∞
m=1

⋃∞
n=mEn. Then E is measurable and µ(E) ≥ 1. In particular, E 6= ∅. Moreover,

‖S̃s‖ = ∞ for all s ∈ E. This is a contradiction.

Thus {S̃t : t ∈ [2, 3]} is bounded in L(L∞). Since S̃t = (Ŝt)
∗ it follows that {Ŝt :

t ∈ [2, 3]} is bounded in L(L1). By the group property the set {Ŝt : t ∈ [−1, 1]} is

also bounded in L(L1). Let c = sup{‖Ŝt‖ : t ∈ [−1, 1]} < ∞. Let g ∈ L∞. Then

limt→0〈g, Ŝtf〉 = limt→0(g, Stf) = (g, f) = 〈g, f〉 for all f ∈ L2. Since L2 is dense in L1 and

c <∞ it follows that limt→0〈g, Ŝtf〉 = 〈g, f〉 for all f ∈ L1. So Ŝ is weakly continuous and

hence Ŝ is a C0-group. Finally, there are M ≥ 1 and ω ≥ 0 such that ‖Ŝt‖1→1 ≤ M eω|t|

for all t ∈ R. Then ‖S̃t‖∞→∞ = |Ŝt‖1→1 ≤M eω|t| for all t ∈ R.

We now turn to the proof of Theorem 1.1. The implication (i)⇒(ii) in Theorem 1.1 is

a special case of the next proposition.

Proposition 2.6. Let U be a C0-group on L2(X) with generator A, where (X,B, µ) is a

measure space. Suppose that for every t ∈ R there exists a measurable map Tt:X → X

such that Utf = f ◦ Tt for all f ∈ L2(X). Then U extends consistently to a w∗-continuous

contraction group on L∞(X). Moreover, D(A)∩L∞(X) is an algebra and A is a derivation

on D(A) ∩ L∞(X).

Proof. Let t ∈ R. If f ∈ L2∩L∞ then ‖Utf‖∞ = ‖f ◦Tt‖∞ ≤ ‖f‖∞. Hence by Lemma 2.2

there exist a unique group Ũ on L∞ and a unique group Û on L1 such that Ũ is consistent

with U and Û is consistent with U∗. Moreover, ‖Ũt‖∞→∞ = ‖Ût‖1→1 = 1 for all t ∈ R.

Then Û is a C0-group on L1 by [Voi] Proposition 4. Therefore Ũ is a w∗-continuous group

on L∞.

Let f, g ∈ D(A) ∩ L∞. Then Ut(f g) = (Utf)(Utg) for all t ∈ R. Hence

1
t

(
Ut(f g)− f g

)
= 1

t

(
Utf − f

)
Utg +

1
t
f
(
Utg − g

)

for all t > 0. So f g ∈ D(A) and A(f g) = (Af) g + f (Ag).

Under more conditions there is a converse of Proposition 2.6. A first step is the next

proposition.
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Proposition 2.7. Let U be a C0-group on L2(X) with generator A, where (X,B, µ) is

a measure space. Suppose that D(A) ∩ L∞(X) is an algebra and A is a derivation on

D(A) ∩ L∞(X). Moreover, suppose that there exists a c ≥ 1 such that

‖Utf‖∞ ≤ c ‖f‖∞

for all t ∈ [−1, 1] and f ∈ L2(X) ∩ L∞(X). Then there exists a unique one-parameter

group Ũ on L∞(X) which is consistent with U . Moreover,

Ũt(f g) = (Ũtf)(Ũtg)

for all f, g ∈ L∞ and t ∈ R.

Proof. The existence and uniqueness of the one-parameter group Ũ on L∞ follows from

Lemma 2.2. Then ‖Ũtf‖∞ ≤ c eω|t| ‖f‖∞ for all t ∈ R and f ∈ L∞, where ω = log c.

Clearly t 7→ 〈Ũtf, g〉 = (Utf, g) is continuous for all f ∈ L∞ ∩ L2 and g ∈ L1 ∩ L2. Let

f ∈ L∞ ∩ L2 and g ∈ L1. Let t ∈ R and ε > 0. There exists a g′ ∈ L1 ∩ L2 such that

‖g − g′‖1 ≤ ε. Then

|〈Ũt+kf, g〉 − 〈Ũtf, g〉| = |〈Ũt+kf, g − g′〉+ 〈Ũt+kf − Ũtf, g
′〉+ 〈Ũtf, g′ − g〉|

≤ c eω(|t|+1) ε ‖f‖∞ + |〈Ũt+kf − Ũtf, g
′〉|+ c eω|t| ε ‖f‖∞

for all k ∈ [−1, 1]. Hence

lim
k→0

〈Ũt+kf, g〉 = 〈Ũtf, g〉 (4)

for all f ∈ L∞ ∩ L2, g ∈ L1 and t ∈ R.

Let f, g ∈ D(A) ∩ L∞. Define α:R → L2 by α(t) = (Utf)(Utg). Let h ∈ L2. We shall

show that t 7→ (α(t), h) is differentiable and that

d

dt
(α(t), h) =

(
(AUtf)(Utg) + (Utf)(AUtg), h

)
(5)

for all t ∈ R. Let t ∈ R. If k ∈ R \ {0}, then

1
k

(
(α(t+ k), h)− (α(t), h)

)
= 1

k

(
(Ut+kf −Utf)Ut+kg, h

)
+ 1

k

(
(Utf)(Ut+kg−Utg), h

)
. (6)

For the first term we shall prove that

lim
k→0

1
k

(
(Ut+kf − Utf)Ut+kg, h

)
=
(
(AUtf)(Utg), h

)
.

Let k ∈ R \ {0}. Then
∣∣∣ 1k
(
(Ut+kf − Utf)Ut+kg, h

)
−
(
(AUtf)(Utg), h

)∣∣∣

=

∣∣∣∣
((

1
k
(Ut+kf − Utf)− AUtf

)
Ũt+kg, h

)
+
(
(AUtf)(Ũt+kg − Ũtg), h

)∣∣∣∣

≤ ‖ 1
k
(Ut+kf − Utf)− AUtf‖2 ‖Ũt+kg‖∞ ‖h‖2 +

∣∣∣〈Ũt+kg − Ũtg, h (AUtf)〉
∣∣∣.
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Since limk→0 ‖ 1
k
(Ut+kf −Utf)−AUtf‖2 = 0, supk∈[−1,1] ‖Ũt+kg‖∞ <∞ and h (AUtf) ∈ L1,

it follows from (4) that

lim
k→0

1
k

(
(Ut+kf − Utf)Ut+kg, h

)
=
(
(AUtf)(Utg), h

)
.

Similarly one proves for the second term in (6) that

lim
k→0

1
k

(
(Utf)(Ut+kg − Utg), h

)
=
(
(Utf)(AUtg), h

)
.

Hence t 7→ (α(t), h) is differentiable and (5) is valid. Thus α is weakly differentiable, with

weak derivative

α′(t) = (AUtf)(Utg) + (Utf)(AUtg).

But A is a derivation on D(A) ∩ L∞. Therefore

α′(t) = (AUtf)(Utg) + (Utf)(AUtg) = A
(
(Utf)(Utg)

)
= A(α(t))

for all t ∈ R. Obviously α(0) = f g. The uniqueness of the Cauchy problem yields

α(t) = etA(f g) = Ut(f g) for all t ∈ R.

Fix t ∈ R. Let g ∈ D(A) ∩ L∞. Then

Ut(f g) = (Utf)(Utg) = (Utf)(Ũtg)

for all f ∈ D(A) ∩ L∞. By Lemma 2.3 the space D(A) ∩ L∞ is dense in L2. Hence it

follows by continuity that Ut(f g) = (Utf)(Ũtg) is valid for all f ∈ L2 and in particular for

all f ∈ L2 ∩ L∞. So

Ut(f g) = (Ũtf)(Utg) (7)

for all f ∈ L2 ∩ L∞ and g ∈ D(A) ∩ L∞. Since D(A) ∩ L∞ is dense in L2, it follows that

(7) is valid for all f, g ∈ L2 ∩ L∞. So

Ũt(f g) = (Ũtf)(Ũtg) (8)

for all f, g ∈ L2 ∩ L∞. Let f ∈ L2 ∩ L∞ and h ∈ L1. Then

〈Ũt(f g), h〉 = 〈f g, Ûth〉 = 〈g, f Ûth〉 (9)

for all g ∈ L∞. Moreover,

〈(Ũtf)(Ũtg), h〉 = 〈Ũtg, Ũtf h〉 = 〈g, Ût(Ũtf h)〉 (10)

for all g ∈ L∞. It follows from (8), (9) and (10) that

〈g, f Ûth〉 = 〈g, Ût(Ũtf h)〉 (11)

for all g ∈ L2 ∩L∞. But L2 ∩L∞ is w∗-dense in L∞. So (11) is valid for all g ∈ L∞. Using

again (9) and (10) one deduces that

〈Ũt(f g), h〉 = 〈(Ũtf)(Ũtg), h〉

for all g ∈ L∞. This is for all h ∈ L1. So (8) is valid for all f ∈ L2 ∩ L∞ and g ∈ L∞.

Finally, by a similar argument one establishes that (8) is valid for all f, g ∈ L∞.

7



Theorem 2.8. Let (X,B, µ) be a σ-finite measure space such that (X,B) is a standard

Borel space. Let U be a C0-group on L2(X) with generator A. Then the following are

equivalent.

(i) For all t ∈ R there exists a measurable map Tt:X → X such that Utf = f ◦ Tt for
all f ∈ L2(X).

(ii) The space D(A) ∩ L∞(X) is an algebra and A is a derivation on D(A) ∩ L∞(X).

Moreover, there exists a c > 0 such that

‖Utf‖∞ ≤ c ‖f‖∞

for all t ∈ [−1, 1] and f ∈ L2(X) ∩ L∞(X).

Proof. ‘(i)⇒(ii)’. This follows from Proposition 2.6.

‘(ii)⇒(i)’. By Proposition 2.7 there exists a unique one-parameter group Ũ on L∞

which is consistent with U . Moreover,

Ũt(f g) = (Ũtf)(Ũtg) (12)

for all f, g ∈ L∞ and t ∈ R. Fix t ∈ R. Let I = {B ∈ B : µ(B) = 0}. Then I is a σ-ideal

in B. Let B ∈ B. Then Ũt1B = Ũt(1
2
B) = (Ũt1B)

2 by (12). Therefore there exists a B′ ∈ B
such that Ũt1B = 1B′. If also B′′ ∈ B is such that Ũt1B = 1B′′ , then B′∆B′′ ∈ I, where
∆ denotes the symmetric difference. Define Φ(B) = B′∆I ∈ B/I. Then Φ is a map from

B into B/I.
Clearly Φ(∅) = ∅∆I. Let B1, B2 ∈ B. It follows from (12) that Φ(B1 ∩ B2) = Φ(B1) ∧

Φ(B2). Moreover, if B1 ∩ B2 = ∅ and B′
1, B

′
2 ∈ B are such that Ũt1B1

= 1B′

1
and Ũt1B2

=

1B′

2
, then 1B′

1
∩B′

2
= Ut1B1∩B2

= 0, so Ũt1B1∪B2
= Ũt(1B1

+ 1B2
) = 1B′

1
+ 1B′

2
= 1B′

1
∪B′

2
.

Note that (Ũt)
−1 = Ũ−t has the same properties as Ũt. Hence there exists a B ∈ B such

that Ũ−t1 = 1B. Then Ũt1B = 1. Consequently

1 = Ũt1B = Ũt(1B 1) = (Ũt1B)(Ũt1) = 1 Ũt1 = Ũt1.

So Φ is a homomorphism. Since Ũt is continuous, it follows that Ũt is a σ-homomorphism

of Boolean σ-algebras. By [Kec] Theorem 15.9 there exists a measurable map Tt:X → X

such that Φ(B) = T−1
t (B)∆I for all B ∈ B. So Ut1B = Ũt1B = 1B ◦ Tt for all B ∈ B with

µ(B) <∞. Using the continuity of Ut and the image measure under Tt, one deduces that

Utf = f ◦ Tt, first for all f ∈ L1 ∩ L2 and then for all f ∈ L2.

Corollary 2.9. Let (X,B, µ) be a standard Borel probability space. Let U be a C0-group

on L2(X) with generator A. Then the following are equivalent.

(i) For all t ∈ R there exists a measurable map Tt:X → X such that Utf = f ◦ Tt for
all f ∈ L2(X).

(ii) The space L∞(X) is invariant under U . Moreover, the space D(A) ∩ L∞(X) is an

algebra and A is a derivation on D(A) ∩ L∞(X).

Proof. This is a consequence of Theorems 2.5 and 2.8.
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Note that the map Ut is unitary if and only if the map Tt is measure preserving in

Theorem 2.8(i).

Proof of Theorem 1.1. This follows immediately from Corollary 2.9.

Remark 2.10. Note that in Theorem 1.1 the map Tt:X → X is measure preserving for

all t ∈ R. Moreover,

Tt1+T2 = Tt1 ◦ Tt2 a.e.

for all t1, t2 ∈ R. Since the one-parameter group U is strongly continuous, it follows from

[GTW] page 307 that the group (Tt)t∈R enjoys the following measurabilty property: there

exists a Borel map F :R×X → X such that for all t ∈ R one has

F (t, x) = Ttx for a.e. x ∈ X.

Thus (Tt)t∈R is a measurable measure preserving flow.

3 Weighted non-singular C0-groups

Throughout this section let (X,B, µ) be a standard Borel probability space. Let U be

a one-parameter group on L2(X) with U0 = I. The group U is called weighted non-

singular if for each t ∈ R there exist a map Tt:X → X and a function ψt:X → C such

that

Utf = ψt · (f ◦ Tt) (13)

for all f ∈ L2(X). By substituting f = 1, we obtain that ψt = Ut1 for all t ∈ R, in

particular, ψt is measurable. Moreover, ψ0 = 1 and the group property of U implies the

cocycle identity

ψt+t′ = ψt · (ψt′ ◦ Tt) (14)

and the group property

Tt+t′ = Tt ◦ Tt′ a.e. (15)

for all t, t′ ∈ R. Let t ∈ R. It follows that 1 = ψt · (ψ−t ◦ Tt), whence ψt 6= 0 a.e. and

1

ψt
= ψ−t ◦ Tt. (16)

Therefore

f ◦ Tt =
1

ψt
· Utf

for all f ∈ L2(X), so Tt is measurable. In general, a measurable map S:X → X is called

non-singular if µ(S−1(A)) = 0 for all A ∈ B with µ(A) = 0. Then note that Tt is a

non-singular map of (X,B, µ) and that the measure µ and the image measure Tt∗µ are

equivalent, where

(Tt∗µ)(A) := µ(T−1
t A)

for all A ∈ B. Indeed, if B ∈ B and µ(B) = 0, then 0 = Ut1B = ψt · (1B ◦ Tt) = ψt · 1T−1

t
B,

hence (Tt∗µ)(B) = µ(T−1
t B) = 0.

A weighted non-singular one-parameter group U is called a weighted Koopman

group if Tt is measure-preserving for all t ∈ R.
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Lemma 3.1. Let U be a weighted non-singular one-parameter group given by (13). Then

∥∥∥∥|ψt|2 ·
(
d(Tt∗µ)

dµ
◦ Tt

)∥∥∥∥
∞

≤ ‖Ut‖22→2

for all t ∈ R.

Proof. If f ∈ L2, then

∫
|ψt|2 · |f ◦ Tt|2 dµ = ‖Utf‖22 ≤ c ‖f‖22,

where c = ‖Ut‖22→2. Hence

∫
|ψt|2 · (f ◦ Tt) dµ ≤ c ‖f‖1

for all 0 ≤ f ∈ L1(X, µ). Equivalently,

∫
(|ψt|2 ◦ T−1

t ) · f · d(Tt∗µ)
dµ

dµ =

∫
(|ψt|2 ◦ T−1

t ) · f d(Tt∗µ) ≤ c ‖f‖1

for all 0 ≤ f ∈ L1(X, µ). Since (|ψt|2 ◦ T−1
t ) · d(Tt∗µ)

dµ
≥ 0, one deduces that

∥∥∥∥(|ψt|2 ◦ T−1
t ) · d(Tt∗µ)

dµ

∥∥∥∥
∞

≤ c

and the result follows by the non-singularity of Tt.

Lemma 3.2. Let U be a weighted non-singular one-parameter group given by (13). Then

the following are equivalent.

(i) The representation U preserves L∞(X).

(ii) ψt = Ut1 ∈ L∞(X) for all t ∈ R.

(iii) d(Tt∗µ)
dµ

∈ L∞(X) for all t ∈ R.

Proof. ‘(i)⇒(ii)’ is trivial and ‘(ii)⇒(i)’ follows from (13) and the fact that Tt is non-

singular for all t ∈ R.

‘(ii)⇒(iii)’. Lemma 3.1 and (16) imply that

∥∥∥∥
d(Tt∗µ)

dµ
◦ Tt

∥∥∥∥
∞

≤ ‖Ut‖22→2 ‖ψ−t‖2∞ <∞

for all t ∈ R.

‘(iii)⇒(ii)’. Since Tt ◦ T−t = I a.e., it follows that

(d(Tt∗µ)
dµ

◦ Tt
)
· d(T−t∗µ)

dµ
= 1

for all t ∈ R. Then the claim is a consequence of Lemma 3.1.
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Remark 3.3. Let U be a C0-group which is weighted Koopman and unitary. Let t ∈ R.

Then ∫
|f |2 ◦ Tt dµ =

∫
|f |2 dµ = ‖Utf‖22 =

∫
|ψt|2 · (|f |2 ◦ Tt) dµ

for all f ∈ L2(X). Hence
∫
(|ψt|2 − 1) · (|f |2 ◦ Tt) dµ = 0 for all f ∈ L2(X) and therefore

|ψt| = 1 a.e.

There are many one-parameter C0-groups which preserve L∞(X), but which are not

weighted non-singular.

Example 3.4. Let B ∈ B be such that µ(B) 6= 0 6= µ(X \B). Define A:L2(X) → L2(X)

by Af = (f,1B)1X\B. Then A is bounded, so it generates a C0-group U . Since A2 = 0,

one deduces that Ut = I + t A for all t ∈ R. Hence obviously U leaves L∞(X) invariant.

Now choose t = −µ(B)−1. Then

Ut1 = 1+ t (1,1B)1X\B = 1+ t µ(B)1X\B = 1− 1X\B = 1B.

Since µ({x ∈ X : (Ut1)(x) = 0}) = µ(X \B) > 0, the group U is not weighted non-singular

by (16).

We next consider weighted non-singular one-parameter groups which preserve L∞(X).

Lemma 3.5. Let U be a weighted non-singular one-parameter group given by (13). Assume

that U preserves L∞(X). Then f ◦ Tt ∈ L2(X) for all f ∈ L2(X) and t ∈ R. Define

Vt:L2(X) → L2(X) by

Vtf = f ◦ Tt.
Then one has the following.

(a) (Vt)t∈R is a one-parameter group on L2(X).

(b) If U is a C0-group, then also (Vt)t∈R is a C0-group.

Proof. Note that (13) and (16) imply that

Vtf = f ◦ Tt = (ψ−t ◦ Tt)Utf ∈ L2

for all t ∈ R and f ∈ L2. Then Statement (a) is a consequence of (15).

‘(b)’. By Theorem 2.5 there exist M ≥ 1 and ω ≥ 0 such that ‖Utf‖∞ ≤ M eω|t| ‖f‖∞
for all t ∈ R and f ∈ L∞.

Fix f ∈ L∞. Let t ∈ (0, 1). Then (16) gives

Vtf − f =
1

Ut1

(
(Utf − f) + (1− Ut1)f

)

=
(
(U−t1) ◦ Tt

)(
(Utf − f) + (1− Ut1)f

)
. (17)

Therefore

‖Vtf − f‖2 ≤ ‖(U−t1) ◦ Tt‖∞
(
‖Utf − f‖2 + ‖1− Ut1‖2 ‖f‖∞

)

≤M eω
(
‖Utf − f‖2 + ‖1− Ut1‖2 ‖f‖∞

)
(18)

and limt↓0 Vtf = f . Then the result follows since L∞ is dense in L2.
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Proposition 3.6. Let (X,B, µ) be a standard Borel probability space. Let U be a C0-group

on L2(X) preserving L∞(X). Then the following are equivalent.

(i) The representation U is weighted non-singular.

(ii) For all t ∈ R one has Ut1 6= 0 a.e. and 1
Ut1

∈ L∞(X). Moreover, V = (Vt)t∈R is a

C0-group on L2(X), where

Vtf =
1

Ut1
Utf (19)

for all t ∈ R. In addition D(B) ∩ L∞(X) is an algebra and B is a derivation on

D(B) ∩ L∞(X), where B is the generator of V .

Proof. ‘(i)⇒(ii)’. This follows from (16), Lemma 3.5(b) and Proposition 2.6.

‘(ii)⇒(i)’. It follows from (19) that V leaves L∞ invariant. Then apply Corollary 2.9

to V and the result follows from (19).

Corollary 3.7. Let (X,B, µ) be a standard Borel probability space. Let U be a unitary

C0-group on L2(X) preserving L∞(X). Then the following are equivalent.

(i) The group U is a weighted Koopman group.

(ii) For all t ∈ R one has |Ut1| = 1 a.e. Moreover, V = (Vt)t∈R is a unitary C0-group

on L2(X), where

Vtf = Ut1 · Utf
for all t ∈ R. In addition D(B) ∩ L∞(X) is an algebra and B is a derivation on

D(B) ∩ L∞(X), where B is the generator of V .

In order to obtain a relationship between the generators of the two C0-groups in

Lemma 3.5(b), we need the following observation.

Lemma 3.8. Let U be a weighted non-singular one-parameter C0-group. Let V = (Vt)t∈R
be the group on L2(X) as in Lemma 3.5. Then

lim
t→0

‖Vt(U−t1) · g − g‖2 = 0

for all g ∈ L∞(X).

Proof. It follows from Lemma 3.5(b) that V is a C0-group. Hence supt∈[−1,1] ‖Vt‖2→2 <∞.

Let t ∈ (−1, 1). Then

‖Vt(U−t1) · g − g‖2 = ‖
(
Vt(U−t1− 1) + Vt1− 1

)
g‖2

≤
(
‖Vt‖2→2‖U−t1− 1‖2 + ‖Vt1− 1‖2

)
‖g‖∞

and the result follows.

Lemma 3.9. Let U be a weighted non-singular one-parameter C0-group. Assume that U

preserves L∞(X). Let V = (Vt)t∈R be the C0-group on L2(X) as in Lemma 3.5. Denote

by A and B the generators of U and V , respectively. Assume that

1 ∈ D(A).

Then D(A)∩L∞(X) = D(B)∩L∞(X) and Bf = Af−f ·A1 for each f ∈ D(A)∩L∞(X).
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Proof. Let f ∈ D(A)∩L∞. Since 1 ∈ D(A) it follows from (18) that there exists a c > 0

such that ‖Vtf − f‖2 ≤ c t for all t ∈ (0, 1). Therefore f ∈ D(B) by [EN] Corollary II.5.21.

Hence D(A) ∩ L∞ ⊂ D(B) ∩ L∞. Let g ∈ L∞. Then (17) gives

1

t
(Vtf − f, g) =

(1
t
(Utf − f)− f · 1

t
(Ut1− 1), (U−t1) ◦ Tt · g

)

for all t ∈ (0, 1). Now take the limit t→ 0 and use Lemma 3.8. It follows that

(Bf, g) = (Af − f · A1, g).

Therefore Bf = Af − (A1) · f .
Conversely, let f ∈ D(B) ∩ L∞. Then Utf − f = (Ut1)(Vtf − f) + (Ut1 − 1)f for all

t ∈ R. The bounds (3) of Theorem 2.5 imply that there exists a c > 0 such that

‖Utf − f‖2 ≤ ‖Ut1‖∞‖Vtf − f‖2 + ‖Ut1− 1‖2‖f‖∞ ≤ c |t|

for all t ∈ (0, 1). Hence f ∈ D(A) as before.

We can now prove the main theorem of this section.

Theorem 3.10. Let (X,B, µ) be a standard Borel probability space. Let U be a C0-group

on L2(X) preserving L∞(X). Assume that 1 ∈ D(A) with A1 ∈ L∞(X), where A is the

generator of U . Then the following are equivalent.

(i) The representation U is weighted non-singular.

(ii) The space D(A) ∩ L∞(X) is an algebra and A − (A1)I is a derivation on D(A) ∩
L∞(X).

Proof. ‘(i)⇒(ii)’. This follows from Proposition 3.6 and Lemma 3.9. Note that this

implication does not require the assumption A1 ∈ L∞.

‘(ii)⇒(i)’. Consider first U∗, which is a C0-group on L2 whose generator is A∗. By

Theorem 2.5(ii)⇒(i) the one-parameter group U∗ extends consistently to a C0-group Û on

L1. Denote by Â the generator of this group.

Since (A1)I is a bounded operator the operator A− (A1)I generates a C0-group V on

L2 by perturbation theory [EN], Theorem III.1.3. Then A∗− (A1)I is the generator of V ∗.

Moreover, again by perturbation theory, Â − (A1)I is the generator of a C0-group V̂ on

L1. Let t ∈ R. The Trotter–Kato formula [EN] Exercise III.5.11(1) gives

V ∗
t = lim

n→∞

(
e−

t

n
(A1)I U∗

t

n

)n
strongly in L(L2)

and

V̂t = lim
n→∞

(
e−

t

n
(A1)I Û t

n

)n
strongly in L(L1).

Let f ∈ L2. Then f ∈ L1 and since U∗ and Û are consistent one deduces that
(
e−

t

n
(A1)I U∗

t

n

)n
f =

(
e−

t

n
(A1)I Û t

n

)n
f a.e.

for all n ∈ N. Hence V ∗
t f = V̂tf a.e. and V ∗ and V̂ are consistent. By Theorem 2.5(i)⇒(ii),

applied with S = V ∗, it follows that V leaves the space L∞ invariant. By Theorem 2.8 it
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follows that for all t ∈ R there exists a non-singular measurable map Tt:X → X such that

Vtf = f ◦ Tt for all f ∈ L2.

Note that
(
Vt ◦ es(A1)I

)
f = Vt(e

s(A1)f) = (es(A1)f) ◦ Tt =
(
es((A1)◦Ts)I ◦ Vt

)
f

for all t, s ∈ R and f ∈ L2. Iteration gives

(
V t

n

◦ e t

n
(A1)I

)n
= e

t

n
((A1)◦T t

n

+...+(A1)◦Tnt
n

)I ◦
(
V t

n

)n
= e

t

n
((A1)◦T t

n

+...+(A1)◦Tnt
n

)I ◦ Vt (20)

for all t ∈ R and n ∈ N. Since A = (A− (A1)I)+(A1)I, one can consider the generator of

the C0-group U as a perturbation of the generator of the C0-group V . Then the Trotter–

Kato formula gives

Ut = lim
n→∞

(
V t

n

◦ e t

n
(A1)I

)n

strongly in L(L2). Hence (20) gives Ut = ψt · Vt for all t ∈ R, where

ψt = e
∫
t

0
(A1)◦Tr dr ∈ L∞.

This completes the proof.

Clearly Theorem 1.3 is a consequence of Theorem 3.10.

The condition 1 ∈ D(A) is not satisfied in general. We give a wide class of examples.

Example 3.11. Let V = (Vt)t∈R be a unitary C0-group on L2(X) given by a measure

preserving flow T = (Tt)t∈R which is ergodic. So Vtf = f ◦ Tt for all t ∈ R and f ∈ L2(X)

and the only f ∈ L2(X) which are invariant under Vt for all t ∈ R are the constants.

We will now show that for all t ∈ R we can find a measurable ψt:X → R, bounded and

bounded away from zero, such that U = (Ut)t∈R is a continuous C0-group on L2(X) for

which 1 /∈ D(A), where

Utf = ψt · (f ◦ Tt)
for all t ∈ R.

Indeed, by Ambrose–Kakutani theorem, see for example [CFS] Theorem 11.2.1, we

can represent T as a special flow over an ergodic automorphism S of a standard Borel

probability space (Y, C, ρ), i.e. there exist F : Y → R and c > 0 such that F > c,
∫
Y
F dρ <

∞ and

X = Y F := {(y, s) ∈ Y ×R : 0 ≤ s ≤ F (y)}.
On Y F we consider the restriction of the product measurable structure from Y ×R together

with ρF := (ρ ⊗ LebR)|Y F . The flow T acts as SF = (SFt )t∈R, where under the action of

SFt (with t > 0) a point (y, r) moves up vertically with unit speed until it hits the point

(y, f(y)) which is identified with (Sy, 0) and this movement is continued until time t. In

this way we obtain a unitary C0-group V = (Vt)t∈R, where Vtf = f ◦ SFt on L2(Y
F , ρF ).

Let a, b ∈ R be such that 0 < a < b < c and consider the strip H := Y × [a, b]. Then

H ⊂ Y F and ρF (H) = b− a. For each t ∈ R with |t| < a ∧ (c− b) ∧ (b− a) one has

ρF (H△SFt (H)) = 2|t|. (21)
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We claim that g := 1H /∈ D(B), where B is the generator of V . Indeed, for all t ∈ R with

|t| < a ∧ (c− b) ∧ (b− a), it follows from (21) that

‖g − g ◦ SFt ‖2 =
(∫

Y

|1H − 1H ◦ SFt |2 dρF
)1/2

=
(
ρF (H△SFt (H))

)1/2
=
√
2|t|.

Therefore there is no constant κ > 0 such that ‖g−g ◦SFt ‖2 ≤ κ |t| for all sufficiently small

|t| > 0 and hence g /∈ D(B).

Let θ := g+1. Then θ /∈ D(B) and θ, 1
θ
∈ L∞(Y F ). Set ψt :=

θ
θ◦SF

t

for all t ∈ R. Then

(ψt)t∈R satisfies the cocycle identity (14) and by setting

Utf = ψt · (f ◦ SFt ),

we obtain a C0-group U = (Ut)t∈R on L2(Y
F ). Now

1

t
(Ut1− 1) =

1

t
(θ − θ ◦ SFt ) ·

1

θ ◦ SFt
=

1

t
(θ − Vtθ) ·

1

θ ◦ SFt
and since V is a C0-group and θ /∈ D(B), we must have 1 /∈ D(A), where A is the generator

of U .

Remark 3.12. By considering the function ξ = (−1)1H = 1X\H − 1H , we obtain a

measurable function for which ξ /∈ D(B) taking values in {−1, 1}, and if we set ψt :=
ξ

ξ◦SF
t

,

then the corresponding group U is weighted Koopman for which 1 /∈ D(A).

Even if 1 ∈ D(A), then in general A1 6∈ L∞(X). An example is as follows.

Example 3.13. Let T = {z ∈ C : |z| = 1} be the torus with normalized Haar measure.

Let

E = {η ∈ L2(T) :

∫
η = 0}.

Then E is a closed subspace of L2(T). We provide E with the norm of L2(T). For all

η ∈ L2(T) define η̃ ∈ L2,loc(R) by η̃(x) = η(eix).

Fix ζ ∈ E. For all t ∈ R define ϕt ∈ C(T) by

ϕt(e
ix) =

∫ x+t

x

ζ̃ .

Note that ϕt is well defined. Since
∫
T
ζ = 0 one deduces that ‖ϕt‖∞ ≤ 2π‖ζ‖1. If s, t ∈ R

then

ϕ̃t+s(x) =

∫ x+t

x

ζ̃ +

∫ x+t+s

x+t

ζ̃ = ϕ̃t(x) + ϕ̃s(x+ t)

for all x ∈ R. For all t ∈ R define ψt ∈ C(T) by

ψt = eϕt

and define Ut:L2(T) → L2(T) by

(Utf)(z) = ψt(z) f(e
it z).
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It is easy to verify that UtL∞(T) ⊂ L∞(T) for all t ∈ R and that U = (Ut)t∈R is a C0-

group. Let A be the generator of U . Clearly ψt = Ut1 for all t ∈ R. Up to now everything

also works if ζ ∈ L1(T) with
∫
ζ = 0, but from now on we use that ζ ∈ L2(T). We shall

prove that 1 ∈ D(A) and A1 = ζ .

Let t ∈ (0, 1). Then
∣∣∣1
t
(Ut1− 1)− ζ

∣∣∣ ≤
∣∣∣e
ϕt − 1− ϕt

t

∣∣∣+
∣∣∣1
t
ϕt − ζ

∣∣∣

≤ 1

t
|ϕt|2 e|ϕt| +

∣∣∣1
t
ϕt − ζ

∣∣∣

≤ 1

t
|ϕt|2 e2π ‖ζ‖1 +

∣∣∣1
t
ϕt − ζ

∣∣∣. (22)

We estimate the terms in (22) separately in L2(T) in the limit t ↓ 0.

We start with the second term. For all t ∈ (0, 1) define Ft:E → C(T) by

(Ftη)(e
ix) =

1

t

∫ x+t

x

η̃.

Note that Ft(ζ) =
1
t
ϕt. Let η ∈ E and τ ∈ L2(T). Then Fubini and Cauchy–Schwarz give

|(Ft(η), τ)L2(T)| =
1

t

∣∣∣
∫ 2π

0

∫ x+t

x

η̃(s) ds τ̃(x) dx
∣∣∣

=
1

t

∣∣∣
∫ 2π

0

∫ t

0

η̃(x+ s) ds τ̃(x) dx
∣∣∣

=
1

t

∣∣∣
∫ t

0

∫ 2π

0

η̃(x+ s) τ̃(x) dx ds
∣∣∣

≤ 1

t

∫ t

0

2π ‖η‖L2(T) ‖τ‖L2(T) ds

= 2π ‖η‖L2(T) ‖τ‖L2(T).

So ‖Ft(η)‖L2(T) ≤ 2π ‖η‖L2(T) and the set {Ft : t ∈ (0, 1)} is bounded in L(E,L2(T)).

Clearly limt↓0 Ft(η) = η in L2(T) for all η ∈ C(T). Since E ∩C(T) is dense in E, it follows
that limt↓0 Ft(η) = η in L2(T) for all η ∈ E. In particular for ζ one deduces that

lim
t↓0

∣∣∣1
t
ϕt − ζ

∣∣∣ = 0 (23)

in L2(T). This settles the second term in (22).

Now we consider the first term in (22). We shall show that limt↓0
1
t
|ϕt|2 = 0 in L2(T).

If t ∈ (0, 1), then

|ϕt(eix)| =
∣∣∣
∫ x+t

x

ζ̃
∣∣∣ ≤

√
2π t ‖ζ‖2

for all x ∈ R by the Cauchy–Schwarz inequality. So ‖1
t
|ϕt|2‖∞ ≤ 2π ‖ζ‖22 for all t ∈ (0, 1).

Let t1, t2, . . . ∈ (0, 1) and assume that limn→∞ tn = 0. Then passing to a subsequence if

necessary, it follows from (23) that limn→∞
1
tn
ϕtn(z) = ζ(z) for a.e. z ∈ T. Hence

lim
n→∞

1

tn
|ϕtn(z)|2 = lim

n→∞
tn

∣∣∣ 1
tn
ϕtn(z)

∣∣∣
2

= 0
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for a.e. z ∈ T. Then the bounded convergence theorem of Lebesgue gives limn→∞
1
tn
|ϕtn |2 =

0 in L2(T). Hence limt↓0
1
t
|ϕt|2 = 0 in L2(T).

Combining the two estimates it follows from (22) that 1 ∈ D(A) and A1 = ζ . Finally,

if one chooses ζ ∈ E such that ζ 6∈ L∞(T), then A1 6∈ L∞(T).

4 Cocycles

In the previous section we started with a group U on L2(X) and in case U was weighted

non-singular as in (13), we defined the representation V given by Vtf = f ◦ Tt. In that

case Ut = ψt Vt. In this section we reverse the order. We start with a representation of the

form Vtf = f ◦ Tt and wish to construct as general as possible a representation U of the

form (13), that is Ut = ψt Vt for all t ∈ R.

Throughout this section let (X,B, µ) be a standard Borel probability space. For all

t ∈ R let Tt:X → X be a measurable map such that V = (Vt)t∈R is a C0-group on L2(X),

where Vtf := f ◦ Tt for all t ∈ R. Let B be the generator of V .

We need a few definitions. A map ψ:R → L∞(X) is said to be a cocycle (over V ) if

ψt+t′ = ψt · (ψt′ ◦ Tt) (24)

for all t, t′ ∈ R, where we write for simplicity ψt = ψ(t) for all t ∈ R. Note that ψ = 0 is a

cocycle over V . Suppose that ψ is a cocycle. For all t ∈ R define Ut = ψt Vt ∈ L(L2(X)).

Clearly ‖Ut‖2→2 ≤ ‖ψt‖∞‖Vt‖2→2. If t, t
′ ∈ R then

Ut+t′f =
(
ψt · (ψt′ ◦ Tt)

)
Vt+t′f = Ut(Ut′f) = (Ut ◦ Ut′)f

for all f ∈ L2(X), so U = (Ut)t∈R is a one-parameter group on L2(X), which leaves L∞(X)

invariant. We call U the one-parameter group associated with ψ. Possibly U0 = 0.

With a continuity condition this is not the case.

Lemma 4.1. If limt→0 ‖ψt − 1‖1 = 0, then ψ0 = 1 a.e. and U0 = I.

Proof. Let B ∈ B and suppose that ψ0|B = 0 a.e. Then ψt|B = 0 a.e. by (24). Since

limt→0 ‖ψt − 1‖1 = 0, one deduces that µ(B) = 0. So ψ0 6= 0 a.e. In addition, (24) gives

ψ0 = ψ0+0 = ψ2
0. Hence ψ0 = 1 a.e.

The cocycle ψ is called a C0-cocycle (over V ) if U is a C0-group on L2(X). If

θ ∈ L∞(X) is such that θ 6= 0 a.e., and 1
θ
∈ L∞(X), then it is easy to verify that t 7→ θ◦Tt

θ

is a cocycle. A cocycle ψ is called a coboundary if there exists a θ ∈ L∞(X) such that

θ 6= 0 a.e., 1
θ
∈ L∞(X) and

ψt =
θ ◦ Tt
θ

for all t ∈ R. The function θ is called a transfer function of the coboundary. If, in

addition, θ ∈ D(B) and Bθ ∈ L∞(X), then ψ is called a coboundary with an L∞-

differentiable transfer function.

If ψ is a cocycle and ζ ∈ L2(X), then ζ is called the derivative of ψ if limt→0
1
t
(ψt−1) =

ζ in L2(X). We say that a cocycle ψ is differentiable if there exists an ζ ∈ L2(X) such

that ζ is the derivative of ψ.

We start with a characterisation of C0-cocycles.
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Proposition 4.2. Let ψ:R → L∞(X) be a cocycle over V . Then the following are equiv-

alent.

(i) ψ is a C0-cocycle.

(ii) limt→0 ‖ψt − 1‖2 = 0.

Proof. Let U be the one-parameter group associated with ψ. Since ψt = Ut1 for all t ∈ R,

the implication (i)⇒(ii) is trivial. So it remains to prove the converse.

Because limt→0 ‖ψt−1‖1 = 0 by (ii), it follows from Lemma 4.1 that ψ0 = 1 a.e. Clearly

‖Ut‖2→2 ≤ ‖ψt‖∞‖Vt‖2→2 for all t ∈ R. If f ∈ L∞ then ‖Utf‖∞ ≤ ‖ψt‖∞‖f‖∞ <∞. Hence

the operator Ũt := Ut|L∞
:L∞ → L∞ is bounded. Obviously (Ũt)t∈R is a one-parameter

group on L∞.

Let f ∈ L∞. Then

Utf − f = (ψt − 1)Vtf + Vtf − f

for all t ∈ R, so

‖Utf − f‖2 ≤ ‖ψt − 1‖2‖Vtf‖∞ + ‖Vtf − f‖2 = ‖f‖∞‖ψt − 1‖2 + ‖Vtf − f‖2

and therefore

lim
t→0

‖Utf − f‖2 = 0 (25)

by assumption. Fix t0 ∈ R. Then

‖Ut0+tf − Ut0f‖2 ≤ ‖Ut0‖2→2‖Utf − f‖2

for all t ∈ R. Hence, limt→t0 Utf = Ut0f in L2. So t 7→ Utf is continuous from R into L2.

Hence the map t 7→ |(Utf, g)| from R into R is continuous for all g ∈ L2.

Let f ∈ L∞ and t ∈ R. Then

‖Ũtf‖∞ = sup{|〈Ũtf, g〉| : g ∈ L1 and ‖g‖1 ≤ 1}

= sup{|〈Ũtf, g〉| : g ∈ L2 and ‖g‖1 ≤ 1}

= sup{|(Utf, g)| : g ∈ L2 and ‖g‖1 ≤ 1}.

Since the map t 7→ |(Utf, g)| is continuous for each g ∈ L2, it follows that the map

t 7→ ‖Ũtf‖∞ is lower semicontinuous, hence it is measurable on R. By the proof of

Theorem 2.5, we deduce that the set {Ũt : t ∈ [2, 3]} is bounded in L(L∞). Since (Ũt)t∈R
is a one-parameter group on L∞, also {Ũt : t ∈ [−1, 1]} is bounded in L(L∞). Let

c := sup{‖Ũt‖∞→∞ : t ∈ [−1, 1]}. Then ‖ψt‖∞ = ‖Ũt1‖∞ ≤ c for all t ∈ [−1, 1]. Hence

sup{‖Ut‖ : t ∈ [−1, 1]} < ∞. Since L∞ is dense in L2, it follows from (25) that U is a

C0-group.

Corollary 4.3. Every differentiable cocycle is a C0-cocycle. Every coboundary is a C0-

cocycle.

Proposition 4.4. Let ζ ∈ L2(X). Then there exists at most one function ψ:R → L∞(X)

such that ψ is a cocycle over V and the cocycle ψ is differentiable with derivative ζ.
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Proof. Let ψ, ψ̃:R → L∞ be cocycles over V which are differentiable with derivative ζ .

Then ψ0 = 1 = ψ̃0 a.e. Let U be the group associated with ψ. Then U is a C0-group by

Proposition 4.2. Moreover, sup{‖ψt‖∞ : t ∈ [−1, 1]} < ∞ by (3) in Theorem 2.5, or the

proof of Proposition 4.2. In addition, ψt 6= 0 a.e. and 1
ψt

= ψ−t ◦ Tt for all t ∈ R by (16).

Define η:R → L∞ by η(t) = ηt :=
ψ̃t

ψt
. Then ηt+t′ = ηt · (ηt′ ◦ Tt) for all t, t′ ∈ R, so η is a

cocycle over V . Moreover,

1

t
(ηt − 1) =

1

t

ψ̃t − ψt
ψt

=
1

ψt

(
ψ̃t − 1

t
− ψt − 1

t

)
= (ψ−t ◦ Tt)

(
ψ̃t − 1

t
− ψt − 1

t

)

for all t ∈ R \ {0}. Since sup{‖ψ−t‖∞ : t ∈ [−1, 1]} < ∞, one deduces that the cocycle η

is differentiable and limt→0
1
t
(ηt − 1) = 0 in L2.

Let t ∈ R and h ∈ R \ {0}. Then

1

h
(ηt+h − ηt) =

1

h
(ηt · (ηh ◦ Tt)− ηt)

= ηt ·
(
ηh − 1

h
◦ Tt

)
= ηt · Vt

(
ηh − 1

h

)
.

It follows that limh→0
1
h
(ηt+h − ηt) = 0 in L2. Therefore η is differentiable from R into L2

and η′(t) = 0 for all t ∈ R. So η is constant and η(t) = η(0) = 1 for all t ∈ R. Hence

ψ̃t = ψt for all t ∈ R, which completes the proof.

Lemma 4.5. Let ζ ∈ L∞(X). Define ψ:R → L∞(X) by ψt := e
∫
t

0
ζ◦Ts ds. Then ψ is a

differentiable cocycle with derivative ζ.

Proof. We first show that ψ is a cocycle over V . Let t, t′ ∈ R. Then

∫ t+t′

0

ζ ◦ Ts ds =
∫ t

0

ζ ◦ Ts ds+
∫ t+t′

t

ζ ◦ Ts ds

=

∫ t

0

ζ ◦ Ts ds+
∫ t′

0

ζ ◦ Ts+t ds

=

∫ t

0

ζ ◦ Ts ds+
(∫ t′

0

ζ ◦ Ts ds
)
◦ Tt.

Hence ψ is a cocycle over V .

Next we show that ψ is differentiable. Recall that |ez − 1 − z| ≤ |z|2e|z| for all z ∈ C.

Let t ∈ [−1, 1] \ {0}. Then
∣∣∣∣
ψt − 1

t
− ζ

∣∣∣∣ ≤
∣∣∣∣∣
ψt − 1−

∫ t
0
ζ ◦ Ts ds

t

∣∣∣∣∣ +
∣∣∣∣
1

t

∫ t

0

ζ ◦ Ts ds− ζ

∣∣∣∣

≤ 1

|t|

(∫ t

0

‖ζ‖∞
)2

e|t| ‖ζ‖∞ +
∣∣∣1
t

∫ t

0

|ζ ◦ Ts − ζ | ds
∣∣∣

≤ |t| ‖ζ‖2∞ e‖ζ‖∞ +
∣∣∣1
t

∫ t

0

|Vsζ − ζ | ds
∣∣∣.
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Therefore ∥∥∥1
t
(ψt − 1)− ζ

∥∥∥
2
≤ |t| ‖ζ‖2∞ e‖ζ‖∞ +

∣∣∣1
t

∫ t

0

‖Vsζ − ζ‖2 ds
∣∣∣.

Since s 7→ ‖Vsζ − ζ‖2 is continuous, one deduces that the cocycle ψ is differentiable with

derivative ζ .

Lemma 4.6. Let ζ ∈ L∞(X) and let ψ:R → L∞(X) be a cocycle. Then ψ is differentiable

with derivative ζ if and only if ψt = e
∫
t

0
ζ◦Ts ds for all t ∈ R.

Proof. This follows immediately from Proposition 4.4 and Lemma 4.5.

Next we turn to coboundaries.

Lemma 4.7. Let ψ be a coboundary with transfer function θ.

(a) The coboundary ψ is differentiable if and only if θ ∈ D(B). Moreover, if ψ is

differentiable, then the derivative is Bθ
θ
.

(b) If θ ∈ D(B) and Bθ ∈ L∞(X), then

ψt = e
∫
t

0

Bθ

θ
◦Ts ds

for all t ∈ R.

Proof. If t ∈ R \ {0}, then
ψt − 1

t
=

1

θ
· θ ◦ Tt − θ

t
=

1

θ
· Vtθ − θ

t
.

Hence ψ is differentiable if and only if θ ∈ D(B). Moreover, if ψ is differentiable, then the

derivative is 1
θ
Bθ. This proves Statement (a).

If θ ∈ D(B) and Bθ ∈ L∞, then ζ = 1
θ
Bθ ∈ L∞. Now Statement (b) follows from

Lemma 4.6.

Note that Example 3.11 yields a C0-cocycle (in fact a coboundary) which is not dif-

ferentiable. It also gives an example of a coboundary which is not a coboundary with an

L∞-differentiable transfer function.

Lemma 4.8. Let ψ be a differentiable cocycle with derivative ζ ∈ L∞(X). Then the

following conditions are equivalent.

(i) ψ is a coboundary.

(ii) ψ is a coboundary with an L∞-differentiable transfer function.

(iii) There exists a θ ∈ D(B) ∩ L∞(X) such that θ 6= 0-a.e., 1
θ
∈ L∞(X), Bθ ∈ L∞(X)

and ζ = Bθ
θ
.

Proof. The implication (ii)⇒(i) is trivial.

‘(i)⇒(ii)’ and ‘(i)⇒(iii)’. Let θ be a transfer function of ψ. By definition θ ∈ L∞, θ 6= 0-

a.e. and 1
θ
∈ L∞. Then Lemma 4.7(a) gives θ ∈ D(B) and ζ = Bθ

θ
. So Bθ = ζ θ ∈ L∞.

‘(iii)⇒(i)’. Define ψ̃:R → L∞ by ψ̃t = θ◦Tt
θ
. Then Lemma 4.7(a) implies that the

coboundary ψ̃ is differentiable with derivative ζ . By the uniqueness of Proposition 4.4 one

deduces that ψ = ψ̃. So ψ is a coboundary.
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We now give an example of a differentiable cocycle which is not a coboundary.

Example 4.9. Let T = {z ∈ C : |z| = 1} be the torus with normalized Haar measure. For

all t ∈ R define Tt:T → T by Ttz = eit z and define Vt:L2(T) → L2(T) by Vtf = f ◦ Tt.
Then V = (Vt)t∈R is a C0-group. Fix ζ ∈ L∞(T) with

∫
ζ 6∈ iZ. Define ψ:R → L∞(T) by

ψt = e
∫
t

0
ζ◦Ts ds.

Then ψ is a differentiable cocycle by Lemma 4.5. Now suppose that ψ is a coboundary.

Let θ be a transfer function. Then ψ2π = θ◦T2π
θ

= 1. Hence
∫ 2π

0
ζ ◦ Ts ds ∈ 2πiZ a.e. But∫ 2π

0
ζ ◦ Ts ds = 2π

∫
T
ζ a.e. So

∫
T
ζ ∈ iZ. This is a contradiction.
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