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Abstract

A set R ⊂ N is called rational if it is well-approximable by finite unions of arith-
metic progressions, meaning that for every ǫ > 0 there exists a set B =

⋃r

i=1 aiN+bi,
where a1, . . . , ar, b1, . . . , br ∈ N, such that

d(R△B) := lim sup
N→∞

|(R△B) ∩ {1, . . . , N}|
N

< ǫ.

Examples of rational sets include many classical sets of number-theoretical origin
such as the set of squarefree numbers, the set of abundant numbers, or sets of

the form Φx := {n ∈ N : ϕ(n)
n

< x}, where x ∈ [0, 1] and ϕ is Euler’s totient
function. We investigate the combinatorial and dynamical properties of rational sets
and obtain new results in ergodic Ramsey theory. Ramsey-theoretical applications
naturally lead to problems in symbolic dynamics, which involve rationally almost
periodic sequences (sequences whose level-sets are rational). Here is a sample of
results obtained in this paper.

Theorem. Let R ⊂ N be a rational set and assume d(R) > 0. The following are
equivalent:

(a) R is divisible, i.e. d(R ∩ uN) > 0 for all u ∈ N.

(b) R is an averaging set of polynomial single recurrence.

(c) R is an averaging set of polynomial multiple recurrence.

Corollary. Let R ⊂ N be rational and divisible. Then for any set E ⊂ N with
d(E) > 0 and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, which satisfy pi(Z) ⊂ Z and
pi(0) = 0 for all i ∈ {1, . . . , ℓ}, there exists β > 0 such that the set

{

n ∈ R : d
(

E ∩ (E − p1(n)) ∩ . . . ∩ (E − pℓ(n))
)

> β
}

has positive lower density.

∗The first author gratefully acknowledges the support of the NSF under grant DMS-1500575.
†Research supported by Narodowe Centrum Nauki UMO-2014/15/B/ST1/03736.
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Theorem. Let A be a finite set and let η ∈ AN be rationally almost periodic. Let
S denote the left-shift on AZ and let

X := {y ∈ AZ : each word appearing in y appears in η}.

Then η is a generic point for an S-invariant probability measure ν on X such that the
measure preserving system (X,S, ν) is ergodic and has rational discrete spectrum.
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1 Introduction

The celebrated Szemerédi theorem on arithmetic progressions [58] states that any set

S ⊂ N having positive upper density d(S) = lim supN→∞
|S∩{1,...,N}|

N > 0 contains ar-
bitrarily long arithmetic progressions. A (one-dimensional special case of a) polynomial
generalization of Szemerédi’s theorem proved in [12] states that for any S ⊂ N with
d(S) > 0 and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, which satisfy pi(Z) ⊂ Z and
pi(0) = 0 for all i ∈ {1, . . . , ℓ}, the set S contains (many) polynomial progressions of the
form {a, a+ p1(n), . . . , a+ pℓ(n)}. The proof of the polynomial extension of Szemerédi’s
theorem given in [12] is obtained with the help of an ergodic approach introduced by
Furstenberg (see [32, 33]). In particular, the formulated above one-dimensional polyno-
mial Szemerédi theorem follows from the fact that for any probability space (X,B, µ),
any invertible measure preserving transformation T : X → X, any A ∈ B with µ(A) > 0
and any ℓ polynomials pi ∈ Q[t] satisfying pi(Z) ⊂ Z and pi(0) = 0, i ∈ {1, . . . , ℓ}, there



exist arbitrarily large n ∈ N such that µ
(
A∩T−p1(n)A∩ . . .∩T−pℓ(n)A

)
> 0. As a matter

of fact, one can show1 that

(1.1) lim
N→∞

1

N

N∑

n=1

µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

> 0.

One of the goals of this paper is to refine (1.1) by considering multiple ergodic averages
of the from

(1.2) lim
N→∞

1

|R ∩ [1, N ]|

N∑

n=1

1R(n)µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

,

for certain sets R of arithmetic origin called rational sets, which were introduced in [13]
(see Definition 1.1 below). We show that for any rational set R the limit in (1.2) exists.
Furthermore, we give necessary and sufficient conditions on R for this limit to be positive.
This, in turn, allows us to obtain new refinements of the polynomial Szemerédi theorem,
some of which we state at the end of this introduction.

To present the main results of our paper we need to introduce some definitions first.

Definition 1.1 (Rationally almost periodic sequences and rational sets). Let A be a
finite set. We endow the space AN with the Besicovitch pseudo-metric dB (cf. [15, 16]),

(1.3) dB(x, y) := lim sup
N→∞

|{1 6 n 6 N : x(n) 6= y(n)}|
N

.

A sequence x ∈ AN is called (Besicovitch) rationally almost periodic or, for short,
RAP if for every ε > 0 there exists a periodic sequence y ∈ AN such that dB(x, y) < ε.2

A set R ⊂ N is called rational if the sequence 1R (viewed as a sequence in {0, 1}N) is
RAP, see [13, Definition 2.1].

Here are some examples of rational sets:

• The set Q of squarefree numbers (see [13, Lemma 2.7]).

• The set A of abundant numbers3 and the set D of deficient numbers (see Corol-
lary 2.17).

1We remark that the original proof in [12] established only

lim inf
N→∞

1

N

N∑

n=1

µ
(
A ∩ T

−p1(n)
A ∩ . . . ∩ T

−pℓ(n)
A
)
> 0,

whereas the existence of the limit in (1.1) was obtained later, see [38, 45].
2A more general definition of Besicovitch pseudo-metric dB and of rationally almost periodic sequences

will be introduced in Subsection 2.1 (see page 8) and in Subsection 3.2 (see Definition 3.7).
3Let σ(n) =

∑
d|n d denote the classical sum of divisors function. The set of abundant numbers and

the set of deficient numbers are defined, respectively, as A := {n ∈ N : σ(n) > 2n} and D := {n ∈ N :
σ(n) < 2n}. (The classical set of perfect numbers is defined as P := {n ∈ N : σ(n) = 2n}.)
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• For any x ∈ [0, 1], the set Φx := {n ∈ N : ϕ(n)
n < x}, where ϕ is Euler’s totient

function (also see Corollary 2.17).

The above examples are special cases of sets of multiples and sets of B-free numbers.
For B ⊂ N \ {1} the corresponding sets of multiples and B-free numbers are defined as
MB :=

⋃

b∈B
bN and FB := N \MB, respectively. The abundant numbers (as well as

the union of the abundant and perfect numbers) form a set of multiples, the deficient
numbers yield an example of a B-free set and Φx is a set of multiples. In section 2.4
we show that for B ⊂ N \ {1} the set FB is a rational set if and only if the density
d(FB) := limN→∞

1
N |FB ∩ [1, N ]| exists (see Corollary 2.16).

A natural way of obtaining rational sets is via level-sets of RAP sequences: if A =
{a1, a2, . . . , ar} is a finite set and x ∈ AN is a RAP sequence then the sets {n ∈ N : x(n) =
a1}, . . . , {n ∈ N : x(n) = ar} are rational. As a matter of fact, x ∈ AZ is RAP if and
only if all its level-sets are rational. Examples of RAP sequences include regular Toeplitz
sequences, or, more generally, Weyl rationally almost periodic sequences (for definitions
see section 3.1). In particular, paperfolding sequences4 as well as automatic sequences
coming from synchronized automata are RAP sequences (cf. section 3.1 and section 5 for
definitions and more details).

Definition 1.2 (cf. [10, Definition 1.5]). We say that R ⊂ N is an averaging set of poly-
nomial multiple recurrence if for any invertible measure preserving system (X,B, µ, T ),
A ∈ B with µ(A) > 0, ℓ ∈ N and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, with pi(Z) ⊂ Z

and pi(0) = 0 for all i ∈ {1, . . . , ℓ}, the limit in (1.2) exists and is positive. If ℓ = 1 then
we speak of an averaging set of polynomial single recurrence.

An averaging set of (single or multiple) polynomial recurrence R ⊂ N must also
be a set of recurrence, i.e. for each measure preserving system (X,B, µ, T ) and each
A ∈ B with µ(A) > 0 there exists n ∈ R such that µ(A ∩ T−nA) > 0. If we assume
that the density d(R) = limN→∞

1
N |R ∩ [1, N ]| exists and is positive then it follows – by

considering cyclic rotations on finitely many points – that the density of R∩uN also exists
and is positive for any positive integer u. This divisibility property is a rather trivial but
necessary condition for a positive density set to be “good” for averaging recurrence. This
leads to the following definition.

Definition 1.3. Let R ⊂ N. We say that R is divisible if d(R∩uN) exists and is positive
for all u ∈ N.

Note that for rational sets the existence of d(R) and d(R ∩ uN) is automatic (cf.
Lemma 3.14 below). Therefore, to verify divisibility, it suffices to check the positivity of
d(R ∩ uN) for all u ∈ N.

One of our main theorems asserts that for rational sets divisibility is not only a
necessary but also sufficient condition for averaging recurrence:

4Given an infinite binary sequence i ∈ {0, 1}N, we inductively define the paperfolding sequence t ∈
{0, 1}N with “folding instructions” i(1), i(2), i(3), . . . as follows: set t(1) := i(1) and, whenever t(n) has
already been defined for n ∈ {1, 2, . . . , 2k − 1}, we define t(n) for n ∈ {2k, 2k + 1, . . . , 2k+1 − 1} as
t(2k) := i(k) and t(n) := t(2k+1−n) for 2k < n < 2k+1. For more information on paperfolding sequences
see [1, 22].
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Theorem 1.4. Let R ⊂ N be a rational set and assume d(R) > 0. The following are
equivalent:

(a) R is divisible.

(b) R is an averaging set of polynomial single recurrence.

(c) R is an averaging set of polynomial multiple recurrence.

It was proved in [13] that every self-shift of the set Q of squarefree numbers, i.e., any
set of the form Q− r for r ∈ Q, is divisible and hence satisfies Theorem 1.4. Moreover,
it follows from [13] that a shift Q − r for r ∈ N is divisible if and only if r ∈ Q. The
following theorem establishes a result of similar nature for sets of B-free numbers.

Theorem 1.5. Let B ⊂ N \ {1} and assume that d(FB) exists5 and is positive. Then
there exists a set D ⊂ FB with d(FB \D) = 0 such that the set FB − r is an averaging
set of polynomial multiple recurrence if and only if r ∈ D.

In section 2.4 we also show that in Theorem 1.5 one has D = FB if and only if the
set B is taut (see Definition 2.19 and Theorem 2.26).

Theorem 1.4 motivates closer interest in RAP sequences as an independent object.
In section 3 we take a dynamical approach to study RAP sequences more closely. To
formulate our results in this direction, let first recall some basic notions of symbolic
dynamics.

As before, let A be a finite set (alphabet) and let S : AZ → AZ denote the left-shift
on AZ, i.e., Sx = y where x ∈ AZ and y(n) = x(n + 1) for all n ∈ Z. For x ∈ AZ (or
x ∈ AN) and n < m we call x[n,m] = (x(n), x(n + 1), . . . , x(m)) a word appearing in x.
Given η ∈ AN, let

Xη := {x ∈ AZ : (∀n < m)(∃k ∈ N) x[n,m] = η[k, k +m− n− 1]}
= {x ∈ AZ : each word appearing in x appears in η}.

Clearly, Xη is a closed and S-invariant subset of AZ (usually referred to as the sub-
shift determined by η).6 A sequence η ∈ AN is called generic for an S-invariant Borel
probability measure µ on AZ if

lim
N→∞

1

N

N−1∑

n=0

f(Snη̃) =

∫

AZ

f dµ

for all continuous functions f ∈ C(AZ), where η̃ ∈ AZ denotes any two sided sequence
extending η ∈ AN. Note that the above definition does not depend on the choice of the
two sided extension η̃ of η.

5A detailed discussion of criteria for the existence of d(FB) will be provided in section 2.4, see
Definition 2.14 and Theorem 2.15. In section 3.4 we obtain a version of Theorem 1.5 for the case when
d(FB) does not necessarily exist, see Theorem 3.27.

6When η is (topologically) recurrent, that is, any finite word appearing in η reappears infinitely often,
then there is η̃ ∈ AZ such that η̃[1,∞) = η and Xη = {Sk η̃ : k ∈ Z}. (Cf. [25], pp. 189-190.) Note,
however, that not all RAP sequences are recurrent.
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For a RAP sequence x ∈ AN we call the corresponding symbolic dynamical system
(Xη , S) a rational subshift. We show in section 3 that any rational sequence η is generic
for an ergodic measure ν such that (Xη, ν, S) has rational discrete spectrum7, a result
which we believe is of independent interest:

Theorem 1.6. Let η ∈ AN be RAP. Then there exists an S-invariant Borel probability
measure ν on Xη such that η is generic for ν and the measure preserving system (Xη , ν, S)
is ergodic and has rational discrete spectrum.

In light of Theorem 1.6, the following result (obtained in section 3.4) can be viewed
as a “dynamical” generalization of Theorem 1.4.

Theorem 1.7. Let R ⊂ N with d(R) > 0 and suppose η := 1R is generic for a Borel
probability measure ν on Xη ⊂ {0, 1}Z such that (Xη , ν, S) has rational discrete spec-
trum. Then there exists an increasing sequence of natural numbers (Nk)k>1 such that the
following are equivalent:

(A) R is divisible along (Nk)k>1, that is, for all u ∈ N

d(Nk)(R ∩ uN) := lim
k→∞

|R ∩ uN ∩ {1, . . . , Nk}|
Nk

> 0.

(B) R is an averaging set of polynomial multiple recurrence along (Nk)k>1, that is, for
all invertible measure preserving systems (X,B, µ, T ), ℓ ∈ N, A ∈ B with µ(A) > 0
and for all polynomials pi ∈ Q[t], i = 1, . . . , ℓ, with pi(Z) ⊂ Z and pi(0) = 0 for
i ∈ {1, . . . , ℓ}, one has

lim
k→∞

1

Nk

Nk∑

n=1

1R(n)µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

> 0.

In Sections 2.4 and 3.4 we give various examples of (classes of) rational sets for which
Theorems 1.4 and 1.7 hold.

With the help of Furstenberg’s correspondence principle (see Proposition 4.1) we have
the following combinatorial corollary of Theorem 1.4.

Theorem 1.8. Let R ⊂ N be rational and divisible. Then for any set E ⊂ N with
d(E) > 0 and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, which satisfy pi(Z) ⊂ Z and
pi(0) = 0 for all i ∈ {1, . . . , ℓ}, there exists β > 0 such that the set

{

n ∈ R : d
(

E ∩ (E − p1(n)) ∩ . . . ∩ (E − pℓ(n))
)

> β
}

has positive lower density.

7 Recall that an invertible measure preserving transformation T on a probability space (X,B, µ)
induces a unitary operator Tf := f ◦ T on L2(X,B, µ). We say that λ ∈ S1 lies in the discrete spectrum

of T if there exists a function 0 6= f ∈ L2(X,B, µ), called an eigenfunction of T , such that Tf = λf . If
the eigenfunctions of T are linearly dense in L2(X,B, µ) then T is said to have discrete spectrum. Finally,
we say that T has rational discrete spectrum if it has discrete spectrum and each eigenvalue λ of T is a
root of unity. By abuse of language, we say that a measure preserving system (X,B, µ, T ) has rational
discrete spectrum if the induced operator T on L2(X,B, µ) has rational discrete spectrum.
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We note that Theorem 1.5 also yields combinatorial corollaries in the spirit of Theo-
rem 1.8, which are formulated and proved in section 4.

We conclude this introduction with stating an amplified version of Theorem 1.8, a
proof of which is also contained in section 4.

Theorem 1.9. Let R ⊂ N be rational and divisible. Then for any E ⊂ N with d(E) > 0
and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, which satisfy pi(Z) ⊂ Z and pi(0) = 0, for
all i ∈ {1, . . . , ℓ}, there exists a subset R′ ⊂ R satisfying d(R′) > 0 and such that for any
finite subset F ⊂ R′, we have

d

(
⋂

n∈F

(

E ∩
(
E − p1(n)

)
∩ . . . ∩

(
E − pℓ(n)

))
)

> 0.

Structure of the paper: section 2 is divided into four subsections: In Subsection 2.1
we show that RAP sequences are good weights for polynomial multiple convergence. In
Subsection 2.2, we prove the equivalence (a) ⇔ (b) of Theorem 1.4. In Subsection 2.3
we give a proof of the equivalence (a) ⇔ (c). Finally, in Subsection 2.4, we provide more
examples of rational sets, and discuss some of their properties. This includes a discourse
on B-free numbers and a proof of Theorem 1.5.

In section 3 we define rational subshifts and study their dynamical properties. In
particular, section 3 contains a proof of Theorem 1.6.

In section 3.4 we give a proof of a strenghtening of Theorem 1.4 and in section 4
we provide various combinatorial applications of it via Furstenberg’s correspondence
principle.

In section 5 we prove that systems generated by Weyl rationally almost periodic
sequences (see page 24 for the definition) satisfy Sarnak’s conjecture.

Finally, in the appendix we establish a uniform version of the polynomial multiple
recurrence theorem obtained in [12], which is needed for the proof of Theorem 1.4.

2 Rationality and recurrence

2.1 Rational sequences are good weights for polynomial multiple con-

vergence

The purpose of this subsection is to show that for rational sets R with d(R) > 0, the
limit in (1.2) always exists.

First, we make the following observation: If d(R) exists and is positive then the limit
in (1.2) exists and is positive if and only if the limit

(2.1) lim
N→∞

1

N

N∑

n=1

1R(n)µ
(
A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A

)

exists and is positive. Since throughout this paper we mostly consider sets R for which
d(R) exists (except in section 3.4) and is positive, it suffices to study the ergodic averages
given by (2.1) instead of (1.2).
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For the special case where ℓ = 1 and p1(t) = t, the existence of the limit in (2.1)
follows from the work of Bellow and Losert in [6]. To better describe what is known in
this case, we need to introduce first the following extended form of Definition 1.1.

Definition 2.1. Given x, y : N → C, we define

(2.2) dB(x, y) := lim sup
N→∞

1

N

N∑

n=1

|x(n)− y(n)|.

A sequence x : N → C is called Besicovitch almost periodic (BAP) [15, 16] if for every
ε > 0 there exists a trigonometric polynomial P (t) =

∑M
j=1 cje

2πiλjt with c1, . . . , cM ∈ C

and λ1, . . . , λM ∈ R such that dB(x, P ) = dB((x(n))n∈N, (P (n))n∈N) < ε. If, for each
ε > 0, one can choose λ1, . . . , λM ∈ Q – which is equivalent to the assertion that the
sequence (P (n)) is periodic – then we call x (Besicovitch) rationally almost periodic, or
RAP. In particular, RAP sequences are a special type of BAP sequences.

It is shown in [6, Section 3] that for any bounded BAP sequence x : N → C, the
ergodic averages

lim
N→∞

1

N

N∑

n=1

x(n)T nf

converge almost everywhere for any function f ∈ L1(X,B, µ). From this, the existence
of the limit in (2.1) for ℓ = 1 and p1(t) = t follows immediately.

Definition 2.2. A sequence x ∈ {0, 1}N is called a good weight for polynomial mul-
tiple convergence if for every invertible measure preserving system (X,B, µ, T ), for all
f1, . . . , fℓ ∈ L∞(X,µ) and for all polynomials pi ∈ Q[t], pi(Z) ⊂ Z, i ∈ {1, . . . , ℓ}, the
limit

(2.3) lim
N→∞

1

N

N∑

n=1

x(n)

ℓ∏

i=1

T pi(n)fi

exists in L2(X,B, µ).
The following proposition shows that the limit in (2.1) exists in general.

Proposition 2.3. Let x ∈ {0, 1}N be RAP. Then x is a good weight for polynomial
multiple convergence.

Proof. It follows from the results of Host, Kra [38] and Leibman [45] that the sequence

1

N

N∑

n=1

T q1(n)f1 · . . . · T qℓ(n)fℓ, N > 1,

converges in L2, for any qi ∈ Q[t], qi(Z) ⊂ Z, i = 1, . . . , ℓ. In particular, given arbitrary
a ∈ N, b ∈ Z the averages

1

N

N∑

n=1

T p1(an+b)f1 · . . . · T pℓ(an+b)fℓ,

8



converge in L2 as N → ∞. Equivalently, the limit

(2.4) lim
N→∞

1

N

N∑

n=1

1aN+b(n)T
p1(n)f1 · . . . · T pℓ(n)fℓ

exists. Observe that any periodic sequence can be written as a finite linear combination
of infinite arithmetic progressions 1aN+b. Therefore, it follows from (2.4) that for any
periodic sequence y ∈ {0, 1}N the limit

lim
N→∞

1

N

N∑

n=1

y(n)T p1(n)f1 · . . . · T pℓ(n)fℓ

also exists in L2.
Since any RAP sequence x can be approximated by periodic sequences, we can find

periodic sequences ym, m ∈ N, satisfying dB(ym, x) → 0 as m→ ∞. Define

Lm := lim
N→∞

1

N

N∑

n=1

ym(n)T p1(n)f1 · . . . · T pℓ(n)fℓ.

Then
‖Lm1 − Lm2‖L2 6 dB (ym1 , ym2) ‖f1‖L∞ · · · ‖fℓ‖L∞ ,

which shows that (Lm) is a Cauchy sequence, whence the limit L := limm→∞ Lm exists.
Moreover,

lim sup
N→∞

∥
∥
∥
∥
∥
Lm − 1

N

N∑

n=1

x(n)T p1(n)f1 · . . . · T pℓ(n)fℓ

∥
∥
∥
∥
∥
L2

can be bounded from above by dB (x, ym) ‖f1‖L∞ · · · ‖fℓ‖L∞ , which converges to zero as
m→ ∞. Therefore, the limit in (2.3) exists and equals L.

2.2 Averaging single recurrence

In this subsection we provide a proof of the equivalence (a) ⇔ (b) in Theorem 1.4. Of
course, this equivalence is a special case of the more general equivalence (a) ⇔ (c). We
include a separate proof of this simpler case because, on the one hand, this proof is more
elementary and self-contained and, on the other hand, it contains in embryonic form the
ideas needed for the proof of the general case. Let us state the non-trivial implication,
namely (a) ⇒ (b), as an independent theorem.

Theorem 2.4. Assume that R ⊂ N is rational and divisible. Then R is an averaging set
of polynomial single recurrence.

The proof of Theorem 2.4 is comprised of two parts. First, we prove the assertion for
totally ergodic systems. Recall that (X,B, µ, T ) is called totally ergodic if Tm is ergodic
for all m ∈ N. Equivalently, the spectrum of the unitary operator associated with T
contains no non-trivial roots of unity.
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Lemma 2.5 below, which is the second ingredient in the proof of Theorem 2.4, allows
us to reduce the case of general ergodic systems to those which are totally ergodic. This
is done by replacing T p(n) with T p(un) for a highly divisible natural number u. Since
p(0) = 0, this allows us to identify T p(un) with T q(n) for some other polynomial q. This
procedure annihilates the rational part of the spectrum in the sense that will be made
precise below.

In the following, we use Krat to denote the rational Kronecker factor of (X,B, µ, T ),
which is defined as the smallest sub-σ-algebra of B for which all eigenfunctions with roots
of unity as eigenvalues are measurable. Equivalently, the rational Kronecker factor is the
largest factor of T which has rational discrete spectrum. It is also a characteristic factor
for ergodic averages along polynomials. This means that for any function f ∈ L2 and
any polynomial p ∈ Q[t], p(Z) ⊂ Z, one has

(2.5) lim
N→∞

∥
∥
∥
∥
∥

1

N

N∑

n=1

(

T p(n)f − T p(n)E(f |Krat)
)
∥
∥
∥
∥
∥
L2

= 0,

where E(f |Krat) denotes the conditional expectation of f with respect to Krat, i.e., the
unique function in L2(X,B, µ) such that E(f |Krat) is Krat-measurable and

∫

A E(f |Krat)dµ =
∫

A fdµ for all A ∈ Krat. A proof of (2.5) can be found in [9, Section 2].

Lemma 2.5. Let (X,B, µ, T ) be an invertible measure preserving system and let R ⊂ N

with d(R) > 0. Also, let p ∈ Q[t] satisfy p(Z) ⊂ Z and p(0) = 0. Assume that for each
real-valued g ∈ L2(X,B, µ) with E(g|Krat) =

∫
g dµ > 0 there exists some δ > 0 such

that

(2.6) d
(
Dδ(g) ∩ uN

)
> 0, ∀u ∈ N,

where Dδ(g) :=
{
n ∈ R : 〈T p(n)g, g〉 > δ

}
. Then for all non-negative f ∈ L2(X,B, µ)

with
∫

X f dµ > 0, we have

(2.7) lim sup
N→∞

1

N

N∑

n=1

1R(n)〈T p(n)f, f〉 > 0.

Proof. Fix f ∈ L2(X,B, µ), f > 0 with
∫

X f dµ > 0. Then the function

g(1) := f − E(f |Krat) +

∫

X
f dµ

is real-valued and satisfies E(g(1)|Krat) =
∫

X g(1) dµ > 0. Therefore, we can find some

δ > 0 such that (2.6) holds for g = g(1). Pick 0 < ǫ <
√
δ. Let Ku stand for the factor of

Krat that is generated by eigenfunctions corresponding to eigenvalues which are roots of
unity of degree at most u. Note that K1! ⊂ K2! ⊂ K3! ⊂ . . . and

Krat =
∨

m∈N

Km!.
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Hence, using Doobs’ martingale convergence theorem (see [54, Section 3.4]), we can find
m ∈ N such that ‖E(f |Krat)− E(f |Km!)‖L2 < ǫ. Take u = m!. Define

g(2) = E(f |Ku)−
∫

X
fdµ,

g(3) = E(f |Krat)− E(f |Ku),

so that f = g(1) + g(2) + g(3). A simple calculation shows that

〈T ng(i), g(j)〉 = 0, for all i, j ∈ {1, 2, 3} with i 6= j and for all n ∈ Z.

It follows that

〈T p(n)f, f〉 = 〈T p(n)(g(1) + g(2) + g(3)), g(1) + g(2) + g(3)〉
= 〈T p(n)g(1), g(1)〉+ 〈T p(n)g(2), g(2)〉+ 〈T p(n)g(3), g(3)〉.

Then, using T p(n)g(2) = g(2) for all n ∈ uN and ‖g(3)‖L2 < ε, we get that for every
n ∈ Dδ(g

(1)) ∩ uN,

〈T p(n)f, f〉 = 〈T p(n)g(1), g(1)〉+ 〈T p(n)g(2), g(2)〉+ 〈T p(n)g(3), g(3)〉
> 〈T p(n)g(1), g(1)〉+ 〈g(2), g(2)〉 − ε2

> δ − ε2 > 0.

To complete the proof, it suffices to notice that

lim sup
N→∞

1

N

N∑

n=1

1R(n)〈T p(n)f, f〉 > lim sup
N→∞

1

N

∑

n∈Dδ(g(1))∩uN∩{1,...,N}

1R(n)〈T p(n)f, f〉

> (δ − ε2) d
(
Dδ(g

(1)) ∩ uN
)

and apply (2.6) for g(1).

Proof of Theorem 2.4. Suppose R ⊂ N with d(R) > 0 is both rational and divisible. We
want to show that R is a set of averaging polynomial single recurrence, i.e. we want to
show that for any invertible measure preserving system (X,B, µ, T ), p ∈ Q[t], p(Z) ⊂ Z,
with p(0) = 0 and A ∈ B with µ(A) > 0, the limit

(2.8) lim
N→∞

1

N

N∑

n=1

1R(n)µ(A ∩ T−p(n)A)

is positive. Note that the limit in (2.8) exists by Proposition 2.3.
In view of Lemma 2.5, to show that (2.8) is positive it suffices to show that (2.6)

holds for all real-valued g ∈ L2(X,B, µ) with E(g|Krat) =
∫

X g dµ > 0. However, for any
such g, it follows from (2.5) that

lim
N→∞

1

N

N∑

n=1

〈T q(n)g, g〉 =
(∫

X
g dµ

)2
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for all polynomials q ∈ Q[t], q(Z) ⊂ Z. In particular, we can pick q(n) = p(u(an + b))
and obtain

lim
N→∞

1

N

N∑

n=1

〈T p(u(an+b))g, g〉 =
(∫

X
g dµ

)2
for all a, u ∈ N, b ∈ N ∪ {0}.

This can be rewritten as

(2.9) lim
N→∞

1

N

N∑

n=1

1aN+b(n)〈T p(un)g, g〉 = 1

a

(∫

X
g dµ

)2
for all a, u ∈ N, b ∈ N ∪ {0}.

Now, if E ⊂ N is a finite union of infinite arithmetic progressions then 1E can be written
as a finite linear combination of functions of the form 1aN+b and it follows from (2.9)
that for any such set E, we have

lim
N→∞

1

N

N∑

n=1

1E(n)〈T p(un)g, g〉 = d(E)
( ∫

X
g dµ

)2
.

Finally, since R∩uN is rational for all u ∈ N and every rational set can be approximated
by finite unions of infinite arithmetic progressions, we deduce that

(2.10) lim
N→∞

1

N

N∑

n=1

1R∩uN(n)〈T p(un)g, g〉 = d(R ∩ uN)
( ∫

X
g dµ

)2
, ∀u ∈ N.

Choose δ > 0 so that δ(1 + ‖g‖2L2) <
( ∫

X g dµ
)2

. It is now an immediate consequence of
(2.10) that

d
({
n ∈ R ∩ uN : 〈T p(n)g, g〉 > δ

})

> d(R ∩ uN)δ.

From this it follows that (2.6) holds.

2.3 Averaging multiple recurrence

In this subsection we prove (a) ⇒ (c) in Theorem 1.4. Since (c) ⇒ (a) is trivial, this will
complete the proof of Theorem 1.4. Let us state the implication that we want to prove
as a separate theorem.

Theorem 2.6. Assume R ⊂ N is rational and divisible. Then R is an averaging set of
polynomial multiple recurrence.

For the proof of Theorem 2.6, we rely on a series of known results. We recall first
some fundamental properties of nilsystems.

Let G be a nilpotent Lie group and let Γ be a uniform and discrete subgroup of G.
The compact manifold X := G/Γ is called a nilmanifold. G acts naturally on X. More
precisely, if g, y ∈ G and x = yΓ ∈ X then Tgx is defined as (gy)Γ. For a fixed g ∈ G the
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topological dynamical system (X,Tg) is called a nilsystem. Every nilmanifold X = G/Γ
possesses a unique G-invariant probability measure µX , called the Haar measure of X.

A bounded function φ : N → C is called a basic nilsequence if there exist a nilmanifold
X = G/Γ, a point x ∈ X, an element g ∈ G and a continuous function f ∈ C(X) such
that φ(n) = f(T n

g x) for all n ∈ N. Here, T n
g x coincides with Tgnx. A function ψ : N → C

is called a nilsequence if for each ε > 0 there exists a basic nilsequence (φ(n)) such that
|ψ(n)− φ(n)| < ε for all n ∈ N.

An important tool in the proof of Theorem 2.6 is a theorem of Leibman that allows us
to replace multiple ergodic averages along polynomials with Birkhoff sums of nilsequences.

Theorem 2.7 (cf. [47, Theorem 4.1] and [46, Proposition 3.14]). Assume that (X,B, µ, T )
be an invertible measure preserving system, let f1, . . . , fℓ ∈ L∞(X,B, µ), p1, . . . , pℓ ∈ Q[t]
(pi(Z) ⊂ Z for i = 1, . . . , ℓ) and set ϕ(n) :=

∫

X T
p1(n)f1 · . . . · T pℓ(n)fℓ dµ, n ∈ Z. Then

there exists a nilsequence (ψ(n)) such that

lim sup
N−M→∞

1

N −M

N−1∑

n=M

|ϕ(n)− ψ(n)| = 0.

In particular, dB(ϕ,ψ) = 0.

If (xn)n>1 is a sequence of points from a nilmanifold X = G/Γ such that

lim
N→∞

1

N

N∑

n=1

f(xn) =

∫

X
f dµX

for all continuous functions f ∈ C(X), then we call such a sequence uniformly distributed.
If (xn)n>1 has the property that (xan+b)n∈N is uniformly distributed for all a, b ∈ N, then
we call this sequence totally equidistributed. It is well known that for any nilsystem
(X,Tg) the following are equivalent (see, for instance, [3, 52] in the case of connected G
and [46] in the general case):

• The sequence (T n
g x)n∈N is totally equidistributed for all x ∈ X;

• The system (X,µX , Tg) is totally ergodic.

Any nilmanifold has finitely many connected components (and each such component
is a sub-nilmanifold). Moreover, since any ergodic nilrotation Tg permutes these compo-
nents in a cyclical fashion, we deduce that for some u ∈ N the nilrotation Tgu fixes each
connected component. The next proposition asserts that in this case the action of Tgu

on each of these connected components is totally ergodic.

Proposition 2.8 (see [29, Proposition 2.1]). Let X = G/Γ be a nilmanifold, g ∈ G and
assume that the nilrotation Tg is ergodic. Fix x ∈ X and let Y denote the connected
component of X containing x. Then there exists u ∈ N such that Y is Tgu-invariant and
(Y, µY , Tgu) is totally ergodic.

13



The next lemma is important for the proof of Theorem 1.4 and asserts that linear se-
quences coming from totally ergodic nilrotations (or equivalently, totally equidistributed
sequences) do not correlate with RAP sequences.

Lemma 2.9. Suppose R ⊂ N is rational and Tg is a totally ergodic nilrotation on a
nilmanifold X = G/Γ. Then, for all x ∈ X and f ∈ C(X), we have

lim
N→∞

1

N

N∑

n=1

1R(n)f(T
n
g x) = d(R)

∫

X
f dµX .

Proof. Since Tg is totally ergodic, we deduce that the sequence (T n
g x)n∈N is totally

equidistributed for each x ∈ X. Therefore, for all a ∈ N and b ∈ N ∪ {0}, we obtain

lim
N→∞

1

N

N∑

n=1

f(T an+b
g x) =

∫

X
f dµX .

This can be rewritten as

(2.11) lim
N→∞

1

N

N∑

n=1

1aN+b(n)f(T
n
g x) =

1

a

∫

X
f dµX .

If E ⊂ N is a finite union of infinite arithmetic progressions then 1E can be written as
a finite linear combination of functions of the form 1aN+b. It now follows directly from
(2.11) that for any such set E, one has

(2.12) lim
N→∞

1

N

N∑

n=1

1E(n)f(T
n
g x) = d(E)

∫

X
f dµX .

Finally, since R is rational, it can be approximated in the dB pseudo-metric by finite
unions of infinite arithmetic progressions and so, using (2.12), we obtain

lim
N→∞

1

N

N∑

n=1

1R(n)f(T
n
g x) = d(R)

∫

X
f dµX .

Proof of Theorem 2.6. Let (X,B, µ, T ) be an invertible measure preserving system and
assume that R ⊂ N is rational and divisible. Take any A ∈ B with µ(A) > 0 and let
p1, . . . , pℓ ∈ Q[t] with pi(Z) ⊂ Z, pi(0) = 0, i = 1, . . . , ℓ, be arbitrary. We will show that

(2.13) lim
N→∞

1

N

N∑

n=1

1R(n)ϕ(n) > 0,

where ϕ(n) = µ
(
A∩T−p1(n)A∩. . .∩T−pℓ(n)A

)
. This, in view of (2.1), suffices to conclude

that R is an averaging set of polynomial multiple recurrence. The existence of the limit
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in (2.13) follows immediately from Proposition 2.3, hence it only remains to show its
positivity.

By Theorem A.2, there exists δ > 0 such that

(2.14) lim
N→∞

1

N

N∑

n=1

ϕ(un) > δ for all u ∈ N.

Using Theorem 2.7, we can find a nilsequence (ψ(n)) such that (2.13) holds if and only
if

(2.15) lim
N→∞

1

N

N∑

n=1

1R(n)ψ(n) > 0.

Moreover, since dB(ϕ,ψ) = 0, it follows from (2.14) that

(2.16) lim
N→∞

1

N

N∑

n=1

ψ(un) > δ for all u ∈ N.

By definition, every nilsequence can be uniformly approximated by basic nilsequences.
For us this means that there exist a nilpotent Lie group G, a uniform and discrete
subgroup Γ, x ∈ X = G/Γ and f ∈ C(X) such that |ψ(n) − f(T n

g x)| 6 δ/4 for all
n ∈ N. We can assume without loss of generality that Tg is ergodic and, since ϕ(n) ∈
[0, 1] and dB(ϕ,ψ) = 0, that 0 6 f 6 1. It follows from (2.16) and the inequalities
|ψ(n)− f(T n

g x)| 6 δ/4, n ∈ N, that

(2.17) lim
N→∞

1

N

N∑

n=1

f(T un
g x) >

3δ

4
, for all u ∈ N.

Using Proposition 2.8, we can find u ∈ N and a sub-nilmanifold Y ⊂ X containing x
such that (Y, µY , Tgu) is totally ergodic. In the following, we identify f with f |Y . Since
R is rational, it is straightforward that the set R/u := {n ∈ N : nu ∈ R} is also rational.
Thus, we can invoke Lemma 2.9 and obtain

(2.18) lim
N→∞

1

N

N∑

n=1

1R/u(n)f(T
n
gux) = d(R/u)

∫

Y
f dµY .

Finally, combining (2.18) with (2.17) (together with the ergodic theorem) and the
fact that |ψ(un) − f(T n

gux)| 6 δ/4 for all n ∈ N, we obtain

lim
N→∞

1

N

N∑

n=1

1R(n)ψ(n) > lim
N→∞

1

N

N∑

n=1

1R∩uN(n)ψ(n)

=
1

u

(

lim
N→∞

1

N

N∑

n=1

1R/u(n)ψ(un)

)
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>
1

u

(

lim
N→∞

1

N

N∑

n=1

1R/u(n)f(T
n
gux)−

δ

4
d(R/u)

)

>
1

u

(
3δ

4
d(R/u) − δ

4
d(R/u)

)

> 0.

This completes the proof.

We would like to pose the following question describing one possible way of extending
Theorem 1.4 to a more general version involving several commuting measure preserving
transformations.

Question 2.10. Assume R ⊂ N is rational and d(R) > 0. Are the following equivalent?

(α) R is divisible.

(β) For all probability spaces (X,B, µ), all ℓ ∈ N, all ℓ-tuples of commuting invertible
measure preserving transformations T1, . . . , Tℓ on (X,B, µ), all A ∈ B with µ(A) >
0 and for all polynomials pi ∈ Q[t], i = 1, . . . , ℓ, with pi(Z) ⊂ Z and pi(0) = 0, one
has

lim
N→∞

1

N

N∑

n=1

1R(n)µ
(

A ∩ T−p1(n)
1 A ∩ . . . ∩ T−pℓ(n)

ℓ A
)

> 0.

2.4 Inner regular sets, W-rational sets and B-free numbers

The set Q of squarefree numbers is rational (see Corollary 2.16 below) but it is not
divisible, as Q ∩ p2N = ∅ for all primes p. In particular, Q is not a set of recurrence.
However, as it was mentioned in section 1, it follows from results obtained in [13] that
Q− r is divisible (and hence – by virtue of Theorem 1.4 – an averaging set of polynomial
multiple recurrence) if and only if r ∈ Q.

This raises the question whether every rational set can be shifted to become divisible.
In general, the answer to this question is negative. For example, one can show that for
a carefully chosen increasing sequence a0, a1, a2, . . . ∈ N, the set S = N \⋃n>0(anN+ n)
is rational. On the other hand, for any integer n > 0 one has (S −n)∩ anN = ∅ (cf. [36,
Theorem 11.6] and [5, Theorem 2.20]).

We will introduce now a rather natural family of rational sets with the property that
for any set in this family there is a shift that is divisible.

Definition 2.11. We define the Weyl pseudo-metric dW on {0, 1}N as

(2.19) dW (x, y) = lim sup
N→∞

sup
ℓ>1

1

N
|{ℓ 6 n 6 ℓ+N : x(n) 6= y(n)}| .

A set R ⊂ N is called W-rational if 1R ∈ {0, 1}N can be approximated by periodic
sequences in the dW pseudo-metric.
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Note that every W-rational set is a rational set.
In Subsection 3.1 below we will extend the definition of the dW pseudo-metric from

{0, 1}N to AN for arbitrary finite subsets A and we also introduce the related notion of
Weyl rationally almost periodic sequences (see page 24).

Proposition 2.12. Suppose D ⊂ N is W-rational and d(D) > 0. There exists a shift of
D which is divisible.

Proof. Assume that no translation of D is divisible. Hence, for each n > 0 there exists
wn > 1 such that if Cn := {s ∈ N : n+ swn ∈ Dc} then

(2.20) d(Cn) = 1.

Fix K > 1. Then by (2.20), also

d ({s > 0 : n+ sw1 · . . . · wK ∈ Dc for each n = 0, 1, . . . ,K − 1}) = 1.

It follows that for every K > 1 there exists s > 1 such that 1D(n + sw1 · . . . · wK) = 0
for each n = 0, 1 . . . ,K − 1. In other words, in the sequence 1D there appear arbitrarily
long blocks of consecutive zeros. This implies that the only periodic sequence that
approximates 1D in the dW pseudo-metric is the sequence (0, 0, 0, . . .), which contradicts
d(D) > 0.

In order to give more examples of rational sets that possess shifts that are divisible,
we will now recall the notion of inner regular sets (cf. [13, Definition 2.3]). A subset
R ⊂ N is called inner regular if for each ε > 0 there exists m > 1 such that for each
a ∈ N∪{0} the intersection R∩(mZ+a) is either empty or has lower density > (1−ε)/m.
It follows immediately that every inner regular set is rational. Also, it is shown in [13,
Lemma 2.7] that the set of squarefree numbers Q is inner regular.

Proposition 2.13. Assume that ∅ 6= R ⊂ N is inner regular. Then, for each r ∈ R, the
set R− r is divisible.

Proof. Suppose u > 1 is arbitrary. Fix ε > 0 with ε < 1/u. We can find m > 1 so that
for every a ∈ N ∪ {0} the intersection R ∩ (mZ+ a) is either empty or has lower density
greater than (1 − ε)m. Since r ∈ R, the intersection R ∩ (mZ + r) is not empty. This
means that the set {k ∈ N : mk + r ∈ R} = {k ∈ N : mk ∈ R − r} has lower density
greater than 1 − ε. Since ε < 1/u, the set {k ∈ N : mk ∈ R − r} ∩ uN has positive
lower density. This means the set (R− r) ∩mZ ∩ uN has positive lower density and the
assertion follows.

We move the discussion now to sets of B-free numbers. The purpose of the remainder
of this section is to prove a general form of Theorem 1.5 formulated in section 1.

Given B ⊂ N \ {1}, we consider its set of multiples MB :=
⋃

b∈B
bN and the corre-

sponding set of B-free numbers FB := N \MB, i.e., the set of integers without a divisor
in B. Without loss of generality, we can assume that B is primitive, that is, no b divides
b′ for distinct b, b′ ∈ B. Indeed, for a general set B one can find a primitive subset
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B0 ⊂ B such that MB = MB0 and FB = FB0 (cf. [35, Chapter 0]). Note that if we
take B = {p2 : p is prime}, then the set of B-free numbers equals the set Q of squarefree
numbers.

Sets of B-free numbers make good candidates for rational sets. Unfortunately, not
every set of B-free numbers is a rational set, since the density d(FB) of FB need not
exist. An example of a set B for which the density of MB and FB does not exist was
given by Besicovitch in [15]. This leads to the following definition.

Definition 2.14 (cf. [35]). We say that B is Besicovitch if d(MB) exists. (This is
equivalent to the existence of d(FB).)

Davenport and Erdős proved that the logarithmic density

δ(MB) := lim
N→∞

1

logN

N∑

n=1

1

n
1MB

(n)

exists for all B ⊂ N \ {1}. This, of course, implies that the logarithmic density δ(FB)
exists for all B ⊂ N \ {1}. For m > 1, consider the sets B(m) = {b1, b2, . . . , bm} and
let MB(m) and FB(m) denote the corresponding set of multiples of B(m) and set of
B(m)-free numbers respectively.

Theorem 2.15 (see [20, 21]). For each B ⊂ N \ {1}, the logarithmic density δ(MB) of
MB exists. Moreover,

δ(MB) = d(MB) = lim
m→∞

d(MB(m)).

In particular, if B is Besicovitch then d(MB) = limm→∞ d(MB(m)). Analogous results
hold for FB instead of MB.

From Theorem 2.15, we obtain two useful corollaries.

Corollary 2.16. Let B ⊂ N \ {1}. Then MB and FB are rational if and only if B is
Besicovitch.

Proof. Note that for any m > 1, the sequence 1MB(m)
is periodic. Hence if B ⊂ N \ {1}

is Besicovitch, then by Theorem 2.15 the sequence 1MB
can be approximated in the dB-

pseudo-metric by 1MB(m)
as m → ∞, which proves that MB is rational. An analogous

argument applies to FB.
On the other hand, if MB is rational then the density of MB exists and hence, by

definition, the set B is Besicovitch.

In the following, let A denote the set of abundant numbers, P the set of perfect
numbers and D the set of deficient numbers (for definitions, see footnote 3 on page 3).

Corollary 2.17. Let A ⊂ N \ {1}. Suppose A satisfies the following two conditions:

(1) d(A) exists, and
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(2) nA ⊂ A for all n ∈ N.

Then A is a rational set. In particular, the set of abundant numbers A , the set of deficient
numbers D and, for any x ∈ [0, 1], the set Φx := {n ∈ N : ϕ(n)

n < x} are rational sets.

Proof. Set B := A. It follows from property (2) that MB = A. Also, B is Besicovitch
because d(MB) = d(A) exists according to property (1). Hence, in view of Corollary 2.16,
the set A = MB is rational.

We now turn our attention to the set of abundant numbers. First, note that nA ⊂ A

for all n ∈ N. Also, the fact that d(A ) exists was proven by Davenport in [19]. Therefore
A is rational. Moreover, since N = A ∪̇ P ∪̇ D and d(P) = 0 (cf. [37]), we conclude
that D is also rational.

Finally, for any x ∈ [0, 1], the set Φx := {n ∈ N : ϕ(n)
n < x} satisfies nΦx ⊂ Φx and

it was first shown in [57] that d(Φx) exists. Hence Φx is rational.

As mentioned above, a shift of the set of squarefree numbers, Q− r, is an averaging
set of polynomial multiple recurrence if and only if r ∈ Q. Our next goal is to show that
a similar result holds for other sets of B-free numbers. Note that if r /∈ FB , i.e. r ∈ MB,
then FB − r is not a set of recurrence. Indeed, if it were a set of recurrence then, by
considering the cyclic rotation on r points, for some u > 1 we would have ur ∈ FB − r
and therefore (u + 1)r ∈ FB, which is a contradiction. Hence, r ∈ FB is a necessary
condition for FB − r to be good for recurrence. As for the other direction, we have the
following result.

Theorem 2.18. Suppose B ⊂ N \ {1} is Besicovitch. Then ‘almost every’ self-shift of
FB is an averaging set of polynomial multiple recurrence. More precisely, there exists a
set D ⊂ FB with d(FB \D) = 0 such that for all r ∈ N the following are equivalent:

• r ∈ D;

• FB − r is divisible;

• FB − r is an averaging set of polynomial multiple recurrence.

Note that Theorem 1.5 is now an immediate consequence of Theorem 2.18. We give
a proof of Theorem 2.18 at the end of this subsection. Let us remark that in most cases
one can actually take D = FB. To distinguish between sets of B-free numbers for which
D = FB and for which D ( FB , we introduce the following notions.

Definition 2.19 (cf. [35]). Let B ⊂ N \ {1}. We call B Behrend if δ(MB) = 1 (this is
equivalent to the existence of the density of MB with d(MB) = 1). We call B taut if
for every b ∈ B, one has δ(MB) > δ(MB\{b}).

If B is Behrend then D = ∅, because in this case FB (and each of its translations)
has zero density. Behrend sets are not taut (cf. Lemma 2.20 below) and it will be clear
from the proof of Theorem 2.18 that in the statement of Theorem 2.18 one can take
D = FB if and only if B is taut (see Theorem 2.26 below).

The remainder of this subsection is dedicated to proving Theorem 2.18. We start
with a series of lemmas.
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Lemma 2.20 (Corollary 0.14 in [35]). A ∪ B is Behrend if and only if at least one of
A and B is Behrend. In particular, Behrend sets are not taut.

Lemma 2.21 (Corollary 0.19 in [35]). B is taut if and only if it is primitive and does
not contain a set of the form cA , where c ∈ N and A ⊂ N \ {1} is Behrend.

Lemma 2.22 (Cf. the proof of Lemma 6.5 in [4]). Let C ⊂ N. For any u ∈ N and
a ∈ N ∪ {0} the logarithmic densities of MC ∩ (uN + a) and FC ∩ (uN + a) exist and
satisfy

δ(MC ∩ (uN+ a)) = d(MC ∩ (uN + a)) = lim
m→∞

d(MC (m) ∩ (uN+ a)),

δ(FC ∩ (uN + a)) = d(FC ∩ (uN + a)) = lim
m→∞

d(FC (m) ∩ (uN+ a)).

Proof. The assertion concerning MC ∩ (uN+ a) was covered in the proof of Lemma 6.5
in [4]. The remaining part follows immediately, as FC = N \MC .

Lemma 2.23. Let C ⊂ N\{1} and let a ∈ N∪{0}. If u ∈ N is coprime to each element
of C then

δ(FC ∩ (uN+ a)) =
1

u
· δ(FC ).

Proof. Suppose C = {b1, b2, . . .} and let C (m) := {b1, . . . , bm}. The assertion of the
lemma is clearly equivalent to δ(MC ∩ (uN + a)) = 1

u · δ(MC ). Since u is coprime to
each element of C , it follows by the Chinese Remainder Theorem that for any m > 1
and r ∈ N ∪ {0} there exists r′ ∈ N ∪ {0} such that

(lcm(b1, . . . , bm)N+ r) ∩ (uN+ a) = u · lcm(b1, . . . , bm)N+ r′.

In particular,

d
(
(lcm(b1, . . . , bm)N+ r) ∩ (uN+ a)

)
=

1

u · lcm(b1, . . . , bm)
.

It follows that

(2.21) d(MC (m) ∩ (uN + a)) =
1

u
· d(MC (m))

since MC (m) is periodic with period lcm(b1, . . . , bm). Using Lemma 2.22, (2.21) and The-
orem 2.15, we obtain

δ(MC ∩ (uN + a)) = lim
m→∞

d(MC (m) ∩ (uN+ a)) = lim
m→∞

1

u
· d(MC (m)) =

1

u
· δ(MC ),

which completes the proof.

Lemma 2.24. Suppose C ⊂ N \ {1} is taut. If a ∈ FC then for every u ∈ N, one has
δ
(
(FC − a)/u

)
> 0.
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Proof. Define

C
′(a) :=

{ b

gcd(b, a)
: b ∈ C

}

.

Notice that

(2.22) gcd(a, c) = 1 for each c ∈ C
′(a).

Moreover, MC ′(a) ⊃ MC , whence

(2.23) FC ′(a) ⊂ FC .

Since gcd(b, a) takes only finitely many values as b ∈ C varies, we have

C
′(a) =

⋃

d|a

{ b

d
: b ∈ C , gcd(b, a) = d

}

.

Suppose that 1 ∈ C ′(a). Then for some b ∈ C , gcd(b, a) = b, whence a ∈ MC , a
contradiction. It follows that

(2.24) 1 /∈ C
′(a).

Suppose that C ′(a) is Behrend. Then, by Lemma 2.20, for some d0 | a, the set A :=
{

b
d0

:

b ∈ C , gcd(b, a) = d0

}

is Behrend and we have d0A ⊂ C . However, this and (2.24), in

view of Lemma 2.21, contradict the tautness of C . Therefore, C ′(a) cannot be Behrend,
i.e. c := δ(FC ′(a)) > 0. We will use this constant to prove that δ

(
(FC − a)/u

)
> c for all

u ∈ N.
By Lemma 2.22 and (2.23), we have

δ((FC − a)/u) = u · δ((FC − a) ∩ uN)
> u · δ((FC ′(a) − a) ∩ uN) = u · δ(FC ′(a) ∩ (uN + a)).

Hence, it suffices to show that

δ(FC ′(a) ∩ (uN + a)) >
1

u
· δ
(
FC ′(a)

)
.

In order to verify this last claim, let us divide C ′(a) into two pieces:

C
′
1(a, u) := {c ∈ C

′(a) : gcd(u, c) > 1},
C

′
2(a, u) := {c ∈ C

′(a) : gcd(u, c) = 1}.

We claim that

(2.25) FC ′
1(a,u)

∩ (uN+ a) = uN+ a.
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Indeed, take any c ∈ C ′
1(a, u). Then gcd(u, c) > 1 and since (2.22) holds, gcd(u, c) does

not divide a. Hence cN∩ (uN+a) = ∅. It follows that MC ′
1(a,u)

∩ (uN+a) = ∅ and (2.25)
follows.

Therefore, using (2.25) and additionally Lemma 2.23, we obtain

δ(FC ′(a) ∩ (uN+ a)) = δ
(
FC ′

2(a)
∩ (uN+ a)

)
=

1

u
· δ
(
FC ′

2(a)

)
>

1

u
· δ
(
FC ′(a)

)

and the result follows.

Before we present the proof of Theorem 2.18, one more theorem needs to be quoted.

Theorem 2.25 (Theorem 4.5 and the proof of Lemma 4.11 in [4]). Let B ⊂ N \ {1}.
Then there exists a taut set C ⊂ N \ {1} such that FC ⊂ FB and δ(FC ) = δ(FB).
Moreover, if B is Besicovitch, then C is Besicovitch.

Proof of Theorem 2.18. Let B ⊂ N \ {1} be Besicovitch. If B is Behrend then FB

has zero density and so no shift of FB is divisible or good for averaging polynomial
recurrence. In this case we can put D = ∅ and we are done. Thus, let us assume
that B is not Behrend. In view of Theorem 1.4, it suffices to find a set D ⊂ FB with
d(FB\D) = 0 and such that FB−r is divisible if and only if r ∈ D. Pick C ⊂ N\{1} taut
with FC ⊂ FB and d(FC ) = d(FB); the existence of C is guaranteed by Theorem 2.25.

We make the claim that one can choose D := FC . In particular, if B is taut then
one can choose D = FB .

To verify this claim, we invoke Lemma 2.24, which tells us that δ
(
(FC − r)/u

)
> 0

if and only if r ∈ FC . Since C is Besicovitch, we can replace logarithmic density with
density and conclude that FC − r is divisible if and only if r ∈ FC . Finally, to finish the
proof, we observe that d(FB \ FC ) = 0 and therefore FB − r is divisible if and only if
r ∈ FC .

Theorem 2.26 (Corollary of the proof of Theorem 2.18). In the statement of Theo-
rem 2.18 one has D = FB if and only if B is taut.

Remark 2.27. Let B ⊂ N \ {1} be Besicovitch and taut (hence d(FB) > 0). Here is
the summary of equivalent conditions that we obtained in this section.

(a) a ∈ FB ,

(b) d(MB ∪ aN) > d(MB),

(c) FB − a is divisible,

(d) (FB − a) ∩ uN 6= ∅ for all u ∈ N,

(e) FB − a is an averaging set of polynomial multiple recurrence,

(f) FB − a is an averaging set of polynomial single recurrence,

The following digram describes the logical connections between the above statements.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1: Dashed arrows: trivial implications which hold for any B ⊂ N\{1}. The dotted
arrow: this implication was explained in the paragraph before Theorem 2.18. The short
plain arrow: implication follows from [4]. The thick arrow: this implication follows from
Theorem 1.4. The double arrow: implication proved in Lemma 2.24.

3 Rational dynamical systems

The purpose of section 3 is to give a proof of (slightly more general versions of) Theorems
1.6 and 1.7. In Subsection 3.1 we define rational and W-rational subshifts and we give a
variety of examples. In Subsection 3.2 we extend the notion of rational subshifts to the
notion of rational subshifts along increasing subsequences. Finally, in Subsections 3.3
and 3.4 we formulate and prove extensions of Theorems 1.6 and 1.7.

3.1 Definition of rational subshifts. Examples

In this section we define and give examples of symbolic dynamical systems determined
by RAP sequences. We will refer to such systems as rational subshifts.

Consider the product space AZ, where A is a finite set (alphabet). We endow A with
the discrete metric ρ and AZ with the product topology induced by (A, ρ); in particular
AZ is compact and metrizable. Let S : AZ → AZ be the left shift, i.e. S((x(n))n∈Z) =
(y(n))n∈Z, where y(n) = x(n+ 1) for each n ∈ Z.

Recall that for any closed and S-invariant subset X ⊂ AZ, the system (X,S) is
called a subshift of (AZ, S). Recall that for x ∈ AZ (or x ∈ AN) and n < m, x[n,m] =
(x(n), x(n + 1), . . . , x(m)) is said to be a word appearing in x.

Given η ∈ AN, the set

Xη := {x ∈ AZ : (∀n < m)(∃k ∈ N) x[n,m] = η[k, k +m− n− 1]}

is closed and S-invariant. It is the subshift determined by η.
Recall, in Definition 1.1 we introduced the pseudo-metric of Besicovitch,

(3.1) dB(x, y) := lim sup
N→∞

1

N

N∑

n=1

ρ(x(n), y(n))
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and defined rationally almost periodic (RAP) sequences, which are sequences that can be
approximated in the dB-pseudo-metric by periodic sequences.

Definition 3.1. A subshift (X,S) of (AZ, S) is called rational if there exists a RAP
sequence η ∈ AN such that X = Xη.

We now present some examples of rational subshifts.

The squarefree subshift. Consider the set Q of squarefree numbers and let XQ :=
X
1Q

⊂ {0, 1}Z. The resulting topological dynamical system (XQ, S) is called the square-
free subshift and has been studied in [17, 53, 56]. Naturally, many combinatorial proper-
ties of Q are encoded in the dynamics of (XQ, S), which further motivates the study of
this system. This line of investigation is related to Sarnak’s conjecture, see [56, 27] and
section 5.2.

B-free subshifts. For B ⊂ N \ {1} let FB denote the set of B-free numbers and
let XFB

:= X
1FB

⊂ {0, 1}Z. The system (XFB
, S) is called the B-free subshift. Such

subhifts have been studied recently in [28, 4, 43]. If the set B is Besicovitch (cf. Defini-
tion 2.14) then it follows from Corollary 2.16 that (XFB

, S) is a rational subshift. Note
that the squarefree subshift (XQ, S) is an example of a B-free subshift.

Toeplitz systems. Following [40], a sequence η ∈ AN is called Toeplitz, if for each
n > 0 there is p > 1 such that

(3.2) η(n) = η(n + sp) for all s ∈ N.

In this case the subshift (Xη , S) is called a Toeplitz system. In [24], Downarowicz char-
acterized Toeplitz dynamical systems as being exactly all symbolic, minimal and almost
1-1 extensions of odometers.

If additionally

(3.3) lim sup
p→∞

d
(
{n ∈ N : η(n) = η(n+ sp) for all s ∈ N}

)
= 1

then the Toeplitz sequence η is called regular. It follows from (3.3) that any regular
Toeplitz sequence is RAP (in fact, it is straightforward to check that a Toeplitz sequence
is regular if and only if it is RAP). Therefore Toeplitz systems coming from regular
Toeplitz sequences are rational subshifts.

Weyl almost periodic sequences and Weyl rational subshifts. We recall the
definition of the Weyl pseudo-metric dW (see Definition 2.11),

dW (x, y) = lim sup
N→∞

sup
ℓ>1

1

N
|{ℓ 6 n 6 ℓ+N : x(n) 6= y(n)}| .
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Any dW -limit of periodic sequences is called Weyl rationally almost periodic sequence
(WRAP). The subshift (Xη , S) determined by a WRAP sequence η ∈ AN is called W-
rational.8 Each WRAP sequence is RAP and hence any W-rational subshift is a rational
subshift. Note that the reverse implication does not hold. For example, the indicator
function 1Q of the squarefree numbers Q is a sequence that is RAP but nor WRAP. It
should also be mentioned that any regular Toeplitz sequence is WRAP, which can be
shown easily using the definition of regular Toeplitz sequences.

Sequences generated by synchronized automata. Paperfolding sequences, which
were introduced in section 1 (see footnote 4), provide examples of rational sequences
generated by so-called synchronized automata.

Let k ∈ N, let B := {0, 1, . . . , k − 1}, let A be a finite alphabet, let Q := {q0, . . . , qr}
be a finite set, let τ : Q → A and let δ : Q× B → Q. The quintuple M = (Q,B, δ, q0, τ)
is called a complete deterministic finite automaton with set of states Q, input alphabet
B, output alphabet A, transition function δ, initial state q0 and output mapping τ . Let
B∗ denote the collection of all finite words in letters from B. There is a natural way
of extending δ : Q × B → Q to δ : Q × B∗ → Q: for the empty word ǫ ∈ B∗ we define
δ(q, ǫ) := q, q ∈ Q, and for a non-empty word w = w1 . . . wn ∈ B∗ we define recursively
δ(q, w1 . . . wn) := δ(δ(q, w1 . . . wn−1), wn), q ∈ Q. This way, we can associate to each
word w ∈ B∗ an element a ∈ A via a = τ(δ(q0, w)). For more details on deterministic
finite automata see [2, Section 4.1].

Given n ∈ N, we consider its expansion in base k, i.e.

n =
∑

j>0

εjk
j,where εj ∈ B, j > 0.

In this representation εj = 0 for all but finitely many j > 0. Let jn be the largest index
such that εjn 6= 0. We then set [n]k := (εjn , εjn−1, . . . , ε0); note that [n]k ∈ B∗ for all
n ∈ N.

Definition 3.2. Following [55], we say that a sequence a ∈ AN is automatic if there exists
a complete deterministic finite automaton M as above such that a(n) = τ(δ(q0, [n]k)) for
all n ∈ N.

Definition 3.3. Following [14], Part 4, an automaton M = (Q,B, δ, q0, τ) is called
synchronized if there exists a word w ∈ B∗ such that δ(q, w) = δ(q0, w) for all q ∈ Q. In
this case, the word w is called a synchronizing word.

While not every automatic sequence is RAP9, any automatic sequence coming from
a synchronized automaton is not only RAP but also WRAP. This result, which we state
as a proposition below, has been shown implicitly in [23]. For the sake of completeness,
we give a proof of it in section 5.

8W-rational subshifts are a special kind of Weyl almost periodic systems, see [26, 39].
9The Thue-Morse sequence (which was independently discovered by Thue [59, 60] and Morse [50, 51])

is known to be automatic (cf. [2]), but it is not RAP as it is a generic point for a measure such that the
corresponding dynamical system has no purely discrete spectrum[41], cf. Theorem 1.6.
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Proposition 3.4 ([23]). Each automatic sequence generated by a synchronized automaton
is WRAP.

As RAP sequences can be approximated by periodic sequences, one may be tempted
to believe that the dynamics of rational subshifts is similar to the dynamics of certain low-
complexity systems such as translations on compact groups. However, rational subshifts
exhibit a wide variety of dynamical properties. For instance:

• Rational subshifts can have positive topological entropy; for example, rational B-
free subshifts can have positive topological entropy, see [28, 4, 53]. Moreover, they
can have many invariant measures [43].

• Rational subshifts can be proximal10; in fact, the squarefree subshift is an example
of a proximal rational subshift [56].

• Rational subshifts can be topologically mixing (see Remark 3.20 for a proof).

• If (X,S) is a rational subshift of positive entropy, then there is y ∈ X which is
not RAP. As a matter of fact, no generic point for a measure of positive entropy is
RAP (this follows from Theorem 3.12 below).

On the other hand, W-rational subshifts have much more regular properties than
general rational subshifts. This is illustrated by the following two propositions.

Proposition 3.5 ([26, 40]). If x is WRAP then (Xx, S) is strictly ergodic and has zero
topological entropy.11 In particular, any non-trivial W -rational subshift is not proximal.

Proposition 3.6 (cf. [39, Lemma 4]). Let x ∈ AN be WRAP and suppose z ∈ Xx. Let
z|N ∈ AN denote the restriction of z ∈ AZ to N. Then z|N is also WRAP.

Proof. Let z ∈ Xx and let ε > 0. Pick any periodic sequence y ∈ AN with dW (x, y) 6 ε/2.
Let M denote the period of y. Let ℓK be such that x(n+ ℓK) = z(n) for n 6 K. We can
assume without loss of generality that there exists 0 6 i0 < M with ℓK ≡ i0 modM for
all K ∈ N.

Let N0 be such that for all N > N0, we have

(3.4) sup
ℓ>0

1

N

N∑

n=1

ρ(x(n + ℓ), y(n+ ℓ)) 6 ε.

Fix N > N0 and ℓ ∈ N, and let K > N + ℓ. Then, by the choice of ℓK , we have

(3.5) z(n+ ℓ) = x(n + ℓ+ ℓK) for all n 6 N.

10A dynamical system (Y, T ) is proximal if any pair y, z ∈ Y is proximal, i.e. there exists a sequence
(nk) such that d(Tnky, Tnkz) → 0. In particular, in any such system y and Ty are proximal and it
follows that proximal systems have exactly one fixed point to which all other points are proximal.

11It is shown in [26] that for subshifts on finite alphabet the entropy function is dW -continuous.
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Moreover, since y is M -periodic and since ℓK ≡ i0 modM ,

(3.6) Si0y(n+ ℓ) = y(n+ ℓ+ ℓK) for each n ∈ N.

Using (3.5), (3.6) and (3.4), we conclude that

1

N

N∑

n=1

ρ(z(n + ℓ), Si0y(n+ ℓ)) =
1

N

N∑

n=1

ρ(x(n + ℓ+ ℓK), Si0y(n+ ℓ))

=
1

N

N∑

n=1

ρ(x(n+ ℓ+ ℓK), y(n + ℓ+ ℓK)) 6 ε

and the result follows.

3.2 Rationality along subsequences

In this short subsection we introduce and discuss a useful generalization of RAP se-
quences.

Definition 3.7. Let (Nk)k>1 be an increasing sequence of natural numbers and assume
that A is a finite set endowed with the discrete metric ρ.

• For x, y ∈ AN, we define (cf. (1.3), (2.2) and (3.1)),

d
(Nk)
B (x, y) := lim sup

k→∞

1

Nk

Nk∑

n=1

ρ(x(n), y(n)).

We say that x ∈ AN is rationally almost periodic along (Nk)k>1 (RAP along

(Nk)k>1) if x is a d
(Nk)
B -limit of periodic sequences. A subset R ⊂ N is called

rational along (Nk)k>1, if 1R is RAP along (Nk)k>1.

• Let (X,S) be a subshift of (AZ, S). We call the topological dynamical system (X,S)
rational along (Nk)k>1 if X = Xη for some η ∈ AN that is RAP along (Nk)k>1. If
Nk = k for all k then, clearly, (X,S) a rational subshift (cf. Definition 3.1).

Remark 3.8. Let R ⊂ N and suppose that R is rational along (Nk)k>1. For u > 1, let
R/u := {n ∈ N : nu ∈ R}. Then R/u is rational along (Nk/u)k>1 for any u > 1.

Clearly, any sequence that is RAP is also RAP along (Nk)k>1. The following example
shows that, in general, the converse does not hold.

Example 3.9. Given an increasing sequence (bk) ⊂ N, we define

x = x(bk) := 010101 . . . 01
︸ ︷︷ ︸

b1

101010 . . . 10
︸ ︷︷ ︸

b2

010101 . . . 01
︸ ︷︷ ︸

b3

. . .

Note that if (bk)k∈N is increasing sufficiently fast then x is RAP along (N2k)k>1, where
Nk := b1 + . . . + bk, k > 1. We will now show that for no choice of increasing (bk), the
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sequence x is RAP. Suppose that there is (bk)k∈N that yields a RAP sequence x. Then
the sequence

x′ := 0 . . . 0
︸ ︷︷ ︸

b1/2

1 . . . 1
︸ ︷︷ ︸

b2/2

0 . . . 0
︸ ︷︷ ︸

b3/2

. . .

must also be RAP and therefore the density d(A) of A := {n ∈ N : x′(n) = 1} exists.
Notice that

|{1 6 n 6 N2k/2 : x′(n) = 1}| > 1/2 ·N2k/2,

so, in particular d(A) > 1/2 > 0. Since (bk) is increasing, d(A) = 1/2. Let 0 < ε < 1/4
and let y be a periodic sequence with dB(x

′, y) < ε. Then |{1 6 n 6 R : y(n) = 1}| =
(14 ± ε)R, where R is a period of y. We will now estimate dB(x

′, y) from below. Fix
1 6 i 6 R. If y(i) = 0 then

1

N
|{1 6 n 6 N : x′(Rn+ i) 6= y(i)}| = 1

N
|{1 6 n 6 N : x′(Rn+ i) = 1}| → 1

R
· 1
2
,

and similarly, if y(i) = 1 then

1

N
|{1 6 n 6 N : x′(Rn+ i) 6= y(i)}| = 1

N
|{1 6 n 6 N : x′(Rn+ i) = 0}| → 1

R
· 1
2
.

It follows that

ε > dB(x
′, y) = lim sup

N→∞

1

N
|{1 6 n 6 N : x′(n) 6= y(n)|}

= lim sup
N→∞

1

N

∣
∣
∣
∣
∣
∣

⋃

06i<R

{1 6 n 6 N : x′(Rn+ i) 6= y(i)}

∣
∣
∣
∣
∣
∣

> lim inf
N→∞

1

N

∣
∣
∣
∣
∣
∣

⋃

06i<R

{1 6 n 6 N : x′(Rn+ i) 6= y(i)}

∣
∣
∣
∣
∣
∣

>
∑

06i<R

lim inf
N→∞

1

N
|{1 6 n 6 N : x′(Rn+ i) 6= y(i)}|

> (
1

2
− ε)R · 1/2

R
+ (

1

2
− ε)R · 1/2

R
=

1

2
− ε.

This yields a contradiction with our choice of ε.

Remark 3.10. Notice that for x as in Example 3.9 the density of the set {n ∈ N :
x(n) = 1} equals 1

2 . This shows that there are sets that have density, are not rational
but are rational along some subsequence. In fact, one can show that x is a generic point
for the measure 1

2(δ101010... + δ010101...).

Example 3.11. It was shown in Subsection 2.4 (see Corollary 2.16) that for any set
B ⊂ N \ {1} the set of B-free numbers FB is rational if and only if B is Besicovitch.
In particular, if B is not Besicovitch then FB is not rational. However, if (Nk)k>1 is

an increasing sequence such that d(FB) = limk→∞
|FB∩{1,...,Nk}|

Nk
, then it follows from

Theorem 2.15 that FB is rational along (Nk)k>1.
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3.3 Generalizing Theorem 1.6

Let A be a finite alphabet and let (X,S) be a subshift of the full shift (AZ, S). Denote by
P(X,S) the set of all S-invariant Borel probability measures on X and by Pe(X,S) the
subset of P(X,S) of ergodic measures. By the Krylov-Bogolyubov theorem [42], P(X,S)
is non-empty.

Given an increasing sequence (Nk)k>1 of natural numbers, we say that x ∈ AN is
quasi-generic for µ ∈ P(X,S) along (Nk)k>1 if

lim
k→∞

1

Nk

Nk−1
∑

n=0

f(Snx̃) =

∫

X
f dµ

for all continuous functions f ∈ C(AZ), where x̃ ∈ AZ is any two-sided sequence that
extends x, i.e., x̃(n) = x(n) for all n ∈ N. If Nk = k for all k then x is generic for µ (as
was defined in section 1). Note that if x is quasi-generic for µ then µ ∈ P(Xx, S).

The goal of this section is to show that for any RAP sequence x ∈ AN there exists
a measure µ for which x is generic and the corresponding measure preserving system
(Xx, µ, S) has rational discrete spectrum. As a matter of fact, we will prove a slightly
more general theorem, see Theorem 3.12 below.

A partly related result was proved by Iwanik in [39, Theorem 2]. He showed that any
sequence x ∈ AN in the class of so-called Weyl almost periodic sequences (which is a class
that contains all WRAP sequences) is generic for a measure µ and the measure preserving
system (Xx, µ, S) has discrete spectrum (but not necessarily rational discrete spectrum).
We refer the reader to [39] for the definitions of Weyl almost periodic sequences. Our
variant of Iwanik’s result regarding RAP sequences seems to be new. The authors would
like to thank B. Weiss for fruitful discussions on the subject.

Theorem 3.12. Let x ∈ AN be RAP along (Nk)k>1. There exists a measure µ for
which x is quasi-generic along (Nk)k>1 and the corresponding measure preserving system
(Xx, µ, S) is ergodic and has rational discrete spectrum.

Note that Theorem 1.6 follows immediately from Theorem 3.12, if we put Nk = k for
all k > 1.

Remark 3.13. Some special cases of Theorem 3.12 are known. It is shown in [17, 56]
– in the context of the squarefree subshift (XQ, S) – that the characteristic function of
the set of squarefree numbers is generic for a measure which yields a measure preserving
system with rational discrete spectrum. This result has been generalized to arbitrary
sets of B-free numbers FB (see [28, 4]). Also, for regular Toeplitz sequences it is shown
in [40, Section 4] that the corresponding Toeplitz system has discrete spectrum (with
respect to the unique invariant measure). The fact that these systems not only have
discrete spectrum but actually rational discrete spectrum follows from Theorem 3.12.

The proof of Theorem 3.12 hinges on four lemmas. The first two lemmas, namely
Lemma 3.14 and Lemma 3.15, are needed to prove that any RAP sequence is generic
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for an invariant probability measure. Lemma 3.16 shows that the measure obtained this
way is ergodic. Finally, Lemma 3.17 proves that the corresponding system has rational
discrete spectrum. We conclude this subsection by combining these four lemmas to give
a proof of Theorem 3.12.

Given (α1, . . . , αℓ) ∈ Aℓ and n1 < . . . < nℓ, we define the corresponding cylinder set

C = Cα1,...,αℓ
n1,...,nℓ

:= {x ∈ AZ : x(nj) = αj for j = 1, . . . , ℓ}.

Each cylinder set is a clopen subset of AZ and the family of cylinder sets forms a basis
of topology on AZ. More generally, for every subshift (X,S) a basis of topology is given
by the clopen sets of the from Cα1,...,αℓ

n1,...,nℓ
∩X, (α1, . . . , αℓ) ∈ Aℓ and n1 < . . . < nℓ ∈ Z.

Lemma 3.14. Let x, y ∈ AN and let C = Cα1,...,αℓ
n1,...,nℓ

, where n1, . . . , nℓ ∈ Z and α1, . . . , αℓ ∈
A. Then, for any two-sided sequences x̃, ỹ ∈ AZ extending x and y, we have

lim sup
k→∞

1

Nk

Nk∑

n=1

∣
∣
1C(S

nx̃)− 1C(S
nỹ)
∣
∣ 6 ℓd

(Nk)
B (x, y).(3.7)

Proof. Let A∆ := {(a, a) : a ∈ A}. For any k > 1,

1

Nk

∣
∣{1 6 n 6 Nk : x(n) 6= y(n)}

∣
∣ =

1

Nk

Nk∑

n=1

ρ(x(n), y(n)).

It follows that

(3.8) lim sup
k→∞

1

Nk

Nk∑

n=1

1A2\A∆(x(n), y(n)) 6 d
(Nk)
B (x, y).

In view of (3.8), the left hand side of (3.7) can be estimated by

lim sup
k→∞

1

Nk

Nk∑

n=1

∣
∣
1A(S

nx̃)− 1A(S
nỹ)
∣
∣ 6 lim sup

k→∞

1

Nk

Nk∑

n=1

ℓ∑

i=1

1A2\A∆

(

x(n+ ni), y(n + ni)
)

6

ℓ∑

i=1

lim sup
k→∞

1

Nk

Nk∑

n=1

1A2\A∆

(

x(n+ ni), y(n + ni)
)

6

ℓ∑

i=1

d
(Nk)
B (x, y).

This completes the proof of (3.7).

Lemma 3.15. Let x, xn ∈ AN, n ∈ N, and suppose limn→∞ d
(Nk)
B (xn, x) = 0. If xn is

quasi-generic along (Nk)k>1 for all n ∈ N, then x is quasi-generic along (Nk)k>1.
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Proof. To show that x is quasi-generic, it suffices to show that for all continuous functions
f : AZ → R the limit

(3.9) lim
k→∞

1

Nk

Nk∑

n=1

f(Snx̃)

exists, where x̃ ∈ AZ is any two-sided sequence extending x ∈ AN. Note that any
continuous function f : AZ → R can be approximated uniformly by linear combinations
of characteristic functions of cylinder sets A = Cα1,...,αℓ

n1,...,nℓ
. Hence, we can assume without

loss of generality that the function f in (3.9) is given by the indicator function of such a
cylinder set.

Let ε > 0 be arbitrary and pick m > 1 such that d
(Nk)
B (xm, x) < ε. Let x̃m ∈ AZ be

any two-sided sequence extending xm ∈ AN. Then, from Lemma 3.14, we deduce that
the difference

lim sup
k→∞

1

Nk

Nk∑

n=1

f(Snx̃)− lim inf
k→∞

1

Nk

Nk∑

n=1

f(Snx̃)

is bounded from above by

lim sup
k→∞

1

Nk

Nk∑

n=1

f(Snx̃m)− lim inf
k→∞

1

Nk

Nk∑

n=1

f(Snx̃m) + 2ℓd
(Nk)
B (x, xm).

But xm is quasi-generic along (Nk)k>1 and therefore

lim sup
k→∞

1

Nk

Nk∑

n=1

f(Snx̃m) = lim inf
k→∞

1

Nk

Nk∑

n=1

f(Snx̃m).

This implies that

lim sup
k→∞

1

Nk

Nk∑

n=1

f(Snx̃)− lim inf
k→∞

1

Nk

Nk∑

n=1

f(Snx̃) 6 2ℓǫ.

Since ε > 0 was arbitrary, this shows that the limit in (3.9) exists.

Next, we need a slight generalization of [62, Proposition 4.6]. We include the proof
for the convenience of the reader.

Lemma 3.16 (see [62, Proposition 4.6] for the case Nk = k). Suppose x, xj ∈ AN, j ∈ N,

and limj→∞ d
(Nk)
B (xj , x) = 0. If each xj is quasi-generic along (Nk)k>1 for an ergodic

measure, then x is quasi-generic along (Nk)k>1 for an ergodic measure.

Proof. By Lemma 3.15, we know that x is quasi-generic along (Nk)k>1 for an invariant
measure µ ∈ P(AZ, S). It only remains to show that µ is ergodic. It suffices to show
that for all f, g ∈ L∞(AZ, µ), one has

(3.10) lim
N→∞

1

N

N∑

n=1

∫

AZ

Snf · g dµ =

∫

AZ

f dµ

∫

AZ

g dµ.
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Similarly to the argument in the proof of Lemma 3.15, it suffices to prove (3.10) for the
special case where f and g are the indicator functions of cylinder sets. In other words,
we can assume without loss of generality that f = 1A and g = 1B, where A = Cα1,...,αℓ

n1,...,nℓ

and B = Cβ1,...,βr
m1,...,mr .

Fix ε > 0. Let

Cn := S−nA ∩B = {z ∈ AZ : z(n+ ni) = αi, z(mj) = βj for i = 1, . . . , ℓ, j = 1, . . . , r}.

Then (3.10) can be rewritten as

(3.11) lim
N→∞

1

N

N∑

n=1

µ(Cn) = µ(A)µ(B).

The sequence x is quasi-generic for µ along (Nk), so

µ(Cn) = lim
k→∞

1

Nk

Nk∑

i=1

1Cn(S
ix̃),

for all x̃ ∈ AZ that extend x ∈ AN. Fix ε > 0. In view of Lemma 3.14, for j sufficiently
large, we obtain

(3.12) lim sup
k→∞

1

Nk

Nk∑

i=1

|1Cn(S
ix̃)− 1Cn(S

ix̃j)| 6 ε,

for all x̃j ∈ AZ that extend xj ∈ AN. Here, it is important that ǫ appearing in (3.12)
does not depend on n. Denote by µj the measure for which the sequence xj is quasi-
generic along (Nk)k>1. It then follows from (3.12) that |µ(Cn) − µj(Cn)| 6 ε for all
n. A similar argument shows that if j is sufficiently large then |µ(A) − µj(A)| 6 ε and
|µ(B)− µj(B)| 6 ε.

Now, since µj is ergodic, we have that (3.11) holds with µ replaced by µj . Then,
using the triangle inequality and the fact that µj(Cn), µj(A) and µj(B) are ε-close to
µ(Cn),µ(A) and µ(B), respectively, we obtain that

lim sup
N→∞

∣
∣
∣
∣
∣

1

N

N∑

n=1

µ(Cn)− µ(A)µ(B)

∣
∣
∣
∣
∣
6 3ε.

Since ε was chosen arbitrarily, this proves (3.11).

For the statement of the next lemma, we need to recall the definition of a joining.
Let (X,B, µ, T ) and (Y, C, ν,R) be ergodic measure preserving systems and let λ be a
(T × R)-invariant measure on (X × Y,B ⊗ C). We say that (X × Y,B ⊗ C, λ, T × R)
is a joining of (X,B, µ, T ) and (Y, C, ν,R) if λ|X = µ and λ|Y = ν [31]. We will write
J((X,B, µ, T ), (Y, C, ν,R)) for the set of all joinings of (X,B, µ, T ) and (Y, C, ν,R). The
subset of ergodic joinings will be denoted by Je((X,B, µ, T ), (Y, C, ν,R)). The definition
of a joining extends naturally to any finite or countably infinite family of systems.
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Lemma 3.17. Assume that x, x(n) ∈ AN are quasi-generic along (Nk)k>1 for ergodic

measures µ, µn (n > 1), respectively. Assume moreover that x(n) → x in d
(Nk)
B . Then

(Xx, µ, S) is a factor of
(
(AZ)×∞, ν, S×∞

)
for some ν ∈ Je

(
(AZ, µ1, S), (AZ, µ2, S), . . .

)
.

Proof. Consider
z := (x, x(1), x(2), . . .) ∈ AN × (AN)×∞.

Then z is quasi-generic along a subsequence of (Nk)k>1 for an invariant measure ν, i.e.
for an increasing sequence (kℓ)ℓ>1, we have

(3.13)

∫

AZ×(AZ)×∞

f dν = lim
ℓ→∞

1

Nkℓ

Nkℓ∑

n=1

f((S × (S×∞))n(z̃))

for all f ∈ C(AZ × (AZ)×∞) and all z̃ ∈ AZ × (AZ)×∞ that extend z. Using the
assumption of quasi-genericity along (Nk), we have

ν ∈ J
(
(AZ, µ, S), (AZ, µ1, S), (AZ, µ2, S), . . .

)
.

We use B(AZ) and B((AZ)×∞) to denote the Borel σ-algebra on AZ and (AZ)×∞, respec-
tively. We claim now that (AZ, µ, S) is a factor of ((AZ)×∞, ν|(AZ)×∞ , S×∞), i.e., that up

to ν-measure zero sets the σ-algebra B(AZ)⊗{∅, (AZ)×∞} is contained in the σ-algebra
{∅,AZ} ⊗ B((AZ)×∞). Notice first that it is enough to show that for each α ∈ A , we
have

(3.14) Cα
0 = {u ∈ AZ : u(0) = α} ∈ {∅,AZ} ⊗ B((AZ)×∞) mod ν,

as {Cα
0 : α ∈ A} is a generating partition. To obtain (3.14), we note first that for each

n > 1, we have

(3.15)

ν
((
Cα
0 × (AZ)×∞

)
△
(
AZ × (AZ × . . .×AZ × Cα

0
︸︷︷︸

n-th position

×AZ × . . .)
))

6 d
(Nk)
B (x, x(n)).

Indeed, if π0,n : AZ × (AZ)×∞ → AZ ×AZ denotes the projection

π0,n
(
y, y(1), . . . , y(n−1), y(n), y(n+1), . . .

)
:= (y, y(n))

and ν0,n denotes the push-forward of ν under π0,n, then we obtain

ν((Cα
0 × (AZ)×∞)△(AZ × (AZ × . . . ×AZ × Cα

0
︸︷︷︸

n

×AZ × . . .)))

= ν0,n((C
α
0 ×AZ)△(AZ × Cα

0 )) = ν0,n(C
α
0 × (Cα

0 )
c) + ν0,n((C

α
0 )

c × Cα
0 )

= lim
ℓ→∞

1

Nkℓ

|{0 6 t 6 Nkℓ − 1 : (S × S)t(x, x(n)) ∈ (Cα
0 × (Cα

0 )
c) ∪ ((Cα

0 )
c × Cα

0 )}|
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6 d
(Nk)
B (x, x(n)) → 0 when n→ ∞.

(We used the fact that the sets under consideration are clopen and hence (3.13) applies.)
Since (3.15) holds, also (3.14) holds as any (complete) σ-algebra is closed in the metric
ν(·△·).

We have shown that (AZ, µ, S) is a measure-theoretic factor of the system

Z := ((AZ)×∞, ν|(AZ)×∞ , S×∞),

i.e. (AZ, µ, S) is represented by an S×∞-invariant sub-σ-algebra C of (AZ)×∞. Consider
the ergodic decomposition of Z:

ν|(AZ)×∞ =

∫

κdQ(κ).

After the restriction to C, we obtain

µ = (ν|(AZ)×∞)|C =

∫

κ|C dQ(κ).

Since, by Lemma 3.16, the system (AZ, µ, S) is ergodic, it follows by the uniqueness
of ergodic decomposition that κ|C = µ for Q-a.e. κ. In other words, (AZ, µ, S) is a
measure-theoretic factor of almost every ergodic component of Z. Moreover, because of
the ergodicity of µn, n > 1, such an ergodic component is an ergodic joining of the family
{(AZ, µn, S)}n∈N. It follows that a typical ergodic component ν satisfies the assertion of
the lemma.

Proof of Theorem 3.12. Suppose x ∈ AN is RAP along (Nk)k>1. By definition, we can

find periodic points xn ∈ AN, n ∈ N, such that xn converges to x in the d
(Nk)
B pseudo-

metric.
Each xn is generic for a cyclic rotation and hence, by Lemma 3.15, x is quasi-generic

along (Nk)k>1 for some invariant measure µ ∈ P(Xx, S). Following Lemma 3.16, we
deduce that (Xx, µ, S) is ergodic.

Finally, any ergodic joining of cyclic rotations exhibits rational discrete spectrum
and therefore any factor of an ergodic joining of cyclic rotations also has rational discrete
spectrum. However, it follows from Lemma 3.17 that (AZ, µ, S), which is isomorphic to
(Xx, µ, S), is a factor of a system given by such a joining, hence it has rational discrete
spectrum.

It is natural to inquire whether Theorem 3.12 characterizes RAP sequences. The
answer is negative. In the following example we construct a subshift of {0, 1}Z containing
a point that is not RAP but is transitive and generic for an ergodic measure yielding a
dynamical system with rational discrete spectrum.

Example 3.18. We will define a uniquely ergodic model for the cyclic rotation on two
points (in such a model each point is generic for the unique invariant measure). The
subshift X ⊂ {0, 1}Z will consists of three orbits:
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• the periodic point a = . . . 01.010101 . . .;

• the orbit of the point b which arises from the point a by erasing one “1”;

• the orbit of the point c which arises from the point a by erasing infinitely many
“1”s so that the distance between the consecutive erased “1”s goes to infinity.

It follows that in the orbit of c longer and longer (“periodic”) words 0101 . . . 01 are ap-
proaching the periodic orbit of a from odd and even positions – this makes the point c
non-rational (cf. Example 3.9). Since c is generic for the measure given by a, our claim
follows.

Even though the system constructed in Example 3.18 contains a transitive point that
is not RAP, it also contains an abundance of transitive points that are in fact RAP. As
the following proposition shows, this is not by coincidence:

Proposition 3.19. Let ν ∈ Pe({0, 1}Z, S) be such that ({0, 1}Z, ν, S) has rational dis-
crete spectrum. Then ν-a.e. x ∈ {0, 1}Z is RAP. Moreover, if X is the topological support
of ν, then there exists a transitive point η ∈ X for which η|[1,∞) is RAP.

Proof (cf. [6, Theorem 3.19]). By assumption, the spectrum of ({0, 1}Z, ν, S) consists of
roots of unity of degree nt, with nt | nt+1, t > 0. Note that if ft ◦ S = e2πi/nt · ft, then
fnt
t ◦ S = fnt

t and hence, by ergodicity, we can assume that ft takes its values in the
group {e2πij/nt : j = 0, . . . , nt − 1}. By setting Dt

0 := {x ∈ {0, 1}Z : ft(x) = 1}, we
obtain the partition

Dt := {Dt
0, SD

t
0, . . . , S

nt−1Dt
0}

of the space {0, 1}Z. Since {ft : t > 0} forms an orthonormal basis of L2(ν), it follows
that for each t > 0 there is a partition Qt = {Et

0, E
t
1} of {0, 1}Z such that Et

i is a union
of elements of the partition Dt (i = 0, 1) satisfying

ν(C0
0△Et

0) + ν(C1
0△Et

1) → 0 when t→ ∞.

Since SntDt
0 = Dt

0, the sequence (1Et
1
(Skx))k is periodic of period nt, for ν-a.e. x ∈

{0, 1}Z. Moreover, ν-a.e. point x ∈ {0, 1}Z satisfies the ergodic theorem for all sets
Ci
0△Et

i , t > 0, i = 0, 1. Hence, the first part of the assertion follows from the pointwise
ergodic theorem.

If, additionally, ν has full topological support then the orbit of ν-a.e. point has to
intersect any open set belonging to a countable basis of open sets. In other words, ν-a.e.
point is transitive, so the the second assertion follows from the first one.

Remark 3.20. If a subshift (X,S) is a strictly ergodic and topologically mixing model
of an odometer (note that such models exist due to [44]), then by Proposition 3.19 a.e.
x ∈ X is a RAP point generating a topologically mixing subshift. Hence, RAP points
can generate topologically mixing systems.
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3.4 Revisiting Theorem 1.4

The purpose of this subsection is to give a proof of the following generalized form of
Theorem 1.7 and discuss some applications thereof (cf. Theorem 3.27).

Definition 3.21. A set R ⊂ N is called an averaging set of polynomial multiple recurrence
along (Mk)k>1 if for all invertible measure preserving systems (X,B, µ, T ), ℓ ∈ N, A ∈ B
with µ(A) > 0 and for all polynomials pi ∈ Q[t], i = 1, . . . , ℓ, with pi(Z) ⊂ Z and
pi(0) = 0 for i ∈ {1, . . . , ℓ}, one has

lim
k→∞

1

Mk

Mk∑

n=1

1R(n)µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

> 0.

Theorem 3.22. Let R ⊂ N with d(Nk)(R) > 0 and suppose η := 1R is quasi-generic
along (Nk) for a measure ν such that (Xη , ν, S) has rational discrete spectrum. Then
there exists a subsequence (Mk)k>1 of (Nk)k>1 such that the following are equivalent:

(I) R is divisible along (Mk)k>1, that is,

d(Mk)(R ∩ uN) := lim
k→∞

|R ∩ uN ∩ {1, . . . ,Mk}|
Mk

> 0

for all u ∈ N.

(II) R is an averaging set of polynomial multiple recurrence along (Mk)k>1.

Remark 3.23. If R is RAP along (Nk)k>1 then it follows from the proof of Theorem 3.22
given below that in the statement of the theorem one can take Mk = Nk for all k ∈ N.
On the other hand, if R is not RAP along (Nk)k>1 then this is not necessarily true. For
instance, take R ⊂ N such that the sequence 1R equals the sequence x from Example 3.9.
Then 1R is generic for a measure ν such that (Xη , ν, S) has rational discrete spectrum
(see Remark 3.10). However, the set R is not divisible, since d(R ∩ 2Z) does not exist.
For the same reason, 1R will not be a good weight for polynomial multiple convergence
(see Definition 2.2). Therefore it is indeed necessary to pass to a subsequence (Mk)k>1

of (Nk)k>1 in Theorem 3.22.

For the proof of Theorem 3.22, we need the following variant of Lemma 2.9.

Lemma 3.24. Let R ⊂ N and suppose 1R = η is quasi-generic along (Nk)k>1 for a
measure νη on Xη ⊂ {0, 1}Z such that (Xη, νη , S) has rational discrete spectrum. Let
(X,T ) be a topological dynamical system and let µ ∈ Pe(X,T ) be a measure with a
generic point x ∈ X. If (X,µ, T ) is totally ergodic then

lim
k→∞

1

Nk

Nk∑

n=1

1R(n)f(T
nx) = d(Nk)(R)

∫

X
f dµ

for each f ∈ C(X).
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Proof. Consider (η̃, x) ∈ Xη × X, where η̃ ∈ {0, 1}Z is defined as η̃(n) = η(n) for all
n ∈ N and η̃(n) = 0 for all n ∈ Z \ N. Since (X,µ, T ) is totally ergodic and (Xη , νη, S)
has rational discrete spectrum, it follows that (X,µ, T ) and (Xη , νη, S) are spectrally
disjoint [34]. In particular, the only joining of these two systems is given by the product
measure νη ⊗ µ, i.e., J((Xη , νη, S), (X,µ, T )) = {νη ⊗ µ}. It follows that

(3.16) (η̃, x) is quasi-generic along (Nk)k>1 for the product measure νη ⊗ µ.

Fix f ∈ C(X) and let F : Xη → {0, 1} be given by F (z) = z(0). Then F ∈ C(Xη) and,
since η is quasi-generic along (Nk)k>1 for νη, we obtain

∫

Xη

F dνη = lim
k→∞

1

Nk

Nk∑

n=1

F (Snη̃) = lim
k→∞

1

Nk

Nk∑

n=1

1R(n) = d(Nk)(R).

In view of (3.16), we have

lim
k→∞

1

Nk

Nk∑

n=1

F ⊗ f
(
(S × T )n(η̃, x)

)
=

∫

F ⊗ f d(νη ⊗ µ) =

∫

Xη

F dνη

∫

X
f dµ.

Finally, one only needs to observe that

1

Nk

Nk∑

n=1

F ⊗ f
(
(S × T )n(η̃, x)

)
=

1

Nk

Nk∑

n=1

1R(n)f(T
nx) for each n ∈ Z

and the proof is complete.

Lemma 3.25. Let R ⊂ N and suppose 1R = η is quasi-generic along (Nk)k>1 for a
measure ν on Xη ⊂ {0, 1}Z such that (Xη , ν, S) has rational discrete spectrum. For
u ∈ N and j ∈ {0, 1, . . . , u− 1} let (R− j)/u denote the set {n ∈ N : nu+ j ∈ R}. Then
there exists a subsequence (Mk)k>1 of (Nk)k>1 with the property that for every u ∈ N and
j ∈ {0, 1, . . . , u − 1} the point ηu,j := 1(R−j)/u is quasi-generic along (Mk/u)k>1 for a
measure νu,j such that (Xηu,j , νu,j , S) has rational discrete spectrum.

Proof. By applying a standard diagonalization method, choose a subsequence (Mk)k>1

of (Nk)k>1 such that for every u ∈ N the point η is quasi-generic along (Mk/u)k>1 for a
measure µu with respect to the transformation Su. In other words, for every u ∈ N and
every continuous function f ∈ C({0, 1}Z), the limit

lim
k→∞

u

Mk

Mk/u∑

n=1

f(Sunη̃)

exists and equals
∫
f dµu, where η̃ ∈ {0, 1}Z is any two sided sequence that extends

η ∈ {0, 1}N. Define µu,j := Sjµu and note that µu,j is Su-invariant. Since

1

u

u−1∑

j=0

∫

f dµu,j =
1

u

u−1∑

j=0

∫

Sjf dµu
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=
1

u

u−1∑

j=0

lim
k→∞

u

Mk

Mk/u∑

n=1

f(Sun+j η̃)

= lim
k→∞

1

Mk

Mk∑

n=1

f(Snη̃)

=

∫

f dν,

we deduce that

(3.17)
1

u

u−1∑

j=0

µu,j = ν.

In particular, we have that for each Borel-measurable function g on Xη,

(3.18) ‖g‖2L2(ν) =
1

u

u−1∑

j=0

‖g‖2L2(Sjµu)
> max

06j<u

1

u
‖g‖2L2(µu,j)

.

We deduce from (3.17) that µu,j is absolutely continuous with respect to ν, that
is, any set that has zero measure with respect to ν also has zero measure with respect
to µu,j. Therefore, any eigenfunction of the system (Xη , ν, S) with eigenvalue λ is an
eigenfunction of the system (Xη , µu,j, S

u) with eigenvalue λu. The system (Xη , ν, S) has
rational discrete spectrum and so the span of eigenfunctions with rational eigenvalue is
dense in L2(ν). However, if a class of bounded measurable functions is dense in L2(ν),
then, by (3.18), it is also dense in L2(µu,j). Hence, the span of eigenfunctions with
rational eigenvalue is dense in L2(µu,j), which proves that (Xη , µu,j, S

u) has rational
discrete spectrum.

Let Φ : {0, 1}Z → {0, 1}Z denote the map defined by the rule Φ(x)(n) = x(un + j)
for all x ∈ {0, 1}Z. It is straightforward to verify that Φ(Xη) = Xηu,j and that Φ satisfies

(3.19) Φ ◦ Su = S ◦ Φ.
Let νu,j denote the push-forward of µu,j under Φ. Since Sjη is quasi-generic along
(Mk/u)k>1 for νu,j under the transformation Su, it follows from (3.19) that ηu,j is generic
for the measure νu,j along (Mk/u)k>1. Finally, observe that (Xηu,j , νu,j, S) has rational
discrete spectrum because (Xη , µu,j, S

u) has rational discrete spectrum.

Theorem 3.26. Let R ⊂ N and suppose η := 1R is quasi-generic along (Nk) for a mea-
sure ν such that (Xη , ν, S) has rational discrete spectrum. Then there exists a subsequence
(Mk)k>1 of (Nk)k>1 such that R is an averaging set of polynomial multiple convergence
along (Mk)k>1, that is, for all invertible measure preserving systems (X,B, µ, T ), ℓ ∈ N,
A ∈ B with µ(A) > 0 and for all polynomials pi ∈ Q[t], i = 1, . . . , ℓ, with pi(Z) ⊂ Z for
i ∈ {1, . . . , ℓ}, the limit

(3.20) lim
k→∞

1

Mk

Mk∑

n=1

1R(n)µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)
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exists (cf. Definition 2.2).

Proof. By applying Lemma 3.25 we can find a subsequence (Mk)k>1 of (Nk)k>1 such
that for every u ∈ N and every j ∈ {0, 1, . . . , u − 1} the point ηu,j := 1(R−j)/u is quasi-
generic along (Mk/u)k>1 for a measure νu,j such that (Xηu,j , νu,j , S) has rational discrete
spectrum. Let (X,B, µ, T ), ℓ ∈ N, A ∈ B with µ(A) > 0 and pi ∈ Q[t], i = 1, . . . , ℓ, with
pi(Z) ⊂ Z for i ∈ {1, . . . , ℓ} be arbitrary. Define

ϕ(n) := µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

.

In view of Theorem 2.7, we can find for every ǫ > 0 a basic nilsequence (f(T n
g x)), where

Tg is an ergodic nilrotation on some nilmanifold X = G/Γ, f ∈ C(X) and x ∈ X, such
that

lim sup
N→∞

1

N

N∑

n=1

|ϕ(n) − f(T n
g x)| 6 ǫ.

It thus suffices to show that the limit

(3.21) lim
k→∞

1

Mk

Mk∑

n=1

1R(n)f(T
n
g x)

exists, because from this it follows that

lim sup
k→∞

1

Mk

Mk∑

n=1

1R(n)ϕ(n) − lim inf
k→∞

1

Mk

Mk∑

n=1

1R(n)ϕ(n) 6 2ǫ,

from which we can deduce that the limit in (3.20) exists, as ǫ was chosen arbitrarily.
Let X0,X1, . . . ,Xu−1 denote the connected components of the nilmanifold X. Since

Tg is ergodic, it cyclically permutes the connected components of X. We can therefore
assume without loss of generality that TgXj = Xj+1 mod u. In particular, T u

g Xj = Xj

and, according to Proposition 2.8, the nilsystem (Xj , µXj
, T u

g ) is totally ergodic. Note
that

lim
k→∞

1

Mk

Mk∑

n=1

1R(n)f(T
n
g x) =

u−1∑

j=0

lim
k→∞

u

Mk

Mk/u∑

n=1

1(R−j)/u(n)f(T
un+j
g x),

where the limit on the left hand side in the above equation exists if all the limits for
j = 0, 1, . . . , u − 1 on the right hand side exist. It remains to show that for every
j ∈ {0, 1, . . . , u− 1} the limit

lim
k→∞

u

Mk

Mk/u∑

n=1

1(R−j)/u(n)f(T
un+j
g x)

exists. Suppose T j
g x ∈ Xj0 for some j0 ∈ {0, 1, . . . , u− 1}. Since (Xj0 , µXj

, T u
g ) is totally

ergodic (and uniquely ergodic), it follows from Lemma 3.24 that

lim
k→∞

u

Mk

Mk/u∑

n=1

1(R−j)/u(n)f(T
un+j
g x) = d(Mk)((R− j)/u)

∫

f dµXj0
.
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This finishes the proof.

The proof of Theorem 3.22 hinges on Lemma 3.24 and Lemma 3.25 and it is a mod-
ification of the proof of Theorem 1.4 given in section 2.3.

Proof of Theorem 3.22. Let (X,B, µ, T ) be an invertible measure preserving system, let
R ⊂ N with d(Nk)(R) > 0 and assume η := 1R is quasi-generic along (Nk) for a measure
ν such that (Xη , ν, S) has rational discrete spectrum. Take any A ∈ B with µ(A) > 0
and let p1, . . . , pℓ ∈ Q[t] with pi(Z) ⊂ Z, pi(0) = 0, i = 1, . . . , ℓ, be arbitrary. Choose
a subsequence (Mk)k>1 of (Nk)k>1 such that the conclusion of both Theorem 3.26 and
Lemma 3.25 hold. We will show that

(3.22) lim
k→∞

1

Mk

Mk∑

n=1

1R(n)ϕ(n) > 0,

where ϕ(n) = µ
(
A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A

)
. The existence of the limit in (3.22)

follows from Theorem 3.26. It remains to show that the limit in (3.22) is positive.
Arguing as in the proof of Theorem 2.6, we can assume without loss of generality

that (ϕ(n)) is a nilsequence. By Theorem A.2 (see the appendix), there exists δ > 0 such
that

(3.23) lim
N→∞

1

N

N∑

n=1

ϕ(un) > δ for all u ∈ N.

We can approximate (ϕ(n)) by a basic nilsequence (f(T n
g x)), where Tg is a nilrotation

on some nilmanifold X = G/Γ, f ∈ C(X) and x ∈ X, such that |ϕ(n) − f(T n
g x)| 6 δ/4

for all n ∈ N.
Using Proposition 2.8, we can find u ∈ N and a sub-nilmanifold Y ⊂ X containing

x such that (Y, µY , Tgu) is totally ergodic. It follows from Lemma 3.25 that 1R/u is

quasi-generic along (Mk/u)k∈N for a measure ν ′ such that the system ({0, 1}Z, ν ′, S) has
rational discrete spectrum. It now follows from Lemma 3.24 that

(3.24) lim
k→∞

u

Mk

Mk/u∑

n=1

1R/u(n)f(T
n
gux) = d(Mk/u)(R/u)

∫

Y
f dµY .

Finally, combining (3.23) and (3.24) and |ϕ(un)− f(T n
gux)| 6 δ/4, we obtain

lim
k→∞

1

Mk

Mk∑

n=1

1R(n)ψ(n) > lim
k→∞

1

Mk

Mk∑

n=1

1R∩uN(n)ψ(n)

=
1

u



 lim
k→∞

u

Mk

Mk/u∑

n=1

1R/u(n)ψ(un)





>
1

u



 lim
k→∞

u

Mk

Mk/u∑

n=1

1R/u(n)f(T
n
gux)−

δ

4
d(Mk/u)(R/u)
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>
1

u

(
3δ

4
d(Mk/u)(R/u)− δ

4
d(Mk/u)(R/u)

)

> 0.

This completes the proof.

As an application of Theorem 3.22 together with Remark 3.23, we obtain a strength-
ening of Theorem 2.18 that also applies to B-free numbers for a general set B ⊂ N\{1}.
Theorem 3.27. Suppose B ⊂ N\{1}. Then there exist an increasing sequence of positive
integers (Nk)k>1 and a set D ⊂ FB with d(Nk)(FB \D) = 0 such that for all r ∈ N the
following are equivalent:

• r ∈ D;

• FB − r is divisible along (Nk)k>1;

• FB − r is an averaging set of polynomial multiple recurrence along (Nk)k>1.

Proof of Theorem 3.27. Let B ⊂ N be arbitrary. If B is Behrend then FB has zero
density and we can put D = ∅. Thus, let us assume that B is not Behrend. Therefore,
the logarithmic density of δ(FB) is positive. Moreover, by Theorem 2.15, δ(FB) =
d(Nk)(FB) for some increasing sequence (Nk)k>1. We now repeat word for word the
proof of Theorem 2.18 with density and divisibility replaced by density along (Nk)k>1

and divisibility along (Nk)k>1, respectively.

4 Applications to Combinatorics

In this section we show how the results obtained in the previous sections allow us to
derive new refinements of the polynomial Szemerédi theorem. In particular, we give a
proof of Theorem 1.8 and of Theorem 1.9.

First, let us recall Furstenberg’s correspondence principle:

Proposition 4.1 (Furstenberg correspondence principle, see [8, 9]). Let E ⊂ N be a set
with positive upper density d(E) > 0. Then there exist an invertible measure preserving
system (X,B, µ, T ) and a set A ∈ B with µ(A) > d(E) such that for all n1, . . . , nℓ ∈ N,
one has

(4.1) d (E ∩ (E − n1) ∩ . . . ∩ (E − nℓ)) > µ
(
A ∩ T−n1A ∩ . . . ∩ T−nℓA

)
.

We have now the following result regarding averaging sets of polynomial multiple
recurrence along (Nk)k>1.

Proposition 4.2. Let (Nk)k>1 be an increasing sequence and let R ⊂ N be an averaging
set of polynomial multiple recurrence along (Nk)k>1. Then for any set E ⊂ N with
d(E) > 0 and any polynomials p1, . . . , pℓ ∈ Q[t], which satisfy pi(Z) ⊂ Z and pi(0) = 0
for all i ∈ {1, . . . , ℓ}, there exists β > 0 such that the set

{

n ∈ R : d
(

E ∩ (E − p1(n)) ∩ . . . ∩ (E − pℓ(n))
)

> β
}

has positive lower density (with respect to (Nk)k>1).
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Proposition 4.3. Let R ⊂ N be an averaging set of polynomial multiple recurrence (along
(Nk)k>1). Then for any E ⊂ N with d(E) > 0 and any polynomials p1, . . . , pℓ ∈ Q[t],
which satisfy pi(Z) ⊂ Z and pi(0) = 0 for all i ∈ {1, . . . , ℓ}, there exists a subset R′ ⊂ R
satisfying d(R′) > 0 such that for any finite subset F ⊂ R′ we have

d

(
⋂

n∈F

(

E ∩
(
E − p1(n)

)
∩ . . . ∩

(
E − pℓ(n)

))
)

> 0.

By combining Proposition 4.2 with Theorem 1.4, we immediately obtain a proof of
Theorem 1.8. Likewise, by combining Proposition 4.3 with Theorem 1.4, we immediately
obtain a proof of Theorem 1.9.

We can also get a slight generalization of Theorem 1.8: we can replace the notions
‘rational’ and ‘divisible’ with ‘rational along (Nk)k>1’ and ‘divisible along (Nk)k>1’ for
any increasing sequence (Nk)k>1 and, in virtue of Theorem 3.22, the statement of Theo-
rem 1.8 remains valid.

Proposition 4.2 is an immediate consequence of Furstenberg’s correspondence princi-
ple and of the definition of an averaging sets a polynomial multiple recurrence.

For the proof of Proposition 4.3 we need the following theorem.

Theorem 4.4 (see [7, Theorem 1.1]). Let (X,B, µ) be a probability space and suppose
An ∈ B, µ(An) > δ > 0, for n = 1, 2, . . .. Then there exists a set P ⊂ N with d(P ) > δ
such that for any finite subset F ⊂ P , we have

µ

(
⋂

n∈F

An

)

> 0.

Proof of Proposition 4.3. Let R ⊂ N be an averaging set of polynomial multiple recur-
rence along (Nk)k>1. Let E ⊂ N with d(E) > 0 and let pi ∈ Q[t], i = 1, . . . , ℓ, with
pi(Z) ⊂ Z and pi(0) = 0, for all i ∈ {1, . . . , ℓ}.

By applying Proposition 4.1, we can find an invertible measure preserving system
(X,B, µ, T ) and a set A ∈ B with µ(A) > d(E) such that (4.1) is satisfied. Next, since
R is an averaging set of polynomial multiple recurrence along (Nk)k>1, we can find some
δ > 0 such that the set

D :=
{

n ∈ R : µ
(

A ∩ T−p1(n)A ∩ . . . ∩ T−pℓ(n)A
)

> δ
}

has positive lower density, i.e., d(D) = lim infN→∞
|D∩{1,...,N}|

N > 0. Let n1, n2, n3, . . . be
an enumeration of D and let Ai ∈ B denote the set

Ai := A ∩ T−p1(ni)A ∩ . . . ∩ T−pℓ(ni)A.

Then, according to Theorem 4.4, we can find a set P ⊂ N with d(P ) > δ such that for
any finite subset F ⊂ P , we have

(4.2) µ

(
⋂

n∈F

An

)

> 0.
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Let R′ := {ni : i ∈ P}. Then R′ ⊂ R and it is straightforward to show that d(R′) > 0.
Moreover, combining (4.2) with (4.1), for any finite subset {n1, . . . , nk} ⊂ R′, we obtain

d

(
r⋂

i=1

(

E ∩ (E − p1(ni)) ∩ . . . ∩ (E − pℓ(ni))
)
)

> 0.

From this the claim follows immediately.

For the special case of B-free numbers, we have the following combinatorial corollary
of the above results.

Theorem 4.5. For B ⊂ N\{1} let FB denote the set of B-free numbers and let (Nk)k>1

be any sequence of increasing positive integers such that d(Nk)(FB) exists and is positive.
Then there exists a set D ⊂ FB with d(Nk)(FB \ D) = 0 and such that for all r ∈ D,
for all E ⊂ N with d(E) > 0 and any polynomials pi ∈ Q[t], i = 1, . . . , ℓ, which satisfy
pi(Z) ⊂ Z and pi(0) = 0, for all i ∈ {1, . . . , ℓ}, there exists β > 0 such that the set

{

n ∈ FB − r : d
(

E ∩ (E − p1(ni)) ∩ . . . ∩ (E − pℓ(ni))
)

> β
}

has positive lower density with respect to (Nk)k>1. If, additionally, B is taut then one
can take D = FB.

A proof of Theorem 4.5 follows immediately by combining Proposition 4.2 and The-
orem 3.27.

5 Rational sequences and Sarnak’s conjecture

section 5 is divided into two subsections. In Subsection 5.1 we give a proof of Proposi-
tion 3.4, which states that any automatic sequence generated by a synchronized automa-
ton is WRAP. In Subsection 5.2 we use Proposition 3.4 to strengthen a result obtained
by Deshouillers, Drmota and Müllner in [23], which states that sequences given by syn-
chronized automata satisfy Sarnak’s conjecture.

5.1 Synchronized automata and substitutions

We begin with a proof of Proposition 3.4. For the convenience of the reader, we restate
the proposition here.

Proposition 3.4. Each automatic sequence given by a synchronized automaton M is
WRAP.

Proof. Let M = (Q,B, δ, q0, τ) be a synchronized complete deterministic automaton
with set of states Q := {q0, . . . , qr}, input alphabet B := {0, 1, . . . , k − 1}, finite output
alphabet A, transition function δ : Q × B → Q, initial state q0 and output mapping
τ : Q→ A. For n ∈ N let [n]k ∈ B∗ be defined as in section 3.1. Let a(n) = τ(δ(q0, [n]k)),
n ∈ N, denote the automatic sequence generated by the synchronized automaton M .
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Fix ε > 0. Let n1 be such that at least kn1(1−ε) words of length n1 are synchronizing
(cf. Definition 3.3). In other words, if we set

K := {0 6 m < kn1 : [m]k is synchronizing}

then we have |K| > kn1(1 − ε) (note that if w is a synchronizing word then so is every
one of its extensions). Notice that

(5.1) a(n) = a(m) whenever n ≡ m mod kn1 for some m ∈ K

as [n]k and [m]k share the last kn1 digits. Consider a′ given by

a′(n) :=

{

a(n) if n mod kn1 belongs to K,

0 otherwise.

Notice that a′ is periodic of period kn1 : for 0 6 m < K, j > 0, we have

a′(m+ jkn1) =

{

a(m), if m ∈ K,

0, otherwise.

Moreover, using (5.1), we obtain

dW (a, a′) = lim sup
N→∞

sup
ℓ

1

N

∣
∣{1 6 n 6 N : an+ℓ 6= a′n+ℓ}

∣
∣

6 lim sup
N→∞

sup
ℓ

1

N
|{1 6 n 6 N : n+ ℓ mod kn1 6∈ K}| = kn1 − |K|

kn1
6 ε

and the result follows.

5.2 Orthogonality of RAP and WRAP sequences to the Möbius func-

tion

Let (X,T ) be a topological system, that is, X is a compact metric space and T : X → X
a homeomorphism. Let µ denote the classical Möbius function, i.e., for all n ∈ N,

µ(n) =







(−1)k, if there exist k distinct prime numbers p1, . . . , pk

such that n = p1 · . . . · pk;
0, otherwise.

We write (X,T ) ⊥ µ whenever limN→∞
1
N

∑N
n=1 f(T

nx)µ(n) = 0 for all f ∈ C(X) and
x ∈ X. Sarnak’s conjecture [56] states that

(5.2) (X,T ) ⊥ µ whenever the topological entropy of T is zero.

(For the definition of topological entropy see for example [54, Section 6.3].)
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If x ∈ AN is an automatic sequence generated by a synchronized automata then its
sub-word complexity is at most linear (see, e.g. Thm. 10.3.1 in [2]), which implies that the
entropy of the dynamical system (Xx, S) is zero. It is therefore natural to ask if systems
generated by such automatic sequences satisfy Sarnak’s conjecture. This question was
answered affirmatively in [23].

The next theorem states that any W -rational system satisfies Sarnak’s conjecture. In
view of Proposition 3.4, our result can be viewed as an extension of the main result in
[23].

Theorem 5.1. Let x ∈ AN be WRAP. Then for all f ∈ C(Xx) and z ∈ Xx, we have

(5.3) lim
N→∞

1

N

N∑

n=1

f(Snz)µ(n) = 0.

Equivalently, (Xx, S) ⊥ µ.

For the proof of Theorem 5.1 we need two lemmas. The first lemma is a slight mod-
ification of Lemma 3.14 involving the Weyl pseudo-metric dW instead of the Besicovitch
pseudo-metric dB .

Lemma 5.2. Let x, y ∈ AN, n1, . . . , nℓ ∈ Z and α1, . . . , αℓ ∈ A. Then for C = Cα1,...,αℓ
n1,...,nℓ

we have

lim sup
H→∞

sup
m∈N

1

H

∑

m6h<m+H

∣
∣
1C(S

hx̃)− 1C(S
hỹ)
∣
∣ 6 ℓdW (x, y),

where x̃, ỹ ∈ AZ are any two-sided sequences extending x and y, respectively.

The proof of Lemma 5.2 is very similar to the proof of Lemma 3.14 and is omitted.
The next lemma, which is also needed for the proof of Theorem 5.1, states that RAP

sequences are orthogonal to the Möbius function µ.

Lemma 5.3. Suppose x ∈ AN is RAP and f ∈ C(AZ). Then

(5.4) lim
N→∞

1

N

N∑

n=1

f(Snx̃)µ(n) = 0.

Proof. Since any continuous function f ∈ C(Xx) can be approximated uniformly by
cylinder sets C = Cα1,...,αℓ

n1,...,nℓ
, it suffices to show (5.4) for the special case where f = 1C =

1C
α1,...,αℓ
n1,...,nℓ

for any n1, . . . , nℓ ∈ Z and α1, . . . , αℓ ∈ A.

Hence, let ℓ ∈ N, n1, . . . , nℓ ∈ Z and α1, . . . , αℓ ∈ A be arbitrary. Fix ǫ > 0. Since x
is RAP we can find a periodic sequence y ∈ AN such that dB(x, y) 6 ǫ/ℓ. Let ỹ ∈ AZ be
a two-sided periodic sequence that extends y. Then, using Lemma 3.14, we get

(5.5) lim sup
N→∞

∣
∣
∣
∣
∣

1

N

N∑

n=1

1C(S
nx̃)µ(n) − 1

N

N∑

n=1

1C(S
nỹ)µ(n)

∣
∣
∣
∣
∣

6 ℓdB(x, y) = ǫ.
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It is a well-known fact that Dirichlet’s prime number theorem along arithmetic pro-
gressions is equivalent to the assertion that for any periodic sequence a(n) one has
limN→∞

1
N

∑N
n=1 a(n)µ(n) = 0. In particular, a(n) = 1C(S

nỹ) is a periodic sequence
and hence

lim
N→∞

1

N

N∑

n=1

1C(S
nỹ)µ(n) = 0.

Therefore, (5.5) simplifies to

lim sup
N→∞

∣
∣
∣
∣
∣

1

N

N∑

n=1

1C(S
nx̃)µ(n)

∣
∣
∣
∣
∣

6 ǫ.

Since ǫ > 0 was chosen arbitrarily, the proof of (5.4) is completed.

Proof of Theorem 5.1. Let x ∈ AN be WRAP and let f ∈ C(Xx) and z ∈ Xx be arbi-
trary. It follows from Proposition 3.6 that z|N is WRAP and therefore z|N is also RAP.
Hence (5.3) follows directly from (5.4).

In light of Theorem 5.1 it is natural to inquire about the behavior of averages of the
from

(5.6)
1

H

∑

m6h<m+H

f(Shz)µ(n)

for large values of H and arbitrary m ∈ N. It is believed that the expression in (5.6)
does not converge to 0 (as H approaches ∞) uniformly in m.12 Nonetheless, using
recent results of Matomaki, Radziwiłł and Tao [49], we will show that for large H and
“typical” m ∈ N the averages in (5.6) are small. Such averages of µ (or, more generally,
of bounded multiplicative functions) over “short intervals” have also been considered in
[48, 49, 28, 61]. We obtain the following result in this direction.

Theorem 5.4. Let x ∈ AN be WRAP, let f ∈ C(Xx) and let z ∈ Xx. Then for every
δ > 0 there exists H0 ∈ N such that for all H > H0 the set of all m ∈ N for which

(5.7)

∣
∣
∣
∣
∣
∣

1

H

∑

m6h<m+H

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

< δ.

has lower density > 1− δ.

It is not clear if Theorem 5.1 can be derived quickly from Theorem 5.4. However, we
will see that Theorem 5.4 is a corollary of a stronger result which is a strengthening of
Theorem 5.1 and which we state next.

12Indeed, by Chowla’s conjecture [18] (see also [27, 56]) it follows that for every word w ∈ {0, 1}H that
appears in µ

2 = 1Q, where Q denotes the set of squarefree numbers, all words in v ∈ {−1, 0, 1}H with
v2 = w must appear in µ. In particular, (assuming Chowla’s conjecture) for every H > 1 there is m > 1
such that 1Q(h) = µ(m+ h) for all h ∈ [1, H ] and therefore (5.6) with f = 1 is close to 6

π2 .
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Theorem 5.5. Let x ∈ AN be WRAP. Then for all f ∈ C(Xx) and z ∈ Xx,

(5.8) lim
H→∞
H
M

→0

1

M

∑

M6m<2M

∣
∣
∣
1

H

∑

m6h<m+H

f(Shz)µ(h)
∣
∣
∣ = 0.

Before providing a proof of Theorem 5.5, let us show that Theorem 5.5 implies both
Theorem 5.1 and Theorem 5.4. We will need the following standard lemma, the proof of
which is included for the convenience of the reader.

Lemma 5.6. For every H ∈ N let xH : N → C be a sequence bounded in modulus by 1.
If

lim
H→∞
H
M

→0

1

M

∑

M6m<2M

xH(m) = 0,

then

lim
H→∞
H
N

→0

1

N

N∑

n=1

xH(n) = 0.

Proof. Let Hk and Nk be two sequences such that limk→∞Hk = ∞ and limk→∞
Hk

Nk
= 0.

Let ℓ ∈ N be arbitrary. We have

∣
∣
∣
∣
∣

1

Nk

Nk∑

n=1

xHk
(n)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∑

16j6log2(Nk)

1

2j







2j

Nk

∑

Nk

2j
6m<

Nk

2j−1

xHk
(m)







+
1

Nk
xHk

(Nk)

∣
∣
∣
∣
∣
∣
∣
∣

6
∑

16j6ℓ

1

2j

∣
∣
∣
∣
∣
∣
∣
∣

2j

Nk

∑

Nk

2j
6m<

Nk

2j−1

xHk
(m)

∣
∣
∣
∣
∣
∣
∣
∣

+
1

2ℓ
+

1

Nk
,

whenever ℓ 6 log2(Nk). Note that

lim
k→∞

2j

Nk

∑

Nk

2j
6m<

Nk

2j−1

xHk
(m) = 0,

because limk→∞
Hk

Nk/2j
= 0 for all j ∈ {1, . . . , ℓ}. Hence,

lim sup
k→∞

1

Nk

∣
∣
∣
∣
∣

Nk∑

n=1

xHk
(n)

∣
∣
∣
∣
∣
6

1

2ℓ
.

Since ℓ ∈ N was arbitrary, this finishes the proof.
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Proof that Theorem 5.5 implies Theorem 5.1. Define

bm(H) :=
1

H

∣
∣
∣
∣
∣
∣

∑

m6h<m+H

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

.

First, we observe that according to Lemma 5.6 we have that 1
M

∑

M6m<2M bm(H)
H→∞,H

M
→0−−−−−−−−→

0 implies 1
N

∑N
n=1 bn(H)

H→∞,H
N
→0−−−−−−−−→ 0.

Let ǫ > 0 be arbitrary, let Hk and Nk be two sequences such that limk→∞Hk = ∞
and limk→∞

Hk

Nk
= 0 and take Jk := {1 6 n 6 Nk : bn(Hk) 6 ǫ2}. It follows from

limk→∞
1
Nk

∑Nk
n=1 bn(Hk) = 0 that for sufficiently large k we have |Jk|

Nk
> 1 − ǫ. For

t ∈ {0, 1, . . . ,Hk − 1} define Jk,t := Jk ∩ (HkZ+ t). Then for some r ∈ {0, 1, . . . ,Hk − 1}
we must have

|Jk,r|
|(HkZ+ r) ∩ {1, . . . , Nk}|

> 1− ǫ.

We get

∣
∣
∣
∣
∣

1

Nk

Nk∑

n=1

f(Shz)µ(h)

∣
∣
∣
∣
∣

6

∣
∣
∣
∣
∣
∣

Hk

Nk

∑

n∈(HkZ+r)∩{1,...,Nk}

1

Hk

n+Hk−1
∑

h=n

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

+
Hk

Nk

6
Hk

Nk

∑

n∈(HkZ+r)∩{1,...,Nk}

bn(Hk) +
Hk

Nk

6
Hk

Nk

∑

n∈Jk,r

bn(Hk) + ǫ+
Hk

Nk
6
Hk|Jk,r|ǫ2

Nk
+ ǫ+

Hk

Nk
.

As k → ∞ the expression
Hk|Jk,r|ǫ

2

Nk
+ ǫ+ Hk

Nk
converges to ǫ2+ ǫ. Since ǫ is arbitrary, this

finishes the proof.

Proof that Theorem 5.5 implies Theorem 5.4. We present a proof by contradiction. As-
sume there exists some δ > 0 such that one can find an increasing sequence (Hk)k>1 with
the property that for every k the set

Dk :=






m ∈ N :

∣
∣
∣
∣
∣
∣

1

Hk

∑

m6h<m+Hk

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

> δ







satisfies d(Dk) > δ. Since d(Dk) > δ, we can find Nk ∈ N such that Hk 6
Nk

k and such
that

1

Nk

Nk∑

m=1

∣
∣
∣
∣
∣
∣

1

Hk

∑

m6h<m+Hk

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

> δ2.
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This contradicts the fact that according to Theorem 5.5 and Lemma 5.6,

lim
k→∞

1

Nk

Nk∑

m=1

∣
∣
∣
∣
∣
∣

1

Hk

∑

m6h<m+Hk

f(Shz)µ(h)

∣
∣
∣
∣
∣
∣

= 0.

Remark 5.7. From Theorem 5.4 it follows that for all x ∈ AN that are WRAP, f ∈
C(Xx) and z ∈ Xx, we have

lim
H→∞

lim sup
N→∞

1

N

N∑

n=1

∣
∣
∣
∣
∣

1

H

H∑

h=1

f(Sn+hz)µ(n+ h)

∣
∣
∣
∣
∣

= 0.

The remainder of this section is dedicated to proving Theorem 5.5. The following
lemma (which is a variant of Lemma 5.3) will be useful for the proof of Theorem 5.5.

Lemma 5.8. Suppose x ∈ AN is WRAP and f ∈ C(Xx). Then

(5.9) lim
H→∞
H
M

→0

1

M

∑

M6m<2M

∣
∣
∣
1

H

∑

m6h<m+H

f(Shx̃)µ(h)
∣
∣
∣ = 0.

where x̃ ∈ AZ is any two-sided sequence extending x ∈ AN.

Proof. Since any continuous function f ∈ C(Xx) can be approximated uniformly by
cylinder sets C = Cα1,...,αℓ

n1,...,nℓ
, it suffices to show (5.9) for indicator functions of cylinder

sets.
Let ℓ ∈ N, n1, . . . , nℓ ∈ Z and α1, . . . , αℓ ∈ A be arbitrary. Fix ǫ > 0 and let y ∈ AN

be a periodic sequence such that dW (x, y) 6 ǫ/ℓ. Let ỹ ∈ AZ be a two-sided periodic
sequence that extends y. From Lemma 5.3 it follows that

(5.10) lim sup
H→∞

sup
m∈N

∣
∣
∣
∣
∣
∣

1

H

∑

m6h<m+H

(
1C(S

nx̃)− 1C(S
nỹ)
)
µ(n)

∣
∣
∣
∣
∣
∣

6 ℓdW (x, y) 6 ǫ.

By a recent result of Matomaki, Radziwiłł and Tao [49], we have that for each periodic
sequence a(n):

1

M

∑

M6m<2M

∣
∣
∣
∣
∣
∣

1

H

∑

m6h<m+H

a(h)µ(h)

∣
∣
∣
∣
∣
∣

→ 0 as H → ∞,H/M → 0.

Choosing a(n) = 1C(S
nỹ) we thus get

(5.11)
1

M

∑

M6m<2M

∣
∣
∣
∣
∣
∣

1

H

∑

m6h<m+H

1C(S
hỹ)µ(h)

∣
∣
∣
∣
∣
∣

→ 0 as H → ∞,H/M → 0.
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Combining (5.10) and (5.11), we obtain

lim
H→∞
H
M

→0

1

M

∑

M6m<2M

∣
∣
∣
1

H

∑

m6h<m+H

1C(S
hx̃)µ(h)

∣
∣
∣

6 lim
H→∞
H
M

→0

1

M

∑

M6m<2M

∣
∣
∣
1

H

∑

m6h<m+H

1C(S
hỹ)µ(h)

∣
∣
∣ + ǫ = ǫ.

Since ǫ is arbitrarily, the proof of (5.9) is completed.

Proof of Theorem 5.5. The following argument is analogous to the one used in the proof
of Theorem 5.1: Let x ∈ AN be WRAP and let f ∈ C(Xx) and z ∈ Xx be arbitrary. It
follows from Proposition 3.6 that z|N is WRAP. Therefore, equation (5.8) follows from
(5.9).

A Uniformity of polynomial multiple recurrence

In this appendix we derive a uniform version of the following polynomial multiple recur-
rence theorem obtained in [12]:

Theorem A.1. Let ℓ, u ∈ N and let pi,j ∈ Q[t] be polynomials satisfying pi,j(Z) ⊂ Z,
pi,j(0) = 0, i = 1, . . . , ℓ, j = 1, . . . , u. Then for any probability space (X,B, µ), any u-
tuple of commuting measure preserving transformations T1, . . . , Tu on (X,B, µ) and any
A ∈ B with µ(A) > 0 one has

lim
N→∞

1

N

N∑

n=1

µ



A ∩
u∏

j=1

T
−p1,j(n)
j A ∩

u∏

j=1

T
−p2,j(n)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(n)
j A



 > 0.

The uniform version in question is given by the following theorem (it was used in the
proofs of Theorem 2.6 and Theorem 3.22).

Theorem A.2. Let ℓ, u ∈ N, let ε > 0 and let pi,j ∈ Q[t] be polynomials satisfying
pi,j(Z) ⊂ Z, pi,j(0) = 0, i = 1, . . . , ℓ, j = 1, . . . , u. Then there exists δ > 0 such
that for for any probability space (X,B, µ), any u-tuple of commuting measure preserving
transformations T1, . . . , Tu on (X,B, µ), any A ∈ B with µ(A) > ε and for all s ∈ N, one
has

lim
N→∞

1

N

N∑

n=1

µ



A ∩
u∏

j=1

T
−p1,j(sn)
j A ∩

u∏

j=1

T
−p2,j(sn)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(sn)
j A



 > δ.

We remark that a slightly less general version of Theorem A.2 is stated in [30, The-
orem 4.1] without a proof.

In order to prove Theorem A.2 we utilize the following equivalent combinatorial form
of Theorem A.1.
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Theorem A.3 (Theorem 3.2, [11]). Let ℓ, u ∈ N, let ε > 0 and let pi,j ∈ Q[t] be
polynomials satisfying pi,j(Z) ⊂ Z, pi,j(0) = 0, i = 1, . . . , ℓ, j = 1, . . . , u. Then there
exists a positive integer N = N(ℓ, u, ε, pi,j) such that for all sets A ⊂ Zu with

|A ∩ [1, N ]u|
Nu

> ε

there exist n ∈ N and a ∈ A such that a+(pi,1(n), . . . , pi,u(n)) ∈ A for all i ∈ {1, 2, . . . , ℓ}.

For the proof of Theorem A.2 we will need the following lemma, which is of inde-
pendent interest and can be interpreted as a polynomial extension of Theorem F2 in
[11].

Lemma A.4. Let ℓ, u ∈ N, let ε > 0 and let pi,j ∈ Q[t] be polynomials satisfying
pi,j(Z) ⊂ Z, pi,j(0) = 0, i = 1, . . . , ℓ, j = 1, . . . , u. Then there exists K = K(ℓ, u, ε, pi,j)
and some β = β(ℓ, u, ε, pi,j) > 0 such that for any probability space (X,B, µ), any t-tuple
of commuting measure preserving transformations S1, . . . , St on (X,B, µ) and any A ∈ B
with µ(A) > ε there exists n ∈ {1, . . . ,K} with

µ



A ∩
u∏

j=1

S
−p1,j(n)
j A ∩

u∏

j=1

S
−p2,j(n)
j A ∩ . . . ∩

u∏

j=1

S
−pℓ,j(n)
j A



 > β.

Proof. Suppose ℓ, u ∈ N, ε > 0 and pi,j ∈ Q[t] with pi,j(Z) ⊂ Z, pi,j(0) = 0, i = 1, . . . , ℓ,
j = 1, . . . , u are given. Let K = N(ℓ, u, ε/2, pi,j) as guaranteed by Theorem A.3. Let us
call a set of the form {a+(pi,1(n), . . . , pi,u(n)) : 1 6 i 6 ℓ} for some a = (a1, . . . , au) ∈ Nu

and some n ∈ N a basic arrangement. Let J denote the collection of all basic arrangements
contained in {1, . . . ,K}u. Put β = ε

2|J | .

Let (X,B, µ) be an arbitrary probability measure space, equipped with u commuting
measure preserving transformations denoted by S1, . . . , Su. Also, letA ∈ B with µ(A) > ε
be arbitrary. Let

f(x) =
1

Ku

∑

(n1,...,nu)∈[1,K]u

1A

( u∏

j=1

S
nj

j (x)
)

.

Clearly, we have that
∫

X f dµ > ε, so if B = {x ∈ X : f(x) > ε/2}, then we must have
µ(B) > ε/2. This means that for every x ∈ B the set Ex :=

{
(n1, . . . , nu) ∈ [1,K]u :

∏u
j=1 S

nj

j (x) ∈ A
}

has density at least ε/2 in [1,K]u, i.e. |Ex| > (ε/2)Ku. By our choice
ofK, we are guaranteed to find at least one basic arrangement contained in Ex. Moreover,
since for every x ∈ B we can find a basic arrangement in J that is contained in Ex, and
since there are no more than |J |-many such basic arrangements, it follows that there exists
a set C ⊂ B with µ(C) > ε

2|J | such that Ex contains the same basic arrangement for every

x ∈ C. Suppose this basic arrangement is given by {(a1, . . . , au) + (pi,1(n), . . . , pi,u(n)) :

1 6 i 6 ℓ}. Now, a simple calculation will show that the set
∏u

j=1 S
−aj
j C is contained

in the intersection A ∩∏u
j=1 S

−p1,j(n)
j A ∩∏u

j=1 S
−p2,j(n)
j A ∩ . . . ∩∏u

j=1 S
−pℓ,j(n)
j A. This

finishes the proof.
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Proof of Theorem A.2. Suppose ℓ, u ∈ N, ε > 0 and pi,j ∈ Q[t] with pi,j(Z) ⊂ Z, pi,j(0) =
0, i = 1, . . . , ℓ, j = 1, . . . , t are given. We can assume without loss of generality that
every polynomial pi,j is a monomial, since otherwise we can decompose every pi,j into

monomials and rewrite
∏u

j=1 T
−pi,j(n)
j as a product of transformations with monomials

in the exponent. Let u′ = ku and, for 0 6 k 6 ℓ− 1, define

p′i,uk+j =

{

pi,j, if k = i− 1;

0, otherwise.

Let K = K(ℓ, u, ε, p′i,j) and β = β(ℓ, u, ε, p′i,j) be as guaranteed by Lemma A.4. Let
s ∈ N be arbitrary. It suffices to show that for all M ∈ N, we have

(A.1)
1

MK2

MK2
∑

n=1

µ



A ∩
u∏

j=1

T
−p1,j(sn)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(sn)
j A



 >
β

K2
.

Then, (A.1) can be rewritten as

(A.2)
1

MK2

MK∑

m=1

K∑

n=1

µ



A ∩
u∏

j=1

T
−p1,j(smn)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(smn)
j A



 >
β

K2
.

For m ∈ N define Sm,uk+j = T
pk+1,j(sm)
j for all 0 6 k 6 ℓ − 1. Using pi,j(smn) =

pi,j(sm)pi,j(n), we have the identity
∏u′

j=1 S
−p′i,j(n)

m,j =
∏u

j=1 T
−pi,j(smn)
j . Hence, if we

apply Lemma A.4 to the transformations Sm,1, . . . , Sm,u′ , then we can find some n with
1 6 n 6 K such that

µ



A ∩
u′
∏

j=1

S
−p1,j(n)
m,j A ∩ . . . ∩

u′
∏

j=1

S
−pℓ,j(n)
m,j A



 > β.

However, this implies that

µ



A ∩
u∏

j=1

T
−p1,j(smn)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(smn)
j A



 > β.

Finally, we observe that the products mn, where M(K − 1) < m 6MK and 1 6 n 6 K
are pairwise distinct. So,

1

MK2

MK∑

m=(M−1)K+1

K∑

n=1

µ



A ∩
u∏

j=1

T
−p1,j(mn)
j A ∩ . . . ∩

u∏

j=1

T
−pℓ,j(mn)
j A



 >
β

K2
.

This proves (A.2).
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