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K-PROPERTY FOR MAHARAM EXTENSIONS OF

NONSINGULAR BERNOULLI AND MARKOV SHIFTS

Alexandre I. Danilenko and Mariusz Lemańczyk

Abstract. It is shown that each conservative nonsingular Bernoulli shift is either of

type II1 or III1. Moreover, in the latter case the corresponding Maharam extension
of the shift is a K-automorphism. This extends earlier results obtained by Z. Kosloff

for the equilibrial shifts. Nonequilibrial shifts of type III1 are constructed. We
further generalize (partly) the main results to nonsingular Markov shifts.

0. Introduction

In this paper we study asymptotic properties of nonsingular Bernoulli and non-
singular Markov shifts. By a nonsingular Bernoulli shift we mean the 2-sided shift

T̃ on the infinite product space X̃ := {0, 1}Z equipped with the infinite product
measure

⊗
i≤0 µ1 ⊗

⊗
i≥1 µi, where the probability measures µi, i ≥ 1, are chosen

in such a way that the shift is non-singular. We call the Bernoulli shift equilibrial if
µ1(0) = µ1(1) = 0.5. We are interested in nonsingular Bernoulli shifts not admit-
ting finite invariant equivalent measures. It is easy to construct dissipative (in fact,
totally dissipative) nonsingular Bernoulli shifts. The first example of a conservative
nonsingular Bernoulli shift not admitting a finite invariant equivalent measure was
constructed by Krengel in 1970 [Kr]. Later Hamachi presented another family of
conservative nonsingular Bernoulli shifts of type III, i.e. transformations which
have no σ-finite invariant equivalent measures, neither finite nor infinite [Ha]. This
was even more refined in [Ko1], where Kosloff constructed a family of nonsingular
Bernoulli shifts of type III1. This means that the Maharam extension of the shift is
ergodic. In a subsequent paper [Ko2] he showed that each conservative nonsingular
equilibrial Bernoulli shift either admits a finite invariant equivalent measure or is
of type III1. Moreover, in the latter case the corresponding Maharam extension of
the shift has property K (in the sense of Silva and Thieullen [SiTh]). This implies
that the aforementioned Bernoulli shifts from [Kr] are [Ha] are all of type III1.

Only equilibrial Bernoulli shifts were considered in [Kr], [Ha], [Ko1] and [Ko2].
In the first part of the present paper we extend the main results of [Ko2] to the
general nonsingular Bernoulli shifts:
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Theorem 3.1 and Corollary 3.3.

(i) If
∑∞

n=1(µn(0)−µ1(0))
2 < ∞ then µ is equivalent to

⊗∞
n=−∞ µ1 and hence

T̃ is of type II1.

(ii) If
∑∞

n=1(µn(0)−µ1(0))
2 = ∞ and T̃ is conservative then T̃ is ergodic of type

III1 and the Maharam extension of T̃ is a weakly mixing K-automorphism.

The main difference between the general case and the equilibrial one is that in
the general case the cocycle generated by the Radon-Nikodym derivative of a one-
sided Bernoulli shift and the Radon-Nikodym cocycle of the tail equivalence relation
generated by the shift do not coincide (see the proof of Theorem 3.1). Hence we
can not apply the Araki-Woods lemma on the Krieger’s type of the ITPFI factors
[ArWo] which played a crucial role in the equilibrial case. That is why we need first
to establish a stronger version of the Araki-Woods lemma (see Proposition 1.5).

We also give a simple explicit inductive construction of the sequence of measures
(µi)

∞
i=1 with an arbitrary µ1 such that the corresponding Bernoulli shift is nonsin-

gular, conservative and not of type II1 (see Theorem 4.2). The conservativeness
is the key property to establish. We achieve it by approximating the shift with a
sequence of Bernoulli type II1 shifts each of which is, of course, conservative. We

do the approximation in such a way that T̃ inherits conservativeness partly, i.e. on
a finite subalgebra of cylinders, from each of these prelimit transformations. In the

limit, the subalgebras generate the entire Borel σ-algebra. Hence T̃ is conservative.
In the second part of the paper we consider nonsingular Markov shifts, i.e. 2-

sided shifts on X̃ equipped with Markov measure µ̃ determined by a probability λ
on {0, 1} and a sequence of stochastic matrices (P (n))∞n=1 (see Sections 5 and 7).
In the bistochastic case we prove the following analogue of Theorem 3.1.

Theorem 8.1. Let the matrices P (n), n ≥ 1, be all bistochastic, λ(0) = λ(1) = 0.5

and P (1) =

(
0.5 0.5
0.5 0.5

)
. If (X̃, µ̃, T̃ ) is conservative then it is weakly mixing and

either of type II1 (if
∑

n≥1(P
(n)
0,0 − 0.5)2 < ∞) or of type III1 (otherwise). In the

latter case, the Maharam extension of (X̃, µ̃, T̃ ) is a K-automorphism.

We also prove some partial analogues of Theorem 3.1 in the general (not only
bistochastic) Markov case in Theorems 7.5 and 9.4.

The outline of the paper is as follows. In Section 1 we first briefly remind the
basic concepts of measurable orbit theory: nonsingular equivalence relation, skew-
product extension, essential value of a cocycle, Krieger’s type of an equivalence
relation, etc. Then we prove some generalizations of Araki-Woods lemma (see
Proposition 1.5, Remarks 1.6 and 1.7) that will be utilized in the later sections.
In Section 2 we review the general theory of nonsingular endomorphisms and its
relation to the measurable orbit theory. We collect there some facts about con-
servativeness, recurrence, ergodicity, exactness, Maharam extension and natural
extension for endomorphisms. In Section 3 we prove one of the main results of
the paper. The Maharam extension of a conservative nonsingular Bernoulli shift
(which is the natural extension of a one-sided nonsingular Bernoulli shift admitting
no equivalent invariant probability measure) is a K-automorphism (Theorem 3.1).
In Section 4 we give concrete examples of conservative nonsingular Bernoulli shifts of
type III1. In Section 5 we introduce Markov measures on {0, 1}Z. Some analogues
of Kakutani theorem on equivalence of infinite product measures and Kolmogorov
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zero-one law for the Markov measures are under discussion there. In Section 6 we
compute Krieger’s type of the tail equivalence relation equipped with a stationery
Markov measure. In Section 7 we introduce nonsingular one-sided Markov shifts
and describe their natural extensions. We find a sufficient condition for the nat-
ural extensions of the shifts to be K-automorphisms (Theorem 7.5). A necessary
condition for conservativeness of the natural extensions is also found (Lemma 7.6).
In Section 8 we consider bistochastic nonsingular Markov shifts. We show how to
extend the main results obtained in Section 3 for Bernoulli shifts to the bistochastic
Markov shifts under some “initial conditions” (Theorem 8.1). The general Markov
case is considered in Section 9 (see Theorem 9.4). Section 10 is a list of open
problems related to the subject of the paper.

1. Measurable equivalence relations and their cocycles.

Generalizations of Araki-Woods lemma

Let (X,B, µ) be a standard σ-finite measure space. A Borel equivalence relation
R ⊂ X ×X is called countable if for each x ∈ X , the R-equivalence class R(x) is
countable. R is called µ-nonsingular if for each subset A ∈ B of zero measure, the
subset R(A) :=

⋃
x∈A R(x) is also of zero measure. If for each A ∈ B of positive

measure the intersection (R(x)\{x})∩A is nontrivial for a.e. x ∈ A then R is called
µ-conservative. If the σ-algebra of R-invariant (i.e. R-saturated) Borel subsets in
X is trivial (mod µ) then R is called µ-ergodic.

From now on we will assume that R is countable and µ-nonsingular. Given a
locally compact second countable group G, a Borel map α : R → G is called a
cocycle of R if there is a µ-conull subset A ⊂ S such that α(x, y)α(y, z) = α(x, z)
for all x, y, z ∈ A such that (x, y), (y, z) ∈ R. If λG is a left Haar measure on G
then we can define the α-skew product equivalence relation R(α) on the product
space (X × G, µ × λG) by setting (x, g) ∼ (y, h) if (x, y) ∈ R and h = α(x, y)g.
Of course, R(α) is countable and (µ × λG)-nonsingular. If R(α) is conservative
then α is called recurrent. If R(α) is ergodic then α is called ergodic. Two cocycles
α, β : R → G are called cohomologous if there is a Borel map φ : X → G such that
α(x, y) = φ(x)−1β(x, y)φ(y) for all (x, y) ∈ R∩ (B×B), where B ⊂ X is a µ-conull
subset. A cocycle is called a coboundary if it is cohomologous to the trivial cocycle.

The Radon-Nikodym cocycle ∆R,µ : R → R∗
+ (of the pair (R, µ)) can be defined

in several ways. We consider only the following one. Let Γ be a countable group of
Borel bijections of X such that R(x) = {γx | γ ∈ Γ} for each x ∈ X . It exists (but
is non-unique) according to [FeMo]. We now set

∆R,µ(x, γx) := (dµ ◦ γ/dµ)(x), x ∈ X.

Then ∆R,µ is well defined (does not depend on the particular choice of Γ). If ν
is a σ-finite measure on X which is equivalent to µ then ∆R,µ is cohomologous to
∆R,ν . Conversely, a cocycle of R which is cohomologous to ∆R,µ is ∆R,ν for a
measure ν equivalent to µ. By the Maharam theorem, R is µ-conservative if and
only if ∆R,µ is recurrent [Sc]. We say that µ is R-invariant if Γ preserves µ (this
does not depend on the particular choice of Γ).

Suppose that R is µ-ergodic. Given a cocycle α of R with values in an Abelian
group G, an element g ∈ G is called an essential value of α if for each set A ∈ B of
positive measure and each neighborhood U of g in G, there is a subset B ⊂ A of
positive measure and a one-to-one mapping γ : B → A such that (x, γx) ∈ R and

3



α(x, γx) ∈ U for each x ∈ B. The set of all essential values of α is denoted by r(α).
It is a closed subgroup of G. If a cocycle β : R → G is cohomologous to α then
r(α) = r(β). The cocycle α is ergodic if and only if r(α) = G [Sc]. It is easy to
verify that given another Abelian locally compact second countable group H and
a homomorphism θ : G → H, then θ(r(α)) ⊂ r(θ ◦ α).

In order to verify that an element of G is an essential value of α we will use the
following approximation lemma.

Lemma 1.1 (cf. [Ch–Pr, Lemma 2.1]). Let A ⊂ B be a semiring such that the
corresponding ring F(A) is dense in B. Let 1 > δ > 0 and let g ∈ G. If for each set
A ∈ A of positive measure and a neighborhood U of g there is a subset B ⊂ A and a
one-to-one mapping γ : B → A such that µ(B) > δµ(A), (x, γx) ∈ R, α(x, γx) ∈ U
and δ < ∆R,µ(x, γx) < δ−1 for all x ∈ B then g ∈ r(α).

Suppose that µ is non-atomic and R is µ-ergodic. Then R is called of type II if
there is a σ-finite R-invariant measure ν equivalent to µ or, equivalently, ∆R,µ is
a coboundary. If, moreover, ν(X) < ∞ then R is called of type II1. If ν(X) = ∞
then R is called of type II∞. If R is not of type II then R is called of type III.
The type III admits further classification into subtypes IIIλ, 0 ≤ λ ≤ 1. If ∆R,µ

is ergodic, i.e. r(∆R,µ) = R∗
+, then R is called of type III1. If there is λ ∈ (0, 1)

such that ∆R,µ is cohomologous to a cocycle β taking values in the closed subgroup
{λn | n ∈ Z} ⊂ R∗

+ and β is ergodic as a cocycle with values in this subgroup then
R is called of type IIIλ. Finally, if R is if type III but not of type IIIλ, 0 < λ ≤ 1,
then R is called of type III0. Equivalently, R is of type III0 if R is of type III
and ∆R,µ = {1} (we refer to [FeMo] and [HaOs1] for details).

We recall an easy classic lemma on the type of direct product of two ergodic
equivalence relations.

Lemma 1.2 ([ArWo], [HaOs1]). Let Ri be an ergodic µi-nonsingular equivalence
relations on a standard measure space (Xi,Bi, µi), i = 1, 2.

(i) If R1 is of type II1 then R1 ×R2 is of the same type as R2.
(ii) If R1 is of type III1 then so is R1 ×R2.
(iii) Let R1 be of type IIIλ and let R2 be of type IIIξ with 0 < λ, ξ < 1 and

let Λ := {λnξm | n,m ∈ Z}. If Λ = {ηn | n ∈ Z} for some η ∈ (0, 1) then
R1 ×R2 is of type IIIη. Otherwise R1 ×R2 is of type III1.

In what follows we will consider infinite product spaces. Let A be a finite set.
Then the space AN endowed with the topology of infinite product of the discrete
topologies is a compact metric space. Given n ≤ m and a finite sequence an, . . . , am
of elements from A, we denote by [an, . . . , am]mn the corresponding cylinder in AN,
i.e. the subset {x = (xj)

∞
j=1 ∈ AN | xi = ai whenever n ≤ i ≤ m}. Since the

algebra K consisting of the finite unions of cylinders is nothing but the algebra of
clopen subsets in AN which is a base of the topology on AN, it follows that K is
dense in the σ-algebra of Borel subsets with respect to any measure on AN. The
tail equivalence relation on AN is defined by

(xi)
∞
i=1 ∼ (yi)

∞
i=1 if there is N > 0 such that xi = yi for all i ≥ N .

Let (X, µ) = ({0, 1}N, µ1 × µ2 × · · · ) such that µi(0) > 0, µi(1) > 0 and µi(0) +
µi(1) = 1 for all i ∈ N. Let R denote the tail equivalence relation on X . It is easy
to verify that R is µ-nonsingular and ∆R,µ(x, y) =

∏
i>0 µi(yi)/µi(xi) for all pairs
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(x, y) ∈ R, x = (xi)i>0, y = (yi)i>0. According to Kolmogorov zero-one law, R is
µ-ergodic.

Lemma 1.3 [ArWo]. Let (X, µ,R) be as above and there exist λ ∈ (0, 1] and a
sequence ǫi → 0 such that

(1-1) µi(0) =
1

1 + λeǫi
and µi(1) =

λeǫi

1 + λeǫi
, i > 0.

(i) If
∑

i>0 ǫ
2
i < ∞ then µ is equivalent to the infinite product κλ × κλ × · · · ,

where κλ(0) = 1/(1 + λ) and κλ(1) = λ/(1 + λ). Hence R is of type IIIλ
in case 0 < λ < 1 or of type II1 in case λ = 1.

(ii) If
∑

i>0 ǫ
2
i = ∞ then R is of type III1.

Remark 1.4. The claim (i) of Lemma 1.3 follows straightforwardly from the Kaku-
tani theorem on equivalence of infinite product measures [Ka]. The claim (ii) is
more involved. It is a particular case of Lemma 9.3 from the paper [ArWo] devoted
to the theory of operator algebras. It was an attempt in [Os] to give a pure measure
theoretical proof of this result. However, in our opinion, that proof has a couple of
flaws (for instance, in the place where the author applies the central limit theorem).
In [BrDo] Brown and Dooley used the language of G-measures to provide a new
proof of a simple case of Lemma 1.3(ii) (with λ = 1). In a subsequent paper [Br–La]
Brown, Dooley and Lake showed that this proof is false. They gave another proof
(only for the case λ = 1) which did not use the G-measures [Br–La]. In our opinion,
their new proof is somewhat more complicated comparatively with the original ar-
gument by Araki and Woods. Below we will need the following proposition whose
proof implies Lemma 1.3(ii) (see Remark 1.6). To prove it we use an argument
which is close to the argument utilized in [ArWo, Lemma 9.3].

Proposition 1.5. Let (X, µ,R) be as in Lemma 1.3(ii). Define a cocycle Λ : R →
R by setting

Λ(x, y) =
∑

i>0

(yi − xi) logλ.

Then the cocycle α := log∆R,µ − Λ of R with values in R is ergodic.

Proof. Fix an infinite subset J ⊂ N such that
∑

i∈J ǫ2i < ∞. Applying Lemma 1.3(i)

we replace µ by an equivalent measure for which (1-1) is satisfied,
∑

i>0 ǫ
2
i = ∞

and ǫi = 0 if i ∈ J . Therefore without loss of generality we may think that the
triplet (X, µ,R) is isomorphic to the triplet (Z, η, T ), where Z := ({0, 1}×{0, 1})N,
η :=

⊗∞
i=1(µi × µ0), µ0(0) := 1/(1 + λ) and µ0(1) := λ/(1 + λ) and T is the tail

equivalence relation on Z. It is easy to verify that

(1-2) log∆T ,η(z, z
′) =

∑

i>0

((x′
i − xi)(logλ+ ǫi) + (y′i − yi) logλ)

where z = (xi, yi)i>0 and z′ = (x′
i, y

′
i)i>0 are T -equivalent points, and xi, x

′
i, yi, y

′
i ∈

{0, 1} for each i > 0. Computing α in the “new coordinates” we obtain that

(1-3) α(z, z′) =
∑

i>0

ǫi(x
′
i − xi) for all (z, z′) ∈ T .
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Denote by τ the flip on {0, 1}×{0, 1}, i.e. τ(i, j) = (j, i). Given z = (xi, yi)i>0 ∈ Z
and n > 0, we denote by z∗n the element (x∗

i , y
∗
i )i>0 ∈ Z, where

(x∗
i , y

∗
i ) :=

{
τ(xi, yi), for i = 1, . . . , n

(xi, yi), otherwise.

Of course, (z, z∗n) ∈ T .
Claim 1. For each a > 0,

lim
n→∞

η({z ∈ Z | |α(z, z∗n)| < a}) = 0.

To prove this claim we define mappings Xi : Z → R by

Xi(z) :=

{
(−1)xiǫi, if xi 6= yi

0, otherwise.

Then X1, X2, . . . is a sequence of independent random variables and |Xi| ≤ 1 for
all i. The expected value E(Xi) equals

ǫiµi(0)µ0(1)− ǫiµi(1)µ0(0) =
λǫi(1− eǫi)

(1 + λ)(1 + λeǫi)
=

−λǫ2i
(1 + λ)2

(1 + o(1)).

In a similar way,

E(X2
i ) =

λǫ2i (1 + eǫi)

(1 + λ)(1 + λeǫi)
=

2λǫ2i
(1 + λ)2

(1 + o(1)).

Therefore the variance σ2(Xi) equals
2λǫ2i

(1+λ)2 (1+o(1)). Hence limi→∞ E(Xi) = 0 and∑∞
i=1 σ

2(Xi) = +∞. It now follows from the central limit theorem for uniformly
bounded sequences of independent random variables that

(1-4)

∑n
i=1(Xi − E(Xi))√∑n

i=1 σ
2(Xi)

approaches the normal distribution as n → ∞.

We note that

α(z, z∗n) =

n∑

i=1

ǫi(yi − xi) =

n∑

i=1

Xi(z).

Let An := {z ∈ Z | |α(z, z∗n)| < a}. Since
√∑n

i=1 σ
2(Xi) → ∞ and

−∞ = lim
n→∞

−
√
λ
∑n

i=1 ǫ
2
i

(1 + λ)
√

2
∑n

i=1 ǫ
2
i

= lim
n→∞

∑n
i=1 E(Xi)√∑n
i=1 σ

2(Xi)
,

it follows that

min
z∈An

∑n
i=1(Xi(z) −E(Xi))√∑n

i=1 σ
2(Xi)

→ +∞

as n → ∞. In view of (1-4), we obtain that η(An) → 0, as claimed.
Claim 2. Fix r > 1. We are going to show that r is an essential value of

α. Let ǫ > 0. Choose k > 0 such that ǫi < ǫ for all i ≥ k. Fix a cylinder
6



C := [(a1, b1), . . . , (ak, bk)]
k
1 ⊂ Z. It follows from the proof of Claim 1 that there

are N > 0 and a subset I ⊂ ({0, 1} × {0, 1})N−k such that for the subset

A :=
⊔

(zk+1,...,zN )∈I

[(a1, b1), . . . , (bk, ak), zk+1, . . . , zN ]N1 ⊂ C,

we have η(A) > 0.5η(C) and minz∈A |α(z, z•N )| > r, where

z•l := ((a1, b1), . . . , (ak, bk), τ(zk+1), . . . , τ(zl), zl+1, zl+2, . . . )

and l = k + 1, . . . , N . Note that by (1-3), |α(z, z•l) − α(z, z•(l+1))| ≤ ǫl+1. For
z ∈ A, let l(z) be the smallest number l > k such that |α(z, z•l)| > r. Then
l(z) ≤ N and |α(z, z•l(z))− r| ≤ ǫl(z) < ǫ. We now set

φ(z) := z•l(z), z ∈ A.

Then (z, φ(z)) ∈ T , the mapping φ : A ∋ z 7→ φ(z) ∈ C is one-to-one and
|α(z, φ(z)) − r| < ǫ for all z ∈ A. To show that φ is one-to-one, we suppose
that φ(z) = φ(z′) for some z = (zi)

∞
i=1, z

′ = (z′i)
∞
i=1 ∈ A. If l(z) = l(z′) then obvi-

ously z = z′. Therefore suppose that l(z) > l(z′). Then the equality φ(z) = φ(z′)
yields that zi = z′i if 1 ≤ i ≤ k and τ(zi) = τ(z′i) if k + 1 ≤ i ≤ l(z′). Hence

zi = z′i whenever 1 ≤ i ≤ l(z′). Therefore |α(z, z•l(z′))| = |α(z′, (z′)•l(z′))| > r, a
contradiction which implies l(z) = l(z′) and hence z = z′. It follows from (1-2)
and (1-3) that log∆T ,η(z, φ(z)) = α(z, φ(z)) for all z ∈ A. Now Lemma 1.1 yields
(put δ := 1

2r
) that r is en essential value of α. Since r is an arbitrary positive real

greater than 1, it follows that r(α) = R, i.e. α is ergodic. �

Remark 1.6. In fact, we proved more than claimed in the statement of Propo-
sition 1.5. It was shown indeed that (r, r) is an essential value for the “double
cocycle” α × log∆R,µ : R → R × R for each r ∈ R. It follows that log∆R,µ is
ergodic, i.e. R is of type III1. Thus we obtain a new short proof of Lemma 1.3(ii).
Moreover, for each t, r ∈ R, we have that (tr, (1− t)r) is an essential value of the
cocycle tα × (1 − t) log∆R,µ. This yields that r is is an essential value of the co-
cycle log∆R,µ − tΛ = tα + (1− t) log∆R,µ of R. We thus obtain that the cocycle
log∆R,µ − tΛ is ergodic for each real t ∈ R.

Remark 1.7. The group Σ0 of finite permutations of N acts naturally on X . Denote
by S the Σ0-orbit equivalence relation. Of course, S is a subrelation of R. It follows
from the proof of Proposition 1.5 (see the definition of φ) and Remark 1.6 that the
restriction of the cocycle log∆R,µ − tΛ to S is also ergodic for each real t ∈ R.

2. Nonsingular endomorphisms

Let T be a countable-to-one µ-nonsingular endomorphism of a σ-finite standard
measure space (X,B, µ). The µ-nonsingularity means that µ ◦ T−1 ∼ µ. If for
each A ∈ B of positive measure there is n > 0 such that µ(T−nA ∩ A) > 0 then
T is called conservative. If T is not conservative then T is called dissipative. If
µ(T−1A△A) = 0 implies µ(A) = 0 or µ(X \ A) = 0 then T is called ergodic. If⋂

n>0 T
−nB = {∅, X} (modulo the subsets of zero µ-measure) then T is called

exact.
The orbit equivalence relation RT of T is given by the formula (x, y) ∈ RT if and

only if there are n,m ≥ 0 such that Tnx = Tmy. Then RT is µ-nonsingular. We
also consider a subrelation ST of RT : (x, y) ∈ ST if and only if there is n ≥ 0 such
that Tnx = Tny. Of course, ST is also µ-nonsingular. We recall some standard
facts.
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Lemma 2.1.

(i) RT is µ-ergodic if and only if T is ergodic [Haw].
(ii) ST is µ-ergodic if and only if T is exact [Haw].
(iii) If T is invertible then RT is µ-conservative if and only if T is conservative1.

From now on we will assume that T is aperiodic, i.e. µ({x ∈ X | Tnx = x}) = 0
for each n > 0. Then for each Borel function φ : X → G, there is a unique cocycle
αφ of RT with values in G such that αφ(x, Tx) = φ(x). By Tφ we denote the
corresponding skew product transformation of (X ×G, µ× λG):

Tφ(x, g) = (Tx, φ(x)g).

Of course, Tφ is a nonsingular countable-to-one endomorphism of (X ×G, µ× λG).
It is straightforward to verify that RTφ

= RT (αφ) and STφ
= ST (αφ ↾ ST ).

If T is invertible we denote by ωT,µ the Radon-Nikodym derivative dµ ◦ T/dµ :
X → R∗

+ of T . Then, of course, we have that αωT,µ
= ∆RT ,µ. This definition

extends naturally to the general (non-invertible) case as follows. Suppose that µ
is σ-finite on the σ-algebra T−1B. Then by the Radon-Nikodym derivative of T
we mean the function ωT,µ := (dµ/dµ ◦ T−1) ◦ T . However, in the non-invertible
case we no longer have that αωT,µ

= ∆RT ,µ. The endomorphism TωT,µ
is called

the Maharam extension of T . Choose a measure κ on R∗
+ equivalent to Lebesgue

measure such that κ(aB) = a−1κ(B) for each Borel subset B ⊂ R∗
+ and a ∈ R∗

+.
We will always assume that space X × R∗

+ of the Maharam extension is endowed
with the measure µ× κ. Then it is easy to see that TωT,µ

preserves this measure.

We can associate a linear operator UT in L2(X, µ) to T in the following way:

UT f(x) := f(Tx)
√
ωT,µ(x), x ∈ X.

It is easy to see that UT is an isometry. Hence U∗
TUT = I. If T is invertible

then UT is unitary and Un
T = UTn for all n ∈ Z.2 A useful spectral condition for

conservativeness of invertible endomorphisms was found in [Ko2].

Lemma 2.2 [Ko2, Lemma 2.2]. If T is invertible and
∑

n≥0〈Un
T 1, 1〉 < ∞ then T

is dissipative.

If for each positive Borel function f : X → (0,+∞),
∑

n≥0

f(Tnx)αωT,µ
(x, Tnx) = ∞ a.e.

then T is called µ-recurrent.

Lemma 2.3.

(i) T is µ-recurrent if and only if TωT,µ
is conservative [Si].

(ii) If T preserves µ then T is µ-recurrent if and only T is conservative.
(iii) If T is µ-recurrent then T is conservative [Si].
(iv) If T is invertible and conservative then T is µ-recurrent.
(v) If T is non-invertible and conservative then there is a measure ν equivalent

to µ such that T is not ν-recurrent [EiSi].
(vi) If µ(X) < ∞ then T is µ-recurrent if and only if

∑
n≥0 αωT,µ

(x, Tnx) =

∞ a.e. [Si].

1This claim is no longer true in the general case where T is non-invertible.
2In the non-invertible case, in general, Un

T
6= UTn for n > 1.
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Suppose that µ is σ-finite on T−1B. Then there is a standard σ-finite measure

space (X̃, B̃, µ̃), an invertible µ-nonsingular transformation T̃ of X̃ and a Borel

map π : X̃ → X such that the following are satisfied:

• µ̃ ◦ π−1 = µ,

• πT̃ = Tπ,
• ω

T̃ ,µ̃
is π−1(B)-measurable,

• ∨n>0 T̃
nπ−1(B) = B̃ (mod µ̃).

The dynamical system (X̃, µ̃, T̃ ) is called the natural extentsion of (X, µ, T ). The
natural extension exists and it is unique up to a natural isomorphism (see [Si],
[SiTh]). In the case when T preserves a probability measure, the natural extension
of T coincides with the well known Rokhlin’s natural extension of T .

Example 2.4 [DaHa]. Let T be a one-sided shift on X = {0, 1}N endowed with
an infinite product measure µ =

⊗
i>0 µi, where µi is a distribution on {0, 1} such

that 0 < µi(0) < 1 for each i. Since µ ◦ T−1 =
⊗

i>0 µi+1, it follows from the
Kakutani theorem on equivalence of infinite product measures [Ka] that T is an
endomorphism of (X, µ), i.e. T is µ-nonsingular, if and only if

(2-1)

∞∑

i=1

((√
µi(0)−

√
µi+1(0)

)2

+

(√
µi(1)−

√
µi+1(1)

)2)
< ∞.

We let X̃ := {0, 1}Z and µ̃ :=
⊗

n∈Z
µ̃n, where µ̃n = µ1 if n ≤ 0 and µ̃n = µn

if n ≥ 1. Let T̃ denote the two-sided shift on X̃ and let π : X̃ → X denote the
restriction map, i.e. (π(x))n = xn for n ≥ 1. Then

dµ̃ ◦ T̃
dµ̃

(x) =
∏

i∈Z

µ̃i−1(xi)

µ̃i(xi)
=
∏

i≥2

µ̃i−1(xi)

µ̃i(xi)
, x ∈ X̃.

On the other hand, dµ
dµ◦T−1 (x) =

∏
i≥1

µi(xi)
µi+1(xi)

. Thus dµ̃◦T̃
dµ̃

(x) = dµ
dµ◦T−1 (Tπ(x))

for a.a. x ∈ X . Hence (X̃, µ̃, T̃ ) is the natural extension of (X, µ, T ).

A σ-finite measure ν on (X,B) is called T -cohomologous to µ if ν is equivalent to
µ and the Radon-Nikodym derivative dν/dµ is measurable with respect to T−1B.

Lemma 2.5.

(i) (X̃, µ̃, T̃ ) is conservative if and only if T is µ-recurrent [SiTh].

(ii) If ν is T -cohomologous to µ then the natural extensions (X̃, µ̃, T̃ ) and (X̃, ν̃, T̃ )
of (X, µ, T ) and (X, ν, T ) respectively are isomorphic [SiTh].

(iii) If T is µ-recurrent then T is ergodic if and only if T̃ is ergodic.

(iv) The Maharam extension T̃ω
T̃ ,µ̃

of T̃ is canonically isomorphic to the natural

extension T̃ωT,µ
of the Maharam extension of T .

Let R be an invertible nonsingular transformation on a σ-finite standard measure
space (X,B, µ). Then R is said to be a K-automorphism ([Pa], [SiTh]) if there is
a σ-finite algebra F ⊂ B such that

• R−1F ⊂ F,
• the Radon-Nikodym derivative ωR,µ is F-measurable,
• ∨n>0 R

nF = B (mod µ),
• ⋂n>0 R

−nF = {∅, X} (mod µ).
9



In other words, R is a K-automorphisms if and only if it is the natural extension
of an exact factor (semi-invariant sub-σ-algebra) of R.

Lemma 2.6 ([Pa], [SiTh]). Each K-automorphism R is either totally dissipative3

or conservative. In the latter case R weakly mixing.

The following example generalizes [Ha, Theorem 1]4. Our proof is shorter and
more elementary.

Example 2.7. Let X̃ = {0, 1}Z and let µ =
⊗

n∈Z
µn where µn(0) := p if n ≤ 0

and µn(0) := q if n > 0 for some positive reals p, q ∈ (0, 1). Let T̃ denotes the

two-sided shift on X̃. Of course, if p = q then T̃ is conservative because T̃ is

a probability preserving Bernoulli shift. We now show that if p 6= q then T̃ is
dissipative. Without loss of generality we may assume that p < q. For µ-a.a.

x ∈ X̃, we have

dµ ◦ T̃
dµ

(x) =
∏

n∈Z

µn−1(xn)

µn(xn)
=

µ0(x1)

µ1(x1)
.

Therefore for each n > 0,

(2-2)
dµ ◦ T̃n

dµ
(x) =

µ0(x1) · · ·µ0(xn)

µ1(x1) · · ·µ1(xn)
=

(
p

q

)n(
q(1− p)

p(1− q)

)x1+···+xn

at a.e. x. Since pq(1− p)1−q < qq(1− q)1−q, there is ǫ > 0 such that

(2-3) δ :=

(
p

q

)q−ǫ(
1− p

1− q

)1−q+ǫ

< 1.

It follows from the individual ergodic theorem (for the one-sided shift) that if n is
sufficiently large then x1+···+xn

n
≤ 1−q+ǫ for a.e. x. It follows from (2-2) and (2-3)

that dµ◦T̃n

dµ
(x) ≤ δn. Therefore the series

∑
n≥1

dµ◦T̃n

dµ
(x) converges at a.e. x. Hence

T̃ is not µ-recurrent. It follows from Lemma 2.3(iv) that T̃ is dissipative. Moreover,

in view of Example 2.4, T̃ is a natural extension of an exact endomorphism. Hence,

T̃ is a K-automorphism. By Lemma 2.6, T̃ is totally dissipative.

3. Nonsingular Bernoulli shifts

Throughout this section we will use the notation introduced in Example 2.4.

Thus (X̃, µ̃, T̃ ) stands for the natural extension of the one-sided µ-nonsingular
Bernoulli shift (X, µ, T ). In particular, (2-1) holds. It is easy to verify that ST

is the tail equivalence relation on X . Hence ST is ergodic by Kolmogorov’s zero-

one law. By Lemma 2.1(ii), T is exact. Therefore T̃ is a K-automorphism.

Theorem 3.1.

(i) If
∑∞

n=1(µn(0)− µ1(0))
2 < ∞ then µ̃ is equivalent to

⊗∞
n=−∞ µ1

5.

(ii) If
∑∞

n=1(µn(0) − µ1(0))
2 = ∞ and T̃ is conservative then the Maharam

extension T̃ω
T̃ ,µ̃

of T̃ is a weakly mixing K-automorphism.

3We recall that an invertible transformation R of a standard measure space (Y, ν) is called

totally dissipative if there is a subset Y0 ⊂ Y such that RnY0 ∩ Y0 = ∅ for each n ∈ N and⊔
n∈Z

RnY0 = Y .
4Hamachi considers only the case p = 0.5 in [Ha].
5Thus, in this case, T̃ is isomorphic to the measure preserving Bernoulli shift on (X̃,

⊗
∞

n=−∞
µ1).
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Proof. (i) It follows from Lemma 1.3(i) that µ is equivalent to the infinite product
ν := µ1 × µ1 × · · · . Moreover, it is easy to see that the Radon-Nikodym derivative
dµ/dν does not depend on x1. Hence by Lemma 2.5(ii), the natural extension of

(T, ν) is isomorphic to T̃ . On the other hand, according to Example 2.4, the natural

extension of (T, ν) is the 2-sided Bernoulli shift on (X̃,
⊗

n∈Z
µ1).

(ii) By the Maharam theorem, since T̃ is conservative, T̃ω
T̃ ,µ̃

is also conservative.

Hence in view of Lemma 2.6, if T̃ω
T̃ ,µ̃

is a K-automorphism then it is weakly mixing.

Thus it suffices to prove that T̃ω
T̃ ,µ̃

is aK-automorphism. We will proceed in several

steps. Let L stand for the set of limit points of the sequence (µn(0))n≥1.

Claim A. L ∋ µ1(0).

Indeed, if L 6∋ µ1(0) then there are δ > 0 and N > 0 such that |µ1(0)−µn(0)| > δ
for each n ≥ N . Therefore we have that

∫

X̃

√
dµ̃ ◦ T̃n

dµ̃
(x) dµ̃(x) =

∏

k∈Z

∫ √
dµk−n

dµk

(xk) dµk(xk)

=
∏

k>0

(
√

µk−n(0)µk(0) +
√
µk−n(1)µk(1) )

≤
n∏

k=N

(
√

µk−n(0)µk(0) +
√
µk−n(1)µk(1) )

=

n∏

k=N

(
√

µ1(0)µk(0) +
√
µ1(1)µk(1) ).

Since η := sup{
√
µ1(0)t+

√
µ1(1)(1− t) | t ∈ (0, 1), |t−µ1(0)| > δ} < 1, we obtain

that 〈Un

T̃
1, 1〉 ≤ ηn−N . It now follows from Lemma 2.2 that T̃ is dissipative. This

contradicts to the condition of the theorem. Hence µ1(0) ∈ L, as claimed.

Claim B. If L = {µ1(0)} then T̃ω
T̃ ,µ̃

is a K-automorphism.

By Lemma 2.5(iv), T̃ω
T̃ ,µ̃

is isomorphic to the natural extension T̃ωT,µ
of the

endomorphism TωT,µ
. Hence T̃ω

T̃ ,µ̃
is a K-automorphism if TωT,µ

is exact. By

Lemma 2.1(ii), TωT,µ
is exact if and only if the equivalence relation STωT,µ

is ergodic.

We note that STωT,µ
= ST (αωT,µ

↾ ST ). Thus it suffices to show that the cocycle

αωT,µ
restricted to ST is ergodic. Take (x, y) ∈ ST . Then there is n > 0 such that

Tnx = Tny, i.e. xi = yi if i > n. Let x̃, ỹ ∈ X̃ be such that π(x̃) = x and π(ỹ) = y.
Since

αωT,µ
(x, Tnx) = ωT,µ(x) · · ·ωT,µ(T

n−1x) = ω
T̃ ,µ̃

(x̃) · · ·ω
T̃ ,µ̃

(T̃n−1x̃) =
dµ̃ ◦ T̃n

dµ̃
(x̃),

it follows that

αωT,µ
(x, y) =

αωT,µ
(x, Tnx)

αωT,µ
(y, Tny)

=

dµ̃◦T̃n

dµ̃
(x̃)

dµ̃◦T̃n

dµ̃
(ỹ)

.
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This yields

αωT,µ
(x, y) =

∏n
i=1

µ1(xi)
µi(xi)

∏∞
i=n+1

µi−n(xi)
µi(xi)∏n

i=1
µ1(yi)
µi(yi)

∏∞
i=n+1

µi−n(yi)
µi(yi)

=

n∏

i=1

µi(yi)

µi(xi)

n∏

i=1

µ1(xi)

µ1(yi)
.

Thus we obtain that αωT,µ
(x, y) = ∆ST ,µ(x, y)/δ(x, y), where δ is a cocycle of ST is

given by δ(x, y) =
∏∞

i=1 µ1(yi)/µ1(xi). It follows from Proposition 1.4 that αωT,µ

restricted to ST is ergodic.

Claim C. If µ1(0) ∈ L but L 6= {µ1(0)} then T̃ω
T̃ ,µ̃

is a K-automorphism.

As we have proved in Claim B, it suffices to show that αωT,µ
↾ ST is ergodic.

Since (2-1) is satisfied, there is a segment [α, β] ⊂ L such that µ1(0) ∈ [α, β]. Then
it is easy to see that that we can find an infinite subset I ⊂ N, a real λ ∈ [α, β] and
a sequence ǫi → 0 such that the complement N \ I is infinite, µi(0) = λeǫi if i ∈ I
and

∑
i∈I ǫ

2
i = ∞. Since ST is naturally isomorphic to the direct product of the

tail equivalence relations S1 and S2 on ({0, 1}I ,⊗i∈I µi) and ({0, 1}N\I ,⊗i∈N\I µi)

respectively and the restriction of αωT,µ
to S1 is ergodic by Claim B, it follows that

αωT,µ
↾ ST is also ergodic. �

Remark 3.2.

(i) We note that if the Bernoulli shift (X, µ, T ) is equilibrial, i.e. µ1(0) = µ1(1)
then (and only in this case) αωT,µ

↾ ST = ∆ST ,µ. Therefore in this case to
prove Theorem 3.1 it would suffice to apply the well known Lemma 1.3(ii)
instead of Propostion 1.4. That was done in [Ko2].

(ii) The Krengel entropy of T̃ is infinite [SiTh].

The next statement follows immediately from Theorem 3.1.

Corollary 3.3. If
∑∞

n=1(µ1(0)−µn(0))
2 < ∞ then T̃ is of type II1. If

∑∞
n=1(µ1(0)−

µn(0))
2 = ∞ and T̃ is conservative then T̃ is of type III1.

4. Forcing conservativeness of Bernoulli shifts

Let X = {0, 1}Z and let

An := {[an, . . . , an]n−n | a−n, . . . , an ∈ {0, 1}}.

Denote by T the 2-sided shift on X . We now state without proof a standard
approximation result (cf. Lemma 1.1).

Lemma 4.1. Let µ be a probability measure on X and let T be µ-nonsingular.
If for each n > 0 and A ∈ An, there are a subset A0 ⊂ A and a one-to-one
transformation τA : A0 → A such that µ(A0) > 0.9µ(A) and τAx ∈ {Tnx | n > 0}
and ∣∣∣∣log

(
dµ ◦ τA

dµ
(x)

)∣∣∣∣ < 0.001

for a.e. x ∈ A0 then T is µ-conservative.
12



Fix λ ∈ (0, 1] and a sequence (ǫn)n∈Z of reals such that ǫn = 0 if n ≤ 1 and

(4-1) lim
n→∞

ǫn = 0.

We define a measure µ on X by setting

(4-2) µ =
⊗

n∈Z

µn, where µn(0) =
1

1 + λeǫn
, µn(1) =

λeǫn

1 + λeǫn
for each n ∈ Z.

It follows from Kakutani’s theorem (see (2-1) and [Ka]), that T is µ-nonsingular if
and only if

(4-3)
∞∑

n=1

|ǫn+1 − ǫn|2 < ∞.

According to Theorem 3.1, if T is conservative and

(4-4)

∞∑

n=1

ǫ2n = ∞

then T is ergodic of type III1. Thus our purpose is to construct (ǫn)n≥1 such
that (4-1), (4-3) and (4-4) are satisfied and T is conservative. We will do this in-
ductively. Each step of the inductive construction will consist of two semi-steps.
On the first semi-step we “do conservativeness” of T partly, on An. On the second
semi-step we “satisfy partly” (4-1), (4-3) and (4-4). The only additional problem
is that the second semi-step of the m-th step will affect the the property of partial
conservativeness achieved on the n-th steps for n < m. Thus we have to con-
trol that the total contribution of the subsequent steps (m > n) into the partial
conservativeness of T on An is “small”.

Fix a sequence (ηn)
∞
n=1 of positive reals such that ηn → 0 as n → ∞. Suppose

that we have already defined ǫ1, . . . , ǫLn−1
. We now let

µ(n) :=
⊗

i≤Ln−1

µi ⊗
⊗

i>Ln−1

µ1

Since µ(n) is equivalent to the infinite product
⊗

i∈Z
µ1, it follows that T is µ(n)-

nonsingular and µ(n)-conservative. Hence applying the standard exhaustion argu-
ment we can find for each cylinder A ∈ ALn−1

, positive integers p1, . . . , pm and
pairwise disjoint cylinders B1, . . . , Bm ⊂ A such that

T piBi ⊂ A, T piBi ∩ T pjBj = ∅ if 1 ≤ i 6= j ≤ m and µ(n)

(
m⊔

i=1

Bi

)
> 0.9µ(n)(A).

We now define a map τA :
⊔m

i=1 Bi → A by setting τAx := T pix if x ∈ Bi. Then

τA is one-to-one and dµ(n)◦τA
dµ(n) (x) = 1 for all x ∈ ⊔m

i=1 Bi. Choose ℓn > Ln−1 large

so that Bi and T piBi are unions of cylinders from Aℓn for each i. It follows that
pi < ℓn for i = 1, . . . , m. We now set ǫj := 0 if Ln−1 < j ≤ ℓn.

Now we choose an integer Ln > 2ℓn and reals ǫℓn+1 ≥ · · · ≥ ǫLn
so that

(4-5)

2ℓn∑

j=ℓn+1

ǫj < ηn,

Ln∑

j=ℓn+1

(ǫj−1 − ǫj)
2 < ηn and

Ln∑

j=ℓn+1

ǫ2j > 1.

Thus we defined ǫ1, . . . , ǫLn
. Continuing this construction process infinitely many

times, we obtain an increasing sequence ℓ1 < L1 < ℓ2 < L2 < · · · and a sequence
(ǫn)n≥1. Moreover, for each cylinder A ∈ ⋃n≥1 ALn

, we have a map τA satisfying
the properties listed above.
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Theorem 4.2. Let λ ∈ (0, 1) and let (ǫn)n>0 be a sequence of nonnegative reals
defined via the aforementioned inductive procedure. Define µ by (4-2) utilizing λ
and (ǫn)n>0. Then the 2-sided shift T on (X, µ) is µ-nonsingular, µ-conservative
and of type III1.

Proof. Since (4-5) implies (4-1), (4-3) and (4-4), T is µ-nonsingular and of type
III1 whenever it is µ-conservative (in view of Corollary 3.3). Thus it suffices to
verify that T is µ-conservative. For that we will apply Lemma 4.1.

We first note that µ(C) = µ(n)(C) for each cylinder C ∈ Aℓn , n > 0. Take
a cylinder A ∈ ALn−1

. By the definition of µ, there are mutually disjoint cylin-
ders B1, . . . , Bm ∈ Aℓn , positive integers p1, . . . , pm < ℓn and a one-to-one map
τA :

⊔m
i=1 Bi → A such that µ(n) (

⊔m
i=1 Bi) > 0.9µ(n)(A), τAx = T pix and

dµ(n)◦Tpi

dµ(n) (x) = 1 for each x ∈ Bi. It follows that µ (
⊔m

i=1 Bi) > 0.9µ(A) and

dµ ◦ T pi

dµ
(x) =

dµ

dµ(n)
(T pix)

dµ(n)

dµ
(x) for each x ∈ Bi.

Since dµ

dµ(n) (x) =
∏

k>n

∏Lk

j=ℓk+1
µj(xj)
µ1(xj)

for each x ∈ X , we obtain that

(4-6)
dµ ◦ T pi

dµ
(x) =

∏

k>n

Lk∏

j=ℓk+1

µj(xj+pi
)µ1(xj)

µj(xj)µ1(xj+pi
)
=
∏

k>n

Lk+pi∏

j=ℓk+1

µj−pi
(xj)

µj(xj)

for each x ∈ Bi. Given 0 < a < b and p > 0, we have

(4-7)
b∏

j=a

µj−p(xj)

µj(xj)
=

b∏

j=a

(λeǫj−p)xj

1 + λeǫj−p
· 1 + λeǫj

(λeǫj )xj
=

b∏

j=a

exj(ǫj−p−ǫj)
1 + λeǫj

1 + λeǫj−p
.

We note that ǫj−p ≥ ǫj if Ln + p ≥ j ≥ ℓn + 1 + p and p < ℓn. Hence

−
ℓn+p∑

j=ℓn+1

ǫj ≤
Ln+p∑

j=ℓn+1

xj(ǫj−p − ǫj) ≤
Ln+p∑

j=ℓn+1+p

(ǫj−p − ǫj) =

ℓn+p∑

j=ℓn+1

ǫj .

(4-8)

On the other hand, we see that

Ln+p∏

j=ℓn+1

1 + λeǫj

1 + λeǫj−p
=

∏Ln+p
j=Ln+1(1 + λeǫj )

∏ℓn
j=ℓn+1−p(1 + λeǫj )

=
(1 + λ)p

(1 + λ)p
= 1.

This, (4-6)–(4-8) and (4-5) yield that for each x ∈ ⊔m
i=1 Bi,

log

∣∣∣∣
dµ ◦ τA

dµ
(x)

∣∣∣∣ = log

∣∣∣∣
dµ ◦ T pi

dµ
(x)

∣∣∣∣ ≤
ℓn+pi∑

j=ℓn+1

ǫj ≤ ηn

where i is chosen so that x ∈ Bi. Hence T is µ-conservative by Lemma 4.1. �
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5. Markov measures

LetX = {0, 1}N. Given a distribution λ on {0, 1} and a sequence P := (P (n))∞n=1

of stochastic 2 × 2 matrices P (n) = (P
(n)
i,j )i,j=0,1, we define a Borel measure µ on

X by setting

µ([a1, . . . , ak]
k
1) := λ(a1)P

(1)
a1,a2

P (2)
a2,a3

· · ·P (k−1)
ak−1,ak

.

It is called the Markov measure determined by the pair (λ,P ). We say that µ is

non-degenerated if λ(a) > 0 and P
(n)
a,b > 0 for all a, b ∈ {0, 1} and n > 0. It is

easy to see that µ is non-atomic if and only if
∏∞

n=1 P
(n)
xn,xn+1 = 0 for each x ∈ X .

Let R denote the tail equivalence relation on X . If µ is non-degenerated then R is
µ-nonsingular. Indeed, it is straigtforward to verify that

∆R,µ(x, y) =
λ(y1)

λ(x1)

∞∏

j=1

P
(j)
yj ,yj+1

P
(j)
xj ,xj+1

,

where the product is, in fact, finite because x and y are R-equivalent. The following
theorem is a generalization of the well known Kakutani theorem on equivalence of
infinite product measures [Ka].

Lemma 5.1 [Lo]. Let µ and ν be two Markov measures on X determined by pairs
(λ,P ) and (κ,Q) respectively. Let the σ-algebra of R-invariant subsets be trivial
(mod ν) and let µ be non-degenerated. Then ν is absolutely continuous with respect
to µ if and only if

(5-1)

∫

X

√√√√κ(x1)Q
(1)
x1,x2Q

(2)
x2,x3 · · ·Q(k−1)

xk−1,xk

λ(x1)P
(1)
x1,x2P

(2)
x2,x3 · · ·P (k−1)

xk−1,xk

dµ(x) 6→ 0

as k → ∞.

A natural question arises: under which conditions on µ the σ-algebra of Borel
R-invariant subsets is trivial (mod µ)? To answer it, we state a theorem from
[BrDo] which is an analog of Kolmogorov zero-one law for the general probability
measures on X . For that we need a piece of notation. Denote by Bn the (finite)
σ-algebra generated by cylinders [a1, . . . , an]

n
1 , a1, . . . , an ∈ {0, 1}. Denote by Bn

the smallest σ-algebra such that the maps X ∋ x 7→ xk ∈ {0, 1}, k > n, are all
measurable. Let µ be a probability measure on X . For each n > 0, we denote by
µ̂n the following probability measure on X determined by

µ̂n(A ∩B) = µ(A)µ(B), A ∈ Bn, B ∈ Bn.

This measure is equivalent to µ. We let rn := dµ̂n/dµ.

Lemma 5.2 [BrDo]. Let µ be a probability measure on X. The σ-algebra of Borel
R-invariant subsets is trivial (mod µ) if and only if E(rn | Bn∨Bl) → 1 in measure
µ as l → ∞ for each n ≥ 1.

Let µ be a Markov measure determined by (λ,P ). Given m > n > 0, we denote
by P (n,m) the matrix product P (n)P (n+1) · · ·P (m). Of course, P (n,m) is also a
stochastic matrix.
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Lemma 5.3. If µ is non-degenerated and non-atomic then for each n > 0 and
a, b, c ∈ {0, 1}, there exists a limit

lim
m→∞

P
(n,m)
a,c

P
(n,m)
b,c

= 1.

Proof. Of course, it suffices to verify only the case a = c = 0 and b = 1. To this

end, we first note that for each stochastic 2 × 2 matrix A =

(
a0,0 a0,1
a1,0 a1,1

)
with

non-zero entries, | detA| = |a0,0 − a1,0| < 1. Hence either
∏∞

m=n | detP (m)| = 0 for

each n > 0 or
∏∞

m=n | detP (m)| > 0 for some n > 0. In the latter case, we obtain
that

∞∏

m=n

max(P
(m)
0,0 , P

(m)
1,0 ) ≥

∞∏

m=n

|P (m)
0,0 − P

(m)
1,0 | =

∞∏

m=n

| detP (m)| > 0.

This contradicts to the assumption that µ is non-atomic. Hence

(5-2) lim
m→∞

|P (n,m)
0,0 − P

(n,m)
1,0 | = lim

m→∞
| detP (n,m)| =

∞∏

m=n

| detP (m)| = 0

for each n > 0. Moreover, the sequence (min(P
(n,m)
0,0 , P

(n,m)
1,0 ))m>n increases and

the sequence (max(Pn,m
0,0 , Pn,m

1,0 ))m>n decreases as m → ∞ for each n. Hence (5-2)

implies that
P

(n,m)
0,0

P
(n,m)
1,0

→ 1 as m → ∞. �

Theorem 5.4. Let µ be a non-degenerated and non-atomic Markov measure de-
termined by (λ,P ). Then R is µ-ergodic.

Proof. Let µ =
∫
µx dν(x) stand for the disintegration of µ with respect to the

restriction ν of µ to Bn ∨Bl−1. For each finite sequence a1, . . . , am ∈ {0, 1} with
m > l, we have µx([a1, . . . , am]m1 ) = 0 if aj 6= xj for some j ∈ {1, . . . , n}∪{l, . . .m}
and

µx([a1, . . . , am]m1 ) =
µ([x1, . . . , xn, an+1, . . . al−1, xl, . . . , xm]ml )

µ([x1, . . . , xn]n1 ∩ [xl, . . . , xm]ml )

=
P

(n)
xn,an+1P

(n+1)
an+1,an+2 · · ·P (l−1)

al−1,xl∑1
bn+1,...,bl−1=0 P

(n)
xn,bn+1

P
(n+1)
bn+1,bn+2

· · ·P (l−1)
bl−1,xl

· µ([xn]n)

µ([xn]n)

=
µ([xn, an+1, . . . , al−1, xl]

l
n)

µ([xn]n ∩ [xl]l)

otherwise. We also have that

dµ̂n

dµ
(x) = lim

m→∞

µ̂n([x1, . . . , xm]m1 )

µ([x1, . . . , xm]m1 )

= lim
m→∞

µ([x1, . . . , xn]
n
1 )µ([xn+1, . . . , xm]mn+1)

µ([x1, . . . , xm]m1 )

= lim
m→∞

µ([xn]n)µ([xn+1]n+1)

µ([xn, xn+1]
n+1
n )

=
µ([xn+1]n+1)

P
(n)
xn,xn+1

.
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This yields

E(rn | Bn ∨Bl−1)(x) =

∫
µ([tn+1]n+1)

P
(n)
tn,tn+1

dµx(t)

=
1∑

i=0

µ([i]n+1)
µ([xn, i]

n+1
n ∩ [xl]l)

P
(n)
xn,i

µ([xn]n ∩ [xl]l)

=

1∑

i=0

µ([i]n+1)
P

(n+1,l−1)
i,xl∑1

j=0 P
(n)
xn,j

P
(n+1,l−1)
j,xl

.

It follows from Lemma 5.3 and the condition of the theorem that E(rn | Bn ∨
Bl−1)(x) → 1 at a.e. x ∈ X . By Lemma 5.2, R is µ-ergodic. �

Corollary 5.5. Let µ and ν be two non-degenerated and non-atomic Markov mea-
sures on X determined by pairs (λ,P ) and (κ,Q) respectively. Then ν is equivalent
to µ if and only if

(5-3) lim
n→∞

1∑

a1=0

√
κ(a1)λ(a1)

n−1∏

i=1

1∑

ai+1=0

√
Q

(i)
ai,ai+1P

(i)
ai,ai+1 6= 0.

Moreover, in this case,

dν

dµ
(x) =

κ(x1)

λ(x1)

∞∏

j=1

Q
(j)
xj ,xj+1

P
(j)
xj ,xj+1

.

If infn>0 mini,j P
(n)
i,j > 0 and infn>0 mini,j Q

(n)
i,j > 0 then µ and ν are equivalent if

and only if
∑∞

n=1(P
(n)
i,j −Q

(n)
i,j )

2 < ∞ for each i, j ∈ {0, 1}.
Proof. The first claim follows directly from Lemma 5.1 and Theorem 5.4 because
the integral in (5-1) equals

1∑

a1,...,an=0

√
κ(a1)λ(a1)

n−1∏

i=1

√
Q

(i)
ai,ai+1P

(i)
ai,ai+1

=
1∑

a1=0

√
κ(a1)λ(a1)

n−1∏

i=1

1∑

ai+1=0

√
Q

(i)
ai,ai+1P

(i)
ai,ai+1 .

The second claim follows from the fact that µ ∼ ν and

dν

dµ
(x) = lim

n→∞

ν([x1, . . . , xn]
n
1 )

µ([x1, . . . , xn]n1 )

for a.e. x ∈ X . The final claim was proved in [Lo]. �

We can rewrite (5-3) formally in the following form

(5-4)

1∑

a1=0

√
κ(a1)λ(a1)

∞∏

i=1

1∑

ai+1=0

√
Q

(i)
ai,ai+1P

(i)
ai,ai+1 6= 0,

which is close to the classical Kakutani criterium from [Ka].
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6. Krieger’s type of tail equivalence relations

equipped with stationary Markov measures

In this section we compute Krieger’s type of the tail equivalence relation R on
X equipped with “stationary” Markov measures.

Proposition 6.1. Let λ be a non-degenerated distribution on {0, 1}. Given a non-
degenerated stochastic matrix P , we let P := (P (n))∞n=1 with P (n) = P for each
n > 0. Denote by µ the Markov measure on X determined by (λ,P ). Denote by Γ

the subgroup of R∗
+ generated by reals

P0,0

P1,1
and

P 2
0,0

P0,1P1,0
.

• If Γ = {1} then R on (X, µ) is ergodic and of type II1.
• If Γ = {λn | n ∈ Z} for some λ ∈ (0, 1) then R on (X, µ) is ergodic and of

type IIIλ.
• If Γ is dense in R∗

+ then R on (X, µ) is ergodic and of type III1.

Proof. We first note that R is ergodic by Theorem 5.4. The restriction of R to
the subset [0]1 is isomorphic to R. Hence Krieger’s type of R∩ ([0]1 × [0]1) equals
Krieger’s type of R. Given k > 0, we define a transformation δk of X by setting
for each x = (xj)j>0 and j > 0,

(δkx)j =

{
xj if j 6= k

x∗
k if j = k,

where x∗
k is determined by the condition {xk, x

∗
k} = {0, 1}. Then δk is an invertible

µ-nonsingular transformation of X . Denote by Λ the group of transformations of
X generated by δk, k = 2, 3, . . . . Then two points x, y ∈ [0]1 are R-equivalent

if and only if y ∈ {δx | δ ∈ Λ}. Hence ∆R,µ(x, y) ∈ {dµ◦δ
dµ

(x) | δ ∈ Λ}. It is

straightforward to verify that

dµ ◦ δk
dµ

(x) ∈
{
P0,0

P1,1
,
P1,1

P0,0
,

P 2
0,0

P0,1P1,0
,
P0,1P1,0

P 2
0,0

,
P1,0P0,1

P 2
1,1

,
P 2
1,1

P1,0P0,1

}

for each x ∈ X and k > 1. It follows from this and the cocycle identity that
the Radon-Nikodym cocycle ∆R,µ restricted to R ∩ ([0]1 × [0]1) takes its val-

ues in Γ. Therefore it suffices to show that
P1,1

P0,0
and

P0,1P1,0

P 2
0,0

are essential val-

ues of this cocycle. Take a cylinder [0, a2, . . . , an]
n
1 ⊂ [0]1. Let N > n and

let A := [0, a2, . . . , an]
n
1 ∩ [0, 0, 0]N+1

N−1 and B := [0, a2, . . . , an]
n
1 ∩ [0, 0, 1]N+1

N−1. By
the Perron-Frobenius theorem, there is a strictly positive vector (π0, π1) such that
limk→∞(P k)i,j = πj for each i, j = 0, 1. Given ǫ > 0, if N is large enough then

µ(A)

µ([0, a2, . . . , an]
n
1 )

= (PN−n)an,0P
2
0,0 ≥ (1− ǫ)π0P

2
0,0 and

µ(B)

µ([0, a2, . . . , an]n1 )
= (PN−n)an,0P0,0P0,1 ≥ (1− ǫ)π0P0,0P0,1.

Moreover, δNA ⊂ [0, a2, . . . , an]
n
1 , δNB ⊂ [0, a2, . . . , an]

n
1 ,

dµ ◦ δN
dµ

(x) =
P0,1P1,0

P 2
0,0

for all x ∈ A and

dµ ◦ δN
dµ

(x) =
P0,1P1,1

P0,0P0,1
=

P1,1

P0,0
for all x ∈ B.

Now Lemma 1.1 yields that
P0,1P1,0

P 2
0,0

and
P1,1

P0,0
are essential values of ∆R,µ ↾ [0]1. �
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Corollary 6.2. Let α, β ∈ (0,∞) and let P =

( 1
1+α

α
1+α

β
1+β

1
1+β

)
. Then R is of type:

(i) II1 if and only if α = β = 1;
(ii) IIIλ for some λ ∈ (0, 1) if and only if there are integers p, q ∈ Z such that

pZ+ qZ = Z, α is the positive root of the quadratic equation

(6-1)
α2 + (1− λp)α − λq = 0 and

β = λq−p/α;

(iii) III1 if R is neither of type II1 nor of type IIIλ for λ ∈ (0, 1).

Proof. In view of Proposition 6.1, the claim (i) is obvious.

(ii) It follows from Proposition 6.1 that R is of type IIIλ if and only if there are
relatively prime integers p, q ∈ Z such that

1 + β

1 + α
= λ−p and

1 + β

(1 + α)αβ
= λ−q .

This implies (6-1). We also note that the pair (α, β) = (1, 1) can not be the solution
of (6-1) because this would imply that p = q = 0 and hence pZ+ qZ 6= Z.

(iii) follows from (i), (ii) and Proposition 6.1. �

7. Nonsingular Markov shifts

Let µ be a non-degenerated and non-atomic Markov measure determined by
some pair (λ,P ). Let T denote the one-sided shift on (X, µ). It is straightforward
to verify that µ ◦ T−1 is also a Markov measure on X . This measure is determined

by a pair (λ̂, P̂ ), where λ̂(a) =
∑1

i=0 λ(i)P
(1)
i,a for a = 0, 1, and P̂ = (P̂ (n))∞n=1 with

P̂ (n) = P (n+1) for n > 0. It follows from Corollary 5.5 that T is µ-nonsingular if
and only if

(7-1)
1∑

a1=0

√
λ̂(a1)λ(a1)

∞∏

i=1

1∑

ai+1=0

√
P

(i+1)
ai,ai+1P

(i)
ai,ai+1 6= 0,

In this case, for µ-a.a. x ∈ X , we have

(7-2)
dµ ◦ T−1

dµ
(x) =

λ(0)P
(1)
0,x1

+ λ(1)P
(1)
1,x1

λ(x1)

∞∏

k=1

P
(k+1)
xk,xk+1

P
(k)
xk,xk+1

.

Definition 7.1. We call the dynamical system (X, µ, T ) the nonsingular one-sided
Markov shift if µ is a non-degenerated and non-atomic Markov measure determined
by (λ,P ) such that (7-1) holds.

Since ST = R, it follows from Theorem 5.4 and Lemma 2.1(ii) that all nonsin-
gular one-sided Markov shift are exact (and hence ergodic). We now describe the
natural extensions of these nonsingular endomorphisms.
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Example 7.2. Let (X, µ, T ) be a nonsingular one-sided Markov shift as above.

Denote by X̃, T̃ and π the same objects as in Example 2.4. Then T̃ is the two-

sided shift on X̃ . To define the corresponding measure µ̃ on X̃, we first set

(7-3) Qi,j :=
λ(i)P

(1)
i,j

λ(0)P
(1)
0,j + λ(1)P

(1)
1,j

, i, j = 0, 1.

Then Q :=

(
Q0,0 Q0,1

Q1,0 Q1,1

)
is a left stochastic matrix, i.e.

∑1
i=0 Qi,j = 1 for each

j ∈ {0, 1}. We now let

µ̃([a−n, . . . , a0, . . . , an]
n
−n) =

( ∏

−n<i≤1

Qai−1,ai

)
λ(a1)

∏

1≤i<n

P (i)
ai,ai+1

.

It is straightforward to verify that T̃ is µ̃-nonsingular and for µ̃-a.e. x̃ = (x̃k)k∈Z ∈
X̃, we have

(7-4)
dµ̃ ◦ T̃
dµ̃

(x̃) =
Qx1,x2

λ(x2)

λ(x1)P
(1)
x1,x2

·
∞∏

k=2

P
(k−1)
xk,xk+1

P
(k)
xk,xk+1

.

We use here the notation x := π(x̃), x = (xn)n>0 and hence xn = x̃n for each
n > 0. On the other hand, (7-2) yields that

dµ

dµ ◦ T−1
(Tx) =

λ(x2)

λ(0)P
(1)
0,x2

+ λ(1)P
(1)
1,x2

·
∞∏

k=2

P
(k−1)
xk,xk+1

P
(k)
xk,xk+1

.

This, (7-3) and (7-4) yield that dµ̃◦T̃
dµ̃

(x̃) = dµ
dµ◦T−1 ◦ T (π(x̃)) for µ̃-a.e. x̃, i.e.

ω
T̃ ,µ̃

= ωT,µ ◦ π. Let B and B̃ denote the standard Borel σ-algebras on X and X̃

respectively. Since
∨

n∈Z
T̃nπ−1(B) = B̃, it follows that T̃ is the natural extension

of T , as desired. Since T is exact, T̃ is a K-automorphism. We also deduce
from (7-4) that for each n > 0,

(7-5)
dµ̃ ◦ T̃n

dµ̃
(x̃) =

λ(xn+1)

λ(x1)

n∏

i=1

Qxi,xi+1

P
(i)
xi,xi+1

∞∏

i=n+1

P
(i−n)
xi,xi+1

P
(i)
xi,xi+1

at µ̃-a.e. x̃. We will utilize this formula below.

Lemma 7.3. Let (X, µ, T ) be a nonsingular one-sided Markov shift and let the
measure µ be determined by a pair (λ,P ). Then αωT,µ

↾ ST = ∆ST ,µ/δ, where
δ : ST → R∗

+ is a cocycle of ST given by δ(x, y) =
∏∞

i=1 Qyi,yi+1
/Qxi,xi+1

.

Proof. As in the proof of Theorem 3.1 (see Claim B) take (x, y) ∈ ST . Then there

is n > 0 such that Tnx = Tny, i.e. xi = yi if i > n. Let x̃, ỹ ∈ X̃ be such that
π(x̃) = x and π(ỹ) = y. We have that

αωT,µ
(x, y) =

αωT,µ
(x, Tnx)

αωT,µ
(y, Tny)

=

dµ̃◦T̃n

dµ̃
(x̃)

dµ̃◦T̃n

dµ̃
(ỹ)

.
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Applying (7-5) we obtain that

αωT,µ
(x, y) =

λ(xn+1)
λ(x1)

∏n
i=1

Qxi,xi+1

P
(i)
xi,xi+1

∏∞
i=n+1

P (i−n)
xi,xi+1

P
(i)
xi,xi+1

λ(yn+1)
λ(y1)

∏n
i=1

Qyi,yi+1

P
(i)
yi,yi+1

∏∞
i=n+1

P
(i−n)
yi,yi+1

P
(i)
yi,yi+1

=
λ(y1)

λ(x1)

n∏

i=1

P
(i)
yi,yi+1

P
(i)
xi,xi+1

n∏

i=1

Qxi,xi+1

Qyi,yi+1

.

Hence αωT,µ
(x, y) = ∆ST ,µ(x, y)/δ(x, y), as desired. �

Remark 7.4. The following assertions are verified straightforwardly.

(i) δ is trivial if and only if Qi,j = 0.5 for all i, j = 0, 1. This happens if only

if λ(0) = λ(1) = 0.5 and P
(1)
0,j = P

(1)
1,j for j = 0, 1.

(ii) If P (1) is bistochastic then Q is bistochastic if and only if λ(0) = λ(1) = 0.5.
In this case we have Q = P (1) and

δ(x, y) =

(
P

(1)
0,1

P
(1)
0,0

)∑
∞

i=1(|yi+1−yi|−|xi+1−xi|)

for all (x, y) ∈ ST .

(iii) Qi,0 = Qi,1 if and only if P
(1)
0,i = P

(1)
1,i , i = 0, 1.

Theorem 7.5. Let (X, µ, T ) be a nonsingular one-sided Markov shift. If the cocycle

∆ST ,µ/δ is ergodic then the Maharam extension of the natural extension (X̃, µ̃, T̃ )

of T is a K-automorphism. If, moreover, T̃ is conservative then T̃ is weakly mixing
and of type III1.

Idea of the proof. Repeat the argument in the beginning of Claim B from the proof
of Theorem 3.1 almost literally and then apply Lemma 7.3. �

We now prove a necessary condition for conservativeness of T̃ .

Lemma 7.6. Let P
(1)
0,0 = P

(1)
1,0 . If there exist η > 0 and k > 0 such that |Qb,a −

P
(n)
a,b | > η for all a, b ∈ {0, 1} and n > k then T̃ is not conservative.

Proof. By the condition of the lemma and Remark 7.4(iii), there is a probability
distribution q on {0, 1} such that Qa,b = q(a) for all a, b ∈ {0, 1}.

It follows from (7-5) and Fatou’s lemma that

∫

X̃

√
dµ̃ ◦ T̃n

dµ̃
(x̃) dµ̃(x̃) ≤ lim inf

N→∞

∫

X̃

√√√√λ(xn+1)

λ(x1)

n∏

i=1

Qxi,xi+1

P
(i)
xi,xi+1

N∏

i=n+1

P
(i−n)
xi,xi+1

P
(i)
xi,xi+1

dµ̃(x̃).
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The integral in the righthand side of this inequality equals

1∑

a1,...,aN+1=0

√√√√λ(an+1)

λ(a1)

n∏

i=1

Qai,ai+1

P
(i)
ai,ai+1

N∏

i=n+1

P
(i−n)
ai,ai+1

P
(i)
ai,ai+1

· µ([a1 . . . aN+1]
N+1
1 )

=
1∑

a1,...,aN+1=0

√√√√λ(an+1)λ(a1)
n∏

i=1

Qai,ai+1
P

(i)
ai,ai+1

N∏

i=n+1

P
(i−n)
ai,ai+1P

(i)
ai,ai+1

=
1∑

a1,...,an+1=0

√√√√λ(an+1)λ(a1)
n∏

i=1

Qai,ai+1
P

(i)
ai,ai+1

N∏

i=n+1

1∑

ai+1=0

√
P

(i−n)
ai,ai+1P

(i)
ai,ai+1 .

Since
∑1

s=0

√
P

(i−n)
u,s P

(i)
u,s ≤ 1 and λ(u) < 1 for each u = 0, 1 and i = n+ 1, . . . , N ,

it follows that

∫

X̃

√
dµ̃ ◦ T̃n

dµ̃
(x̃) dµ̃(x̃) ≤

1∑

a1,...,an+1=0

√√√√
n∏

i=1

Qai,ai+1
P

(i)
ai,ai+1

=
1∑

a1,...,an+1=0

√
q(a1)

√√√√
n−1∏

i=1

P
(i)
ai,ai+1q(ai+1)

√
P

(n)
an,an+1

≤ 2

1∑

a1,...,an=0

√√√√
n∏

i=2

P
(i−1)
ai−1,aiq(ai)

= 2

1∑

a1,...,ak+1=0

√√√√
k+1∏

i=2

P
(i−1)
ai−1,aiq(ai)

n∏

i=k+2

1∑

ai=0

√
P

(i−1)
ai−1,aiq(ai).

Since there is ξ < 1 such that

sup{
√

tq(a) +
√
(1− t)(1− q(a)) | t ∈ (0, 1), |t− q(a)| ≥ η} ≤ ξ,

it follows from the condition of the proposition that

n∏

i=k+2

1∑

ai=0

√
P

(i−1)
ai−1,aiq(ai) ≤ ξn−k−1.

This yields

∫

X̃

√
dµ̃ ◦ T̃n

dµ̃
(x̃) dµ̃(x̃) ≤ 2ξn−k−1

n∏

i=k+2

1∑

ai=0

√
P

(i−1)
ai−1,aiq(ai) ≤ 2ξn−k−1.

Therefore
∑∞

n=1〈Un

T̃
1, 1〉 < ∞. Hence T̃ is not conservative by Lemma 2.2. �
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8. Maharam extensions of Markov shifts. Bistochastic case

Let µ be a (non-degenerated and non-atomic) Markov measure determined by a
pair (λ,P ) for a sequence P = (P (n))∞n=1 of bistochastic 2×2 matrices P (n), n ≥ 1.
It is convenient now to identify {0, 1} with the group Z/2Z. Then the space X can
be considered as the compact Abelian group (Z/2Z)N. Let θ : X → X denote the
following group homomorphism

X ∋ x = (x1, x2, x3, . . . ) 7→ (x1, x2 − x1, x3 − x2, . . . ) ∈ X.

This homomorphism has been proved to be useful in [Do–Qu]. Of course, θ is
one-to-one and continuous. For each y = (y1, y2, . . . ) ∈ X , we have that θ(y1, y1 +
y2, y1+y2+y3, . . . ) = y. Hence θ is onto. Thus θ is a (topological) automorphism of

X . Since P (n) is bistochastic, it follows that P
(n)
a+c,b+c = P

(n)
a,b for all a, b, c ∈ Z/2Z

and n > 0. This yields

µ ◦ θ−1([y1, . . . , yn]
n
1 ) = µ([y1, y1 + y2, . . . , y1 + · · ·+ yn]

n
1 )

= λ(y1)P
(1)
y1,y1+y2

P
(2)
y1+y2,y1+y2+y3

· · ·P (n−1)
y1+···+yn−1,y1+···+yn

= λ(y1)P
(1)
0,y2

P
(2)
0,y3

· · ·P (n−1)
0,yn

.

Hence µ ◦ θ−1 is a Bernoulli measure
⊗∞

n=1 µn on X , where µ1 := λ and µn(i) :=

P
(n−1)
0,i , i = 0, 1 and n > 1. We claim that

(8-1) (θ × θ)(R) = R0 :=

{
(x, y) ∈ R |

∞∑

i=1

(yi − xi) = 0

}
.

The inclusion (θ × θ)(R) ⊂ R0 is obvious. Conversely, if (x, y) ∈ R0, then there is
N > 0 such that y1 + · · ·+ yN = x1 + · · ·+ xN and xi = yi for each i > N . Then
(θ−1x, θ−1y) = ((x1, x1 + x2, . . . ), (y1, y1 + y2, . . . )) ∈ R. Thus (8-1) is proved.

Let T stand for the one-sided shift on X . It is easy to verify that

θTθ−1(y1, y2, y3, . . . ) = (y1 + y2, y3, y4, . . . )

for each (y1, y2, . . . ) ∈ X . Of course, T is µ-nonsingular if and only if θTθ−1 is
µ◦θ−1-nonsingular. In turn, the latter holds if and only if T is µ◦θ−1-nonsingular.
Indeed, for a ∈ Z/2Z, we set Aa := {(u, v) ∈ (Z/2Z)2 | u+ v = a}. Then we have

(8-2)

dµ ◦ T−1

dµ
(θ−1y) =

d(µ ◦ θ−1) ◦ θT−1θ−1

dµ ◦ θ−1
(y)

=
(µ1 ⊗ µ2)(Ay1

)

µ1(y1)

∏

n≥2

µn+1(yn)

µn(yn)

=
(µ1 ⊗ µ2)(Ay1

)

µ2(y1)
· d(µ ◦ θ−1) ◦ T−1

d(µ ◦ θ−1)
(y)

for µ ◦ θ−1-a.e. y = (y1, y2, . . . ) ∈ X . Therefore T is µ-nonsingular if and only if
T is µ ◦ θ−1-nonsingular. Equivalently, in the bistochastic case, (7-1) is equivalent
to (2-1). We then call the dynamical system (X, µ, T ) a bistochastic nonsingular

one-sided Markov shift. Let (X̃, µ̃, T̃ ) denote the natural extension of (X, µ, T ).
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Theorem 8.1. Let (X, µ, T ) be a bistochastic nonsingular one-sided Markov shift

as above with λ(0) = λ(1) = 0.5 and P (1) =

(
0.5 0.5
0.5 0.5

)
. Then the following are

satisfied.

(i) (X̃, µ̃, T̃ ) is conservative if and only if (X̃, µ̃ ◦ θ−1, T̃ ) is conservative.

(ii) The Maharam extension of (X̃, µ̃, T̃ ) is a K-automorphism if the cocycle
∆R0,µ◦θ−1 is ergodic.

(iii) If (X̃, µ̃, T̃ ) is conservative then it is weakly mixing and either of type II1
(if
∑

n≥1(P
(n)
0,0 − 0.5)2 < ∞) or of type III1 (otherwise). In the latter case,

the Maharam extension of (X̃, µ̃, T̃ ) is a K-automorphism.

Proof. It follows from the assumption of the theorem that (µ1 ⊗ µ2)(Aa) = µ1(a)
for each a ∈ Z/2Z and µ2 = µ1. Then (8-2) yields that ωT,µ◦θ−1 = ωT,µ ◦ θ−1.
Lemma 2.3(vi) yields now that T is µ-recurrent if and only if T is µ◦θ−1-recurrent.
Hence, (i) follows from Lemma 2.5(i).

It follows from Remark 7.4(i) and the assumption of the theorem that the co-

cycle δ is trivial. Then, by Theorem 7.5, the Maharam extension of T̃ is a K-
automorphism if the cocycle ∆ST ,µ is ergodic. It remains to note that (see (8-1))

∆ST ,µ(θ
−1x, θ−1y) = ∆θ×θ(ST ),µ◦θ−1(x, y) = ∆R0,µ◦θ−1(x, y)

for all (x, y) ∈ ST . Thus (ii) is proved.
Since R0 contains the equivalence relation generated by the group of finite per-

mutations of N acting on X in the natural way, it follows from Remark 1.7 that
∆R0,µ◦θ−1 is ergodic if and only if ∆R,µ◦θ−1 is ergodic. Therefore arguing as in
the proof of Theorem 3.1 (see also Corollary 3.3) and utilizing (i) and (ii) we
prove (iii). �

We note that, under the condition of the theorem, if (X̃, µ̃, T̃ ) is conservative
and of type II1 then µ is T -cohomologous to a Markov measure determined by the
pair (λ, (P (1))∞n=1). Thus µ is T -cohomologous to a Bernoulli (i.e. infinite product)
measure. The converse follows from the proposition below:

Proposition 8.2. Let (X, µ, T ) be as in Theorem 8.1. If µ is equivalent to a

Bernoulli measure then T̃ is ergodic and of type II1.

Proof. Let µ be equivalent to a Markov measure determined by a pair (ρ, (V (n))∞n=1)

with V
(n)
0,0 = V

(n)
1,0 for all n > 0. Then V (n) is close to P (n) for all sufficiently

large n by Corollary 5.5. Since P (n) is bistochastic, it follows that V
(n)
0,0 → 0.5 as

n → ∞. If follows that there is δ > 0 such that infn>0 mini,j V
(n)
i,j > δ. Hence

there is δ′ > 0 such that infn>0 mini,j P
(n)
i,j > δ′. It follows from Corollary 5.5

that
∑∞

n=1(P
(n)
0,0 − V

(n)
0,0 )2 < ∞ and

∑∞
n=1(1 − P

(n)
0,0 − V

(n)
0,0 )2 < ∞. Therefore

∑∞
n=1(P

(n)
0,0 − 0.5)2 < ∞ and hence

∑∞
n=1(P

(n)
i,j − 0.5)2 < ∞ for all i, j ∈ {0, 1}. It

remains to apply Corollary 5.5 again (but in the opposite direction). �

Remark 8.3. Utilizing Theorem 8.1 we can produce concrete examples of type
III1 ergodic conservative natural extensions of bistochastic nonsingular one-sided
Markov shifts. For that take a concrete example of a nonsingular one-sided Bernoulli
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shift (X,
⊗∞

n=1 µn, T ) whose natural extension is conservative ergodic and of type
III1 such that µ1(0) = µ2(0) = 0.5 (such systems were constructed in Theorem 4.2
and earlier in [Kr], [Ha], [Ko1] and [Ko2]) and set µ := (

⊗∞
n=1 µn) ◦ θ. Then the

system (X̃, µ̃, T̃ ) is as desired. We note also that µ is not equivalent to any Bernoulli
measure on X according to Proposition 8.2.

9. Maharam extensions of Markov shifts. General case

Let J be an infinite subset of N such that its complement N\J is also infinite. We
endow J and N \ J with the induced (from N) linear ordering. Using this ordering
we may identify naturally {0, 1}J with X and {0, 1}N\J with X . We denote by
φJ : X ∋ x 7→ x|J ∈ X and φN\J : X ∋ x 7→ x|(N \ J) ∈ X the corresponding
restriction maps. Then the mapping

(9-1) X ∋ x 7→ (φJ × φN\J )(x) ∈ X ×X

is a homeomorphism. Moreover, the mapping (φJ × φN\J ) × (φJ × φN\J ) maps
bijectively R onto R×R.

Let µ be a probability measure on X such that R is µ-nonsingular. In view of
the identification (9-1), we may consider µ as a measure on X ×X . Then R×R
is µ-nonsingular. Now we let µJ := µ ◦ φ−1

J . Then µ admits a disintegration

(9-2) µ =

∫

X

δx × µ(x) dµJ (x)

relative to µJ , where δx is the Kronecker measure supported at x and X ∋ x 7→ µ(x)

is the corresponding canonical system of conditional measures on X . Since R×R
is µ-nonsingular, R is µ(x)-nonsingular for µJ -a.a. x ∈ X . Moreover, µ(x) and µ(x′)

are equivalent whenever (x, x′) ∈ R and

(9-3) ∆R×R,µ((x, y), (x
′, y′)) = ∆R,µJ

(x, x′)
dµ(x′)

dµ(x)
(y)∆R,µ(x′)(y, y′).

Lemma 9.1. Suppose that R×R is µ-ergodic. If (R, µ(x)) is ergodic and of type
III1 for µJ -a.e. x ∈ X then (R×R, µ) is also of type III1.

Proof. Denote the skew product equivalence relation (R × R)(∆R×R,µ) on the

product space (X ×X × R∗
+, µ× λR∗

+
) by R̃. We need to show that R̃ is ergodic.

Let A be an R̃-invariant subset of X ×X × R∗
+. Given x ∈ X , we let

Ax := {(y, z) ∈ X × R∗
+ | (x, y, z) ∈ A}.

Since A is R̃-invariant, it follows from (9-3) that Ax is R(∆R,µx
)-invariant for

µJ -a.e. x ∈ X . Indeed, (x, y) ∼ (x, y′) whenever (y, y′) ∈ R and hence (9-3) yields

∆R×R,µ((x, y), (x, y
′)) = ∆R,µ(x)(y, y′).

By the assumptions of the lemma, (R, µ(x)) is ergodic and of type III1. Hence
the skew product extension R(∆R,µ(x)) is ergodic. Therefore we have either (µx ×
λR∗

+
)(Ax) = 0 or (µx × λR∗

+
)((X × R∗

+) \Ax) = 0 for a.e. x ∈ X . We let

B := {x ∈ X | (µx × λR∗

+
)((X × R∗

+) \Ax) = 0} and

B̃ := {(x, y, z) ∈ X ×X × R∗
+ | x ∈ B}.
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By the Fubini theorem, (µ × λR∗

+
)(A△B̃) = 0. Hence B̃ is R̃-invariant (mod 0).

This is possible if and only if B is R-invariant. Since R × R is µ-ergodic by the
assumptions of the lemma, it follows that R is µJ -ergodic. This yields that either
µJ (B) = 0 or µJ (X \B) = 0. Hence A is either (µ× λR∗

+
)-null or (µ× λR∗

+
)-conull,

as desired. �

In a similar way one can prove a general statement on ergodicity of cocycles on
R×R.

Lemma 9.2. Let G be a locally compact second countable group. Let µ be a prob-
ability measure on X × X and let µ =

∫
X
δx × µ(x)dκ(x) be a disintegration of

µ with respect to the projection X × X → X onto the first coordinate6. Suppose
that R × R is µ-ergodic. Given a cocycle α : R × R → G, we define a measur-
able field of cocycles α(x) : R → G defined on (X, µ(x),R), x ∈ X, by setting
α(x)(y, y′) := α((x, y), (x, y′)) for all (y, y′) ∈ R. If α(x) is ergodic for κ-a.e. x ∈ X
then α is also ergodic.

We now compute µJ and the conditional measures µ(x) in the disintegration (9-2)
in the case where µ is a Markov measure and J = {1, 3, 5, . . .}. We also describe
the measurable field of cocycles δ(x), x ∈ X , corresponding to the cocycle δ defined
in Lemma 7.3.

Lemma 9.3. Let µ be a Markov measure determined by a pair (λ,P ). Let J be

the set of odd positive integers. Set κu,v :=
Qu,1Q1,v

Qu,0Q0,v
for u, v = 0, 1. Then

(i) µJ is the Markov measure on X determined by the pair (λ,PJ), where
PJ = (P (2n−1,2n))∞n=1,

(ii) µ(x) is the Bernoulli measure
⊗∞

n=1 µ
(x)
n on X, where

(9-4) µ(x)
n (i) =

P
(2n−1)
xn,i

P
(2n)
i,xn+1

P
(2n−1,2n)
xn,xn+1

, i = 0, 1,

and
(iii) δ(x)(a, b) =

∏
i≥1(κxi,xi+1

)bi−ai for (a, b) ∈ R, a = (ai)
∞
i=1, b = (bi)

∞
i=1, for

µJ -a.e. x = (x1, x2, . . . ) ∈ X.

Proof. The first claim is obvious. To prove the second one, we take n > 0 and a
cylinder [a1, . . . , an]

n
1 . Then we have

µ(x)([a1, . . . , an]
n
1 ) =

µ([x1, a1, x2, a2, . . . , xn, an, xn+1]
2n+1
1 )

µ([x1]1 ∩ [x2]3 ∩ · · · ∩ [xn+1]2n+1)

=
λ(x1)P

(1)
x1,a1P

(2)
a1,x2 · · ·P (2n−1)

xn,an P
(2n)
an,xn+1

λ(x1)P
(1,2)
x1,x2 · · ·P (2n−1,2n)

xn,xn+1

=
P

(1)
x1,a1P

(2)
a1,x2

P
(1,2)
x1,x2

· · · P
(2n−1)
xn,an P

(2n)
an,xn+1

P
(2n−1,2n)
xn,xn+1

,

as desired. The third claim is verified straightforwardly. �

6Thus the measure κ is the projection of µ to the first coordinate and X ∋ x 7→ µ(x) is the

corresponding system of conditional measures on X.
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Given x ∈ X and n > 0, let

r(x)n :=
µ
(x)
n (1)

µ
(x)
n (0)

=
P

(2n−1)
xn,1

P
(2n)
1,xn+1

P
(2n−1)
xn,0

P
(2n)
0,xn+1

.

Denote by L(x) the set of limit points of the sequence (r
(x)
n )∞n=1. Of course, if

(x, y) ∈ R then L(x) = L(y). Therefore the map X ∋ x 7→ L(x) is a Borel R-
invariant map from X to the space of closed subsets of the ray [0,+∞) if we endow
this space with the Fell topology [Fel]. Since R is µJ -ergodic, there exists a closed
subset L ⊂ [0,+∞) such that L(x) = L for µJ -a.e. x. We say that a point α ∈ L(x)

is good if there is an increasing sequence n1 < n2 < · · · of positive integers such that

limj→∞ r
(x)
nj = α and

∑
i>0(α−r

(x)
nj )

2 = +∞. If there is a segment [β, γ] ⊂ [0,+∞)
such that the intersection L ∩ [β, γ] is infinite then L contains a good point.

Theorem 9.4. Let µ be a Markov measure determined by a pair (λ,P ) and let
(X, µ, T ) stand for the corresponding nonsingular one-sided Markov shift.

(i) If
∑1

u=0 λ(u)P
(1)
u,v = λ(v) for v = 0, 1 and

∑1
u=0

∑∞
n=1(P

(n)
u,0 − P

(1)
u,0)

2 < ∞
then (X̃, µ̃, T̃ ) is isomorphic to the measure preserving two-sided shift on

the probability space (X̃, ν̃), where ν̃ is the Markov measure determined by
the pair (λ, (P (1))∞n=1).

(ii) If the natural extension (X̃, µ̃, T̃ ) of T is conservative and L contains a good

non-zero point then the Maharam extension of (X̃, µ̃, T̃ ) is a weakly mixing

K-automorphism. In particular, (X̃, µ̃, T̃ ) is of type III1.

Proof. (i) follows form the final claim of Corollary 5.5.

(ii) To show that the Maharam extension of (X̃, µ̃, T̃ ) is a K-automorphism we
will apply Theorem 7.5. For that we have to prove that the cocycle ∆ST ,µ/δ is
ergodic (the cocycle δ is defined in Lemma 7.3). Let J stand for the set of odd
positive integers. By Lemma 9.2, ∆ST ,µ/δ is ergodic if the cocycle ∆R,µ(x)/δ(x) of

R on (X, µ(x)) is ergodic for µJ -a.e. x. Given x ∈ X , partition N into four subsets

N = J
(x)
0,0 ⊔ J

(x)
0,1 ⊔ J

(x)
1,0 ⊔ J

(x)
1,0 , where j ∈ J

(x)
u,v if xj = u and xj+1 = v. It follows

from Lemma 9.3 that the quadruple (X, µ(x),R, δ(x)) splits into direct product

1⊗

u,v=0

(
{0, 1}J(x)

u,v , µ(x)
u,v,R(x)

u,v, δ
(x)
u,v

)
,

where µ
(x)
u,v :=

⊗
i∈J

(x)
u,v

µ
(x)
i , R(x)

u,v is the tail equivalence relation on the product

space {0, 1}J(x)
u,v and δ

(x)
u,v is a cocycle of R(x)

u,v given by

δ(x)u,v(a, b) := (κu,v)

∑
i∈J

(x)
u,v

(bi−ai)

Hence it suffices to show that for some pair (u, v), the cocycle ∆
R

(x)
u,v ,µ

(x)
u,v

/δ
(x)
u,v

is ergodic. It follows from the condition of the theorem that there is α ∈ L(x)

and an increasing sequence n1 < n2 < · · · of positive integers such that α >

0, limj→∞ r
(x)
nj = α and

∑
i>0(α − r

(x)
nj )

2 = +∞. Passing to a subsequence, if
necessary, we may assume without loss of generality that there is a pair (u, v) ∈
{0, 1}2 such that nj ∈ J

(x)
u,v for all j > 0. Then ∆

R
(x)
u,v,µ

(x)
u,v

/δ
(x)
u,v is ergodic in view

of Remark 1.6. �
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10. Concluding remarks and open problems

(1) Let T̃ be the natural extension of a nonsingular one-sided Markov shift.

Suppose that T̃ is conservative and not of type II1. Is the Maharam exten-

sion of T̃ a K-automorphism? Theorems 3.1(ii), 8.1(iii) and 9.4(ii) provide
only partial answers to this question.

(2) Let T and R be two nonsingular one-sided Bernoulli shifts on the infi-
nite product spaces ({0, 1}N,⊗n≥1 µn) and ({0, 1}N,⊗n≥1 νn), respectively.

Suppose that the natural extensions T̃ and R̃ of T and R, respectively, are

conservative. Is it possible that µ1(0) 6∈ {ν1(0), ν1(1)} but T̃ and R̃ are
conjugate as nonsingular transformations? In particular, can the natural
extension of an equilibrial one-sided Bernoulli shift be conjugate with the
natural extension of a non-equilibrial Bernoulli shift? We note that in the
probability preserving case, i.e. in the case where µ1 = µn and ν1 = νn for

all n > 1, if µ1(0) 6∈ {ν1(0), ν1(1)} then h(T̃ ) 6= h(R̃) and hence T̃ and R̃
are not conjugate.

(3) Let T be a nonsingular one-sided Markov shift on {0, 1}N and the corre-
sponding Markov measure on this space is not equivalent to a Bernoulli

measure. Suppose that the natural extension T̃ of T is conservative. Then

T̃ is weakly mixing. Are there nonsingular one-sided Bernoulli shifts whose

natural extensions are conjugate to T̃?
(4) What are the critical dimensions (see [DanSi] for the definition) of the natu-

ral extensions of non-equilibrial nonsingular Bernoulli shifts and bistochastic
Markov shifts? Can we distinguished between equilibrial and non-equilibrial
Bernoulli shifts using critical dimensions? Some estimations for these in-
variants were obtained in [DoMor] for the equilibrial Bernoulli case.

(5) Are there nice criteria for conservativeness of the natural extensions of the
one-sided nonsingular Bernoulli and Markov shifts?

(6) We recall that given an invertible nonsingular transformation T of the stan-
dard non-atomic σ-finite measure space (X, µ), the ergodic index e(T ) of T
is the smallest positive integer d such that the d-th Cartesian power T⊗d

of T is not ergodic. If no such integer exists, T is said to be of infinite
ergodic index. In a similar way one can define index of conservativeness
c(T ) for T . Of course, e(T ) ≤ c(T ) (see a survey [DanSi] for more infor-
mation about these indices). Suppose now that T is the natural extension
of a nonsingular one-sided Bernoulli shift S on a product space (Y, ν). It is
easy to verify that for each d > 0, the dynamical system (Xd, µ⊗d, T⊗d) is
the natural extension of (Y d, ν⊗d, S⊗d). It is easy to see that S⊗d is also
exact. Hence S⊗d is ergodic. Therefore, if T⊗d is conservative then it is
ergodic by Lemma 2.5(iii) and (i). It follows that e(T ) = c(T ). A question
arises: what are possible values of e(T ) when T runs over the set of natural
extensions of all conservative non-singular one-sided Bernoulli shifts of type
III1?

(7) Let T be an ergodic conservative invertible transformation of type III1.

Then the Maharam extension T̂ of T is an ergodic conservative transfor-

mation of type II∞. Of course, e(T̂ ) ≤ e(T ) and c(T̂ ) ≤ c(T ). What

are possible values of e(T̂ ) and c(T̂ ) when T runs over the set of natural
extensions of all conservative non-singular one-sided Bernoulli (or Markov)
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shifts? This is related to Z. Kosloff’s question: does the condition c(T ) > 2

imply that c(T̂ ) > 2?

(8) How “huge” is the centralizer7 of the type III1 natural extension T̃ of a

nonsingular one-sided Bernoulli shift T? Does the second centralizer8 of T̃

consist of just the powers of T̃ as in the finite measure preserving case (cf.
[Ru])?

(9) There are many works devoted to computation of Krieger’s type and the
associated flow of the tail equivalence relation R on the infinite product
of finite spaces equipped with product measures (i.e. odometers of prod-
uct type). We refer to [DanSi] for references and definition of the asso-
ciated flow. It would be interesting to consider similar problems in the
Markov case, for instance, in the simplest case, where X = {0, 1}N and
µ is a nonatomic non-degenerated Markov measure determined by some
pair (λ,P ). In particular, is it true that the associated flow of (X, µ,R)
is AT (i.e. approximatively transitive in the sense of Connes and Woods
[CoWo])? Some results were obtained in [Do–Qu] for the bistochastic case
and in Section 6 of the present paper for the simplest “stationary” case.
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