On one-parameter Koopman groups

A.F.M. ter Elst ${ }^{1}$ and M. Lemańczyk ${ }^{2}$

Abstract

We characterize Koopman one-parameter C_{0}-groups in the class of all unitary one-parameter C_{0}-groups on $L_{2}(X)$ as those that preserve $L_{\infty}(X)$ and for which the infinitesimal generator is a derivation on the bounded functions in its domain.

April 2015
2010 AMS Subject Classification: 37A10, 47D03.
Keywords: Koopman operator, one-parameter continuous family of measure-preserving transformations, cocycle, non-singular transformation, consistent one-parameter groups.

Home institutions:

1. Department of Mathematics

University of Auckland
Private bag 92019
Auckland 1142
New Zealand
terelst@math.auckland.ac.nz
2. Faculty of Mathematics and Computer Science Nicolaus Copernicus University 12/18 Chopin street 87-100 Toruń
Poland
mlem@mat.umk.pl

1 Introduction

Let (X, \mathcal{B}, μ) be a standard Borel probability space. Moreover, let $T: X \rightarrow X$ be an (a.e.) invertible, measurable and measure-preserving map, i.e. $\mu(A)=\mu\left(T^{-1} A\right)$ for each $A \in \mathcal{B}$. Then T induces on $L_{2}(X)$ a unitary operator U_{T}, called a Koopman operator, defined by $U_{T} f:=f \circ T$ for all $f \in L_{2}(X)$. One can ask for the converse: given a unitary operator U on $L_{2}(X)$, how to recognize that it is a Koopman operator. The very classical answer says that if U preserves multiplication of bounded functions, i.e. if

$$
\begin{equation*}
U(f g)=U(f) U(g) \tag{1}
\end{equation*}
$$

for all $f, g \in L_{\infty}(X)$, then U is a Koopman operator by a combination of the multiplication theorem in [Hal] (page 45) and [Kec] Theorem 15.9. Another type of questions one can ask for is, given a unitary operator U on an abstract Hilbert space, how to recognize that it is unitarily equivalent to a Koopman operator, see for example [CR], Cho, [Rid] and Den.

The problem which unitary operators can be realized as Koopman operator remains one of important and still unsolved problems in ergodic theory, see e.g. the discussion on this problem in [KL], [KT] and also the survey article Lem. Up to unitary equivalence each unitary operator U is determined by the two invariants: the equivalence class $[\sigma]$ of a finite positive Borel measure σ on the circle, called the maximal spectral type σ_{U} of U, together with the (Borel) multiplicity function $M=M_{U}: T \rightarrow\{1,2, \ldots\} \cup\{\infty\}$ which is defined σ-a.e. Once a pair $([\sigma], M)$ is given, it is easy to construct on the abstract level a unitary operator U for which $\left(\sigma_{U}, M_{U}\right)=([\sigma], M)$. Nevertheless, it is an open problem whether there exists a (unitary) Koopman operator U such that $\left(\sigma_{U}, M_{U}\right)=([\sigma], M)$. (Some restrictions must be imposed on σ, for example σ must be of symmetric type and its topological support must be full if the construction is sought in the class of U_{T} with T ergodic.) While some progress has been made recently in the spectral theory of single transformation, cf. [Lem], for unitary one-parameter groups still little is known.

A unitary one-parameter C_{0}-group $\left(U_{t}\right)_{t \in \mathbb{R}}$ is called a Koopman group if for all $t \in \mathbb{R}$ there exists a measurable $T_{t}: X \rightarrow X$ such that $U_{t} f=f \circ T_{t}$ for all $f \in L_{2}(X)$. It is clear that a Koopman group must preserve $L_{\infty}(X)$, but this latter condition is satisfied also for many unitary one-parameter C_{0}-groups which are not Koopman groups. By the Stone theorem [Sto, the generator A of a unitary one-parameter C_{0}-group is skew-adjoint. Therefore each unitary one-parameter C_{0}-group is determined up to unitary equivalence by $\left(\sigma_{U}, M_{U}\right)$, where $\sigma_{U}=[\sigma]$ for some finite positive Borel measure on \mathbb{R}. In order to characterize those pairs ($[\sigma], M$) which can be realized by Koopman groups, it seems to natural to characterize first those generators A for which $\left(e^{t A}\right)_{t \in \mathbb{R}}$ is equivalent to a Koopman group. Even the problem to characterize in terms of their generator which unitary one-parameter C_{0}-groups are Koopman groups seems to be, however, far from obvious. Moreover, once such a characterization is done, one can consider the problem whether a perturbation of a Koopman representation remains Koopman. The latter is of independent interest.

In order to formulate the main results of the paper, first recall that if A is an operator in a function space E and $\mathcal{D} \subset D(A)$ is an algebra, then we say that A is a derivation on \mathcal{D} if

$$
A(f g)=(A f) g+f(A g)
$$

for all $f, g \in \mathcal{D}$. The main result of the paper is the following.
Theorem 1.1. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a unitary one-parameter C_{0}-group on $L_{2}(X)$ with generator A. Then the following are equivalent.
(i) For all $t \in \mathbb{R}$ there exists an a.e. invertible measurable and measure preserving map $T_{t}: X \rightarrow X$ such that $U_{t} f=f \circ T_{t}$ for all $f \in L_{2}(X)$.
(ii) The space $L_{\infty}(X)$ is invariant under U. Moreover, the space $D(A) \cap L_{\infty}(X)$ is an algebra and A is a derivation on $D(A) \cap L_{\infty}(X)$.

We are also able to prove in Corollary 2.9 a generalisation of the above theorem where the group U is a C_{0}-group which is not necessarily unitary and we do not require measure preserving in Condition (i). Moreover we have a generalisation where the measure μ is merely σ-finite, see Theorem 2.8 below.

A theorem of the same nature as Theorem 1.1 was given by Gallavotti and Pulvirenti, (GP] Theorem 4.

Theorem $1.2([G \mathrm{GP})$. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let A be a self-adjoint operator and let $\mathcal{D} \subset D(A) \subset L_{\infty}(X)$. Suppose that \mathcal{D} is a core for $A, \mathbb{1} \in \mathcal{D}$, \mathcal{D} is an algebra, \mathcal{D} is self-adjoint (that is if $f \in \mathcal{D}$ then $\bar{f} \in \mathcal{D}$), A is a derivation on \mathcal{D} and $\overline{A f}=-A \bar{f}$ for all $f \in \mathcal{D}$. Then [(i)] in Theorem 1.1 is valid.

The theorem of Gallavotti and Pulvirenti does not have an extension where A is merely a C_{0}-group generator and it is essential in GP] that the measure μ is finite.

The main application of Theorems 1.1 and 2.8 is a characterization of those C_{0}-groups on $L_{2}(X)$ which are pointwise the product of a Koopman operator and a multiplication operator.

Theorem 1.3. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a unitary C_{0}-group on $L_{2}(X)$ preserving $L_{\infty}(X)$. Assume that $\mathbb{1} \in D(A)$ with $A \mathbb{1} \in L_{\infty}(X)$, where A is the generator of U. Then the following are equivalent.
(i) For all $t \in \mathbb{R}$ there exists an a.e. invertible, measurable and measure-preserving map $T_{t}: X \rightarrow X$ and a function $\psi_{t}: X \rightarrow \mathbb{C}$ such that $U_{t} f=\psi_{t} \cdot\left(f \circ T_{t}\right)$ for all $f \in L_{2}(X)$.
(ii) For all $t \in \mathbb{R}$ one has $\left|U_{t} \mathbb{1}\right|=1$ a.e. Moreover, $D(A) \cap L_{\infty}(X)$ is an algebra and $A-(A \mathbb{1}) I$ is a derivation on $D(A) \cap L_{\infty}(X)$.

We also have an extension of this theorem for C_{0}-groups which are not necessarily unitary, see Theorem 3.10. The above result can be viewed as the one-parameter counterpart of the classical Banach-Lamperti theorem, Lam Theorem 3.1, classifying that all isometries of $L_{p}(X)$ for all $p \in[1, \infty) \backslash\{2\}$ are of the form

$$
\begin{equation*}
f \mapsto \psi \cdot(f \circ T) \tag{2}
\end{equation*}
$$

for some pointwise map $T: X \rightarrow X$ and $\psi: X \rightarrow(0, \infty)$. In [GGM] the authors also proved that unitary positivity preserving maps are of the form (2).

In Section 2 we prove Theorem 1.1 and its extension for general C_{0}-groups. As a tool and byproduct we prove in Theorem 2.5 that if (X, \mathcal{B}, μ) is a finite measure space and S
is a C_{0}-group in $L_{2}(X)$, then S extends consistently to a C_{0}-group on $L_{1}(X)$ if and only if the dual group S^{*} leaves $L_{\infty}(X)$ invariant. This is a new result in (semi)group theory. In Section 3 we prove Theorem 3.10, characterizing weighted non-singular one-parameter C_{0}-groups, which has Theorem 1.3 as corollary. It turns out that in Theorem 1.3)(i) one has $\psi_{t} \in L_{\infty}(X)$ and

$$
\psi_{t+s}=\psi_{t} \cdot\left(\psi_{s} \circ T_{t}\right) \text { a.e. }
$$

for all $t, s \in \mathbb{R}$. Finally, in Section 4 we determine the form of such ψ, assuming a differentiability condition.

2 Derivations

If (X, \mathcal{B}, μ) is a measure space and $f, g \in L_{2}(X)$, then we denote the inner product by $(f, g)=\int_{X} f \bar{g} d \mu$. Moreover, if $f \in L_{\infty}(X)$ and $g \in L_{1}(X)$ then we denote the duality by $\langle f, g\rangle=\int_{X} f \bar{g} d \mu$. If the measure space is clear from the context, then we abbreviate $L_{p}=L_{p}(X)$ for all $p \in[1, \infty]$. Further, let $p, q \in[1, \infty]$, let U be a one-parameter (semi)group on $L_{p}(X)$ and V be a one-parameter (semi)group on $L_{q}(X)$. We say that U and V are consistent if $U_{t} f=V_{t} f$ for all $t \in \mathbb{R}($ or $t \in(0, \infty))$ and $f \in L_{p}(X) \cap L_{q}(X)$.

For the proof of Theorem 1.1 we need several lemmas as preparation. The first two seem to be folklore.

Lemma 2.1. Let (X, \mathcal{B}, μ) be a measure space, $c>0$ and $E: L_{2}(X) \rightarrow L_{2}(X)$ be a bounded operator. Suppose that $\|E f\|_{\infty} \leq c\|f\|_{\infty}$ for all $f \in L_{2}(X) \cap L_{\infty}(X)$. Then there exist unique $\widehat{E} \in \mathcal{L}\left(L_{1}(X)\right)$ and $\widetilde{E} \in \mathcal{L}\left(L_{\infty}(X)\right)$ such that $\widehat{E} f=E^{*} f$ for all $f \in L_{1}(X) \cap L_{2}(X)$ and $\widetilde{E} f=E f$ for all $f \in L_{\infty}(X) \cap L_{2}(X)$. Moreover, $\|\widetilde{E}\|_{\infty \rightarrow \infty} \leq c$ and $\widetilde{E}=(\widehat{E})^{*}$.

Proof. Let $f \in L_{1} \cap L_{2}$. Then $\left|\left(E^{*} f, g\right)\right|=|(f, E g)| \leq\|f\|_{1}\|E g\|_{\infty} \leq c\|f\|_{1}\|g\|_{\infty}$ for all $g \in L_{2} \cap L_{\infty}$. So $E^{*} f \in L_{1}$ and $\left\|E^{*} f\right\|_{1} \leq c\|f\|_{1}$. Since $L_{1} \cap L_{2}$ is dense in L_{1} it follows that there exists a unique $\widehat{E} \in \mathcal{L}\left(L_{1}\right)$ such that $\widehat{E} f=E^{*} f$ for all $f \in L_{1} \cap L_{2}$. Choose $\widetilde{E}=(\widehat{E})^{*}$. Then the existence follows. The uniqueness on L_{∞} is a consequence of the w *-density of $L_{2} \cap L_{\infty}$ in L_{∞}.

As a consequence one has the next lemma.
Lemma 2.2. Let (X, \mathcal{B}, μ) be a measure space and S a semigroup on $L_{2}(X)$. Suppose that for all $t \in(0,1]$ there exists a $c>0$ such that $\left\|S_{t} f\right\|_{\infty} \leq c\|f\|_{\infty}$ for all $f \in L_{2}(X) \cap L_{\infty}(X)$. Then there exist a unique semigroup \widetilde{S} on $L_{\infty}(X)$ and a unique semigroup \widehat{S} on $L_{1}(X)$ such that \widetilde{S} is consistent with S and \widehat{S} is consistent with S^{*}. Moreover, if there exists a $\tilde{c} \geq 1$ such that $\left\|S_{t} f\right\|_{\infty} \leq \tilde{c}\|f\|_{\infty}$ for all $t \in(0,1]$ and $f \in L_{2}(X) \cap L_{\infty}(X)$, then $\left\|\widetilde{S}_{t}\right\|_{\infty \rightarrow \infty}=\left\|\widehat{S}_{t}\right\|_{1 \rightarrow 1} \leq c e^{t \log c}$ for all $t \in(0, \infty)$.

The next lemma is less known.
Lemma 2.3. Let (X, \mathcal{B}, μ) be a measure space, $c \geq 1$ and S a C_{0}-semigroup on $L_{2}(X)$ with generator A. Suppose that $\left\|S_{t} f\right\|_{\infty} \leq c\|f\|_{\infty}$ for all $t \in(0,1]$ and $f \in L_{2}(X) \cap L_{\infty}(X)$. Then $D(A) \cap L_{\infty}(X)$ is dense in $L_{2}(X)$.

Proof. Since $L_{2} \cap L_{\infty}$ is dense in L_{2}, it suffices to show that for all $f \in L_{2} \cap L_{\infty}$ there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $D(A) \cap L_{\infty}$ such that $\lim f_{n}=f$ in L_{2}. Fix $\varphi \in C_{c}^{\infty}(0, \infty)$ with $\int \varphi=1$. For all $n \in \mathbb{N}$ define $\varphi \in C_{c}^{\infty}(0, \infty)$ by $\varphi_{n}(t)=n \varphi(n t)$. Let $f \in L_{2} \cap L_{\infty}$ and $n \in \mathbb{N}$. Define $f_{n} \in L_{2}$ by

$$
f_{n}=\int_{(0, \infty)} \varphi_{n}(t) S_{t} f d t
$$

Then $f_{n} \in D(A)$. Moreover, $\lim _{n \rightarrow \infty} f_{n}=f$ in L_{2} since S is a continuous semigroup. It remains to show that $f_{n} \in L_{\infty}$ for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$ and $g \in L_{1} \cap L_{2}$. Then

$$
\left|\varphi_{n}(t)\left(S_{t} f, g\right)\right| \leq\left|\varphi_{n}(t)\right|\left\|S_{t} f\right\|_{\infty}\|g\|_{1} \leq\left|\varphi_{n}(t)\right| c e^{t \log c}\|f\|_{\infty}\|g\|_{1}
$$

for all $t \in(0, \infty)$. Hence

$$
\left|\left(f_{n}, g\right)\right|=\left|\int_{(0, \infty)} \varphi_{n}(t)\left(S_{t} f, g\right) d t\right| \leq M_{n}\|f\|_{\infty}\|g\|_{1},
$$

where $M_{n}=\int_{(0, \infty)}\left|\varphi_{n}(t)\right| c e^{t \log c} d t<\infty$. So $f_{n} \in L_{\infty}$ as required.
Remark 2.4. Under the conditions of Lemma 2.3 the space $D(A) \cap L_{\infty}$ is even a core for A, since the space $D(A) \cap L_{\infty}$ is invariant under S. See [EN] Proposition II.1.7.

It seems that the next theorem is new. Note that we do not assume a uniform bound of the type (3) in Condition (ii).

Theorem 2.5. Let (X, \mathcal{B}, μ) be a finite measure space. Let S be a C_{0}-group on $L_{2}(X)$. Then the following are equivalent.
(i) The group S extends consistently to a C_{0}-group on $L_{1}(X)$.
(ii) The space $L_{\infty}(X)$ is invariant under S^{*}, that is $S_{t}^{*}\left(L_{\infty}(X)\right) \subset L_{\infty}(X)$ for all $t \in \mathbb{R}$. If these conditions are satisfied, then there exist $M \geq 1$ and $\omega \geq 0$ such that

$$
\begin{equation*}
\left\|S_{t}^{*} f\right\|_{\infty} \leq M e^{\omega|t|}\|f\|_{\infty} \tag{3}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $f \in L_{\infty}(X)$.
Proof. The implication (i) \Rightarrow (ii) is trivial. (Cf. the proof of Lemma 2.1,) So it remains to show $($ (ii) \Rightarrow (i) .

Let $t \in \mathbb{R}$. It follows from the closed graph theorem that there exists a $c>0$ such that $\left\|S_{t}^{*} f\right\|_{\infty} \leq c\|f\|_{\infty}$ for all $f \in L_{\infty}$. Note that we use here that the measure μ is finite. Also note that c depends on t. Hence by Lemma 2.2 there exists a one-parameter group \widehat{S} on L_{1} and a one-parameter group \widetilde{S} on L_{∞} such that \widehat{S} is consistent with S and \widetilde{S} is consistent with S^{*}. Moreover, $\widetilde{S}_{t}=\left(\widehat{S}_{t}\right)^{*}$ for all $t \in \mathbb{R}$.

We shall show that $\left\{\widetilde{S}_{t}: t \in[2,3]\right\}$ is bounded in $\mathcal{L}\left(L_{\infty}\right)$. By the uniform boundedness principle if suffices to show that $\left\{\left\|\widetilde{S}_{t} f\right\|_{\infty}: t \in[2,3]\right\}$ is bounded for all $f \in L_{\infty}$. For this we use the arguments as in the first step of the proof of ABHN Lemma 3.16.4. Fix $f \in L_{\infty}$. If $t \in \mathbb{R}$ then

$$
\begin{aligned}
\left\|\widetilde{S}_{t} f\right\|_{\infty} & =\sup \left\{\left|\left\langle\widetilde{S}_{t} f, g\right\rangle\right|: g \in L_{1} \text { and }\|g\|_{1} \leq 1\right\} \\
& =\sup \left\{\left|\left\langle\widetilde{S}_{t} f, g\right\rangle\right|: g \in L_{2} \text { and }\|g\|_{1} \leq 1\right\} \\
& =\sup \left\{\left|\left(f, S_{t} g\right)\right|: g \in L_{2} \text { and }\|g\|_{1} \leq 1\right\}
\end{aligned}
$$

For each $g \in L_{2}$ the map $t \mapsto\left|\left(f, S_{t} g\right)\right|$ is continuous by the strong continuity of S on L_{2}. So $t \mapsto\left\|\widetilde{S}_{t} f\right\|_{\infty}$ is lower semicontinuous and therefore a measurable function on \mathbb{R}. This is the key assumption in the first step of the proof of [ABHN] Lemma 3.16.4. In order to have the paper self-contained, we include the proof, with minor modifications. Suppose that $\left\{\left\|\widetilde{S}_{t} f\right\|_{\infty}: t \in[2,3]\right\}$ is not bounded. Then there are $t_{0}, t_{1}, t_{2}, \ldots \in[2,3]$ such that $\lim _{n \rightarrow \infty} t_{n}=t_{0}$ and $\left\|\widetilde{S}_{t_{n}} f\right\|_{\infty} \geq n$ for all $n \in \mathbb{N}$. Since $t \mapsto\left\|\widetilde{S}_{t} f\right\|_{\infty}$ is measurable, there are $M>0$ and a measurable set $F \subset\left[0, t_{0}\right]$ such that $\mu(F)>1$ and $\left\|\widetilde{S}_{t} f\right\|_{\infty} \leq M$ for all $t \in F$. Let $n \in \mathbb{N}$. Then

$$
n \leq\left\|\widetilde{S}_{t_{n}} f\right\|_{\infty} \leq\left\|\widetilde{S}_{t_{n}-t}\right\|\left\|\widetilde{S}_{t} f\right\|_{\infty} \leq M\left\|\widetilde{S}_{t_{n}-t}\right\|
$$

for all $t \in F$. So $\left\|\widetilde{S}_{s}\right\| \geq M^{-1} n$ for all $s \in E_{n}$, where

$$
E_{n}=\left\{t_{n}-t: t \in F \cap\left[0, t_{n}\right]\right\} .
$$

Note that E_{n} is measurable and $\mu\left(E_{n}\right) \geq 1$ if $\left|t_{n}-t_{0}\right|<\mu(F)-1$. Let $E=\limsup _{n \rightarrow \infty} E_{n}=$ $\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} E_{n}$. Then E is measurable and $\mu(E) \geq 1$. In particular, $E \neq \emptyset$. Moreover, $\left\|\widetilde{S}_{s}\right\|=\infty$ for all $s \in E$. This is a contradiction.

Thus $\left\{\widetilde{S}_{t}: t \in[2,3]\right\}$ is bounded in $\mathcal{L}\left(L_{\infty}\right)$. Since $\widetilde{S}_{t}=\left(\widehat{S}_{t}\right)^{*}$ it follows that $\left\{\widehat{S}_{t}\right.$: $t \in[2,3]\}$ is bounded in $\mathcal{L}\left(L_{1}\right)$. By the group property the set $\left\{\widehat{S}_{t}: t \in[-1,1]\right\}$ is also bounded in $\mathcal{L}\left(L_{1}\right)$. Let $c=\sup \left\{\left\|\widehat{S}_{t}\right\|: t \in[-1,1]\right\}<\infty$. Let $g \in L_{\infty}$. Then $\lim _{t \rightarrow 0}\left\langle g, \widehat{S}_{t} f\right\rangle=\lim _{t \rightarrow 0}\left(g, S_{t} f\right)=(g, f)=\langle g, f\rangle$ for all $f \in L_{2}$. Since L_{2} is dense in L_{1} and $c<\infty$ it follows that $\lim _{t \rightarrow 0}\left\langle g, \widehat{S}_{t} f\right\rangle=\langle g, f\rangle$ for all $f \in L_{1}$. So \widehat{S} is weakly continuous and hence \widehat{S} is a C_{0}-group. Finally, there are $M \geq 1$ and $\omega \geq 0$ such that $\left\|\widehat{S}_{t}\right\|_{1 \rightarrow 1} \leq M e^{\omega|t|}$ for all $t \in \mathbb{R}$. Then $\left\|\widetilde{S}_{t}\right\|_{\infty \rightarrow \infty}=\mid \widehat{S}_{t} \|_{1 \rightarrow 1} \leq M e^{\omega|t|}$ for all $t \in \mathbb{R}$.

We now turn to the proof of Theorem 1.1. The implication (i) \Rightarrow (ii) in Theorem 1.1 is a special case of the next proposition.

Proposition 2.6. Let U be a C_{0}-group on $L_{2}(X)$ with generator A, where (X, \mathcal{B}, μ) is a measure space. Suppose that for every $t \in \mathbb{R}$ there exists a measurable map $T_{t}: X \rightarrow X$ such that $U_{t} f=f \circ T_{t}$ for all $f \in L_{2}(X)$. Then U extends consistently to a w^{*}-continuous contraction group on $L_{\infty}(X)$. Moreover, $D(A) \cap L_{\infty}(X)$ is an algebra and A is a derivation on $D(A) \cap L_{\infty}(X)$.

Proof. Let $t \in \mathbb{R}$. If $f \in L_{2} \cap L_{\infty}$ then $\left\|U_{t} f\right\|_{\infty}=\left\|f \circ T_{t}\right\|_{\infty} \leq\|f\|_{\infty}$. Hence by Lemma 2.2 there exist a unique group \widetilde{U} on L_{∞} and a unique group \widehat{U} on L_{1} such that \widetilde{U} is consistent with U and \widehat{U} is consistent with U^{*}. Moreover, $\left\|\widetilde{U}_{t}\right\|_{\infty \rightarrow \infty}=\left\|\widehat{U}_{t}\right\|_{1 \rightarrow 1}=1$ for all $t \in \mathbb{R}$. Then \widehat{U} is a C_{0}-group on L_{1} by Voi] Proposition 4. Therefore \widetilde{U} is a w^{*}-continuous group on L_{∞}.

Let $f, g \in D(A) \cap L_{\infty}$. Then $U_{t}(f g)=\left(U_{t} f\right)\left(U_{t} g\right)$ for all $t \in \mathbb{R}$. Hence

$$
\frac{1}{t}\left(U_{t}(f g)-f g\right)=\frac{1}{t}\left(U_{t} f-f\right) U_{t} g+\frac{1}{t} f\left(U_{t} g-g\right)
$$

for all $t>0$. So $f g \in D(A)$ and $A(f g)=(A f) g+f(A g)$.
Under more conditions there is a converse of Proposition 2.6. A first step is the next proposition.

Proposition 2.7. Let U be a C_{0}-group on $L_{2}(X)$ with generator A, where (X, \mathcal{B}, μ) is a measure space. Suppose that $D(A) \cap L_{\infty}(X)$ is an algebra and A is a derivation on $D(A) \cap L_{\infty}(X)$. Moreover, suppose that there exists a $c \geq 1$ such that

$$
\left\|U_{t} f\right\|_{\infty} \leq c\|f\|_{\infty}
$$

for all $t \in[-1,1]$ and $f \in L_{2}(X) \cap L_{\infty}(X)$. Then there exists a unique one-parameter group \widetilde{U} on $L_{\infty}(X)$ which is consistent with U. Moreover,

$$
\widetilde{U}_{t}(f g)=\left(\widetilde{U}_{t} f\right)\left(\widetilde{U}_{t} g\right)
$$

for all $f, g \in L_{\infty}$ and $t \in \mathbb{R}$.
Proof. The existence and uniqueness of the one-parameter group \widetilde{U} on L_{∞} follows from Lemma 2.2. Then $\left\|\widetilde{U}_{t} f\right\|_{\infty} \leq c e^{\omega|t|}\|f\|_{\infty}$ for all $t \in \mathbb{R}$ and $f \in L_{\infty}$, where $\omega=\log c$.

Clearly $t \mapsto\left\langle\widetilde{U}_{t} f, g\right\rangle=\left(U_{t} f, g\right)$ is continuous for all $f \in L_{\infty} \cap L_{2}$ and $g \in L_{1} \cap L_{2}$. Let $f \in L_{\infty} \cap L_{2}$ and $g \in L_{1}$. Let $t \in \mathbb{R}$ and $\varepsilon>0$. There exists a $g^{\prime} \in L_{1} \cap L_{2}$ such that $\left\|g-g^{\prime}\right\|_{1} \leq \varepsilon$. Then

$$
\begin{aligned}
\left|\left\langle\widetilde{U}_{t+k} f, g\right\rangle-\left\langle\widetilde{U}_{t} f, g\right\rangle\right| & =\left|\left\langle\widetilde{U}_{t+k} f, g-g^{\prime}\right\rangle+\left\langle\widetilde{U}_{t+k} f-\widetilde{U}_{t} f, g^{\prime}\right\rangle+\left\langle\widetilde{U}_{t} f, g^{\prime}-g\right\rangle\right| \\
& \leq c e^{\omega(|t|+1)} \varepsilon\|f\|_{\infty}+\left|\left\langle\widetilde{U}_{t+k} f-\widetilde{U}_{t} f, g^{\prime}\right\rangle\right|+c e^{\omega|t|} \varepsilon\|f\|_{\infty}
\end{aligned}
$$

for all $k \in[-1,1]$. Hence

$$
\begin{equation*}
\lim _{k \rightarrow 0}\left\langle\widetilde{U}_{t+k} f, g\right\rangle=\left\langle\widetilde{U}_{t} f, g\right\rangle \tag{4}
\end{equation*}
$$

for all $f \in L_{\infty} \cap L_{2}, g \in L_{1}$ and $t \in \mathbb{R}$.
Let $f, g \in D(A) \cap L_{\infty}$. Define $\alpha: \mathbb{R} \rightarrow L_{2}$ by $\alpha(t)=\left(U_{t} f\right)\left(U_{t} g\right)$. Let $h \in L_{2}$. We shall show that $t \mapsto(\alpha(t), h)$ is differentiable and that

$$
\begin{equation*}
\frac{d}{d t}(\alpha(t), h)=\left(\left(A U_{t} f\right)\left(U_{t} g\right)+\left(U_{t} f\right)\left(A U_{t} g\right), h\right) \tag{5}
\end{equation*}
$$

for all $t \in \mathbb{R}$. Let $t \in \mathbb{R}$. If $k \in \mathbb{R} \backslash\{0\}$, then

$$
\begin{equation*}
\frac{1}{k}((\alpha(t+k), h)-(\alpha(t), h))=\frac{1}{k}\left(\left(U_{t+k} f-U_{t} f\right) U_{t+k} g, h\right)+\frac{1}{k}\left(\left(U_{t} f\right)\left(U_{t+k} g-U_{t} g\right), h\right) \tag{6}
\end{equation*}
$$

For the first term we shall prove that

$$
\lim _{k \rightarrow 0} \frac{1}{k}\left(\left(U_{t+k} f-U_{t} f\right) U_{t+k} g, h\right)=\left(\left(A U_{t} f\right)\left(U_{t} g\right), h\right)
$$

Let $k \in \mathbb{R} \backslash\{0\}$. Then

$$
\begin{aligned}
\left\lvert\, \frac{1}{k}\left(\left(U_{t+k} f\right.\right.\right. & \left.\left.-U_{t} f\right) U_{t+k} g, h\right)-\left(\left(A U_{t} f\right)\left(U_{t} g\right), h\right) \mid \\
& =\left|\left(\left(\frac{1}{k}\left(U_{t+k} f-U_{t} f\right)-A U_{t} f\right) \widetilde{U}_{t+k} g, h\right)+\left(\left(A U_{t} f\right)\left(\widetilde{U}_{t+k} g-\widetilde{U}_{t} g\right), h\right)\right| \\
& \leq\left\|\frac{1}{k}\left(U_{t+k} f-U_{t} f\right)-A U_{t} f\right\|_{2}\left\|\widetilde{U}_{t+k} g\right\|_{\infty}\|h\|_{2}+\left|\left\langle\widetilde{U}_{t+k} g-\widetilde{U}_{t} g, h \overline{\left(A U_{t} f\right)}\right\rangle\right| .
\end{aligned}
$$

Since $\lim _{k \rightarrow 0}\left\|\frac{1}{k}\left(U_{t+k} f-U_{t} f\right)-A U_{t} f\right\|_{2}=0, \sup _{k \in[-1,1]}\left\|\widetilde{U}_{t+k} g\right\|_{\infty}<\infty$ and $\overline{h\left(A U_{t} f\right)} \in L_{1}$, it follows from (4) that

$$
\lim _{k \rightarrow 0} \frac{1}{k}\left(\left(U_{t+k} f-U_{t} f\right) U_{t+k} g, h\right)=\left(\left(A U_{t} f\right)\left(U_{t} g\right), h\right)
$$

Similarly one proves for the second term in (6) that

$$
\lim _{k \rightarrow 0} \frac{1}{k}\left(\left(U_{t} f\right)\left(U_{t+k} g-U_{t} g\right), h\right)=\left(\left(U_{t} f\right)\left(A U_{t} g\right), h\right)
$$

Hence $t \mapsto(\alpha(t), h)$ is differentiable and (5) is valid. Thus α is weakly differentiable, with weak derivative

$$
\alpha^{\prime}(t)=\left(A U_{t} f\right)\left(U_{t} g\right)+\left(U_{t} f\right)\left(A U_{t} g\right) .
$$

But A is a derivation on $D(A) \cap L_{\infty}$. Therefore

$$
\alpha^{\prime}(t)=\left(A U_{t} f\right)\left(U_{t} g\right)+\left(U_{t} f\right)\left(A U_{t} g\right)=A\left(\left(U_{t} f\right)\left(U_{t} g\right)\right)=A(\alpha(t))
$$

for all $t \in \mathbb{R}$. Obviously $\alpha(0)=f g$. The uniqueness of the Cauchy problem yields $\alpha(t)=e^{t A}(f g)=U_{t}(f g)$ for all $t \in \mathbb{R}$.

Fix $t \in \mathbb{R}$. Let $g \in D(A) \cap L_{\infty}$. Then

$$
U_{t}(f g)=\left(U_{t} f\right)\left(U_{t} g\right)=\left(U_{t} f\right)\left(\widetilde{U}_{t} g\right)
$$

for all $f \in D(A) \cap L_{\infty}$. By Lemma 2.3 the space $D(A) \cap L_{\infty}$ is dense in L_{2}. Hence it follows by continuity that $U_{t}(f g)=\left(U_{t} f\right)\left(\widetilde{U}_{t} g\right)$ is valid for all $f \in L_{2}$ and in particular for all $f \in L_{2} \cap L_{\infty}$. So

$$
\begin{equation*}
U_{t}(f g)=\left(\widetilde{U}_{t} f\right)\left(U_{t} g\right) \tag{7}
\end{equation*}
$$

for all $f \in L_{2} \cap L_{\infty}$ and $g \in D(A) \cap L_{\infty}$. Since $D(A) \cap L_{\infty}$ is dense in L_{2}, it follows that (7) is valid for all $f, g \in L_{2} \cap L_{\infty}$. So

$$
\begin{equation*}
\widetilde{U}_{t}(f g)=\left(\widetilde{U}_{t} f\right)\left(\widetilde{U}_{t} g\right) \tag{8}
\end{equation*}
$$

for all $f, g \in L_{2} \cap L_{\infty}$. Let $f \in L_{2} \cap L_{\infty}$ and $h \in L_{1}$. Then

$$
\begin{equation*}
\left\langle\widetilde{U}_{t}(f g), h\right\rangle=\left\langle f g, \widehat{U}_{t} h\right\rangle=\left\langle g, \bar{f} \widehat{U}_{t} h\right\rangle \tag{9}
\end{equation*}
$$

for all $g \in L_{\infty}$. Moreover,

$$
\begin{equation*}
\left\langle\left(\widetilde{U}_{t} f\right)\left(\widetilde{U}_{t} g\right), h\right\rangle=\left\langle\widetilde{U}_{t} g, \overline{\widetilde{U}_{t} f} h\right\rangle=\left\langle g, \widehat{U}_{t}\left(\overline{\widetilde{U}_{t} f} h\right)\right\rangle \tag{10}
\end{equation*}
$$

for all $g \in L_{\infty}$. It follows from (8), (9) and (10) that

$$
\begin{equation*}
\left\langle g, \bar{f} \widehat{U}_{t} h\right\rangle=\left\langle g, \widehat{U}_{t}\left(\overline{\widetilde{U}_{t} f} h\right)\right\rangle \tag{11}
\end{equation*}
$$

for all $g \in L_{2} \cap L_{\infty}$. But $L_{2} \cap L_{\infty}$ is w^{*}-dense in L_{∞}. So (11) is valid for all $g \in L_{\infty}$. Using again (9) and (10) one deduces that

$$
\left\langle\widetilde{U}_{t}(f g), h\right\rangle=\left\langle\left(\widetilde{U}_{t} f\right)\left(\widetilde{U}_{t} g\right), h\right\rangle
$$

for all $g \in L_{\infty}$. This is for all $h \in L_{1}$. So (8) is valid for all $f \in L_{2} \cap L_{\infty}$ and $g \in L_{\infty}$. Finally, by a similar argument one establishes that (8) is valid for all $f, g \in L_{\infty}$.

Theorem 2.8. Let (X, \mathcal{B}, μ) be a σ-finite measure space such that (X, \mathcal{B}) is a standard Borel space. Let U be a C_{0}-group on $L_{2}(X)$ with generator A. Then the following are equivalent.
(i) For all $t \in \mathbb{R}$ there exists a measurable map $T_{t}: X \rightarrow X$ such that $U_{t} f=f \circ T_{t}$ for all $f \in L_{2}(X)$.
(ii) The space $D(A) \cap L_{\infty}(X)$ is an algebra and A is a derivation on $D(A) \cap L_{\infty}(X)$. Moreover, there exists a $c>0$ such that

$$
\left\|U_{t} f\right\|_{\infty} \leq c\|f\|_{\infty}
$$

for all $t \in[-1,1]$ and $f \in L_{2}(X) \cap L_{\infty}(X)$.
Proof. $($ (i) \Rightarrow (ii). This follows from Proposition 2.6.
$\left(\right.$ (ii \Rightarrow (i) . By Proposition 2.7 there exists a unique one-parameter group \widetilde{U} on L_{∞} which is consistent with U. Moreover,

$$
\begin{equation*}
\widetilde{U}_{t}(f g)=\left(\widetilde{U}_{t} f\right)\left(\widetilde{U}_{t} g\right) \tag{12}
\end{equation*}
$$

for all $f, g \in L_{\infty}$ and $t \in \mathbb{R}$. Fix $t \in \mathbb{R}$. Let $\mathcal{I}=\{B \in \mathcal{B}: \mu(B)=0\}$. Then \mathcal{I} is a σ-ideal in \mathcal{B}. Let $B \in \mathcal{B}$. Then $\widetilde{U}_{t} \mathbb{1}_{B}=\widetilde{U}_{t}\left(\mathbb{1}_{B}^{2}\right)=\left(\widetilde{U}_{t} \mathbb{1}_{B}\right)^{2}$ by (12). Therefore there exists a $B^{\prime} \in \mathcal{B}$ such that $\widetilde{U}_{t} \mathbb{1}_{B}=\mathbb{1}_{B^{\prime}}$. If also $B^{\prime \prime} \in \mathcal{B}$ is such that $\widetilde{U}_{t} \mathbb{1}_{B}=\mathbb{1}_{B^{\prime \prime}}$, then $B^{\prime} \Delta B^{\prime \prime} \in \mathcal{I}$, where Δ denotes the symmetric difference. Define $\Phi(B)=B^{\prime} \Delta \mathcal{I} \in \mathcal{B} / \mathcal{I}$. Then Φ is a map from \mathcal{B} into $\mathcal{B} / \mathcal{I}$.

Clearly $\Phi(\emptyset)=\emptyset \Delta \mathcal{I}$. Let $B_{1}, B_{2} \in \mathcal{B}$. It follows from (12) that $\Phi\left(B_{1} \cap B_{2}\right)=\Phi\left(B_{1}\right) \wedge$ $\Phi\left(B_{2}\right)$. Moreover, if $B_{1} \cap B_{2}=\emptyset$ and $B_{1}^{\prime}, B_{2}^{\prime} \in \mathcal{B}$ are such that $\widetilde{U}_{t} \mathbb{1}_{B_{1}}=\mathbb{1}_{B_{1}^{\prime}}$ and $\widetilde{U}_{t} \mathbb{1}_{B_{2}}=$ $\mathbb{1}_{B_{2}^{\prime}}$, then $\mathbb{1}_{B_{1}^{\prime} \cap B_{2}^{\prime}}=U_{t} \mathbb{1}_{B_{1} \cap B_{2}}=0$, so $\widetilde{U}_{t} \mathbb{1}_{B_{1} \cup B_{2}}=\widetilde{U}_{t}\left(\mathbb{1}_{B_{1}}+\mathbb{1}_{B_{2}}\right)=\mathbb{1}_{B_{1}^{\prime}}+\mathbb{1}_{B_{2}^{\prime}}=\mathbb{1}_{B_{1}^{\prime} \cup B_{2}^{\prime}}$. Note that $\left(\widetilde{U}_{t}\right)^{-1}=\widetilde{U}_{-t}$ has the same properties as \widetilde{U}_{t}. Hence there exists a $B \in \mathcal{B}$ such that $\widetilde{U}_{-t} \mathbb{1}=\mathbb{1}_{B}$. Then $\widetilde{U}_{t} \mathbb{1}_{B}=\mathbb{1}$. Consequently

$$
\mathbb{1}=\widetilde{U}_{t} \mathbb{1}_{B}=\widetilde{U}_{t}\left(\mathbb{1}_{B} \mathbb{1}\right)=\left(\widetilde{U}_{t} \mathbb{1}_{B}\right)\left(\widetilde{U}_{t} \mathbb{1}\right)=\mathbb{1} \widetilde{U}_{t} \mathbb{1}=\widetilde{U}_{t} \mathbb{1}
$$

So Φ is a homomorphism. Since \widetilde{U}_{t} is continuous, it follows that \widetilde{U}_{t} is a σ-homomorphism of Boolean σ-algebras. By [Kec Theorem 15.9 there exists a measurable map $T_{t}: X \rightarrow X$ such that $\Phi(B)=T_{t}^{-1}(B) \Delta \mathcal{I}$ for all $B \in \mathcal{B}$. So $U_{t} \mathbb{1}_{B}=\widetilde{U}_{t} \mathbb{1}_{B}=\mathbb{1}_{B} \circ T_{t}$ for all $B \in \mathcal{B}$ with $\mu(B)<\infty$. Using the continuity of U_{t} and the image measure under T_{t}, one deduces that $U_{t} f=f \circ T_{t}$, first for all $f \in L_{1} \cap L_{2}$ and then for all $f \in L_{2}$.

Corollary 2.9. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a C_{0}-group on $L_{2}(X)$ with generator A. Then the following are equivalent.
(i) For all $t \in \mathbb{R}$ there exists a measurable map $T_{t}: X \rightarrow X$ such that $U_{t} f=f \circ T_{t}$ for all $f \in L_{2}(X)$.
(ii) The space $L_{\infty}(X)$ is invariant under U. Moreover, the space $D(A) \cap L_{\infty}(X)$ is an algebra and A is a derivation on $D(A) \cap L_{\infty}(X)$.

Proof. This is a consequence of Theorems 2.5 and 2.8.

Note that the map U_{t} is unitary if and only if the map T_{t} is measure preserving in Theorem 2.8)(i).

Proof of Theorem 1.1. This follows immediately from Corollary 2.9.
Remark 2.10. Note that in Theorem 1.1 the map $T_{t}: X \rightarrow X$ is measure preserving for all $t \in \mathbb{R}$. Moreover,

$$
T_{t_{1}+T_{2}}=T_{t_{1}} \circ T_{t_{2}} \text { a.e. }
$$

for all $t_{1}, t_{2} \in \mathbb{R}$. Since the one-parameter group U is strongly continuous, it follows from GTW] page 307 that the group $\left(T_{t}\right)_{t \in \mathbb{R}}$ enjoys the following measurabilty property: there exists a Borel map $F: \mathbb{R} \times X \rightarrow X$ such that for all $t \in \mathbb{R}$ one has

$$
F(t, x)=T_{t} x \text { for a.e. } x \in X
$$

Thus $\left(T_{t}\right)_{t \in \mathbb{R}}$ is a measurable measure preserving flow.

3 Weighted non-singular C_{0}-groups

Throughout this section let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a one-parameter group on $L_{2}(X)$ with $U_{0}=I$. The group U is called weighted nonsingular if for each $t \in \mathbb{R}$ there exist a map $T_{t}: X \rightarrow X$ and a function $\psi_{t}: X \rightarrow \mathbb{C}$ such that

$$
\begin{equation*}
U_{t} f=\psi_{t} \cdot\left(f \circ T_{t}\right) \tag{13}
\end{equation*}
$$

for all $f \in L_{2}(X)$. By substituting $f=\mathbb{1}$, we obtain that $\psi_{t}=U_{t} \mathbb{1}$ for all $t \in \mathbb{R}$, in particular, ψ_{t} is measurable. Moreover, $\psi_{0}=\mathbb{1}$ and the group property of U implies the cocycle identity

$$
\begin{equation*}
\psi_{t+t^{\prime}}=\psi_{t} \cdot\left(\psi_{t^{\prime}} \circ T_{t}\right) \tag{14}
\end{equation*}
$$

and the group property

$$
\begin{equation*}
T_{t+t^{\prime}}=T_{t} \circ T_{t^{\prime}} \text { a.e. } \tag{15}
\end{equation*}
$$

for all $t, t^{\prime} \in \mathbb{R}$. Let $t \in \mathbb{R}$. It follows that $\mathbb{1}=\psi_{t} \cdot\left(\psi_{-t} \circ T_{t}\right)$, whence $\psi_{t} \neq 0$ a.e. and

$$
\begin{equation*}
\frac{1}{\psi_{t}}=\psi_{-t} \circ T_{t} \tag{16}
\end{equation*}
$$

Therefore

$$
f \circ T_{t}=\frac{1}{\psi_{t}} \cdot U_{t} f
$$

for all $f \in L_{2}(X)$, so T_{t} is measurable. In general, a measurable map $S: X \rightarrow X$ is called non-singular if $\mu\left(S^{-1}(A)\right)=0$ for all $A \in \mathcal{B}$ with $\mu(A)=0$. Then note that T_{t} is a non-singular map of (X, \mathcal{B}, μ) and that the measure μ and the image measure $T_{t *} \mu$ are equivalent, where

$$
\left(T_{t *} \mu\right)(A):=\mu\left(T_{t}^{-1} A\right)
$$

for all $A \in \mathcal{B}$. Indeed, if $B \in \mathcal{B}$ and $\mu(B)=0$, then $0=U_{t} \mathbb{1}_{B}=\psi_{t} \cdot\left(\mathbb{1}_{B} \circ T_{t}\right)=\psi_{t} \cdot \mathbb{1}_{T_{t}^{-1} B}$, hence $\left(T_{t *} \mu\right)(B)=\mu\left(T_{t}^{-1} B\right)=0$.

A weighted non-singular one-parameter group U is called a weighted Koopman group if T_{t} is measure-preserving for all $t \in \mathbb{R}$.

Lemma 3.1. Let U be a weighted non-singular one-parameter group given by (131). Then

$$
\left\|\left|\psi_{t}\right|^{2} \cdot\left(\frac{d\left(T_{t *} \mu\right)}{d \mu} \circ T_{t}\right)\right\|_{\infty} \leq\left\|U_{t}\right\|_{2 \rightarrow 2}^{2}
$$

for all $t \in \mathbb{R}$.
Proof. If $f \in L_{2}$, then

$$
\int\left|\psi_{t}\right|^{2} \cdot\left|f \circ T_{t}\right|^{2} d \mu=\left\|U_{t} f\right\|_{2}^{2} \leq c\|f\|_{2}^{2}
$$

where $c=\left\|U_{t}\right\|_{2 \rightarrow 2}^{2}$. Hence

$$
\int\left|\psi_{t}\right|^{2} \cdot\left(f \circ T_{t}\right) d \mu \leq c\|f\|_{1}
$$

for all $0 \leq f \in L_{1}(X, \mu)$. Equivalently,

$$
\int\left(\left|\psi_{t}\right|^{2} \circ T_{t}^{-1}\right) \cdot f \cdot \frac{d\left(T_{t *} \mu\right)}{d \mu} d \mu=\int\left(\left|\psi_{t}\right|^{2} \circ T_{t}^{-1}\right) \cdot f d\left(T_{t *} \mu\right) \leq c\|f\|_{1}
$$

for all $0 \leq f \in L_{1}(X, \mu)$. Since $\left(\left|\psi_{t}\right|^{2} \circ T_{t}^{-1}\right) \cdot \frac{d\left(T_{t *} \mu\right)}{d \mu} \geq 0$, one deduces that

$$
\left\|\left(\left|\psi_{t}\right|^{2} \circ T_{t}^{-1}\right) \cdot \frac{d\left(T_{t *} \mu\right)}{d \mu}\right\|_{\infty} \leq c
$$

and the result follows by the non-singularity of T_{t}.
Lemma 3.2. Let U be a weighted non-singular one-parameter group given by (13). Then the following are equivalent.
(i) The representation U preserves $L_{\infty}(X)$.
(ii) $\psi_{t}=U_{t} \mathbb{1} \in L_{\infty}(X)$ for all $t \in \mathbb{R}$.
(iii) $\frac{d\left(T_{t * \mu}\right)}{d \mu} \in L_{\infty}(X)$ for all $t \in \mathbb{R}$.

Proof. $(\mathrm{i}) \Rightarrow($ (ii) is trivial and $)\left(\right.$ (ii \Rightarrow (i) follows from (13) and the fact that T_{t} is nonsingular for all $t \in \mathbb{R}$.
(ii) \Rightarrow (iii). Lemma 3.1 and (16) imply that

$$
\left\|\frac{d\left(T_{t *} \mu\right)}{d \mu} \circ T_{t}\right\|_{\infty} \leq\left\|U_{t}\right\|_{2 \rightarrow 2}^{2}\left\|\psi_{-t}\right\|_{\infty}^{2}<\infty
$$

for all $t \in \mathbb{R}$.
(iii) \Rightarrow (ii). Since $T_{t} \circ T_{-t}=I$ a.e., it follows that

$$
\left(\frac{d\left(T_{t *} \mu\right)}{d \mu} \circ T_{t}\right) \cdot \frac{d\left(T_{-t *} \mu\right)}{d \mu}=\mathbb{1}
$$

for all $t \in \mathbb{R}$. Then the claim is a consequence of Lemma 3.1.

Remark 3.3. Let U be a C_{0}-group which is weighted Koopman and unitary. Let $t \in \mathbb{R}$. Then

$$
\int|f|^{2} \circ T_{t} d \mu=\int|f|^{2} d \mu=\left\|U_{t} f\right\|_{2}^{2}=\int\left|\psi_{t}\right|^{2} \cdot\left(|f|^{2} \circ T_{t}\right) d \mu
$$

for all $f \in L_{2}(X)$. Hence $\int\left(\left|\psi_{t}\right|^{2}-1\right) \cdot\left(|f|^{2} \circ T_{t}\right) d \mu=0$ for all $f \in L_{2}(X)$ and therefore $\left|\psi_{t}\right|=1$ a.e.

There are many one-parameter C_{0}-groups which preserve $L_{\infty}(X)$, but which are not weighted non-singular.

Example 3.4. Let $B \in \mathcal{B}$ be such that $\mu(B) \neq 0 \neq \mu(X \backslash B)$. Define $A: L_{2}(X) \rightarrow L_{2}(X)$ by $A f=\left(f, \mathbb{1}_{B}\right) \mathbb{1}_{X \backslash B}$. Then A is bounded, so it generates a C_{0}-group U. Since $A^{2}=0$, one deduces that $U_{t}=I+t A$ for all $t \in \mathbb{R}$. Hence obviously U leaves $L_{\infty}(X)$ invariant. Now choose $t=-\mu(B)^{-1}$. Then

$$
U_{t} \mathbb{1}=\mathbb{1}+t\left(\mathbb{1}, \mathbb{1}_{B}\right) \mathbb{1}_{X \backslash B}=\mathbb{1}+t \mu(B) \mathbb{1}_{X \backslash B}=\mathbb{1}-\mathbb{1}_{X \backslash B}=\mathbb{1}_{B}
$$

Since $\mu\left(\left\{x \in X:\left(U_{t} \mathbb{1}\right)(x)=0\right\}\right)=\mu(X \backslash B)>0$, the group U is not weighted non-singular by (16).

We next consider weighted non-singular one-parameter groups which preserve $L_{\infty}(X)$.
Lemma 3.5. Let U be a weighted non-singular one-parameter group given by (13). Assume that U preserves $L_{\infty}(X)$. Then $f \circ T_{t} \in L_{2}(X)$ for all $f \in L_{2}(X)$ and $t \in \mathbb{R}$. Define $V_{t}: L_{2}(X) \rightarrow L_{2}(X)$ by

$$
V_{t} f=f \circ T_{t}
$$

Then one has the following.
(a) $\quad\left(V_{t}\right)_{t \in \mathbb{R}}$ is a one-parameter group on $L_{2}(X)$.
(b) If U is a C_{0}-group, then also $\left(V_{t}\right)_{t \in \mathbb{R}}$ is a C_{0}-group.

Proof. Note that (13) and (16) imply that

$$
V_{t} f=f \circ T_{t}=\left(\psi_{-t} \circ T_{t}\right) U_{t} f \in L_{2}
$$

for all $t \in \mathbb{R}$ and $f \in L_{2}$. Then Statement (a) is a consequence of (15).
(b). By Theorem 2.5 there exist $M \geq 1$ and $\omega \geq 0$ such that $\left\|U_{t} f\right\|_{\infty} \leq M e^{\omega|t|}\|f\|_{\infty}$ for all $t \in \mathbb{R}$ and $f \in L_{\infty}$.

Fix $f \in L_{\infty}$. Let $t \in(0,1)$. Then (16) gives

$$
\begin{align*}
V_{t} f-f & =\frac{1}{U_{t} \mathbb{1}}\left(\left(U_{t} f-f\right)+\left(\mathbb{1}-U_{t} \mathbb{1}\right) f\right) \\
& =\left(\left(U_{-t} \mathbb{1}\right) \circ T_{t}\right)\left(\left(U_{t} f-f\right)+\left(\mathbb{1}-U_{t} \mathbb{1}\right) f\right) \tag{17}
\end{align*}
$$

Therefore

$$
\begin{align*}
\left\|V_{t} f-f\right\|_{2} & \leq\left\|\left(U_{-t} \mathbb{1}\right) \circ T_{t}\right\|_{\infty}\left(\left\|U_{t} f-f\right\|_{2}+\left\|\mathbb{1}-U_{t} \mathbb{1}\right\|_{2}\|f\|_{\infty}\right) \\
& \leq M e^{\omega}\left(\left\|U_{t} f-f\right\|_{2}+\left\|\mathbb{1}-U_{t} \mathbb{1}\right\|_{2}\|f\|_{\infty}\right) \tag{18}
\end{align*}
$$

and $\lim _{t \downarrow 0} V_{t} f=f$. Then the result follows since L_{∞} is dense in L_{2}.

Proposition 3.6. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a C_{0}-group on $L_{2}(X)$ preserving $L_{\infty}(X)$. Then the following are equivalent.
(i) The representation U is weighted non-singular.
(ii) For all $t \in \mathbb{R}$ one has $U_{t} \mathbb{1} \neq 0$ a.e. and $\frac{1}{U_{t} \mathbb{1}} \in L_{\infty}(X)$. Moreover, $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ is a C_{0}-group on $L_{2}(X)$, where

$$
\begin{equation*}
V_{t} f=\frac{1}{U_{t} \mathbb{1}} U_{t} f \tag{19}
\end{equation*}
$$

for all $t \in \mathbb{R}$. In addition $D(B) \cap L_{\infty}(X)$ is an algebra and B is a derivation on $D(B) \cap L_{\infty}(X)$, where B is the generator of V.

Proof. $($ (i) \Rightarrow (ii). This follows from (16), Lemma 3.5)(b) and Proposition 2.6.
$\left(\right.$ (ii) $\Rightarrow\left(\right.$ i) . It follows from (19) that V leaves L_{∞} invariant. Then apply Corollary 2.9 to V and the result follows from (19).

Corollary 3.7. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a unitary C_{0}-group on $L_{2}(X)$ preserving $L_{\infty}(X)$. Then the following are equivalent.
(i) The group U is a weighted Koopman group.
(ii) For all $t \in \mathbb{R}$ one has $\left|U_{t} \mathbb{1}\right|=1$ a.e. Moreover, $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ is a unitary C_{0}-group on $L_{2}(X)$, where

$$
V_{t} f=\overline{U_{t} \mathbb{1}} \cdot U_{t} f
$$

for all $t \in \mathbb{R}$. In addition $D(B) \cap L_{\infty}(X)$ is an algebra and B is a derivation on $D(B) \cap L_{\infty}(X)$, where B is the generator of V.

In order to obtain a relationship between the generators of the two C_{0}-groups in Lemma 3.5(b), we need the following observation.

Lemma 3.8. Let U be a weighted non-singular one-parameter C_{0}-group. Let $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ be the group on $L_{2}(X)$ as in Lemma 3.5. Then

$$
\lim _{t \rightarrow 0}\left\|V_{t}\left(U_{-t} \mathbb{1}\right) \cdot g-g\right\|_{2}=0
$$

for all $g \in L_{\infty}(X)$.
Proof. It follows from Lemma 3.5(b) that V is a C_{0}-group. Hence $\sup _{t \in[-1,1]}\left\|V_{t}\right\|_{2 \rightarrow 2}<\infty$. Let $t \in(-1,1)$. Then

$$
\begin{aligned}
\left\|V_{t}\left(U_{-t} \mathbb{1}\right) \cdot g-g\right\|_{2} & =\left\|\left(V_{t}\left(U_{-t} \mathbb{1}-\mathbb{1}\right)+V_{t} \mathbb{1}-\mathbb{1}\right) g\right\|_{2} \\
& \leq\left(\left\|V_{t}\right\|_{2 \rightarrow 2}\left\|U_{-t} \mathbb{1}-\mathbb{1}\right\|_{2}+\left\|V_{t} \mathbb{1}-\mathbb{1}\right\|_{2}\right)\|g\|_{\infty}
\end{aligned}
$$

and the result follows.
Lemma 3.9. Let U be a weighted non-singular one-parameter C_{0}-group. Assume that U preserves $L_{\infty}(X)$. Let $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ be the C_{0}-group on $L_{2}(X)$ as in Lemma 3.5. Denote by A and B the generators of U and V, respectively. Assume that

$$
\mathbb{1} \in D(A) .
$$

Then $D(A) \cap L_{\infty}(X)=D(B) \cap L_{\infty}(X)$ and $B f=A f-f \cdot A \mathbb{1}$ for each $f \in D(A) \cap L_{\infty}(X)$.

Proof. Let $f \in D(A) \cap L_{\infty}$. Since $\mathbb{1} \in D(A)$ it follows from (18) that there exists a $c>0$ such that $\left\|V_{t} f-f\right\|_{2} \leq c t$ for all $t \in(0,1)$. Therefore $f \in D(B)$ by [EN] Corollary II.5.21. Hence $D(A) \cap L_{\infty} \subset D(B) \cap L_{\infty}$. Let $g \in L_{\infty}$. Then (17) gives

$$
\frac{1}{t}\left(V_{t} f-f, g\right)=\left(\frac{1}{t}\left(U_{t} f-f\right)-f \cdot \frac{1}{t}\left(U_{t} \mathbb{1}-\mathbb{1}\right), \overline{\left(U_{-t} \mathbb{1}\right) \circ T_{t}} \cdot g\right)
$$

for all $t \in(0,1)$. Now take the limit $t \rightarrow 0$ and use Lemma 3.8. It follows that

$$
(B f, g)=(A f-f \cdot A \mathbb{1}, g) .
$$

Therefore $B f=A f-(A \mathbb{1}) \cdot f$.
Conversely, let $f \in D(B) \cap L_{\infty}$. Then $U_{t} f-f=\left(U_{t} \mathbb{1}\right)\left(V_{t} f-f\right)+\left(U_{t} \mathbb{1}-\mathbb{1}\right) f$ for all $t \in \mathbb{R}$. The bounds (3) of Theorem 2.5 imply that there exists a $c>0$ such that

$$
\left\|U_{t} f-f\right\|_{2} \leq\left\|U_{t} \mathbb{1}\right\|_{\infty}\left\|V_{t} f-f\right\|_{2}+\left\|U_{t} \mathbb{1}-\mathbb{1}\right\|_{2}\|f\|_{\infty} \leq c|t|
$$

for all $t \in(0,1)$. Hence $f \in D(A)$ as before.
We can now prove the main theorem of this section.
Theorem 3.10. Let (X, \mathcal{B}, μ) be a standard Borel probability space. Let U be a C_{0}-group on $L_{2}(X)$ preserving $L_{\infty}(X)$. Assume that $\mathbb{1} \in D(A)$ with $A \mathbb{1} \in L_{\infty}(X)$, where A is the generator of U. Then the following are equivalent.
(i) The representation U is weighted non-singular.
(ii) The space $D(A) \cap L_{\infty}(X)$ is an algebra and $A-(A \mathbb{1}) I$ is a derivation on $D(A) \cap$ $L_{\infty}(X)$.

Proof. $(\mathrm{i}) \Rightarrow(\mathrm{ii})$. This follows from Proposition 3.6 and Lemma 3.9. Note that this implication does not require the assumption $A \mathbb{1} \in L_{\infty}$.
(ii) \Rightarrow (i) . Consider first U^{*}, which is a C_{0}-group on L_{2} whose generator is A^{*}. By Theorem 2.5 (ii) \Rightarrow (i) the one-parameter group U^{*} extends consistently to a C_{0}-group \widehat{U} on L_{1}. Denote by A the generator of this group.

Since $(A \mathbb{1}) I$ is a bounded operator the operator $A-(A \mathbb{1}) I$ generates a C_{0}-group V on L_{2} by perturbation theory [EN], Theorem III.1.3. Then $A^{*}-\overline{(A 1)} I$ is the generator of V^{*}. Moreover, again by perturbation theory, $\widehat{A}-\overline{(A 1)} I$ is the generator of a C_{0}-group \widehat{V} on L_{1}. Let $t \in \mathbb{R}$. The Trotter-Kato formula [EN] Exercise III.5.11(1) gives

$$
V_{t}^{*}=\lim _{n \rightarrow \infty}\left(e^{-\frac{t}{n} \overline{(A \mathbb{1})} I} U_{\frac{t}{n}}^{*}\right)^{n} \text { strongly in } \mathcal{L}\left(L_{2}\right)
$$

and

$$
\widehat{V}_{t}=\lim _{n \rightarrow \infty}\left(e^{-\frac{t}{n} \overline{(A 1)} I} \widehat{U}_{\frac{t}{n}}\right)^{n} \quad \text { strongly in } \mathcal{L}\left(L_{1}\right)
$$

Let $f \in L_{2}$. Then $f \in L_{1}$ and since U^{*} and \widehat{U} are consistent one deduces that

$$
\left(e^{-\frac{t}{n} \overline{(A \mathbb{1})} I} U_{\frac{t}{n}}^{*}\right)^{n} f=\left(e^{-\frac{t}{n} \overline{(A \mathbb{1})} I} \widehat{U}_{\frac{t}{n}}\right)^{n} f \text { a.e. }
$$

for all $n \in \mathbb{N}$. Hence $V_{t}^{*} f=\widehat{V}_{t} f$ a.e. and V^{*} and \widehat{V} are consistent. By Theorem 2.5)(i) \Rightarrow (ii), applied with $S=V^{*}$, it follows that V leaves the space L_{∞} invariant. By Theorem 2.8 it
follows that for all $t \in \mathbb{R}$ there exists a non-singular measurable map $T_{t}: X \rightarrow X$ such that $V_{t} f=f \circ T_{t}$ for all $f \in L_{2}$.

Note that

$$
\left(V_{t} \circ e^{s(A \mathbb{1}) I}\right) f=V_{t}\left(e^{s(A \mathbb{1})} f\right)=\left(e^{s(A \mathbb{1})} f\right) \circ T_{t}=\left(e^{s\left((A \mathbb{1}) \circ T_{s}\right) I} \circ V_{t}\right) f
$$

for all $t, s \in \mathbb{R}$ and $f \in L_{2}$. Iteration gives

$$
\begin{equation*}
\left(V_{\frac{t}{n}} \circ e^{\frac{t}{n}(A \mathbb{1}) I}\right)^{n}=e^{\frac{t}{n}\left((A \mathbb{1}) \circ T_{\frac{t}{n}}+\ldots+(A \mathbb{1}) \circ T_{\frac{n t}{n}}\right) I} \circ\left(V_{\frac{t}{n}}\right)^{n}=e^{\frac{t}{n}\left((A \mathbb{1}) \circ T_{\frac{t}{n}}+\ldots+(A \mathbb{1}) \circ T_{n t}^{n}\right) I} \circ V_{t} \tag{20}
\end{equation*}
$$

for all $t \in \mathbb{R}$ and $n \in \mathbb{N}$. Since $A=(A-(A \mathbb{1}) I)+(A \mathbb{1}) I$, one can consider the generator of the C_{0}-group U as a perturbation of the generator of the C_{0}-group V. Then the TrotterKato formula gives

$$
U_{t}=\lim _{n \rightarrow \infty}\left(V_{\frac{t}{n}} \circ e^{\frac{t}{n}(A \mathbb{1}) I}\right)^{n}
$$

strongly in $\mathcal{L}\left(L_{2}\right)$. Hence (20) gives $U_{t}=\psi_{t} \cdot V_{t}$ for all $t \in \mathbb{R}$, where

$$
\psi_{t}=e^{\int_{0}^{t}(A 1) \circ T_{r} d r} \in L_{\infty}
$$

This completes the proof.
Clearly Theorem 1.3 is a consequence of Theorem 3.10.
The condition $\mathbb{1} \in D(A)$ is not satisfied in general. We give a wide class of examples.
Example 3.11. Let $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ be a unitary C_{0}-group on $L_{2}(X)$ given by a measure preserving flow $T=\left(T_{t}\right)_{t \in \mathbb{R}}$ which is ergodic. So $V_{t} f=f \circ T_{t}$ for all $t \in \mathbb{R}$ and $f \in L_{2}(X)$ and the only $f \in L_{2}(X)$ which are invariant under V_{t} for all $t \in \mathbb{R}$ are the constants. We will now show that for all $t \in \mathbb{R}$ we can find a measurable $\psi_{t}: X \rightarrow \mathbb{R}$, bounded and bounded away from zero, such that $U=\left(U_{t}\right)_{t \in \mathbb{R}}$ is a continuous C_{0}-group on $L_{2}(X)$ for which $\mathbb{1} \notin D(A)$, where

$$
U_{t} f=\psi_{t} \cdot\left(f \circ T_{t}\right)
$$

for all $t \in \mathbb{R}$.
Indeed, by Ambrose-Kakutani theorem, see for example CFS Theorem 11.2.1, we can represent T as a special flow over an ergodic automorphism S of a standard Borel probability space (Y, \mathcal{C}, ρ), i.e. there exist $F: Y \rightarrow \mathbb{R}$ and $c>0$ such that $F>c, \int_{Y} F d \rho<$ ∞ and

$$
X=Y^{F}:=\{(y, s) \in Y \times \mathbb{R}: 0 \leq s \leq F(y)\}
$$

On Y^{F} we consider the restriction of the product measurable structure from $Y \times \mathbb{R}$ together with $\rho^{F}:=\left.\left(\rho \otimes \operatorname{Leb}_{\mathbb{R}}\right)\right|_{Y^{F}}$. The flow T acts as $S^{F}=\left(S_{t}^{F}\right)_{t \in \mathbb{R}}$, where under the action of S_{t}^{F} (with $t>0$) a point (y, r) moves up vertically with unit speed until it hits the point $(y, f(y))$ which is identified with $(S y, 0)$ and this movement is continued until time t. In this way we obtain a unitary C_{0}-group $V=\left(V_{t}\right)_{t \in \mathbb{R}}$, where $V_{t} f=f \circ S_{t}^{F}$ on $L_{2}\left(Y^{F}, \rho^{F}\right)$.

Let $a, b \in \mathbb{R}$ be such that $0<a<b<c$ and consider the strip $H:=Y \times[a, b]$. Then $H \subset Y^{F}$ and $\rho^{F}(H)=b-a$. For each $t \in \mathbb{R}$ with $|t|<a \wedge(c-b) \wedge(b-a)$ one has

$$
\begin{equation*}
\rho^{F}\left(H \triangle S_{t}^{F}(H)\right)=2|t| . \tag{21}
\end{equation*}
$$

We claim that $g:=\mathbb{1}_{H} \notin D(B)$, where B is the generator of V. Indeed, for all $t \in \mathbb{R}$ with $|t|<a \wedge(c-b) \wedge(b-a)$, it follows from (21) that

$$
\left\|g-g \circ S_{t}^{F}\right\|_{2}=\left(\int_{Y}\left|\mathbb{1}_{H}-\mathbb{1}_{H} \circ S_{t}^{F}\right|^{2} d \rho^{F}\right)^{1 / 2}=\left(\rho^{F}\left(H \triangle S_{t}^{F}(H)\right)\right)^{1 / 2}=\sqrt{2|t|}
$$

Therefore there is no constant $\kappa>0$ such that $\left\|g-g \circ S_{t}^{F}\right\|_{2} \leq \kappa|t|$ for all sufficiently small $|t|>0$ and hence $g \notin D(B)$.

Let $\theta:=g+\mathbb{1}$. Then $\theta \notin D(B)$ and $\theta, \frac{1}{\theta} \in L_{\infty}\left(Y^{F}\right)$. Set $\psi_{t}:=\frac{\theta}{\theta \circ S_{t}^{F}}$ for all $t \in \mathbb{R}$. Then $\left(\psi_{t}\right)_{t \in \mathbb{R}}$ satisfies the cocycle identity (14) and by setting

$$
U_{t} f=\psi_{t} \cdot\left(f \circ S_{t}^{F}\right)
$$

we obtain a C_{0}-group $U=\left(U_{t}\right)_{t \in \mathbb{R}}$ on $L_{2}\left(Y^{F}\right)$. Now

$$
\frac{1}{t}\left(U_{t} \mathbb{1}-\mathbb{1}\right)=\frac{1}{t}\left(\theta-\theta \circ S_{t}^{F}\right) \cdot \frac{1}{\theta \circ S_{t}^{F}}=\frac{1}{t}\left(\theta-V_{t} \theta\right) \cdot \frac{1}{\theta \circ S_{t}^{F}}
$$

and since V is a C_{0}-group and $\theta \notin D(B)$, we must have $\mathbb{1} \notin D(A)$, where A is the generator of U.

Remark 3.12. By considering the function $\xi=(-1)^{\mathbb{1}_{H}}=\mathbb{1}_{X \backslash H}-\mathbb{1}_{H}$, we obtain a measurable function for which $\xi \notin D(B)$ taking values in $\{-1,1\}$, and if we set $\psi_{t}:=\frac{\xi}{\xi \circ S_{t}^{F}}$, then the corresponding group U is weighted Koopman for which $\mathbb{1} \notin D(A)$.

Even if $\mathbb{1} \in D(A)$, then in general $A \mathbb{1} \notin L_{\infty}(X)$. An example is as follows.
Example 3.13. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the torus with normalized Haar measure. Let

$$
E=\left\{\eta \in L_{2}(\mathbb{T}): \int \eta=0\right\}
$$

Then E is a closed subspace of $L_{2}(\mathbb{T})$. We provide E with the norm of $L_{2}(\mathbb{T})$. For all $\eta \in L_{2}(\mathbb{T})$ define $\tilde{\eta} \in L_{2, \text { loc }}(\mathbb{R})$ by $\tilde{\eta}(x)=\eta\left(e^{i x}\right)$.

Fix $\zeta \in E$. For all $t \in \mathbb{R}$ define $\varphi_{t} \in C(\mathbb{T})$ by

$$
\varphi_{t}\left(e^{i x}\right)=\int_{x}^{x+t} \tilde{\zeta}
$$

Note that φ_{t} is well defined. Since $\int_{\mathbb{T}} \zeta=0$ one deduces that $\left\|\varphi_{t}\right\|_{\infty} \leq 2 \pi\|\zeta\|_{1}$. If $s, t \in \mathbb{R}$ then

$$
\tilde{\varphi}_{t+s}(x)=\int_{x}^{x+t} \tilde{\zeta}+\int_{x+t}^{x+t+s} \tilde{\zeta}=\tilde{\varphi}_{t}(x)+\tilde{\varphi}_{s}(x+t)
$$

for all $x \in \mathbb{R}$. For all $t \in \mathbb{R}$ define $\psi_{t} \in C(\mathbb{T})$ by

$$
\psi_{t}=e^{\varphi_{t}}
$$

and define $U_{t}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ by

$$
\left(U_{t} f\right)(z)=\psi_{t}(z) f\left(e^{i t} z\right)
$$

It is easy to verify that $U_{t} L_{\infty}(\mathbb{T}) \subset L_{\infty}(\mathbb{T})$ for all $t \in \mathbb{R}$ and that $U=\left(U_{t}\right)_{t \in \mathbb{R}}$ is a $C_{0^{-}}$ group. Let A be the generator of U. Clearly $\psi_{t}=U_{t} \mathbb{1}$ for all $t \in \mathbb{R}$. Up to now everything also works if $\zeta \in L_{1}(\mathbb{T})$ with $\int \zeta=0$, but from now on we use that $\zeta \in L_{2}(\mathbb{T})$. We shall prove that $\mathbb{1} \in D(A)$ and $A \mathbb{1}=\zeta$.

Let $t \in(0,1)$. Then

$$
\begin{align*}
\left|\frac{1}{t}\left(U_{t} \mathbb{1}-\mathbb{1}\right)-\zeta\right| & \leq\left|\frac{e^{\varphi_{t}}-\mathbb{1}-\varphi_{t}}{t}\right|+\left|\frac{1}{t} \varphi_{t}-\zeta\right| \\
& \leq \frac{1}{t}\left|\varphi_{t}\right|^{2} e^{\left|\varphi_{t}\right|}+\left|\frac{1}{t} \varphi_{t}-\zeta\right| \\
& \leq \frac{1}{t}\left|\varphi_{t}\right|^{2} e^{2 \pi\|\zeta\|_{1}}+\left|\frac{1}{t} \varphi_{t}-\zeta\right| \tag{22}
\end{align*}
$$

We estimate the terms in (22) separately in $L_{2}(\mathbb{T})$ in the limit $t \downarrow 0$.
We start with the second term. For all $t \in(0,1)$ define $F_{t}: E \rightarrow C(\mathbb{T})$ by

$$
\left(F_{t} \eta\right)\left(e^{i x}\right)=\frac{1}{t} \int_{x}^{x+t} \tilde{\eta}
$$

Note that $F_{t}(\zeta)=\frac{1}{t} \varphi_{t}$. Let $\eta \in E$ and $\tau \in L_{2}(\mathbb{T})$. Then Fubini and Cauchy-Schwarz give

$$
\begin{aligned}
\left|\left(F_{t}(\eta), \tau\right)_{L_{2}(\mathbb{T})}\right| & =\frac{1}{t}\left|\int_{0}^{2 \pi} \int_{x}^{x+t} \tilde{\eta}(s) d s \overline{\tilde{\tau}(x)} d x\right| \\
& =\frac{1}{t}\left|\int_{0}^{2 \pi} \int_{0}^{t} \tilde{\eta}(x+s) d s \overline{\tilde{\tau}(x)} d x\right| \\
& =\frac{1}{t}\left|\int_{0}^{t} \int_{0}^{2 \pi} \tilde{\eta}(x+s) \overline{\tilde{\tau}(x)} d x d s\right| \\
& \leq \frac{1}{t} \int_{0}^{t} 2 \pi\|\eta\|_{L_{2}(\mathbb{T})}\|\tau\|_{L_{2}(\mathbb{T})} d s \\
& =2 \pi\|\eta\|_{L_{2}(\mathbb{T})}\|\tau\|_{L_{2}(\mathbb{T})} .
\end{aligned}
$$

So $\left\|F_{t}(\eta)\right\|_{L_{2}(\mathbb{T})} \leq 2 \pi\|\eta\|_{L_{2}(\mathbb{T})}$ and the set $\left\{F_{t}: t \in(0,1)\right\}$ is bounded in $\mathcal{L}\left(E, L_{2}(\mathbb{T})\right)$. Clearly $\lim _{t \downarrow 0} F_{t}(\eta)=\eta$ in $L_{2}(\mathbb{T})$ for all $\eta \in C(\mathbb{T})$. Since $E \cap C(\mathbb{T})$ is dense in E, it follows that $\lim _{t \downarrow 0} F_{t}(\eta)=\eta$ in $L_{2}(\mathbb{T})$ for all $\eta \in E$. In particular for ζ one deduces that

$$
\begin{equation*}
\lim _{t \downarrow 0}\left|\frac{1}{t} \varphi_{t}-\zeta\right|=0 \tag{23}
\end{equation*}
$$

in $L_{2}(\mathbb{T})$. This settles the second term in (22).
Now we consider the first term in (22). We shall show that $\lim _{t \downarrow 0} \frac{1}{t}\left|\varphi_{t}\right|^{2}=0$ in $L_{2}(\mathbb{T})$. If $t \in(0,1)$, then

$$
\left|\varphi_{t}\left(e^{i x}\right)\right|=\left|\int_{x}^{x+t} \tilde{\zeta}\right| \leq \sqrt{2 \pi t}\|\zeta\|_{2}
$$

for all $x \in \mathbb{R}$ by the Cauchy-Schwarz inequality. So $\left\|\frac{1}{t}\left|\varphi_{t}\right|^{2}\right\|_{\infty} \leq 2 \pi\|\zeta\|_{2}^{2}$ for all $t \in(0,1)$. Let $t_{1}, t_{2}, \ldots \in(0,1)$ and assume that $\lim _{n \rightarrow \infty} t_{n}=0$. Then passing to a subsequence if necessary, it follows from (23) that $\lim _{n \rightarrow \infty} \frac{1}{t_{n}} \varphi_{t_{n}}(z)=\zeta(z)$ for a.e. $z \in \mathbb{T}$. Hence

$$
\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left|\varphi_{t_{n}}(z)\right|^{2}=\lim _{n \rightarrow \infty} t_{n}\left|\frac{1}{t_{n}} \varphi_{t_{n}}(z)\right|^{2}=0
$$

for a.e. $z \in \mathbb{T}$. Then the bounded convergence theorem of Lebesgue gives $\lim _{n \rightarrow \infty} \frac{1}{t_{n}}\left|\varphi_{t_{n}}\right|^{2}=$ 0 in $L_{2}(\mathbb{T})$. Hence $\lim _{t \downarrow 0} \frac{1}{t}\left|\varphi_{t}\right|^{2}=0$ in $L_{2}(\mathbb{T})$.

Combining the two estimates it follows from (22) that $\mathbb{1} \in D(A)$ and $A \mathbb{1}=\zeta$. Finally, if one chooses $\zeta \in E$ such that $\zeta \notin L_{\infty}(\mathbb{T})$, then $A \mathbb{1} \notin L_{\infty}(\mathbb{T})$.

4 Cocycles

In the previous section we started with a group U on $L_{2}(X)$ and in case U was weighted non-singular as in (13), we defined the representation V given by $V_{t} f=f \circ T_{t}$. In that case $U_{t}=\psi_{t} V_{t}$. In this section we reverse the order. We start with a representation of the form $V_{t} f=f \circ T_{t}$ and wish to construct as general as possible a representation U of the form (13), that is $U_{t}=\psi_{t} V_{t}$ for all $t \in \mathbb{R}$.

Throughout this section let (X, \mathcal{B}, μ) be a standard Borel probability space. For all $t \in \mathbb{R}$ let $T_{t}: X \rightarrow X$ be a measurable map such that $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ is a C_{0}-group on $L_{2}(X)$, where $V_{t} f:=f \circ T_{t}$ for all $t \in \mathbb{R}$. Let B be the generator of V.

We need a few definitions. A map $\psi: \mathbb{R} \rightarrow L_{\infty}(X)$ is said to be a cocycle (over V) if

$$
\begin{equation*}
\psi_{t+t^{\prime}}=\psi_{t} \cdot\left(\psi_{t^{\prime}} \circ T_{t}\right) \tag{24}
\end{equation*}
$$

for all $t, t^{\prime} \in \mathbb{R}$, where we write for simplicity $\psi_{t}=\psi(t)$ for all $t \in \mathbb{R}$. Note that $\psi=0$ is a cocycle over V. Suppose that ψ is a cocycle. For all $t \in \mathbb{R}$ define $U_{t}=\psi_{t} V_{t} \in \mathcal{L}\left(L_{2}(X)\right)$. Clearly $\left\|U_{t}\right\|_{2 \rightarrow 2} \leq\left\|\psi_{t}\right\|_{\infty}\left\|V_{t}\right\|_{2 \rightarrow 2}$. If $t, t^{\prime} \in \mathbb{R}$ then

$$
U_{t+t^{\prime}} f=\left(\psi_{t} \cdot\left(\psi_{t^{\prime}} \circ T_{t}\right)\right) V_{t+t^{\prime}} f=U_{t}\left(U_{t^{\prime}} f\right)=\left(U_{t} \circ U_{t^{\prime}}\right) f
$$

for all $f \in L_{2}(X)$, so $U=\left(U_{t}\right)_{t \in \mathbb{R}}$ is a one-parameter group on $L_{2}(X)$, which leaves $L_{\infty}(X)$ invariant. We call U the one-parameter group associated with ψ. Possibly $U_{0}=0$. With a continuity condition this is not the case.

Lemma 4.1. If $\lim _{t \rightarrow 0}\left\|\psi_{t}-\mathbb{1}\right\|_{1}=0$, then $\psi_{0}=\mathbb{1}$ a.e. and $U_{0}=I$.
Proof. Let $B \in \mathcal{B}$ and suppose that $\left.\psi_{0}\right|_{B}=0$ a.e. Then $\left.\psi_{t}\right|_{B}=0$ a.e. by (24). Since $\lim _{t \rightarrow 0}\left\|\psi_{t}-\mathbb{1}\right\|_{1}=0$, one deduces that $\mu(B)=0$. So $\psi_{0} \neq 0$ a.e. In addition, (24) gives $\psi_{0}=\psi_{0+0}=\psi_{0}^{2}$. Hence $\psi_{0}=\mathbb{1}$ a.e.

The cocycle ψ is called a C_{0}-cocycle (over V) if U is a C_{0}-group on $L_{2}(X)$. If $\theta \in L_{\infty}(X)$ is such that $\theta \neq 0$ a.e., and $\frac{1}{\theta} \in L_{\infty}(X)$, then it is easy to verify that $t \mapsto \frac{\theta \circ T_{t}}{\theta}$ is a cocycle. A cocycle ψ is called a coboundary if there exists a $\theta \in L_{\infty}(X)$ such that $\theta \neq 0$ a.e., $\frac{1}{\theta} \in L_{\infty}(X)$ and

$$
\psi_{t}=\frac{\theta \circ T_{t}}{\theta}
$$

for all $t \in \mathbb{R}$. The function θ is called a transfer function of the coboundary. If, in addition, $\theta \in D(B)$ and $B \theta \in L_{\infty}(X)$, then ψ is called a coboundary with an $L_{\infty}-$ differentiable transfer function.

If ψ is a cocycle and $\zeta \in L_{2}(X)$, then ζ is called the derivative of ψ if $\lim _{t \rightarrow 0} \frac{1}{t}\left(\psi_{t}-\mathbb{1}\right)=$ ζ in $L_{2}(X)$. We say that a cocycle ψ is differentiable if there exists an $\zeta \in L_{2}(X)$ such that ζ is the derivative of ψ.

We start with a characterisation of C_{0}-cocycles.

Proposition 4.2. Let $\psi: \mathbb{R} \rightarrow L_{\infty}(X)$ be a cocycle over V. Then the following are equivalent.
(i) ψ is a C_{0}-cocycle.
(ii) $\lim _{t \rightarrow 0}\left\|\psi_{t}-\mathbb{1}\right\|_{2}=0$.

Proof. Let U be the one-parameter group associated with ψ. Since $\psi_{t}=U_{t} \mathbb{1}$ for all $t \in \mathbb{R}$, the implication (i) \Rightarrow (ii) is trivial. So it remains to prove the converse.

Because $\lim _{t \rightarrow 0}\left\|\psi_{t}-\mathbb{1}\right\|_{1}=0$ by (ii), it follows from Lemma4.1 that $\psi_{0}=\mathbb{1}$ a.e. Clearly $\left\|U_{t}\right\|_{2 \rightarrow 2} \leq\left\|\psi_{t}\right\|_{\infty}\left\|V_{t}\right\|_{2 \rightarrow 2}$ for all $t \in \mathbb{R}$. If $f \in L_{\infty}$ then $\left\|U_{t} f\right\|_{\infty} \leq\left\|\psi_{t}\right\|_{\infty}\|f\|_{\infty}<\infty$. Hence the operator $\widetilde{U}_{t}:=\left.U_{t}\right|_{L_{\infty}}: L_{\infty} \rightarrow L_{\infty}$ is bounded. Obviously $\left(\widetilde{U}_{t}\right)_{t \in \mathbb{R}}$ is a one-parameter group on L_{∞}.

Let $f \in L_{\infty}$. Then

$$
U_{t} f-f=\left(\psi_{t}-\mathbb{1}\right) V_{t} f+V_{t} f-f
$$

for all $t \in \mathbb{R}$, so

$$
\left\|U_{t} f-f\right\|_{2} \leq\left\|\psi_{t}-\mathbb{1}\right\|_{2}\left\|V_{t} f\right\|_{\infty}+\left\|V_{t} f-f\right\|_{2}=\|f\|_{\infty}\left\|\psi_{t}-\mathbb{1}\right\|_{2}+\left\|V_{t} f-f\right\|_{2}
$$

and therefore

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left\|U_{t} f-f\right\|_{2}=0 \tag{25}
\end{equation*}
$$

by assumption. Fix $t_{0} \in \mathbb{R}$. Then

$$
\left\|U_{t_{0}+t} f-U_{t_{0}} f\right\|_{2} \leq\left\|U_{t_{0}}\right\|_{2 \rightarrow 2}\left\|U_{t} f-f\right\|_{2}
$$

for all $t \in \mathbb{R}$. Hence, $\lim _{t \rightarrow t_{0}} U_{t} f=U_{t_{0}} f$ in L_{2}. So $t \mapsto U_{t} f$ is continuous from \mathbb{R} into L_{2}. Hence the $\operatorname{map} t \mapsto\left|\left(U_{t} f, g\right)\right|$ from \mathbb{R} into \mathbb{R} is continuous for all $g \in L_{2}$.

Let $f \in L_{\infty}$ and $t \in \mathbb{R}$. Then

$$
\begin{aligned}
\left\|\widetilde{U}_{t} f\right\|_{\infty} & =\sup \left\{\left|\left\langle\widetilde{U}_{t} f, g\right\rangle\right|: g \in L_{1} \text { and }\|g\|_{1} \leq 1\right\} \\
& =\sup \left\{\left|\left\langle\widetilde{U}_{t} f, g\right\rangle\right|: g \in L_{2} \text { and }\|g\|_{1} \leq 1\right\} \\
& =\sup \left\{\left|\left(U_{t} f, g\right)\right|: g \in L_{2} \text { and }\|g\|_{1} \leq 1\right\}
\end{aligned}
$$

Since the map $t \mapsto\left|\left(U_{t} f, g\right)\right|$ is continuous for each $g \in L_{2}$, it follows that the map $t \mapsto\left\|\widetilde{U}_{t} f\right\|_{\infty}$ is lower semicontinuous, hence it is measurable on \mathbb{R}. By the proof of Theorem [2.5, we deduce that the set $\left\{\widetilde{U}_{t}: t \in[2,3]\right\}$ is bounded in $\mathcal{L}\left(L_{\infty}\right)$. Since $\left(\widetilde{U}_{t}\right)_{t \in \mathbb{R}}$ is a one-parameter group on L_{∞}, also $\left\{\widetilde{U}_{t}: t \in[-1,1]\right\}$ is bounded in $\mathcal{L}\left(L_{\infty}\right)$. Let $c:=\sup \left\{\left\|\widetilde{U}_{t}\right\|_{\infty \rightarrow \infty}: t \in[-1,1]\right\}$. Then $\left\|\psi_{t}\right\|_{\infty}=\left\|\widetilde{U}_{t} \mathbb{1}\right\|_{\infty} \leq c$ for all $t \in[-1,1]$. Hence $\sup \left\{\left\|U_{t}\right\|: t \in[-1,1]\right\}<\infty$. Since L_{∞} is dense in L_{2}, it follows from (25) that U is a C_{0}-group.

Corollary 4.3. Every differentiable cocycle is a C_{0}-cocycle. Every coboundary is a $C_{0^{-}}$cocycle.

Proposition 4.4. Let $\zeta \in L_{2}(X)$. Then there exists at most one function $\psi: \mathbb{R} \rightarrow L_{\infty}(X)$ such that ψ is a cocycle over V and the cocycle ψ is differentiable with derivative ζ.

Proof. Let $\psi, \widetilde{\psi}: \mathbb{R} \rightarrow L_{\infty}$ be cocycles over V which are differentiable with derivative ζ. Then $\psi_{0}=\mathbb{1}=\widetilde{\psi}_{0}$ a.e. Let U be the group associated with ψ. Then U is a C_{0}-group by Proposition 4.2, Moreover, $\sup \left\{\left\|\psi_{t}\right\|_{\infty}: t \in[-1,1]\right\}<\infty$ by (33) in Theorem [2.5, or the proof of Proposition 4.2. In addition, $\psi_{t} \neq 0$ a.e. and $\frac{1}{\psi_{t}}=\psi_{-t} \circ T_{t}$ for all $t \in \mathbb{R}$ by (16). Define $\eta: \mathbb{R} \rightarrow L_{\infty}$ by $\eta(t)=\eta_{t}:=\frac{\widetilde{\psi}_{t}}{\psi_{t}}$. Then $\eta_{t+t^{\prime}}=\eta_{t} \cdot\left(\eta_{t^{\prime}} \circ T_{t}\right)$ for all $t, t^{\prime} \in \mathbb{R}$, so η is a cocycle over V. Moreover,

$$
\frac{1}{t}\left(\eta_{t}-\mathbb{1}\right)=\frac{1}{t} \frac{\widetilde{\psi}_{t}-\psi_{t}}{\psi_{t}}=\frac{1}{\psi_{t}}\left(\frac{\widetilde{\psi}_{t}-\mathbb{1}}{t}-\frac{\psi_{t}-\mathbb{1}}{t}\right)=\left(\psi_{-t} \circ T_{t}\right)\left(\frac{\widetilde{\psi}_{t}-\mathbb{1}}{t}-\frac{\psi_{t}-\mathbb{1}}{t}\right)
$$

for all $t \in \mathbb{R} \backslash\{0\}$. Since $\sup \left\{\left\|\psi_{-t}\right\|_{\infty}: t \in[-1,1]\right\}<\infty$, one deduces that the cocycle η is differentiable and $\lim _{t \rightarrow 0} \frac{1}{t}\left(\eta_{t}-\mathbb{1}\right)=0$ in L_{2}.

Let $t \in \mathbb{R}$ and $h \in \mathbb{R} \backslash\{0\}$. Then

$$
\begin{aligned}
\frac{1}{h}\left(\eta_{t+h}-\eta_{t}\right) & =\frac{1}{h}\left(\eta_{t} \cdot\left(\eta_{h} \circ T_{t}\right)-\eta_{t}\right) \\
& =\eta_{t} \cdot\left(\frac{\eta_{h}-\mathbb{1}}{h} \circ T_{t}\right)=\eta_{t} \cdot V_{t}\left(\frac{\eta_{h}-\mathbb{1}}{h}\right) .
\end{aligned}
$$

It follows that $\lim _{h \rightarrow 0} \frac{1}{h}\left(\eta_{t+h}-\eta_{t}\right)=0$ in L_{2}. Therefore η is differentiable from \mathbb{R} into L_{2} and $\eta^{\prime}(t)=0$ for all $t \in \mathbb{R}$. So η is constant and $\eta(t)=\eta(0)=\mathbb{1}$ for all $t \in \mathbb{R}$. Hence $\widetilde{\psi_{t}}=\psi_{t}$ for all $t \in \mathbb{R}$, which completes the proof.

Lemma 4.5. Let $\zeta \in L_{\infty}(X)$. Define $\psi: \mathbb{R} \rightarrow L_{\infty}(X)$ by $\psi_{t}:=e^{\int_{0}^{t} \zeta \circ T_{s} d s}$. Then ψ is a differentiable cocycle with derivative ζ.

Proof. We first show that ψ is a cocycle over V. Let $t, t^{\prime} \in \mathbb{R}$. Then

$$
\begin{aligned}
\int_{0}^{t+t^{\prime}} \zeta \circ T_{s} d s & =\int_{0}^{t} \zeta \circ T_{s} d s+\int_{t}^{t+t^{\prime}} \zeta \circ T_{s} d s \\
& =\int_{0}^{t} \zeta \circ T_{s} d s+\int_{0}^{t^{\prime}} \zeta \circ T_{s+t} d s \\
& =\int_{0}^{t} \zeta \circ T_{s} d s+\left(\int_{0}^{t^{\prime}} \zeta \circ T_{s} d s\right) \circ T_{t}
\end{aligned}
$$

Hence ψ is a cocycle over V.
Next we show that ψ is differentiable. Recall that $\left|e^{z}-1-z\right| \leq|z|^{2} e^{|z|}$ for all $z \in \mathbb{C}$. Let $t \in[-1,1] \backslash\{0\}$. Then

$$
\begin{aligned}
\left|\frac{\psi_{t}-\mathbb{1}}{t}-\zeta\right| & \leq\left|\frac{\psi_{t}-\mathbb{1}-\int_{0}^{t} \zeta \circ T_{s} d s}{t}\right|+\left|\frac{1}{t} \int_{0}^{t} \zeta \circ T_{s} d s-\zeta\right| \\
& \leq \frac{1}{|t|}\left(\int_{0}^{t}\|\zeta\|_{\infty}\right)^{2} e^{|t|\|\zeta\|_{\infty}}+\left|\frac{1}{t} \int_{0}^{t}\right| \zeta \circ T_{s}-\zeta|d s| \\
& \leq|t|\|\zeta\|_{\infty}^{2} e^{\|\zeta\|_{\infty}}+\left|\frac{1}{t} \int_{0}^{t}\right| V_{s} \zeta-\zeta|d s| .
\end{aligned}
$$

Therefore

$$
\left\|\frac{1}{t}\left(\psi_{t}-\mathbb{1}\right)-\zeta\right\|_{2} \leq|t|\|\zeta\|_{\infty}^{2} e^{\|\zeta\|_{\infty}}+\left|\frac{1}{t} \int_{0}^{t}\left\|V_{s} \zeta-\zeta\right\|_{2} d s\right|
$$

Since $s \mapsto\left\|V_{s} \zeta-\zeta\right\|_{2}$ is continuous, one deduces that the cocycle ψ is differentiable with derivative ζ.

Lemma 4.6. Let $\zeta \in L_{\infty}(X)$ and let $\psi: \mathbb{R} \rightarrow L_{\infty}(X)$ be a cocycle. Then ψ is differentiable with derivative ζ if and only if $\psi_{t}=e^{\int_{0}^{t} \zeta \circ T_{s} d s}$ for all $t \in \mathbb{R}$.

Proof. This follows immediately from Proposition 4.4 and Lemma 4.5.
Next we turn to coboundaries.
Lemma 4.7. Let ψ be a coboundary with transfer function θ.
(a) The coboundary ψ is differentiable if and only if $\theta \in D(B)$. Moreover, if ψ is differentiable, then the derivative is $\frac{B \theta}{\theta}$.
(b) If $\theta \in D(B)$ and $B \theta \in L_{\infty}(X)$, then

$$
\psi_{t}=e^{\int_{0}^{t} \frac{B \theta}{\theta} \circ T_{s} d s}
$$

for all $t \in \mathbb{R}$.
Proof. If $t \in \mathbb{R} \backslash\{0\}$, then

$$
\frac{\psi_{t}-\mathbb{1}}{t}=\frac{1}{\theta} \cdot \frac{\theta \circ T_{t}-\theta}{t}=\frac{1}{\theta} \cdot \frac{V_{t} \theta-\theta}{t} .
$$

Hence ψ is differentiable if and only if $\theta \in D(B)$. Moreover, if ψ is differentiable, then the derivative is $\frac{1}{\theta} B \theta$. This proves Statement (a).

If $\theta \in D(B)$ and $B \theta \in L_{\infty}$, then $\zeta=\frac{1}{\theta} B \theta \in L_{\infty}$. Now Statement (b) follows from Lemma 4.6.

Note that Example 3.11 yields a C_{0}-cocycle (in fact a coboundary) which is not differentiable. It also gives an example of a coboundary which is not a coboundary with an L_{∞}-differentiable transfer function.

Lemma 4.8. Let ψ be a differentiable cocycle with derivative $\zeta \in L_{\infty}(X)$. Then the following conditions are equivalent.
(i) $\quad \psi$ is a coboundary.
(ii) ψ is a coboundary with an L_{∞}-differentiable transfer function.
(iii) There exists a $\theta \in D(B) \cap L_{\infty}(X)$ such that $\theta \neq 0$-a.e., $\frac{1}{\theta} \in L_{\infty}(X), B \theta \in L_{\infty}(X)$ and $\zeta=\frac{B \theta}{\theta}$.
Proof. The implication (ii) \Rightarrow (i) is trivial.
(i) \Rightarrow (ii) and $\left(\right.$ (i) \Rightarrow (iii). Let θ be a transfer function of ψ. By definition $\theta \in L_{\infty}, \theta \neq 0$ a.e. and $\frac{1}{\theta} \in L_{\infty}$. Then Lemma 4.7(a) gives $\theta \in D(B)$ and $\zeta=\frac{B \theta}{\theta}$. So $B \theta=\zeta \theta \in L_{\infty}$.
(iii) \Rightarrow (i). Define $\widetilde{\psi}: \mathbb{R} \rightarrow L_{\infty}$ by $\widetilde{\psi}_{t}=\frac{\theta \circ T_{t}}{\theta}$. Then Lemma 4.7(a) implies that the coboundary $\widetilde{\psi}$ is differentiable with derivative ζ. By the uniqueness of Proposition 4.4 one deduces that $\psi=\widetilde{\psi}$. So ψ is a coboundary.

We now give an example of a differentiable cocycle which is not a coboundary.
Example 4.9. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ be the torus with normalized Haar measure. For all $t \in \mathbb{R}$ define $T_{t}: \mathbb{T} \rightarrow \mathbb{T}$ by $T_{t} z=e^{i t} z$ and define $V_{t}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ by $V_{t} f=f \circ T_{t}$. Then $V=\left(V_{t}\right)_{t \in \mathbb{R}}$ is a C_{0}-group. Fix $\zeta \in L_{\infty}(\mathbb{T})$ with $\int \zeta \notin i \mathbb{Z}$. Define $\psi: \mathbb{R} \rightarrow L_{\infty}(\mathbb{T})$ by

$$
\psi_{t}=e^{\int_{0}^{t} \zeta \circ T_{s} d s}
$$

Then ψ is a differentiable cocycle by Lemma 4.5. Now suppose that ψ is a coboundary. Let θ be a transfer function. Then $\psi_{2 \pi}=\frac{\theta \circ T_{2 \pi}}{\theta}=\mathbb{1}$. Hence $\int_{0}^{2 \pi} \zeta \circ T_{s} d s \in 2 \pi i \mathbb{Z}$ a.e. But $\int_{0}^{2 \pi} \zeta \circ T_{s} d s=2 \pi \int_{\mathbb{T}} \zeta$ a.e. So $\int_{\mathbb{T}} \zeta \in i \mathbb{Z}$. This is a contradiction.

Acknowledgements

We wish to thank Yuri Tomilov for making a reference to ABHN] Lemma 3.16.4, which then led to the proof of Theorem 2.5. In addition we wish to thank him for the reference to GP and many critical comments which improved the paper. The authors are most grateful for the hospitality and fruitful stay of the first-named author at the University of Torun and the second-named author at the University of Auckland. Part of this work is supported by an NZ-EU IRSES counterpart fund and the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. Part of this work is supported by the the NCN grant DEC-2011/03/B/ST1/00407 and the EU Marie Curie IRSES program, project 'AOS', No. 318910.

References

[ABHN] Arendt, W., Batty, C., Hieber, M. and Neubrander, F., Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics 96. Birkhäuser, Basel, 2001.
[Cho] Choksi, J. R., Unitary operators induced by measurable transformations. J. Math. Mech. 17 (1967), 785-801.
[CFS] Cornfeld, I. P., Fomin, S. and Sinai, Y. G., Ergodic theory. Grundlehren der mathematischen Wissenschaften 245. Springer-Verlag, New York, 1982.
[CR] Cotlar, M. and Ricabarra, R. A., Sobre transformaciones de conjuntos y operadores de Koopman. Revista Unión Mat. Argentina 14 (1950), 232-254.
[Den] Denker, M., On unitary operators inducing measure-preserving transformations. Math. Z. 160 (1978), 163-172.
[EN] Engel, K.-J. and Nagel, R., One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics 194. Springer-Verlag, New York etc., 2000.
[GP] Gallavotti, G. and Pulvirenti, M., Classical KMS condition and TomitaTakesaki theory. Comm. Math. Phys. 46 (1976), 1-9.
[GTW] Glasner, E., Tsirelson, B. and Weiss, B., The automorphism group of the Gaussian measure cannot act pointwise. Israel J. Math. 148 (2005), 305329.
[GGM] Goodrich, K., Gustafson, K. and Misra, B., On converse to Koopman's lemma. Phys. A 102 (1980), 379-388.
[Hal] Halmos, P. R., Lectures on ergodic theory. Chelsea Publishing Co., New York, 1956.
[KL] Katok, A. and Lemańczyk, M., Some new cases of realization of spectral multiplicity function for ergodic transformations. Fund. Math. 206 (2009), 185-215.
[KT] Katok, A. and Thouvenot, J.-P., Spectral properties and combinatorial constructions in ergodic theory. In Handbook of dynamical systems. Vol. 1B, 649-743. Elsevier, Amsterdam, 2006.
[Kec] Kechris, A. S., Classical descriptive set theory. Graduate Texts in Mathematics 156. Springer-Verlag, New York, 1995.
[Lam] Lamperti, J., On the isometries of certain function-spaces. Pacific J. Math. 8 (1958), 459-466.
[Lem] Lemańczyk, M., Spectral theory of dynamical systems. In Meyers, R. A., ed., Encyclopedia of complex and systems science. Springer Science, New York, 2009, 8554-8575.
[Rid] Ridge, W. C., Characterization of abstract composition operators. Proc. Amer. Math. Soc. 45 (1974), 393-396.
[Sto] Stone, M. H., On one-parameter unitary groups in Hilbert space. Ann. of Math. 33 (1932), 643-648.
[Voi] Voigt, J., One-parameter semigroups acting simultaneously on different $L_{p^{-}}$ spaces. Bull. Soc. Roy. Sc. Liège 61 (1992), 465-470.

