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Abstract

Let 2 C N and let n € {0,1}% be the characteristic function of the set Fg =
7\ Upe s VZ of P-free numbers. Consider the subshift (S, X,), where X, is the
closure of the orbit of n under the left shift S. In case when % = {p? : p is prime}
the dynamics of (S,X,) was studied by Sarnak in 2010. This special case and
some generalizations, including the case (x) of % infinite, pairwise coprime with
> ez 1/b < 0o, were discussed by several authors. We continue this line of research
for a general A.

The main difference between the general case and the (%) case is that we may
have X,, C X = {z € {0,1}2 : |supp = mod b| < b — 1 for each b € &}, i.e. X, no
longer has a characterization in terms of admissible sequences, while in the (x) case
X, = Xg. Moreover, X, may not be hereditary (heredity of X C {0,1}* means
that if x € X and y < x coordinatewise then y € X), i.e. X, # )~(77, where )?,, is the
smallest hereditary subshift containing X,.

We show that 7 is a quasi-generic point for some natural S-invariant measure
vy on X,. We solve the problem of proximality by showing first that X, has a
unique minimal subset (to which each point has to be proximal). Moreover, this
unique minimal subsystem is a Toeplitz dynamical system which relates the theory
of %B-free shifts and Toeplitz shifts. We prove that a HB-free system is proximal if
and only if 4 contains an infinite coprime subset.

For other results, including the solution of the problem of invariant measures,
a class of sets A, larger than the class given by (*), which is crucial for us is that
of taut sets: Z# is taut whenever 6(Fz) < 6(Fz (5}) for each b € # (9 stands for
the logarithmic density). We give a characterization of taut sets & in terms of the
support of the corresponding measure v,. Moreover, for any % there exists a taut
2B with v, = v,,. For taut sets &, %', we have 8 = %' if and only if X = Xz .

A special role played by %-free systems for taut & is seen in the following result:
For each # there is a taut %’ such that (S, X,/) is a subsystem of (S, X;,) and X,
is a quasi-attractor. In particular, all invariant measures for (S, )A(:n) are supported
by jzn/.

The system (S, Xn) is shown to be intrinsically ergodic for an arbitrary %. More-
over, we provide a description of all probability invariant measures for (.5, )?77) We
prove that the topological entropies of (S, )A(:n) and (5, X ) are the same and equal
to d(fgg)
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We also show that for a subclass of taut Z-free systems, namely those for which
2 has light tails, i.e. (3, j bZ) — 0, proximality is the same as heredity.

Finally, we give some applications in number theory on gaps between consecutive
P-free numbers. We also apply our results to the set of abundant numbers (positive
integers that are smaller than the sum of their proper divisors).
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1 Introduction

1.1 Motivation

Sets of multiples For a subset £ C N := {1,2,...}, we consider its set of
multiples Mg := |y bZ and the associated set of Z-free numbers Fg := 7\ M.
The interest in sets of multiples was initiated in the 1930s by the study of one
particular example, namely, the set of abundant numbers, i.e. of n € Z for which
|n| is smaller than the sum of its (positive) proper divisors. In [8], Bessel-Hagen
asked whether the set of abundant numbers has asymptotic density and the positive
answer was given independently by Davenport [I3], Chowla [II] and Erdés [20].
Nowadays, abundant numbers are still of a certain interest in number theory (see,
e.g., the recent works [31], [32] B5]).

The works of Davenport, Chowla and Erdds triggered various questions on gen-
eral sets of multiples. In particular, the natural question whether all sets of multiples
have asymptotic density was answered negatively by Besicovitch [7]. On the other
hand, Davenport and Erdés [14] [15] showed that Mg (equivalently, F4) always has
logarithmic density equal to the lower density. Moreover, in many cases, M 4 does
have density,, e.g., when

(1) 2 is pairwise coprime and Z Ly < 00,
be A

see, e.g., [27]E| Following 28], all sets & C N for which Mg has density are called
Besicovitch.
An important example of a Besicovitch set is

(2) B={p":pe P},

!This setting was first studied by Erdos [23].



where &2 denotes the set of primes. Here, is clearly satisfied. The set Fg is
called the set of square-free integers and its density equals 6/x2, see, e.g., [29]. The
characteristic function of Fgz is the square pu? of the Mdbius function p extended
to Z in the natural way: pu(—n) = p(n). (Recall that p(n) = (—1)* when n is a
product of k > 1 distinct primes, p(1) = 1 and p(n) = 0 if n € N is not square-free.)
With each set Fg of Z-free numbers, we associate three natural subshiftﬂ

X, C X, C Xz,

with the first and the third defined in the following way:

o B-free subshift (S,X,,), where X, is the closure of the orbit Og(n) := {S™n :
m ez} of p=1r, € {0,1}%,

o B-admissible subshift (S, X ), where X g is the set of #-admissible sequences,
i.e. of € {0,1}% such that, for each b € %, the support suppz := {n € Z :
xz(n) = 1} of = taken modulo b is a proper subset of Z/bZE|

Notice that the subshift (S, Xg) is hereditary, i.e. whenever @ € Xg and y < z
coordinatewise, then y € X 4. Finally, we consider

o the subshift (5, )?n)7 where )N(,, is defined to be the smallest hereditary subshift
containing X,.

Relations with number theory Consider two more examples. Let
(3) B:={pq:p,q€ P} and B = 2.

Then Fp = Z U (=Z)U{-1,1} and Fz = {—-1,1}. Let n:=1x,, 0 :=17,,.
Clearly, X,y C X, € X
Recall the following famous number-theoretical conjectures:

Prime k-Tuples Conjecture. For each k > 1 and each P?-admissible subset
{a1,...,ar} C NU{0}, there exist infinitely many n € N such that {a1+n, ... ,ax+
n} C £.

Note that the set {0,2} is &?-admissible and the Prime k-Tuples Conjecture in
this case is the Twin Prime Conjecture. Note also that if, for some p € &2, we have
{a; modp:1<i<k}=Z/pZ and {a1 +n,...,ap + n} C & then n = p — q, for
some 1 < ¢ < k, whence the set of n € N such that {a; +n,...,ar + n} C & is
finite.

Remark 1.1. It is not hard to see that the Prime k-Tuples Conjecture is equivalent
to X C X,,. Indeed, for the necessity, we need to show that if a block B € {0,1}*
is Z-admissible then there is a block B’ € {0, 1}* appearing on 7 such that B < B’.
The existence of such a B’ follows directly from the Prime k-Tuples Conjecture.
Conversely, let F' = {ay,...,a;} be P-admissible. Take iy > 1 large enough, so

*By a subshift, we mean a dynamical system (S, X), where X C {0,1}% is closed, S-invariant and S
stands for the left shift.

3 Admissible blocks and subsets of integers are defined in a similar way. Notice that X is closed as
the #-admissibility of x is equivalent to the Z-admissibility of all finite subsets of supp z. Clearly, 7 is
AB-admissible.

4X 5 is uncountable, see Remark



that 2|F| < pjy+1. Then the sets FU(F+kp1...p;,), k > 1, are also P-admissible.
These sets, for each &k > 1, correspond to some blocks C} appearing in X 4. By
assumption, this implies the existence of C}, on n with Cy < C}, k > 1. It follows
that we have n,m € Z such that F 4+ n, F +m C & with |n — m| arbitrarily large,
and the Prime k-Tuples Conjecture follows.

Dickson’s Conjecture, [16]. Let a; € Z, b; € N, 1 < i < k. If for each p € &
there exists n € N such that p { [[,<;<,(bin 4 a;) then there are infinitely many
n € N such that byjn +a; € P for 1 <i < k.

Note that if b, = 1 for 1 < i < k, the condition that for each p € &2 there
exists n € N such that p { [[,.,<.(bin + a;) is equivalent to the &-admissibility of

{al,...,ak}.

Remark 1.2. The following consquence of Dickson’s conjecture (more specifically,
of its special case when b; = 1 for 1 < ¢ < k) was pointed to us by Professor
A. Schinzel, see Cy3 in [46]:

Ifay,...,a; € [-n,n|NZ and {ay,...,a;} is P-admissible then, for infinitely
many z € N, we have [z —n,z +n]N P ={z+a;:i=1,...,k}.

This can be rephrased as X C X,,.

Dynamical approach The above suggests that the sets of multiples and the
associated subshifts are difficult to study in full generality. Thus, it seems natural
to put first some restrictions on % and then try to relax them to see which from
the previous results “survive”. Sarnak in his seminal paper [45] suggested to study
dynamical properties of the square-free subshift (S, X,z2). He formulated a certain
program, in particular, announcing the following results:

(i) p? is generic for an ergodic S-invariant measure v,2 on {0,1}% such that
the corresponding measure-theoretical dynamical system (S, X2, ,,2) has zero
Kolmogorov entropy,

) the topological entropy of (S, X,2) is equal to 6/x2,
(iii) X,2 = Xz, where # = {p? : p € 2},
) (S, X,2) is prozimal,

) (S,X,2) has a non-trivial topological joining with a rotation on a compact
Abelian group
(we will explain the notions appearing in — later). Today, complete proofs of
these facts are available; Sarnak’s program has also been studied for some natural
generalizations of (S, X,,2), see [, 4, [6, 9, 10, B30, 43, 44]E| In particular, in [1],
Abdalaoui, Lemaniczyk and de la Rue cover the counterparts of — from Sarnak’s
list for # C N satisfying . In this case, by , we have X, = X, = Xg.
As we have already mentioned, we intend to relax the assumptions on % and

tackle similar problems to —H It is all the more important, since Xz C Xz
whenever # C %’ C N. In other words, any (S, X) has subsystems of the form

Cf. also [5} [39] for the harmonic analysis viewpoint.
5This problem was posed during the conference Ergodic Theory and Dynamical Systems in Torun,
Poland 2014 by M. Boshernitzan.



(S, X ) for certain sets 8’ C N whose elements are no longer pairwise coprime.
(Another way to obtain a natural subsystem of (S, X ) is to choose b | b for each
b € A and then note that Xg C Xg, where &' = {V' : b € #}.) In particular,
this applies to the square-free case. As a matter of fact, the square-free subshift
constains X whenever {p?:p € P} C B C {pq:p,q € P}, cf. and (3).

Recall also that in [36] a description of all invariant measures for (S, Xg) was
given in case . Moreover, under the same assumptions, (S, X ) was proved to be
intrinsically ergodic (this means that the system has only one invariant measure v
such that the Kolmogorov entropy of (S, X, V) is equal to the topological entropy

The present paper seems to be the first attempt to deal with Sarnak’s list —
(v) and the problem of invariant measures in the general case when £ C N, i.e.
when we drop the assumption . Sometimes, we put certain restrictions on %. In
particular, we deal with % that:

e are thin, i.e. ), /b < 00,
e have light tails, i.e. d(3°,- x bZ) < € for K large enough.

Each thin 4 has light tails and if 4 is pairwise coprime, these two notions coincide.
Moreover, light tail sets are Besicovitch. A more subtle notion, which turns out to
be crucial in our studies, is that of tautness [28]:

o % is taut when §(Mg\ (1)) < 6(Mg) for each b € %’ﬁ

Any primitive set A (i.e. such that, for b,/ € B, we have bt b') with light tails is
taut.

The main difference between the general situation and the setting is that
X, has no longer a characterization in terms of admissible sequences, i.e. it may
happen that the Z-admissible subshift (S, X ) is strictly larger than the %B-free
subshift (S, X,). What is more, while X4 is always hereditary, X, need not be
so, and, as we have already seen by inspecting the case # = &, we may even
have X,, C X, € Xg. On the other hand, there are many similarities or analogies
between and the general case.

1.2 Main results

Our main results can be divided into three groups:
(I) structural results,

(IT) results on invariant measures and entropy,

(III) number theoretical results.

The results from groups and are closely related to one another, whereas the
results from group (ILI}) are mostly consequences of the results from and .

1.2.1 Structural results

This group of results contains both topological and measure-theoretical results.
Namely, we have:

"The intrinsic ergodicity of (S, X,,2) was proved in [43].
8Symbol § stands for the logarithmic density.



Theorem A. For any % C N, the subshift (S, X,) has a unique minimal subset.
Moreover, this subset is the orbit closure of a Toeplitz sequence.

Remark 1.3. Theorem |A|is an extension of from Sarnak’s program.
As a consequence of Theorem [A] we obtain the following result:

Corollary 1.4. For any % C N, each point x € X,, is prozimal to a point in the
orbit closure of a Toeplitz sequence.

Moreover, as an immediate consequence of Theorem [A] and Corollary we have:

Corollary 1.5. Let # C N. Then (S, X,) is minimal if and only if (S,X,) is a
Toeplitz system.

We also give a simple characterization of those £ C N, for which the unique minimal
subset of (S, X,) is a singleton:

Theorem B. Let  C N. The following conditions are equivalent:

o the unique minimal subset of (S, X)) is a singleton,
{(...,0,0,0,...)} is the unique minimal subset of (S, X,),
(S, X,) is prozimal,

o % contains an infinite pairwise coprime subset.

It turns out that measure-theoretic properties of the subshift (S, )?77) strongly
depend on the notion of tautness. We have:

Theorem C. For any % C N, there exists_a unique taut set %' C N such that
Far C Fa, Xy € X,y and P(8, X)) = P(S, X,) [

Equivalently, Theorem [C] can be rewritten as follows:

Corollary 1.6. For any % C N, there exists a unique taut set %' C N such that
Fa C Fg and any point x € X, is attracted to X,y along a sequence of integers of
density 1: _
lim  d(T"z,X, ) =0, where d(E,) = 0.
n—o00,nZE,

A key ingredient in the proof of Theorem [C]is the description of all invariant mea-
sures on X,, see Theorem below

If is satisfied, then, as shown in [I], we have X, = Xn = Xg, cf. in
Sarnak’s program. In general, this need not be the case. However, we have:

Theorem D. Let # C N. If # has light tails and contains an infinite, pairwise
coprime subset then X, = X,.

In other words, for primitive # with light tails, the proximality of (S5, X)) is equiv-
alent to the heredity of X,. Since every # that is primitive and has light tails, is
taut, a natural question arises whether the assertion of Theorem [D] remains true
for all taut & C N. We leave this question open, conjecturing that the answer is
positive.

9Given a topological dynamical system (T, X), by P(T, X) we denote the set of all probability Borel
T-invariant measures on X.

107t follows from Theorem [I| that in order to prove Theorem it suffices to construct a taut set %’
such that v, = v,.



1.2.2 Results on invariant measures and entropy

Proposition E. For any Z C N, n = 1, is a quasi-generic point for a natural
ergodic S-invariant measure v, on {0,1}2. In particular, v, (X,) = 1. Moreover, if
2 is Besicovitch then n is generic for vy.

Remark 1.7. Proposition [Ef means that, for some (Ny), we have the weak conver-
gence Nik an N, 0smny — V. Recall that in case , this convergence holds along
(Ni) with Ny, = k, see [I] (i.e. 5 is generic in this case). Recall also that in (), 2
is Besicovitch.

We call v, the Mirsky measure (in the square-free case the frequencies of blocks
on n were first studied by Mirsky [40, [41]).

Theorem F. Suppose that 8 C N is taut. Then (S,X,,vy,) is isomorphic to
(T, G, P), where G is the closure of {(n,n,...) € [[,51 Z/Z :n € Z} in]];~, Z/biZ
and Tg =g+ (1,1,...). In particular, (S, X,,vy,) has zero entropy. B

Remark 1.8. Proposition [E| together with Theorem [F| extends from Sarnak’s
program.

Theorem G. If # C N has light tails then X, is the topological support of vy,.

Theorem H. Let Y := {z € {0,1}2 : |supp y mod b| = b — 1 for each b € B}. For
% C N infinite (and primitive), the following conditions are equivalent:

(a) & is taut,

(b) P(S,Y N X,)#0,

(c) v(Y NX,;) =1.
Theorem I. For any 8 C N and any v € P(S, )??7); there exists p € P(S x S, X, x
{0, 1}%) whose projection onto the first coordinate equals v, and such that M, (p) = v,
where M : X, x {0, 1}% — X, stands for the coordinatewise multiplication.

Theorem J. For any & C N, the subshift (S, )Ai;n) is intrinsically ergodic.

An important tool here, which can be also of independent interest, is the following
result:

Proposition K. For any # C N, we have hop(S, )?n) = hiop(S, Xz) = 0(Fa).

Remark 1.9. Proposition [K|is an extension of from Sarnak’s program (recall
that the density of square-free numbers equals 6/x2, see, e.g., [29]).

The last entropy result we would like to highlight here is the following immediate
consequence of Theorem [C| and the variational principle:

Corollary 1.10. For any % C N, there exists a taut set ' C N such that Fg C
.7:33 and htop(S, X"7) = htop(S7 Xn/).

1.2.3 Number theoretical results

General consequences Our first result in this section shows, in particular,
that a taut set £ is determined by the family of Z-admissible subsets.

Theorem L. Suppose that B,%' C N are taut. Then the following conditions are
equivalent:



(a) B=H,
(b) Mz = Mg,

(¢) X = Xapr,
(d) Xy =Xy,
(e) Xy=Xy,
(f) Up = Vy,

(9) P(S,X,) =P(S, Xy).

Remark 1.11. Theorem [L extends an analogous result from [36], where it was
shown that X = Xz is equivalent to 2 = %' for B, %' C N satisfying ().

As an immediate consequence of Proposition [E] and Theorem [G] we obtain:

Corollary 1.12. If 8 C N has light tails, F,M C N are finite sets such that
F C Fg, M C Mg then the density of the set of n € N such that F +n C F,
M +n C Mg is positive.

Proposition M. Suppose that 28 C N has light tails and contains an infinite co-
prime subset #'. Denote by (n;) the sequence of consecutive B-free numbers. Then

limsup inf (n; —n; = o0 for any K > 1.
j%wpongK( j+k+1 ]+/€) [ Y =z

Consequences for abundant numbers

Corollary 1.13. Suppose that A, D C N are finite sets, consisting of abundant and
non-abundant numbers, respectively. Then the density of n € N such that A4+n and
D +n consist of abundant and deficient numbers, respectively, is of positive density.

Corollary 1.14. The set of n € N such that the numbers n+1,n+2,...,n+5 are
deficient has positive density.
Corollary 1.15. Denote by (n;) the sequence of consecutive deficient numbers.

Then, for any K > 1,

llm Su[) lnf (n i —Nj ) = OQ.
j+k2+1 j+k2
j—o0 0<k<K

Corollary 1.16. Letn :=1—14 € {0,1}%, where A is the set of abundant integers.

Then X, = )~(7,, in particular (S, X,) is proximal. Moreover, (S, Xy) is intrinsically
ergodic and we have hyop(S, X;) =1 —d(A).

It remains an open question whether X, = X, .

1.3 ‘Map’ of the paper

In this section we include a table that can be used to locate within the paper the
proofs of the main results listed in Section [1.2



Result Proof Main tools
Theorem |A] Section 3.1 Corollary |2.21 Lemma |2.22|
Corollary |1.4 Section (3.1 Theorem |A] Remark [2.20]

Corollary [1.5[ | Section|1.2.1

Theorem [A] Corollary [1.4]

Theorem [B Section [3.2.2 Chinese Remainder Theorem
Theorem IC Sect.ion 14.2] Proposition [2.33| and Proposition [2.35|
Section [10.2| | Theorem lﬁl, Theorem |T| and Theorem f|
Corollary [1.6] | Section [10.2 Theorem |C| Lemma [10.3]
Theoremlﬁ Section |5 Proposition lﬁ'
Proposition [E| Section |4 Theorem [2.28
Theorem |F| Section |93| Lemma |9.9 Theorem |9.15J_
Theorem |G Section [5 Proposition [5.8] Proposition [5.9]
Theorem [H Section |7| Theorem |C|, Proposition |Ei
Theorem [I Section |9 Theorem [9.2] Theorem [9.5
Theorem 1 Sec.tlon S Theorem 82 Theore.m
Section |11.2 and the variational principle
Proposition [K| | Section [6.1] Lemma [6.1]
Corollary |1.10| | Section|1.2.2| | Theorem |C|and the variational principle

Section
Section [10.1
Section |1.2.3|
Section [12.1
Section [12.2
Section [12.2
Section [12.2

Theorem |L

Corollary [1.12
Proposition [M
Corollary |1.13
Corollary |1.14]
Corollary |1.15

Corollary |1.16

Theorem |4.23| Proposition |4.25
Theore\aﬁﬁ Proposition [K
Proposition [E] Theorem |G|

Theorem |D|, Proposition |EL Theorem |G|

Lemma [12.1[and Corollary [1.12]

Corollary |1.13]

Proposition |M|, Lemma |12.1 Lemma|12.4|
Lemma|12.1] Lemma [12.4] Theorem [B
Theorem [D| Theorem |J| Proposition [K

Section [12.2

2 Preliminaries

2.1 Topological dynamics: basic notions

Definition 2.1. A topological dynamical system is a pair (T,X), where X is a
compact space endowed with a metric d and T is a homeomorphism of X. We
denote by Or(z) the orbit of € X under T, i.e. Op(x) = {T"z : n € Z}.

Definition 2.2. We say that (T, X) is transitive if it has a dense orbit. A point
x € X is called transitive if Or(x) is dense in X.

Remark 2.1. Recall that (7, X) is transitive if and only if, for any open sets
U,V C X, there exists n € Z such that T-"U NV # (.

Definition 2.3. A point z € X is called recurrent if, for any open set U > x, there
exists n # 0 such that 7"z € U.

Definition 2.4. A dynamical system (T, X) is called topologically weakly mizing if
(T'x T, X x X) is transitive.

Definition 2.5. A minimal set M C X is a non-empty, closed, T-invariant set that
is minimal with respect to these properties. Equivalently, M C X is minimal if for

10



any ¢ € M, we have Op(z) = M. If M = X then T is called minimal. A point

z € X is called minimal if (T, Or(z)) is minimal.

Definition 2.6. Let (7, X) be a topological dynamical system. A subset C' C X is
called wandering whenever the sets T"C, n € Z, are pairwise disjoint.

Given a topological dynamical system (T, X), by P(T, X) we will denote the set
of all Borel probability T-invariant measures on X and by P¢(T, X) the subset of
P(T, X) of ergodic measures (cf. Definition [2.12)).

Definition 2.7. If P(T, X) is a singleton, we say that (T, X) is uniquely ergodic.

Definition 2.8. We say that € X is generic for p € P(T, X) if the ergodic theorem
holds for T at « for any continuous function f € C(X): % donen f(TT2) — [ fdp.

Remark 2.2. In any uniquely ergodic systems all points are generic for the unique
invariant measure.

Example 2.3. Consider (T, G), where G is a compact Abelian group and T'g = g+go
for some gg € G. If (T, G) is minimal then it is uniquely ergodic and Haar measure
P is the unique member of P(T, G). In particular, all points g € G are generic for P.

Definition 2.9 (see, e.g., [25]). A topological dynamical system (T, X) is called
equicontinuous if the family of maps {T™ : n € Z} is equicontinuous. Every topo-
logical dynamical system has the largest equicontinuous factor, which is called the
mazimal equicontinuous factor.

Remark 2.4. All compact Abelian group rotations (T, G) are equicontinuous.

Example 2.5. Let A be a finite set and let S: AZ — A% be the left shift, i.e.,
S((2n)nez) = (Yn)nez, where y, = x,, 11 for each n € Z. Let X C A% be closed and
S-invariant. We then say that (S, X) is a subshift.

Definition 2.10. We say that x € {0, 1}Z is a Toeplitz sequence whenever for any
n € Z there exists d,, € N such that z(n+ k- d,,) = x(n) for any k € Z. A subshift
(S,Z), Z C {0,1}% is said to be Toeplitz if Z = Os(y) for some Toeplitz sequence
y € {0,1}"%.

Remark 2.6. Usually, one requires from a Toeplitz sequence not to be periodic.

For convenience, periodic sequences are included in the Definition [2.10l We refer
the reader, e.g., to [I8] for more information on Toeplitz sequences.

2.2 Measure-theoretic dynamics: basic notions

Definition 2.11. A measure-theoretic dynamical system is a 4-tuple (T, X, B, u),
where (X, B, u) is a standard probability Borel space and T is an automorphism
of (X, B, 11). The set of all automorphisms of (X, B, ) will be denoted by Aut(X, B, u).

Definition 2.12. We say that T' € Aut(X, B, i) is ergodic if, for A€ B, A=T 1A
implies p(A) € {0,1}.

Definition 2.13. For T' € Aut(X, B, 1), we define the associated Koopman operator
Ur: L?(X,B,u) — L?(X, B, 1) by setting Urf = foT.

Definition 2.14. We say that A € S! is in the discrete spectrum of T € Aut(X, B, 1)
if it is an eigenvalue of Uy, i.e., for some 0 # f € L?(X, B, 1), we have Upf = \f.
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Definition 2.15. We say that T' € Aut(X, B, u) has purely discrete spectrum if the
eigenfunctions of Uz are linearly dense in L(X, B, ).

Definition 2.16 (J26]). We say that T € Aut(X, B, n) is coalescent if each endo-
morphism of (X, B, u) commuting with 7' is invertible.

Remark 2.7. All ergodic automorphisms with purely discrete spectrum are coales-
cent.

Definition 2.17 ([24]). Let T € Aut(X,B,u), S € Aut(Y,C,v) and let p be a
T x S-invariant measure on X x Y. We say that p is a joining of T and S if p|x = p
and ply = v. In a similar way, joinings of more automorphisms (finitely many and
countably many) are defined.

Definition 2.18. Let T' € Aut(X, B, 1) and let C € B be such that u(C) > 0. Then
the function ng: X — NU {co} given by

ne(z) =min{n >1:T"x € C}

is well-defined and finite for p-a.e. x € C. The map T¢: C — C given by Tox =
T™cz is called the induced transformation. To € Aut(C, Be, uc), where Bo = Blo

and pc(A) = % for any A € Be¢.

2.3 Entropy: basic notions

There are two basic notions of entropy: topological entropy and measure-theoretic
entropy. We skip the definitions and refer the reader, e.g., to [19] instead. The
topological entropy of (T, X) will be denoted by hiop(T, X). The mesure-theoretic
entropy of (T, X, B, ) will be denoted by h(T, X, u).

Remark 2.8 (Variational principle). For any topological dynamical system (7', X),
we have hiop(T, X) = sup,ep(r,x) BT, X, ).
Definition 2.19. If 4 € P(T, X) is such that h(T, X, p) = hiop(T, X), we say that

W is a measure of mazximal entropy.

Remark 2.9. A measure of maximal entropy may not exist. Subshifts always have
at least one measure of maximal entropy.

Definition 2.20 ([48]). (T, X) is said to be intrinsically ergodic if it has exactly
one measure of maximal entropy.

2.4 Topological dynamics: more on minimal subsets

Let (T, X) be a topological dynamical system.

Definition 2.21. S C Z is called syndetic if there exists a finite set K such that
K+ S =27.

Remark 2.10. There is a well-known characterization of minimality of an orbit
closure. Let z € X. Then (T,Or(z)) is minimal if and only if, for any open set
U > x,theset {n € Z:T"z € U} is syndetic. In particular, if x is transitive (i.e.
its orbit under T is dense in X) then (7', X) is minimal if and only if, for any open
set U C X, the set {n € Z: T"x € U} is syndetic.

We will be particularly interested in the situation when (7, X) has a unique
minimal subset. We first recall well-known results related to the proximal case.

12



2.4.1 Proximal case

Definition 2.22. A pair (z,y) € X xX is called prozimal if lim inf,, o d(T"x, T™y)
0. We denote the sets of all proximal pairs (x,y) by Prox(T). T is called prozimal
if Prox(T) = X x X.

Remark 2.11. Note that if (z,Tx) € Prox(T') then clearly T has a fixed point.
Moreover, (T, X) is proximal if and only if it has a fixed point that is the unique
minimal subset of X.

Recall also the following result:

Proposition 2.12 (Auslander - Ellis, see, e.g., [2]). Let (T, X) be a topological
dynamical system. Then for any x € X there exists a minimal point y € X such
that x and y are proximal.

Definition 2.23. A pair (z,y) € X x X is called syndetically prozimal if {n € Z :
d(T"z,T"y) < e} is syndetic for any € > 0. We denote the set of all syndetically
proximal pairs (z,y) by SyProx(T'). T is called syndetically prozimal if SyProx(T") =
X x X.

Remark 2.13. Clearly, a subsystem of a (syndetically) proximal system remains
(syndetically) proximal.

Remark 2.14. Both relations, Prox and SyProx, are reflexive and symmetric.
Moreover, SyProx is always an equivalence relation, whereas Prox need not be an
equivalence relation.

Remark 2.15. It is easy to see that if T is syndetically proximal then 7" is
syndetically proximal for each n > 1.

Proposition 2.16 ([12 49|, see also Theorem 19 in [42]). The following are equiv-
alent:

e Proxz(T) is an equivalence relation,
e Prox(T) = SyProx(T),

e the orbit closure of any point (z,y) € X x X in the dynamical system (T X
T, X x X) contains exactly one minimal subset.

As an immediate consequence of Remark and Remark we obtain:

Corollary 2.17. Suppose that Txg = x¢ and SyProz(T) N ({zo} x X) = {xo} x X.
Then Prox(T) D SyProx(T) = X x X, i.e. T is syndetically proximal and {xo} is
the unique minimal subset of X.

2.4.2 General case

Proposition 2.18. Let (T, X) be a topological dynamical system with a transitive
point n € X. The following are equivalent:
(a) (T, X) has a unique minimal subset M.

(b) There exists a closed, T-invariant subset M' C X such that for any x € M’
y € X, there exists (my)n>1 C Z such that Ty — x.

(c) There exists x € X such that for any y € X there exists (mp)n>1 C Z such
that Ty — x.
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(d) There exists a closed, T-invariant subset M" C X, such that {k € Z : T*n €
U} is syndetic for any open set U intersecting M" .

(e) There exists a sequence of open sets (Uy,)n>1 C X such that:

o diam(U,) — 0 as n — oo,
o (k€ Z:TknyeU,} is syndetic.

Moreover, if x € X is as in then © € M, where M is the unique minimal subset
of X (in other words, M is equal to the orbit closure of x). Finally, if the above hold
then M’ and M'" with the above properties are also unique and M = M' = M" .

Proof. Suppose that @ holds and take x € M’ := M and y € X. It follows
by @ that there exists (my)n>1 C Z and (z,,)n>1 C M such that d(T""y, z,) — 0
(otherwise, the orbit closure of y would be disjoint from M and would contain
another minimal subset). We may assume without loss of generality that z,, — z¢ €
M, whence d(T™"y,zo) — 0. Fix ¢ > 0. Let kg € Z be such that d(T*°xg,z) < ¢.
Moreover, let § > 0 be sufficiently small, so that d(z, ') < § implies d(T*0 2, T*o2") <
g for 2,2’ € X. Finally, let m € Z be such that d(T™y,z) < . Then

d(T™ koy o) < d(T™koy, Trogg) + d(T™xg, x) < 2¢.

It follows that (]ED holds.

Clearly, (]ED implies . We will show now that implies @ Suppose that
M, M> are minimal subsets of X. Let « € X be as in () and take y; € M;, i =1,2.
It follows by that x € My N M5. This yields M, = Ms.

We will show that (]ED implies @ Let U C X be an open set intersecting
M" := M’ and suppose that the orbit of n visits U with unbounded gaps. Then
there exists m,, — oo such that T™»**y & U for k € {—n,...,n}. Without loss
of generality, we may assume that T — y. Then T™~ ¥y — T*y & U for each
k € Z, i.e. the orbit of y avoids U. Take x € M" NU. It follows that the orbit of y
never approaches x. This contradicts (]ED

Clearly, @ implies @ We will show now that @ implies . Suppose that (ED
holds. Enlarging the sets U, if necessary, we may assume that U,, = B(x,,1/n) for
some z,, € X. Moreover, we may assume without loss of generality that z,, - =z € X
asn — o0o. Fix y € X. For n > 1, let d,, > 1 be such that the orbit of n visits U,
with gaps at most d,,. Let §, > 0 be sufficiently small, so that d(z,2’) < §, implies
d(Tmz,Tm2") < 1/n for 0 <m < d, — 1. Let k,, € Z be such that d(y, T*"n) < &,.
Finally, let 0 < m,, < d,,—1 be such that T*»*mny € U, i.e. d(Tk+™nn, z,) < 1/n.
Then

d(T™y,x) < d(T™y, Tm"Jrk"n) + d(Tk”er"n, Tn) + d(xp, x)
<2/n+d(x,,x) — 0.

It follows that indeed holds.

The above proof shows that M ¢ M’ € M" where M’ and M" are maximal
sets with the above properties. Suppose now that x ¢ M is as in and take
y € M. Then inf,cps d(z,2) > 0. In particular, we cannot have d(T™"y,z) — 0. In
particular, this yields M = M’'. We will show now the remaining equality M = M".
Let U, := B(z,1/n), where € M". The proof of implication (¢} = (d) yields that
x satisfies and we already know that this implies z € M, i.e. M = M". O
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Remark 2.19. Notice that the above result includes as a special case the charac-
terization of minimal systems from Remark Indeed, if (7, X) is minimal then
any open set U intersects M = X, whence {n € Z : T"xz € U} is syndetic by @
On the other hand, if {n € Z : T"xz € U} is syndetic for any open set U, it follows
that M’ := X satisfies @ Therefore the only minimal subset M is also equal to
X, ie. (T,X) is minimal.

Remark 2.20. It follows by Proposition that if (T, X) has a unique minimal
subset M then for any « € X there exists y € M such that (z,y) € Prox(T).

Corollary 2.21. Let (T, X) be a subshift. Then (T, X) has a unique minimal subset
M if and only if there exists an infinite family of pairwise distinct blocks that appear
on 1 with bounded gaps.

Proof. This is an immediate consequence of the equivalence of @ and @ in Propo-

sition [2.18

If (T, X) is a subshift, sometimes more can be said about the unique minimal
subset. Namely, we have the following:

Lemma 2.22. Let n € {0,1}2. Suppose that there exist B, € {0,1}lf™] forn > 1,
with £y, Ny —00,7, /1 00, (My)n>1 C Z and (dn)n>1 C N, satisfying, for eachn > 1:

(a) dn | dn1,

(b) dn | Mpi1 —mn,

(c) nimy, + kdp + b, my, + kdy + 1] = By, for each k € ZE
Then n has a Toeplitz sequence x in its orbit closure X,,.

Proof. Fix ng € N and let n > ng. Then, by (a)) and (b)), we have d,,, | m, — my,.
Therefore, in view of , for any k € Z, we have

Smnn[ﬂno + kdng, 0y + kdno}
= n[mno + (kdno +my — mno) + lngs Mgy + (kdno + My — mno) + Tno] = Bh,.

It follows that x := lim, ., S™"n is well-defined and Toeplitz. O

Remark 2.23. Suppose that the assumption of Lemma[2.22| are satisfied. It follows
by Corollary that (S, X;,) has a unique minimal subset M that is equal to the
orbit closure of a Toeplitz sequence.

2.5 Asymptotic densities

For A C Z, we recall several notions of asymptotic density (in fact, these are densities
of the positive part of the set A, i.e. of ANN). We have:

e d(A) :=liminfy_o 3|AN[L, N]| (lower density of A),
e d(A):=limsupy_,.. x|AN[1,N]| (upper density of A).

If the lower and the upper density of A coincide, their common value d(A) := d(A) =
d(A) is called the density of A. We also have:

" Conditions @, (]ED and () imply that Bnyi1[ln,mn] = Bn, n > 1.

15



e §(A) :=liminfy_, 00 ﬁ Y acAl<a<N L (lower logarithmic density of A),
o §(A) :=limsupy_, ., ﬁ Y acA1<a<N L (upper logarithmic density of A).

If the lower and the upper logarithmic density of A coincide, we set §(A) := §(A) =
d(A) (logarithmic density of A).
The following relations between the above notions are well-known:

(4) d(A) < 8(4) < §(4) < d(A),

2.6 Sets of multiples, #-free numbers and their density

For Z C N, let Mg := (JycpbZ and Fg := Z \ M. Sometimes, additional as-
sumptions are put on A.

Definition 2.24. We say that:
o A is coprime, if ged(b,b') =1 for b # b’ in B,
o ABis thin if ), . ,1/b < 400,
o P has light tails if limg o0 d (Uys ¢ DZ) = 0,
o % is taut [28] if for any b € &, we have §(Mz) > (Mg (1})-

Remark 2.24 (sece Chapter 0 in [28]). Let P(#) be the intersection of all sets
%' C N such that Mg = M. Then Mpg) = Mg. Moreover, P(#) is primitive
(i.e. no element of P(Z#) divides any other). Therefore, throughout the paper,
whenever 4 is arbitrary, we will tacitly assume that it is primitive.

Remark 2.25. Since d (U, x VZ) < 3, i 12,
A is thin = £ has light tails.

Definition 2.25. Following [28], we say that £ is Besicovitch if d(Mg) exists.
Clearly, this is equivalent to the existence of d(Fg).

Remark 2.26. Clearly, each finite £ is Besicovitch.

Recall that d(Mg) may not exist — the first counterexample was provided by
Besicovitch [7]. Recall also the result by Erdos:

Theorem 2.27 ([22]). 2 = {by : k > 1} is Besicovitch if and only if
. : 1
Oilgo llrgso%p - 1 % ) I[0,n] NORZ N Fry,,... 53| = 0.
n+—¢ <N

On the other hand, we have the following result of Davenport and Erdos:

Theorem 2.28 ([14,[15]). For any B, the logarithmic density 6(Mg) of Mg exists.
Moreover,

(5) 5(Ms) = d(Ms) = lim d(Mpemosry).
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Remark 2.29. Formula (5] follows from the proof of Theorem from [I5] (see
also [28]). Notice that (5)) implies that 2 is Besicovitch if and only if

Kh_{nm d(Mezb>xy \ Mipezb<iy) = 0.

In particular,

A has light tails = £ is BesicovitchE
We will need the following consequence of Theorem [2:28}
Corollary 2.30. Let o7 = o4y Ualo U... Then

0 My)=dMy) = I}i_l)nooé(Mﬂluﬂzu---udK)-

Proof. Let

A(e/) = lim §(Mau.veric)-

Clearly, A(«7) < §(M ). We will show now that (M) < A(«). For K > 1, let
Ny be such that
{aed  a<K}CahU---Udy,.

Using Theorem [2.28] we obtain
5(/\4%) = KIEHOO‘S(M{aeﬂ:agK}) < Khinooé(MWlU“‘U%Nx) = A(W)
This completes the proof. O

Remark 2.31 (Cf. Remark[2.29)). Let & = @/ UaAU. .. and suppose additionally
that the density of @/ U --- U & exists, for each K > 1. As a consequence of
Corollary [2:30] we obtain that & is Besicovitch if and only if

lim d(Mg \ Moy Uery) = 0.
K—oo

Definition 2.26. Following [28], we say that Z C N\ {1} is Behrend if (M z) = 1.

Remark 2.32. Clearly, any superset of a Behrend set that does not contain 1
remains Behrend. Moreover,

% is Behrend = % is Besicovitch.

Note also that by Theorem [2.28] 2 C N\ {1} is Behrend if and only if d(Mg) = 1.

Proposition 2.33 ([28], Corollary 0.14). o/ U A is Behrend if and only if at least
one of & and A is Behrend.

For B, a € N\ {1} let

b
() .
A (a) = {gcd(b,a) (b e 93}
Proposition 2.34 ([28], Theorem 0.8). Let a ¢ Mg. Then
d(Mzuay) > 6(Mz)
if and only if #'(a) is not Behrend.

12This follows also by Theorem ﬂ
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Proposition 2.35 (|28], Corollary 0.19). Z is taut if and only if it is primitive and
does not contain co/ with o C N\ {1} that is Behrend.

Corollary 2.36. Suppose that % is taut. If 6(Mgu(a}) = 6(Mz) then a € M.
Proof. Suppose that d(Mxug.y) = 6(Mgz) and a ¢ Mg. By Proposition

' (a) is Behrend. Since a has finitely many divisors, it follows by Proposition [2.33
that at least one of the sets

Hyla) = {Z :be Zand ged(b,a) = d} ;

where d | a, is Behrend. Moreover, d - }(a) C %. Notice that 1 ¢ %/(a). Indeed,
if 1 € #)(a) then d = ged(d, a) € A. In particular, d | a, i.e. a € Mg, which is not
possible by the choice of a. It follows by Proposition that Z cannot be taut.
This contradicts the assumptions and the result follows. O

The following is an immediate consequence of Proposition [2.35}
(6) A is taut = 2 is not Behrend, unless # = {1}.
Furthermore, notice that
(7) 2 has light tails (and is primitive) = 4 is taut.
Indeed, if £ is not taut, by Proposition we have that & D ¢« with & Behrend.
Moreover, given K > 1, there exists L = L(K, c¢) such that

c-{aed a>L}C U bZ.
b>K

But, in view of Proposition {a € & : a > L} is Behrend. It follows that
0(Ups 8Z) > 1/c for all K > 1, which means that % cannot have light tails. In
particular, we obtain

A is finite = A is taut.

2.7 Canonical odometer associated with %

To simplify the notation we will now restrict ourselves to the case when 4 is infinite
and we will denote the elements of & by by, k > 1 (if £ is finite similar objects can
be defined, with obvious changes).

Consider the compact Abelian group Gz = [[,~, Z/brZ, with the coordinate-
wise addition. The product topology on Gg is metrizable with a (bounded) metric
d given by

®) dg,g) = Y o 1% =5

2 1t gk — gil
Let P, be Haar measure of Gg, i.e. Pg,, = ®mZ/kalE| For n € Z, let
(9) ng = (n mod by,n mod bs,...) € Gg.
Denote by G the smallest closed subgroup of G that contains 14, i.e.

(10) G:={ng:neZ}CGgy.

BFor ¢ € N, Mgz, cz stands for the counting measure on Z/cZ.
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Remark 2.37. By its definition, G C G4 contains a dense cyclic subgroup, i.e. G
is monothetic and the homeomorphism

(11) Tg=g+1yh

yields a uniquely ergodic dynamical system (T, G) (with Haar measure PP as the only
invariant measure).

We will now provide another model of (T, G). First, given 1 < k < ¢, denote by
Tt Z/lem(by, ..., by, ..., 00)Z — Z/lem(by, ..., bg)Z
the natural homomorphism given, for each r € Z/lem(by, ..., by, ...,be)Z, by
(12) T e(r) = r mod lem(by, . . ., by).
Note that whenever 1 < k </ < m,
(13) Th,0 © Tom = Th,m-

Also, for each k > 1, we set
T = Tk k+1-

This yields an inductive system
Z/nZ 2 7 lem(by, b2)Z 2 ... 7 lem(by, ... bp)Z L

and we define

(14) G = I&HZ/ lem(by,...,b;)Z
=<g€ H Z/lem(by, ..., bk)Z : mi(gre1) = gg for each k > 1 5,
k>1

where g = (g1,92,...). Then G’ is closed and invariant under the coordinatewise
addition. Hence, G’ is Abelian, compact and metrizable, cf. . We denote by P’
Haar measure on G’. Note that in view of , for each n > 1, we have

(15) n := (n mod by,n mod lem(by, ba),...) € G,
in particular, 1 € G’. On G’, we also define a homeomorphism:
(16) Tg=g+1

Remark 2.38. Notice that if (g1, g2,...) € G’ then, since g, = ¢g; mod lem(by, . .., b;)
for j =1,...,k, we have

(9%, gks---) = (91,92,...) when k — oo.

It follows that {n : n € Z} is dense in G’ (and hence G’ is monothetic).

Lemma 2.39. The map W: {ng : n € Z} — G’ given by W(ng) = n extends
continuously to G in a unique way. Moreover, it yields a topological isomorphism of
the dynamical systems (T, G) and (T',G").
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Proof. Notice first that W is uniformly continuous (and equivariant). Indeed, for
any K > 1, such that if d(ng, mg) is sufficiently small then n = m mod by, for
1<k < K. It follows that n = m mod lem(by,...,b;) for 1 <k < K, i.e. d(n,m) is
small, provided that K is large. Therefore, W extends to a continuous map from G
to G'. Moreover, by Remark W: G — G’ is surjective.

It remains to show that W is injective. For this, it suffices to show that the map
n +— ng is also uniformly continuous. Fix K > 1. If d(n,m) is sufficiently small
then then n = m mod lem(by,...,b;) for 1 < k < K. Tt follows clearly that, for
1 <k < K, we have n = m mod by, i.e. d(ng,mg) is arbitrarily small, provided
that K is large. This completes the proof. O

Definition 2.27. We say that (T, G,P) is the canonical odometer associated to 2.
Remark 2.40. It follows by the proof of the above lemma that for g € G, we have

(17) W(g) = (g1 mod by, g mod by, .. .).

Example 2.41. When 4 is coprime then Z/lem(by,...,bx)Z =7Z/(by - ... biZ) is,
by the Chinese Remainder Theorem, canonically isomorphic to Z/b1Z x ... X Z/b,Z
via

j— (j mod by, ...,j mod bg),

so T corresponds to
proj: Z/Z x ... X LJbpZ X LfbjiaZ = Z)0 7 % ... x T/b,Z,

i.e. the projection on the k first coordinates. The inverse limit G’ given by the system
{proj;, : k > 1} is naturally identified with the direct product G . Moreover, 1 € G’
corresponds to 1, € Gg. It follows that G = Gz and thus the canonical odometer
associated to # is the same as in [I] whenever £ is coprime.

We will now show that the canonical odometer “outputs” Fg. Consider the
following sets:

(18) C:={(91,92,...) €G: forall k > 1, gp £ 0mod by},
(19) C" :={(91,92,...) € G’ : forall k > 1, g # 0 mod by }.

Remark 2.42. By Remark we have W (C') = C’. In particular, for each n € Z,
we have
ngeC < nel < necFyp

Let n € {0, 1}% be the sequence corresponding to 17,. Denote by X,, the subshift
generated by 7, i.e.

X, = {z € {0, 1}% : each block appearing on z appears on 7}.

In other words, X, = {S*n: k € Z}, where S stands for the shift transformation.
We call (S, X)) the ZB-free subshift.
Define ¢: G — {0,1}% by setting ¢(g)(n) := 1¢(T"g) and notice that

(20) o(g)(n) =1 <= n # —g, mod by, for all k > 1.
Finally, notice that

(21) poT =Sop.

and n = ¢(0,0,...).
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2.8 Admissibility

Definition 2.28 ([I,45]). We call a sequence z € {0, 1}2 admissible (or %-admissible)
if |[supp @ mod b| < b for each b € #. We denote by X g the subshift of admissible
sequences (it is easy to check that X g is closed and S-invariant). We call (S, X %)
the #B-admissible subshift.

Remark 2.43. Consider ¢ 5: Gg — {0, 1}Z given, for g € G %, by the same formula
as in (20). Arguing as in [I], we easily obtain ¢%(G%) C Xz. In particular, since
17 =92(0,0,...), we have n € X5, so

(22) X, C Xa.

Definition 2.29 (cf. [34], [37]). We say that X C {0,1}% is hereditary if for z € X
and y € {0,1}? with y < z (coordinatewise), we have y € X.

It follows directly from the definition of admissibility that
(23) X is hereditary.

Denote by Xn the smallest hereditary subshift containing X,. In view of
and ,
(24) X, Cc X, C Xgp.

Remark 2.44. Note that X4 is always uncountable. Indeed, for & infinite, it
suffices to notice that

A:={by-...by: k> 1} is B-admissible and infinite

and apply (the set {z € {0,1}? : 2 < 1,4} is uncountable). If Z = {by,..., b}
is finite then

A:={(by-...-b)" : £ > 1} is B-admissible and infinite

and we again apply .

For % infinite, coprime and thin we have X, = X4, see [I]. This need not
always be the case:

Example 2.45 (X, C )?,7 C Xg). Let Z := P, ie. B is the set of all primes.
Then Fg = {£1}. It follows that

X, ={S"n:neZ}uU{(...,0,0,0,...)},
X, ={S"n:neZyU{S"(...,0,1,0,...)} U{(...,0,0,0,...)}.

In particular, X, C )?77 and both these sets are countable. Moreover, by Re-

mark we have )Z'n C Xx.
Remark 2.46. The set % from Example is Behrend.

Example 2.47 ()~(,, C X4, see Remark . Suppose that 4,6 € & and b > 12

=

for b€ %\ {4,6}. Let y € {0,1}Z be such that

y[1,12] = 110011100110
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and y(n) =0 for all n € Z\ {1,2,...,12}. It follows that y € X5. We claim that
y & X,,. Suppose that

(25) y[1,12] < nlk, k + 11] for some k € Z.

Recall that 4 € A. Since y[1] = n[k] = y[2] = nlk + 1] = 1, it follows that 4 | k + 2
or 4 | k+ 3. Since y[7] = n[k + 6] = 1, we cannot have 4 | k + 2. Hence 4 | k + 3.
On the other hand, we have 6 € #. Since y[i + 1] = nlk+1i] =1 for i € {0,1,4, 5,6}
and k + 2 is odd, we have 6 | k + 3. It follows that 6 | k£ + 9, whence n[k + 9] = 0.
This, however, contradicts 1j

Remark 2.48. In Example[2.47] % can be chosen so that the density of Fg exists
and d(Fg) > 0. We will see in Sectlon I that, by i 1mposmg additional conditions on
% from this example, one can obtain both X77 = X C Xg and X,, C X C Xz
(and still have d(Fg) > 0), see Example

Example 2.49 (X, C )N(n = Xg, cf. Question page . Let # = {2}.
Then X, = {n,Sn} € )~(77. Take x € Xg. Then either supp x mod 2 C 2Z or
supp = mod 2 C 2Z+ 1. In other words, supp x mod 2 C supp 7 or supp * mod 2 C
supp S7, which means that X, = Xz.

The subshift (S, )~(,7) has some natural S-invariant subsets we will be interested
in. To study them, first, for 0 < s < b, k > 1, let
Y, 60, i= {2 € {0,1}* : |supp = mod by| = by, — s, for each k > 1},
Y25172527--- = {z € {0, 1} : |[supp = mod by| < by — s for each k > 1}

(if £ is finite, we define analogous subsets, with obvious changes).

Remark 2.50. For 0 < si < bg, k > 1, define auxiliary subsets

V! = {z € {0,1}” : |supp z mod by,| = by, — 53},
Y, = {z € {0,1}” : |supp = mod by| < by, — si}.

Then Y} = Y>ksk \Y>S 41 and YZ Y>Sk 41 are closed. Moreover

>SE?

_ k
Yoi 00, = m e Yoo 260, = ﬂ YZsk'
k>1 k>1

In particular, Yy, ,,.. is Borel and Y>, >, .. is closed, for any choice of 0 < 5, <
br, k > 1. Additionally, sets Yj, s,,.. are pairwise disjoint for different choices of
(s1,82,...) and

{0’1}2 = U Y;l,sQ,...-

0<sp<by,k>1

We will write Y for Y7 ;... Notice also that Y>,, >, .. is the smallest hereditary
subshift containing Y

1582,..-°

Following [43], we define a map 6: Y N X, — G by
(26) 0(y) =g < (supp y) N (byZ — gi) = 0 for each k > 1.
Notice that given y € Y and kg > 1, there exists N > 1 such that

(27) |(supp y) N[—N, N] mod by| = b, — 1 for 1 < k < kg
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Remark 2.51. Notice that
(28) (Y NX,) CG.

Indeed, take y € Y N )~(n. Given kg > 1, let N > 1 be such that holds
and let M € Z be such that y[-N,N] < n[-N + M,N + M]. It follows that
0(y) = (91,92, ..), where gp = —M mod by, for 1 < k < ko. This yields .

Remark 2.52. Note also that 8 is continuous. Indeed, given y € Y and kg > 1, let
N be such that holds. Then, if ¢’ € Y is sufficiently close to y then holds
for y’ as well. Therefore, if y,, — y in Y then 0(y,) — 6(y).

Remark 2.53. Note that:
e Tofl =008,
o foreachye Y N )N(n, y < o(0(y)),
e for any v € P(S,Y N X,), 6.(v) =P

(the first two properties follow by a direct calculation, the third one is a consequence
of the unique ergodicity of T').

2.9 Mirsky measure v,

Definition 2.30. The image v, := ¢.(IP) of P via ¢ is called the Mirsky measure
of A.

Remark 2.54 (cf. Example[2.41)). In the previous works [1l [36], the Mirsky measure
was defined in a different way. In the new notation, the “old Mirsky measure” was

given by vz := (p2)«(Pa,). We

valfo € 0.1 500 = 1) = T (1)

be %

(we follow word for word the proof of this formula from [I]). This implies that
v # 9(...000,.) if and only if Z is thin. An advantage of v, is that v, # d(._.0,0.0,...)
whenever # C N is not Behrend (see Remark . Moreover, we will see, that v,
plays a similar role and has similar properties as the “old Mirsky measure”. This is
why we call v, the Mirsky measure, not vg. Notice that if & is infinite, coprime
and thin, we have v, = vg.

3 Topological dynamics

3.1 Unique minimal subset (proof of Theorem [A)

In the square-free case, i.e. when # = {p? : p € P}, the subshift (5, X)) is prox-
imal [45]. In particular, by Remark it has a fixed point that yields the only
minimal subset of XUE It turns out that in general, even though there are %-free
subshifts (5, X,,) that are not proximalE the following holds:

1 This fixed point is the sequence (...,0,0,0,...).
15This happens, e.g., when 4 is finite, we will see more examples later (we give necessary and sufficient
conditions for proximality in Section [3.2.2)).
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Proposition 3.1. For any 4 C N, (S,X,)) has a unique minimal subset.

Proof. We apply Corollary .21 to = 1r,. Suppose first that on n there are
arbitrarily long blocks consisting of zeros. Since each zero appears on 1 with some
period, it follows that each such block appears on 7 with bounded gaps. Applying
Corollary to n = 17, we conclude that (S, X,)) has a unique minimal subset.
Suppose now that the length of blocks consisting of zeros that appear on 7 is
bounded. The sequence (B, ),>1 necessary to apply Corollary will be defined
inductively. Let Bj be the longest block of zeros appearing on 7. Suppose that
By, ..., B, are chosen. For n odd, let B,, 1 be the shortest possible block of the
form B,1l...1 that appears on 1. For n even, let B, be the longest possible
block of the form B,0...0 that appears on 7. Now, it suffices to show that each
B,,, for n even, appears on 7 with bounded gaps. Since each zero appears on n with
some period, it follows that the pattern of zeros from B,, appears on 7 along some
infinite arithmetic progression. Moreover, by the choice of By1 for k odd, it follows
that whenever we see the pattern of zeros from B, on 7, we actually see a copy of
block B,, at the same position on 7. The result follows by Corollary O

Proposition 3.2. For any 2 C N, there exists a Toeplitz sequence x € X,,.

Proof. Suppose first that on 7 there are arbitrarily long blocks consisting of zeros.
Then the Toeplitz sequence (...,0,0,0,...) is in X,,.

Suppose now that the length of blocks consisting of zeros that appear on 7 is
bounded. We will use Lemma and (By,)nen, (My)nen, (dn)neny will be con-
structed inductively. First, we will choose the longest block of zeros that appears on
7. Then we will extend it to the right and to the left by the shortest possible blocks
of ones such that the extended block appears on 7. Next, the obtained block will
be extended to the right and then to the left by the longest possible blocks of zeros,
so that the block we obtain still appears on 7. This procedure will be repeated to
obtain longer and longer blocks.

Let B; be the longest block of zeros that appears on 7. For convenience, we will
treat B; as an element of {0,1}[%511=1] (i.e. we set ¢ := 0, 71 := |B;| — 1). Then,
since n = 1r,, there exists d; € N such that B; appears on 7 periodically, with
period dj, i.e., for some m; € Z, we have

nlmy + kdy + €1, mq + kdy + r1] = By for each k € Z.

Suppose now that B, € {0, 1}l m, € Z, d, € Nfor 1 <n < 4ng+1 are chosen
so that @ and (]ED from Lemmahold for 1 <n < 4ng and from Lemma
holds for 1 < n < 4ng + 1. We will now define B,, € {0, 1}[5””'"], my € Z, d, € N
for 4ng +2 <n < 4ng + 5.

Let B4n0+2 € {0, 1}[24"0‘*'2’“"0+2]7 where €4n0+2 = €4n0+1 (and Tano+2 = €4n0+2 +
| Bang+2| — 1), be the shortest block of the form By,,4+11...1 that appears on 7
and begins at position map,+1 + Lang+1 + Kodan,+1 for some ko € Z, i.e.

n[m4no+2 + £4n0+27 m4n0+2 + T4n0+2] = B4’ng+27

where Mang+2 = Mang+1 + kodang+1- Then, clearly, dang41 | Mang+2 — Mang+1-
Moreover, by the definition of Byy,+2, we have

N[Mang+2 + lang+2 + kdang+1, Mang+2 + Tang+2 + kdang+1] = Bang+2
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for each k € Z, i.e. we may set dyny42 := dan,+1- This way, we have extended our
block Byy,+1 to the right by a block of ones.

The block Byp,+3 is defined in a similar way as Bin,+2, but now we extend
Bing 1o to the left. Let Byn,13 € {0,1}fano+8: im0 43l where 74p,13 = Tang+2 (and
ling+3 = Tang+3 — |Bang+3| + 1), be the shortest block of the form 1...1B4n 42
that appears on 7 and ends at position map,+2 +Tang+2 + kodan,+2 for some kg € Z,
i.e.

NMang+3 + Lang+3, Mang+3 + Tang+3] = Bing+3,

where Mang+3 = Mang+2 + kodang+2. Then, clearly, dangt2 | Mang+3 — Mang+2-
Moreover, by the definition of By,,+3, we have

N[Mang+3 + lang+3 + kdang+3, Mang+3 + Tang+3 + kdang+3] = Bang+3

for each k € Z, i.e. we may set dyny+3 := dan,+2. This way, we have extended our
block Byy,+2 to the left by a block of ones.

Let B4n0+4 S {0, 1}[Z‘I"O‘*"l’744"'0"'4]7 where €4n0+4 = €4n0+3 (and Tano+a = €4n0+4 +
| Bang+4| — 1), be the longest block of the form By,,430...0 that appears on 7 and
begins at position mupn,+3 + lang+3 + Kodan,+3 for some ko € Z, i.e.

NMang+4 + Lang+4, Mang+4 + Tang+4] = Bang44,

where Mang14a = Mang+s + kodang+s. Then, clearly, dangts | Mang+a — Mang+3-
Moreover, since each zero on 7 appears with some period, there exists dj,, ., such
that the pattern of zeros from By, 4 repeats on 7 periodically, with period dy,, . 4.
Thus, by taking dan, 4 := lem(dl,,, 14, dany+3), We obtain

NMang+4 + lang+4 + kdang+4, Mang+4 + Tang+4 + kdangta] = Bang+a

for each k € Z.

Finally, let Byn,+5 € {0, 1}[Z4no+5”"4no+5], where ryng+5 = Tang+4 (and lapy4s5 =
Tang+5 — | Bang+s| + 1), be the longest block of the form 0. ..0B4,,+4 that appears
on n and ends at position Mun,+4 + Tang+4 + kodan,+4 for some kg € Z, i.e.

N[Mang+5 + Lang+5, Mang+5 + Tang+5] = Bang+5,

where Mung15 = Mangta + kodang+a. Then, clearly dangya | Mang+s — Mangta-
Moreover, since each zero on 7 appears with some period, there exists dj,, .5 such
that the pattern of zeros from By, 15 repeats on 7 periodically, with period dj,, 5.
Thus, by taking dan, s := lem(dl,, 15, dany+4), We obtain

NMang+5 + lang+5 + kdang+5, Mang+5 + Tang+5 + kdang+5] = Bang+s
for each k € Z. O
Theorem [A]is an immediate consequence of Proposition 3.1 and Proposition [3.2]
Moreover, Corollary [T.4]follows from Theorem [A]and Remark[2.:20] By Corollary[I.5]

(S,X,) is minimal if and only if it is Toeplitz. In fact, even 7 may even happen to
be a Toeplitz sequence:

Example 3.3. Let % := {b;2' : i > 1}, where b; > 2 for i > 1. We will show that
7 is a Toeplitz sequence. Indeed, for each n € Z such that n(n) = 0, there is k,, > 1
such that n(n + jk,) = 0 for all j € Z. Let now n € Z be such that n(n) =1, i.e.

(29) n # 0 mod b;2° for each i > 1.
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Let m be odd, such that n = m2®. We claim that

(30) n(n+ jby ... 0,2°71) =1 for all j € Z.
Suppose not, so that for some iy, we have

(31) n+ jobr ... 020"t = Kobi02i° for some jo, Koy € Z.

Then iy < a; if not, by , 291 | n which is impossible. But now, again by ,
bi,2% | n which contradicts (29).

Remark 3.4. Notice that, by Proposition [3.25] it is easy to find % such that 7 is
a Toeplitz sequence that is not periodic.

Remark 3.5. Note that the Toeplitz sequence from Example is regularE S0,
in particular, (S, X,)) is minimal and uniquely ergodic. To show the regularity of 7,
consider d,, :=b; -...-b,2"T1. Consider two cases: s € Fg, s € Mg:

o If s € Mgy then b;2° | s for some i > 1. If i < n then s + d,Z C M.
Otherwise, we have 2" 1! | s.

o If s € Fyp, let m be odd, such that s = m - 2% Then, by , S+by-...-

bo2°T1Z C Fp. If a < n then clearly s + d,Z C Fg. Otherwise, we have
2ntl | s

It follows that if s € Z satisfies
(s +dpZ) N Mg # 0 and (s + d,Z) N Fg # 0,
then 27*! | 5. The proportion of such s in each integer interval of length d,, equals

(by ... b,)~! and tends to zero as n — co.

3.2 Proximality

We will now study the proximality of (S5, X,,). We will first show that for % pairwise
coprime and infinite, (S, )Z'n) is proximal. This implies, by Remark the prox-
imality of (S,X,). By the same token, if Xn’ C )Z'n then (S, )Z’,,/) and (S, X,/) are
both proximal. Our aim (see Theorem is to show that this is the only possible
way to obtain a proximal %'-free system (S, X,).

3.2.1 Coprime case

Proposition 3.6. If # C N is infinite and coprime then (S, )?n) s syndetically
prozimal. In particular, (S, X,) is syndetically prozimal.

Proof. By Corollary , it suffices to show that for any = € )?,, and € > 0 the set
(32) {neZ:dS"z,(...,0,0,0,...)) < e} is syndetic.
Fix x € X;,. For n € N and k > 1 there exists m = m,, j, € Z such that

zn,...,n+br-...cbp+k=1]<nm,....m+b-...-bp+k—1].

For the definition of a regular Toeplitz sequence, we refer the reader, e.g., to [18].
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By the Chinese Remainder Theorem, there exists a unique 0 < ig < by -... by —1
(io = ig(m,n)) such that

m+i0+j50m0dbj+1 fOI‘OSjSk—l’

ie. x(n+io+7) < nlmpk+io+j) =0for 0 <j <k—1. This yields and
completes the proof. O

As an immediate consequence of Proposition [3.6] and Remark we obtain
the following:

Corollary 3.7. For # C N infinite and coprime, the mazximal equicontinuous factor
of (SXN,XKN) is trivial for each N > 1.

3.2.2 General case (proof of Theorem

Definition 3.1. We say that % C N satisfies condition (Aul), whenever

Au there exists infinite pairwise coprime &’ C Z.
( p D

Definition 3.2. We say that % C N satisfies condition (Tpyox), Whenever

(Tprox) for any k € N there exist bgk), ey b,(ck) € % such that
ged(0™, 60 | (j —4) forall 1 < i < j < k.

Theorem 3.8. Let 8 C N. The following conditions are equivalent:

(a) (S, Xa) is proximal,

(b) (S, )~(n) is prozimal,

(¢) (S,Xy) is prozimal,

(d) (...,0,0,0,...) € X,,

(e) B satisfies ,

(f) for any choice of q1,...,qm > 1, m > 1, we have B ¢ U/, Zq;,
(4) B satisfies (&),

(h) Fe does not contain an infinite arithmetic progression.

Clearly, Theorem[Blis an immediate consequence of Theorem 3.8 and Remark[2.11]
Before we prove Theorem [3.8] we concentrate on its consequences.

Remark 3.9. Clearly, if (Au) holds then n < n’, whence X,, C )Z'n/.
By Remark [3.9] and Theorem we have the following:
Corollary 3.10. If (S, X,) is prozimal then X, C )?,,/ with %' coprime.

Remark 3.11. Recall (see [I]) that if # is coprime and thin then X, = Xz. In
particular, X, is hereditary.

By the implication @ = in Theorem we obtain the following:
Corollary 3.12. If X, is hereditary then (S, X,,) is prozimal.
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Question 3.13 (Cf. Example . Is it possible that X, C Xn = Xg with X,

proximal?

The proof of Theorem [3.8 will be divided into several observations.
Remark 3.14. Since X, C )?n C Xz, by Remark we have @ = (]ED = .
Lemma 3.15. We have = @

Proof. If (S,X,) is proximal then, by Remark it has a fixed point, i.e. either
(...,0,0,0,...) € X, or (...,1,1,1,...) € X,,. The latter of the two is impossible,
since each zero on 7 appears on n with bounded gaps and the claim follows. O

Lemma 3.16. We have @ = .

Proof. If (...,0,0,0,...) € X,, then there are arbitrarily long blocks of consecutive
zeros on 7). In other words, given k > 1, we can solve the systems of congruences:

to+i—1=0modbs,, 1 <i< k.

Suppose that d | (bs,;,bs;). Then d |ig+i—1and d |ig+j — 1, whence d | (j — ).
This completes the proof. O

Lemma 3.17. We have @ = @

Proof. Suppose that @ holds. Without loss of generality, we can assume that
{q1,.-.,qm} is coprime (indeed, we can always find a coprime set {q},...,q,,} such

that U~ Z C U!—, ¢/Z). Let k > ¢i ... g and choose bgk), cee b,(ik) € A satistying

condition . Fori=1,...,m, let
M;={1<t<k:b" eqz}.

Then, by (Tprox)), gi | (€ +¢') for any ¢, ¢ € M;, whence

(33) M; C ¢;Z + r; for some r;.

For i =1,...,m, choose a natural number 7} such that ¢; t (r; —r}). By the Chinese
Remainder Theorem there exists a natural number j < q; ... ¢, (note that j < k)
such that j = v, mod ¢; for i = 1,...,m. By , it follows that j ¢ M; for any
i=1,...,m. It follows that b") ¢ G ZU... U guZ. O

Lemma 3.18. We have @) = .

Proof. We will proceed inductively. Fix ¢; € . Suppose that for k£ > 1 we have
found pairwise coprime subset {c1,...,cx} C B. Let {q1,...,qm} be the set of all
prime divisors of ¢1,...,cx. Then any cxy1 € B\ (@1 ZU...UqnZ) is coprime with
each of ¢1,...,cg. O

Remark 3.19. If holds then, by Remark 3.9L we have X, C )N(,,/. By Proposi-
tion X,y is proximal. Hence, by Remark [2.13, we obtain = @

Remark 3.20. Condition @ implies that Mg contains intervals of integers of
arbitrary length. Hence @ = .
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Lemma 3.21. We have = @

Proof. Suppose that @ does not hold and let ¢q,...,qx, kK > 1, be such that & C
Ule Zq;. Let M :=q; - ... q. We claim that

btIM + 1 for every b€ A, ie. M + 1 € Fgp.

Indeed, given b € A, there exists ¢; (1 < ¢ < k) such that ¢; | b. If b | £M + 1 then
q; | M + 1. This is however impossible since ¢; | M. O

The proof of Theorem [3.8]is complete in view of the above remarks and lemmas.
We will give now one more characterization of proximal (S, X,), in terms of the
maximal equicontinuous factor (cf. Corollary :

Theorem 3.22. (S, X,)) is prozimal if and only if its mazimal equicontinuous factor
is trivial.

For the proof, we will need the following lemma:

Lemma 3.23. Letd > 1 and let A C {0,1,...,d — 1}. Suppose that for any k > 1
there exist ni, € Z and 0 < r, < d — 1 such that

(34) A+md+ry C Fg forng <m < ng + k.

Then, for any 0 <1 <d — 1 such that there are infinitely many k > 1 with r, =7,
we have

(35) A+Zd+r C Fap.

Proof. Let 0 < r < d—1 be such that there are infinitely many k& > 1 satisfying
with r, =7, i.e.

(36) A+md+r C Fgp for n, <m <ny+k.

Suppose that fails. Then, for some a € A and k € Z, we have a+kd+r € M.
In other words, for some b € %, we have b | a + kd 4+ r. It follows that for any ¢ € Z

bla+ (k+eb)d+r.
This, however, contradicts (36)). O

Proof of Theorem[3.29 Since proximality implies that the maximal equicontinuous
factor is trivial, we only need to show the converse implication. Suppose that (.S, X,;)
is not proximal. Let d > 1 be the smallest number such that F4 contains an infinite
arithmetic progression with difference d (such d exists by Theorem (). Let
F c {0,...,d — 1} be the maximal set such that

(37) F+7dC Fyp

(F # 0 by the definition of d). We claim that for any y € X,,, there exists a unique
0 < r < d such that

(38) yla+md+r)=1foralla € F and m € Z.
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Since y € X,, it follows by (37) that such r exists and we only need to show
uniqueness. Suppose that holds for r = ry, 7y, where d 1 (11 — r3), i.e., we have

yla+md)=1foralla € (F+r1)U(F +rz) and m € Z.

Since y € X,, each block from y appears on 7 and it follows that the assump-
tions of Lemma hold for A := (F + r1) U (F + r2) mod d. Therefore, using

additionally ,
[FU(F+71+s)U(F +re+s)] +Zd C Fg for some s.
Note that by the minimality of d, we have F'+4 # F mod d for 0 < i < d. Therefore,
FCFUWF+r1+s)U(F+rs+s).

This contradicts the maximality of F' and thus indeed implies the uniqueness of r.
It follows that

d—1
X, =Jx{", x{?={ye X, : @8) holds for r =i}
=0

is a decomposition of X, into d pairwise disjoint sets. Clearly, each Xéi) is closed and
SX#) = X,(f*l), where Xy(fl) = Xédil). It follows that (S, X,) has the (minimal)
rotation on d points as a topological factor, which completes the proof. O

The following natural question arises:

Question 3.24. Given &4 C N, what is the maximal equicontinuous factor of
(5, Xy)?

We provide below the answer to Question [3:24] in the simplest case of finite sets
A, where (S,X,) turns out to be equicontinuous. Moreover, we will show that if
X, = X, NY then (T,G) defined as in Section is the maximal equicontinuous
factor of (S, X,).

We will need the following well-known fact:

Let m,a,b € N. The equation ax = b mod m has a solution in

(39) x € Z if and only if ged(m, a) | b.

Proposition 3.25. Let Z C N. Then A is finite if and only if n is periodic, with
the minimal period m = lcm(%’)m

Proof. If % is finite then 7 is periodic with period lem #. Suppose now that 7 is
periodic and denote its period by m. Let 1 <r; <19 < ... <7s < m be such that
(supp n) N[, m]={1,...,m}\ {r1,...,7s}. Then

S

U vz =Jmz+r).

beB =1
For 1 < £ < s, let dy := ged(m, ). By the definition of dy,

(40) deZ. DO mZ + 1y

1"Recall that we assume that % is primitive.
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Then, by , there exists k; € Z such that r¢ky = dy mod m. Since n(ry) = 0, we
have n(reke) = 0, which, by periodicity, yields n(dy) = 0. This and imply

(41) vz = U dyZ.
(=1

beAB

Fix b € 4. It follows from that dy | b for some 1 < £ < s. On the other
hand, there exists b’ € % such that V' | dy. By the primitivity of &, we have V' | b,
whence b = b and dp = b. We conclude that # C {d; : 1 < /¢ < s}, i.e. £ is finite.
Moreover, since dy | m for 1 < ¢ < s, we obtain b | m for each b € #. This yields
lem (%) | m. O

As an immediate consequence of Proposition [3.25] we have:
Corollary 3.26. If % is finite then (S,X,) is finite whence equicontinuous.

Proposition 3.27. Suppose that X,, = X,,NY. Then (T,G) is the mazimal equicon-
tinuous factor of (S, X,). In particular, if we additionally assume that & is infinite
then the mazimal equicontinuous factor of (S, X)) is infinite.

Proof. Notice first that, by Remark@ 0: X, — G is well-defined and continuous.
Thus, (T, G) is an equicontinuous factor of (S5, X,,) and we only need to show its
maximality. Notice that the (discrete) spectrum of the maximal equicontinuous
factor of (S, X,)) is alwyas included in the discrete part of the spectrum of (S, X, v)
for any v € P(S, X,,). Therefore, to prove the maximality of (7', G), it suffices to find
v such that the discrete part of the spectrum of (S, X, v) agrees with the (discrete)
spectrum of (T, G,P). We have

(T,G,P) % (S, X,,v) S (T, G, P).

It follows by the coalescence of (T, G,P) that ¢ yields an isomorphism of (T, G,P)
and (S, X, v;). In particular, the (discrete) spectrum of (T, G,P) is the same as the
(discrete) spectrum of (5, X,,, ;) and the claim follows. O

and it follows by , Remark and by Corollary t}21ab€ n € Y. Moreover,
by the minimality of (S,X,), for each 0 < s < by, k > 1, we have that either
X,nYE =X, or X,NnYE =0. Since n €Y, it follows that X, N Y% =0
whenever s; > 2. Since X, = X;, N (U<, <, YF) for each k > 1, it follows that
X, = X,,NY. By Proposition the associated canonical odometer (7', G) is the
maximal equicontinuous factor of (S, X,,).

Example 3.28. Let £ be as in Example Then > ;o) 55 < D1 4 is thin

3.3 Transitivity
3.3.1 Transitivity of (5, Xn) and (5, X )

Proposition 3.29. For any % C N such that the support of n is infinite, the
following conditions are equivalent:

(a) (S, 5(77) is transitive.

(b) (S, )Z'n) does not have open wandering sets of positive diameter.
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(¢) For any block B that appears on 1 there exists a block B’ > B (coordinatewise)
that appears on m infinitely often.

The implication @ = (]ED from Proposition is a consequence of the following
general lemma:

Lemma 3.30. Let (T, X) be a topological dynamical system with a transitive point
x € X. Then (T, X) has no open wandering sets of positive diameter.

Proof. Let U be an open wandering set for (T, X). Then the orbit of z visits U
exactly once. It follows that U must be a singleton. O

Proof of Proposition[3.29. In view of Lemma [3.30] it remains to show (b) = (d) =
@. We will prove first (]E[) = . Suppose that (c) does not hold. Let B be a block
on 7 such that all blocks B’ > B appear on 7 (at most) finitely many times. Let

K :=min{k € Z : n[k,k + |B| — 1] > B},
L:=max{k+|B| —1:nk,k+|B| —1] > B}

(in particular, blocks B’ > B do not appear on 1 outside n[K, L]). We claim that,
for any z € )Z'm the block C := n[K, L] appears on x at most once. Suppose that,
for some x € )?,7, C appears on z twice. It follows that a block of the form C'DC”,
where C’,C" > C, appears on 7 and this is impossible by the choice of C. Thus,
the cylinder set B

C={reX, z[K L=C}

corresponding to C' is an open wandering set. Clearly, we have n € C. Moreover,
since the support of 7 is infinite, we also have 2 € C for z given by x(n) = n(n)
for n € [K, L], z(n) = 0 otherwise. It follows that |C| > 2, i.e. the diameter of C is
positive and we conclude that (]ED fails.

We will now prove (d) = @ By Remark given blocks B’, C’ that appear on
nand B < B',C < (', it suffices to show that there exists x € )~(,, such that both
B and C appear on z. It follows by () that there exists B” > B’ that appears on 7
infinitely often. Therefore for some block D, a block of the form C"DB" or a block
of the form B” DC" appears on 7. Hence, z := (...,0,0,B,0,...,0,C,0,0,...) € X,

——

| D]
and the result follows. O

As an immediate consequence of Proposition [3.29] we obtain the following:
Corollary 3.31. Let 8 C N be such that n is recurrent. Then (S, )?,,) is transitive.

In particular, by Corollary Theorem and Theorem [G] we have the
following:

Corollary 3.32. The subshift (.S, )?,]) is transitive whenever 2 has light tails.
Remark 3.33. Let £ be as in Example ie. B=2. Then (S, )},7) fails to be

transitive.

Clearly, if X,, = X5 then (S, X ) is transitivem We will now give an example,
where (S, X ) fails to be transitive.

8Recall that X, = Xz holds for # satisfying .
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Example 3.34. Let % be as in Example ie. 4,6 € Band b > 12 for b €
B\ {4,6}. Let

A; := 110011100110,
As := 011101010111 = [0, 11].

Suppose that both A, Ay appear on z € {0,1}2. We will show that z & Xgz.
Indeed, we have

Z/AZ \ (supp A; mod 4) = {3},
Z/AZ \ (supp Az mod 4) = {0}.

Let k,¢ € Z be such that x[k, k + 11] = A; and z[¢, ¢+ 11] = As. Tt follows that if
x is {4}-admissible then 4 | kK + 3 + ¢. In a similar way, if = is {6}-admissible then
6] k4 2+ £. Since one of the numbers k + 3 + ¢ and k + 2 + ¢ is odd, we conclude
that = is not {4, 6}-admissible, so all the more, it is not A-admissible.

3.3.2 (8 x8,X,xX,) is not transitive

Our main goal in this section is to show that (S x S, X,, x X, ) is not transitive. As
a consequence, we will have the following whenever (S, X,)) is proximal:

e (5, X,) is transitive with trivial maximal equicontinuous factor,
o (S x8,X, xX,;) has trivial equicontinuous factor, but it is not transitive.

Analogous phenomenon is impossible in ergodic theory. Our main tool is the follow-
ing result:

Proposition 3.35. (S5, X)) has a non-trivial topological joining with (T, G).

Proof. Let
N = OTXS(Qv 77)7

where 0 = (0,0,...), i.e. N is the closure of the graph of ¢ along the orbit of
0 (indeed, we have S"n = S"p(0) = ©(T™0)). Since the orbit of 0 under T is
dense in G' and the orbit of 7 under S is dense in X,, it follows that N has full
projection on both coordinates. Moreover, N is closed and T x S-invariant. It
remains to show that N # G x X,. Take (...,0,0,0,...) # =z € X,. We claim
that {g € G : (9,2) € N} # G. Indeed, let kg € Z be such that z(ky) = 1 and
suppose that (T x S™)(0,7) = (g,x). Then S™n — x, whence, for i sufficiently
large, n(ko + n;) = S™n(ke) = z(ko) = 1. It follows that n; + kg € Fa, ie.
n; + kg # 0mod by for each & > 1. On the other hand, we have T™0 — g,
ie. (ng,ng...) = (91,92,...). Thus, g # —ko mod by for each k > 1. Hence,
{9€G:(g,2) e N} #G for  # (...,0,0,0,...), which completes the proof. O

Remark 3.36. Suppose that % is taut and 1 ¢ . By Corollary ney,ie.
for each k > 1, we have Fz mod b, = (Z/biZ) \ {0}. It follows by the above proof
that {g € G : (9,m) € N} = {0}. In a similar way, if 2 € Y then {g € G : (g9,2) € N}
is a singleton, in particular, for each n € Z, the set {g € G : (¢9,5™n) € N} is a
singleton.

Corollary 3.37. (S x S, X, x X,)) is not transitive.
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Proof. In view of Proposition we can use the theorem about disjointness of
topologically weakly mixing systems with (minimal) equicontinuous systems (see
Thm. I1.3 in [24]). O

4 Tautness

4.1 7 is quasi-generic for v, (proof of Proposition
Theorem 4.1. Given # C N, let (Ny) be such that

1
d(Mz) LN N M.

= lim
k—o0
Then n is quasi-generic for v, along (Ny). In particular, if % is Besicovitch then n

is generic for vy).

Proof. To simplify the notation, we will only deal with the (most involved) case
when 4 is infinite. According to [I], by a pure measure theory argument, we only
need to prove that

1 _
Y e (T70) — (e (4)
ko<,

for each A = {x € {0,1}? : 2(js) = 0,s = 1,...,r}, j1 < --- < jp,7 > 1. Recall
that
C={(g1,92,...) € G: gr £ 0mod by, for k > 1}

and, for K > 1, define
Cx :={(91,92,..-) € G: g Z0mod by for 1 <k < K}.

Then each C is clopen and Ck \, C when K — oo. We have
e N A) =T C,
s=1

whence

(42) (T 7°Cx co ' (A) c (T Ciul T (C\ CR).
s=1

s=1 s=1

Moreover, since 1r_ 7-iscg is continuous, by the unique ergodicity of T in Exam-
ple 2.3 we have

1 N i e
(43) N, Z Inr_, 7-iscg (T0) %P(HT 7 Ck)
n<Ng s=1

and, given € > 0, for K sufficiently large, we have

(44) P( ﬂ T77:Cf) > P( ﬂ T7:C°) — e.

s=1 s=1
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Notice that
TnQECC\Cf( < nEM,@\M{bl _____ br}-

By Theorem [2:28] if K is large enough then

bic}) = d(Mag) — &

,,,,,

Therefore, and by the choice of (Ny),

. 1 n
(45) lim sup — Z Lyr_ (ce\oe)(T"0) <e.

k—o00 k n<Nj

Putting together , , and completes the proof. O
Remark 4.2. Notice that by Theorem [{.1] we have

vn({2 € 0,1}% : 2(0) = 1}) = lim Nik|{1 <n<Ny:inn) =1} = d(Fa).

k—o0

It follows immediately that % is Behrend if and only if v, = (. 0.00,..)-

By Theorem if a block does not appear on 7 then the Mirsky measure of the
corresponding cylinder set is zero. As a consequence, we obtain:

Corollary 4.3. v,(X,) = 1.
In view of Theorem [I.1] and Corollary [£.3] Proposition [E] has been proved.

Remark 4.4. As an immediate consequence of Theorem we have
d(Fz) >0 <= vy #6(...000,.)-

In particular, it follows by @ that v, # 0(...0,0,0,...) Whenever # # {1} is taut.

4.2 Tautness and Mirsky measures (Theorem |C|— first steps)
In this section our main goal is to prove the following:

Theorem 4.5. For each B C N, there exists a taut set ' C N, such that Fg C Fep
and v, = Van

In course of the construction of %’ and to prove that %’ satisfies the required
properties, we will use the following general lemmas (they are easy consequences of

Proposition and Proposition [2.35):

Lemma 4.6. Suppose that 8 C N is primitive. Then A is taut if and only if B
there exists a cofinite subset of A that is taut.

Proof. Let 8 C N be primitive. It suffices to show that if £\ {b} is taut for some
b € & then £ is taut. Suppose that £ fails to be taut. By Proposition [2.35]
there exist ¢ € N and a Behrend set «7 such that ¢/ C #A. Then co/’ C A\ {b},
where &’ = &/ \ {b/c} C and &/’ is Behrend by Proposition Applying again
Proposition we conclude that £ \ {b} also fails to be taut. O

19We will see later that, in fact, the equality v, = v,y determines %', cf. Corollary m
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Lemma 4.7. Suppose that  C N is primitive. If B is not taut then, for some
c €N, the set

(46) %::{i:beﬂandcﬂ)}

is Behrend.

Proof. Clearly, for any ¢ € N, we have cf. C %, where o7, (possibly empty) is as
in ([46). By Proposition we have

C:={ceN: 0524’ C 2 for some Behrend set @4’} #0

and, for any ¢ € C, we have @] C 4., whence <7, is Behrend. This completes the
proof. O

Lemma 4.8. Let B1,%B> C N be disjoint and such that B := B U B> is primitive.
Then A is taut if and only if both 1 and Py are taut.

Proof. 1f ; is not taut for some ¢ € {1,2} then, by Proposition there exist c €
N and a Behrend set o such that co/ C %; C %. Applying again Proposition [2.35]
we deduce that # also fails to be taut. On the other hand, if & is not taut then,
by Proposition[2.35] there exist ¢ € N and a Behrend set &7 such that c&/ C 2. Let

m:{b:be,%i},il,Q.
c

Clearly, & = o U a%h. Moreover, by Proposition «7; is Behrend for some
i € {1,2}. We obtain ¢ C %; for this ¢ and, by Proposition we conclude
that %; fails to be taut. O

Construction. We may assume without loss of generality that 2 is primitive

(cf. Remark [2.24).
Step 0. If1 e A, weset B :={1}.

Step 1. Suppose now that 1 ¢ % and suppose that £ is not taut. Let ¢; € N be
the smallest natural number such that

b

' ::{:be%’andclb}
1

is Behrend (such ¢; exists by Lemma [4.7). By the definition of <7, we have % \

615271 =X \ 61Z. Let

(47) B = (B\ca1Z)U{ci}y = (B\ ") U{e}).

We claim that %! is primitive. Indeed, if this is not the case then, by the primitivity
of A, for some b € A\ c1Z, we have b | ¢; or ¢; | b. The latter is impossible for
b € c17Z, whence b | ¢;. This implies b | cia; € £ for any a; € «/'. By the
primitivity of 4, it follows that b = c¢ya for infinitely many a1, which is impossible
and we obtain that #' is indeed primitive. If &' is taut, we stop the procedure
here and set &' := %'. Otherwise, we continue.
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Step 2. If #' is not taut then, by Lemma P\ 17 is not taut. Let co € N
be the smallest number such that

o? = {b:bE%’\chandcﬂb}

C2

is Behrend (such ¢y exists by Lemma . Note that (by the definition of ¢; and
CQ)

(48) co>cyand co € 17

(if ¢1 | co then c2ZN (B \ c1Z) = 0). Moreover, B\ (c1ZUc2Z) = B\ (c1. 1 Ucaa??).
Let

B = (B\ (17U 7)) U{er, e} = (B\ (1.9 Uca??)) U ey, ca}

We claim that %2 is primitive. Indeed, if this is not the case then, by the primitivity
of 2" and by (48], for some b € B\ (c1Z U c2Z), we have b | ¢z or ¢z | b. The latter
is impossible for b ¢ 27, whence b | co. This implies b | cpas for any ap € &72.
By the primitivity of 4, it follows that b = csao for infinitely many ao, which is
impossible and we obtain that %2 is indeed primitive. If %2 is taut, we stop here
and set %’ := %2. Otherwise we continue our construction in a similar way.

Step n. Suppose that from the previous step we have
B = (B\ (LU UcnrZ)Ufer,. .. cno1)
=(B\ (aFd'U---Uc, 17" )N U{er,...,cn 1}
that is primitive but not taut. Then, by Lemma [£.6] #\ (c1Z U --- U ¢,—1Z) is not

taut. Let ¢,, € N be the smallest number such that

A" = {b:be,%’\(qZUn-Ucan) andcn|b}

Cn

is Behrend (such ¢,, exists by Lemma. Note that (by the definition of ¢y, ..., ¢;,)

(49) Cn>cpogand ¢, € 1 ZU---Uc, 17.
Moreover,
(50) B\ (1ZU---UcpyZ) =B\ (P U---Uc, ™).
Let

B =B\ (1ZU---Uc,Z)U{cr,...,cn
. Ve )Ufer,- s en)

=B\ (' U---Ucp™)U{c,...,cn}

Again, 9" is primitive. If %" is taut, we stop the procedure and set %’ := %"
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Step co. If $" is not taut for all n > 1, we set

52) B =(B\|J ) Ufcn:n>1}=(B\ |J en@™)U{cn:n>1},

n>1 n>1

where the above equality follows from ‘ Note that for any b, b’ € £’ there exists
n > 1 with b,b' € #™. Therefore, by the primitivity of 4™, n > 1, also %’ is
primitive.

From now on, for the sake of readability, we will restrict ourselves to the case

when %' is defined by (52) 7
Remark 4.9. It follows by that

B=(2\|Jcz)U | cn™.
n>1 n>1
Therefore, Mg C Mg . Moreover, ' < n and )Z'n/ C )Z'n.
Lemma 4.10. £’ is taut.
Proof. Recall that %’ is primitive. In view of Lemma H, it suffices to show that

B\ U,>1 cnZ and {c, : n > 1} are taut. Suppose that Z \ |J,~; cnZ fails to be
taut. Then, by Proposition for some ¢ € N and a Behrend set <7, we have

cd C B\ Uan.

n>1
Therefore, for any n > 1,
cd C B\ (1ZU---Uc,Z).

By the definition of ¢,41, we obtain ¢ > ¢,41. Since n > 1 is arbitrary and the
sequence (cp)n>1 is strictly increasing, this yields a contradiction.

Suppose now that ¢ := {c, : n > 1} fails to be taut. Then, for some ng > 1, we
have

d(Mg) = (M (e, 1)
Note that by , we have
Cny & U (A
n#ng

Therefore, by Proposition [2.34]

c
— is Behrend.
{gcd(cn,cno) n;«éno} is Behren
We have
Cin'n;én = U cn :n # no, ged(cn, eny) = d
ng( ) 0 — d . 0,8 nybng) — Ung (-

Cn, Cny no

dng |Cn0

29This is the most involved case. When % = %™ for some n > 1, the proof goes along the same lines,
with some simplifications.
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It follows by Proposition that at least one of the sets in the union above is
Behrend. Denote this set by <7 (d,,,) and, for m > ng, define

(Q{m = {dc’ﬂ n Z m7ng(c7l7Cn0) = dno} :

no

Since each 7, differs from ﬂfdno by at most finitely many elements, it follows by
Proposition that <7, is Behrend for m > ng. Let

Ay = U ;7:()&7”

n>m
ged(cn sCng ):dno

Using Theorem Corollary and the fact that /™ is Behrend, we obtain

6(Mg¢7/n) = I(lgn 6<MU m<n<K dan d")
> gcd(cnjcng):dno ©

= lim ¢

M; . ):5/\4 =1
K—o0 ( {m:"LSHSKngd(Cnvcno)zdno} ( ”Q{m) ’

since ¢, is Behrend (the sets @™ are the same as in the construction of %’). By
the definition of &7/, and /™, n > m > ng, it follows that

dny iy, C | ) enst™ C B\ | ) cnZ.

n>m n<m

Moreover, by the definition of ¢,,, it follows that d,, > ¢, which is impossible as
m > ng is arbitrary. This completes the proof. O

Lemma 4.11. We have v, = v,y.

Proof. We will show first that d(Mg) = d(Mg). Let

=B\ | e, = cr1 /¥ for k > 2,

n>1
o] = RB\ U cnZy, ) = {ck_1} for k > 2.
n>1
Then
(53) B =] pand B = | | o,
n>1 n>1

Since each of the sets &%, k > 1, is Behrend, we have
(54) (M0 verie) = 6(Megpi.Lary, ) for each K > 1.
It follows by , and by Corollary that
dMz) =6(Mgz) = lim d(Mau-vwi)
= lim 6(Mdllu...ugg}/<) =0(Mgm)=dMag).

K—oo
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Moreover, since Mg C Mg, it follows that whenever (Ny)g>1 satisfies

. 1
Jim EIM@/ N[1, Ni]| = d(Ma),
then

1
lim — [ M N [1, Ni]| = d(Ma).
Ng,

k—o0

Since n and 7’ differ, along (Ng)k>1, on a subset of zero density, it follows by The-
orem that n and ' are generic along (Nj)g>1 for the same measure, ie. v, =
Uyt O

Theorem [£5] follows by Lemma and Lemma

4.3 Different classes of #-free numbers

In Section [2.6] we defined several classes of %-free numbers and described some
basic relations between them. In particular, we showed that

P is thin = % has light tails
and
2 has light tails (and is primitive) = 4 is taut.

We will continue now this discussion. In particular, we will show that the implica-
tions converse to the above do not hold. The relations between various classes of
Z-free numbers for primitive 8 C N are summarized in this diagram (all depicted

regions are non-empty):

-

light tails
thin

Besicovitch

Remark 4.12. Let 4, %’ C N be such that:
o for each b’ € A’ there exists b € & such that b |V,
e for each b € # there exists b’ € #’ such that b | .

Then, clearly, Fg C Fg . Suppose additionally that Z has light tails and for each
b e P the set {b € B :b| b} is finite. Then, given K > 1, there exists Ng > 1
such that

J

ifbe B,6' € #,b|b and b’ > Nk then b > K.

U vzc |z

b’>Ng b>K

It follows that
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Therefore, if % has light tails then also %’ has light tails. In particular, this applies
when 4 is thin (see Example below).

Example 4.13 (4 has light tails % 2 is thin). Let (¢n)n>1 be a thin sequence
of primes, i.e., Zn21 qi < 4o00. We arrange the remaining primes into countably

many finite pairwise disjoint sets of the form {pn 1,Pn.2,--.,Pn.k, } such that
1 1 1
— ...+ 2 qn
pn,l pn,2 pn,kn

for any n. Let # := {q.pn; :n € N,j =1,...,k,}. By Remark 2 has light
tails. We will show now that 4 is not thin. Indeed,

Zi:Z( 1 + 1 bt ! >>Zl=+oo.

be n>1 dnPn,1 qnPn,2 4nPn,k,, 1

Remark 4.14. Notice that % from Example is not coprime (gnpn,1 and ¢,pn 2
are clearly not coprime). This is not surprising — if & is coprime then it has light
tails if and only if it is thin (indeed, in the coprime case the density of Fg exists and
o s 1 . e e

it is equal [, (1 — 5-), see, e.g., [28]). Note however that % above is primitive.
Remark 4.15. Let % be as in Example It follows by Remark [£.4] that v, #
0(...,0,0,0,...)-

Proposition 4.16. Z is taut = % is Besicovitch.

In the proof, we will use the following lemma:

Lemma 4.17. Let # C N and let ' be as in the proof of Theorem [[.5. Then %
1s Besicovitch whenever %' is Besicovitch.

Proof. Recall that in the notation from the proof of Theorem [£.5] we have

B=(B\|Jen") U o™

n>1 n>1

and
B = (B \ U cn ™) U {cy, :n > 1}
n>1
It follows by Theorem by the fact that the sets &/™ for n > 1 are Behrend and
by Corollary that we have

d(Mgz) = i O(M(B\U, 2y 0™ U< s nFn)
- Klgnoo J(M(‘@\UnZI C"»‘Z{")U{CM”SK}) = d(M@’)

Therefore, is %’ is Besicovitch, we obtain d(Mg) = d(Mg ). On the other hand,
by Theorem [4.5 we have Mg C Mg and it follows that d(Mz) < d(Mg). We
obtain d(Mgz) < d(Mx) and conclude that also % must be Besicovitch. O

Proof of Proposition[{.16. Consider % that fails to be Besicovitch. By Lemma[d.17}
the associated set %’ defined as in also fails to be Besicovitch. Moreover, in
view of Lemma [4.10, %4’ is taut. O
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Since, as noted in Section[2.6] each % with light tails is automatically Besicovitch,
we have the following immediate consequence of Proposition

Corollary 4.18. £ is taut > B has light tails.

The rest of this section is devoted to the proof of the following more subtle result:
Theorem 4.19. £ is taut and Besicovitch %% A has light tails.

To prove Theorem we will need three lemmas.

Lemma 4.20. Let % be a union of finitely many arithmetic progressions with steps
diy...;d.. Then Z is a union of finitely many pairwise disjoint arithmetic progres-
stons of steps lem(dy,...,d,).

Proof. Let Z =J;_,(d;Z + a;). Notice that

(55) #z= | ﬁ(disz+ais)7

{i1,...;is yel i=1

where {i1,...,i,} € Iifand only if (,_, (d;, Z+a;,) # 0 and (d;Z+a;)N(\;—, (d;. Z+
a;,) = 0 for any j & {i1,...,is}. Moreover, the elements of the union in (55) are
pairwise disjoint. Finally, notice that if a € (;_,(ds,Z + a;,) then, by Lemma [5.13

S

((di.Z+ a;,) =lem(d;, ,....d; ) Z+a

=1
(56) .

= |J(lem(dy, ..., d)Z + llem(d;, ..., d;,) + a),
=0

where L = lem(dy, . ..,d,)/lem(d;,,...,d;,) and the elements of the union are
pairwise disjoint. U

Lemma 4.21. Assume that B,C C N are thin, with ged(b,c) = 1 for any b € B,
ceC. Let BC :={bc:be B,ce C}. Then

(57) d(Mpe) =dMpnNMe) =dMp)d(Me).
Proof. Since lem(b, ¢) = be for any b € B and ¢ € C, it follows that
Mpc = MpnMec.

It remains to show the right hand side equality in and it is enough to show
its validity for finite sets B, C' (since BC' is thin, it is Besicovtich and we can use
Theorem to pass to a limit).

Let B ={by,...,bn}, C ={c1,...,cn} and set

b i=1lem(by,...,by), ¢ :=1lecm(cy,...,cm).
Then, by Lemma [£.20]

Mp=|JWZ+7r), Mc=|J(¢Z+5)

rER seS
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for some finite sets R, S C N. Note that

R S
(58) aMe) = araey = B
Since ged (b, ) = 1, we get
(59) d(VZ+r)N(Z+s)) = b

for any r € R, s € S. Hence, by and , we obtain
_IRx S|

b

dMpnMc)=d( |J VZ+r)n(/Z+5s)) d(Mp)d(Mc)

(r,s)ERXS
and the result follows. O

Lemma 4.22. Let P C N be pairwise coprime with Zpep p = 4o0. For any
0 < B < 1 there exists a finite (resp. infinite and thin) set P' C P such that

B <dMp) < 1.
Proof. For n>1,let P, :={p € P:p <n}. By Theorem we have

lim d(./\/lp") = d(Mp) =1.

n—roo

Therefore, for n > 1 large enough, we have § < d(Mp,) < 1 and we can take

P’ := P, to obtain a finite set satisfying the assertion. To obtain an infinite set
P’ let the sequence (pp)m>1 C P be such that d(Mp,)+ 3", <1 Y/pm < 1 and take
P :=P,U{py, :m>1}. - O

Construction. Fix 0 <y < 1 and choose a sequence (7x)r>1 C (0,1) such that

[Ii>1 76 = v (for instance, v; = ~1/2"). Applying Lemma , we construct a
collection { By, Cy : k € N} of pairwise disjoint thin sets of primes such that

(60) Y < dMp,) <1fork>1

and

(61) - % <d(Me,) for k > 1.

Let

(62) P :=B1C1UB1BCoU---UB;y...B,C,U...

Notice that B1C; U B1BsCy U ---U By ... B,C,, is thin for any n € N.

Proof of Theorem[[.19 Let % be defined as in . We claim the following:
(a) A is Besicovitch,
(b) Z does not have light tails,
(c) £ is taut.
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We will first prove @ For k£ > m, we have
Mp, .. .B.c, CMp,. B, CMp. B,-

Thus,
(63) E(MUkzmﬂ Bi...B.C, \MB,..B,C,.) <dMsp,. B, \MB,..B,C,)
By Lemma and by , we get

d(Mg, ..B,,c,,) =dMs,. B, )dMc,) > dMsp, 5,)(1-—),
whence
(64) d(Msp,..B,, \ MB,..B,.c,) <
Using and (64), we obtain

d(My By..B:¢; \Mp,..B,.0,,) <

1
p—

oo
i=m+1

In view of Remark this implies that £ is Besicovitch.
We will now show (b). By Lemma [4.21] and (61)), we have

1
dMBp,..BCn) = V1 Ym(1l — E) —v>0

as m — 400, which yields (b).

It remains to prove (). Suppose that £ is not taut. Since £ is primitive, it
follows by Proposition that for some ¢ € N and a Behrend set &/ C N\ {1}, we
have c&/ C . Let m € N be such that ¢ is coprime to all elements of B,,11 (such
m exists since By, n € N, are pairwise disjoint sets of primes). Let

%1 = B101 y---u B1B2 ‘e BmCm and :@2 = U BlBQ [N BnC'n

n>m

Then clearly, & = %1 U Bs. Moreover, let
b b
=R -:beccdNAB1p and Fo =< —:bccd NPy .
c c

Then clearly, o = o) U @%. Since %, is thin, it follows by Remark and by
that %, is taut. Therefore, since cay C %1, it follows by Proposition that o
is not Behrend. Since 7 is Behrend, we obtain by Proposition that <% must
be Behrend. Moreover, we have cala C %Bo. Take a € . Since c¢ is coprime to
each element of By, 1, it follows that a € Mp,,,,. Hence, My, C Mp,, ,, which
is impossible since d(M,) = 1, whereas d(Mp,,,,) < 1 since By,41 is thin. We
conclude that £ is taut, which completes the proof. O

44



4.4 Tautness and combinatorics (Theorem |L|— first steps)

Since 7 € X4, a natural question arises how many residue classes are missing on
supp 7 mod b, £ > 1. We will answer this question in the class of taut sets Z.
Recall first the following result:

Theorem 4.23 (Dirichlet). Let a,r € N. If gcd(a,r) = 1 then aZ + r contains
infinitely many primes. Moreover, Zpe(aZJrr)m@ 1/p = +oo.

Since each set containing a pairwise coprime set with divergent sum of reciprocals
is automatically Behrend, we obtain the following:

Corollary 4.24. Let a,r € N. Ifged(a,r) = 1 then the set (aZ+r)N P is Behrend.
Proposition 4.25. Assume that 8 C N is taut, a e N and 1 <r < a. If

(65) aZ+rc | bz
beB

then there exists b € B such that b | ged(a,r). In particular, if a € B then r = a.

Proof. Suppose that a € N and 1 < r < a are such that holds. Let d :=
ged(a,r), @’ :==a/d, v’ :=r/d, i.e. we have

d-(dZ+1r")C U bZ.
be %

Applying Corollary to a’ and r’, we obtain d(Mz+,) = 1, whence §(Mg) =
d(Mzugay)- If d € Mg, then there exists b € % such that b | d, whence b | ged(a, 7).
Suppose now that d ¢ Mg. Then, by Proposition we have that Z'(d) is
Behrend. Moreover, 1 ¢ #'(d). Since ged(b,d), b € A, takes only finitely many
values, we can represent %’ (d) as a finite union:

#'(d) = J{b/c:be B,ged(b,d) =c}.

c|ld
Therefore, in view of Proposition for some c¢ | d, the sequence
o ={bjc:be B, ged(b,d) = c}

is Behrend. Hence # D ¢/, with &/ C N\ {1} that is Behrend. This however, in
view of Proposition [2.35] contradicts the assumption that £ is taut.

Suppose now that a € £ and holds. By the first part of the proof, we
have b | ged(a,r) for some b € B. It follows that b | a and, since a,b € £, by the
primitivity of %, we obtain a = b. Therefore, using the relation b | ged(a,r), we
conclude that b | 7 and, since 1 < r <b, this yields r = b. O

Remark 4.26. Let N > 1. Note that the assertion of Proposition remains
true if we replace condition with

(aZ +r)N[N,00) C U bZ.
beAB

Indeed, by Corollary and Proposition 2.33] (aZ 4 r) N [N,00) N & remains
Behrend and we repeat the rest of the proof of Proposition
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Corollary 4.27. Assume that 2 C N is taut. Then, for each b € B and 1 < r <
b — 1, there exists infinitely many m € Fg such that m = r mod b. In particular,
ney.

Proof. Fix, N > 1, b € % and consider bZ+r for 1 <r < b—1. By Proposition [£.25]
and Remark (bZ+r)N[N,00) & Mg, i.e.,

(FgN[N,00))mod b= {1,...,r — 1},
and the result follows. O

Remark 4.28. Note that if € Y then & is primitive. Indeed, if £ is not primitive
then, for some b, b’ € B, we have b | /. If |supp n mod &’| = b’ — 1 then |supp 7 mod
bl = b. The latter is impossible as 7 € X and it follows that n € Y.

The following example shows that the converse of Corollary does not hold:

Example 4.29. Consider {(p;,r;) : i > 1} = {(p,7) : p € £,0 < r < p}. Every
progression p;Z + r; contains infinitely many primes; given ¢ > 1 let, for n > 1,

q" € (piZ +r;) N 2 be such that ¢' > 2" - 4%

We set # := Z\{q}' :i,n > 1}. Since }_; ~, q% < 00, it follows that 4 is Behrend,

S0, in particular, £ is not taut.

Let be # and 0 < r < b and let ¢ > 1 be such that (b,7) = (p;,7;). Then, for
each n > 1, ¢/ = r mod b by the choice of ¢f'. Moreover, q' € F since it is a prime
not belonging to 4.

In [36] it has been proved that for B, %’ C N coprime and thin the following
holds:

o Xy C Xy <= foreach b/ € & there exists b € B with b |V,
e Xp=Xgp <— B=225.
We will now extend these results to the case of taut sets.

Corollary 4.30. Let B,%' C N and suppose that B is taut. Then the following
conditions are equivalent:

(a) Xz C X,

(b) for each v € A’ there exists b € B with b |V,

(c) n<,

(d) Xn C )’ZWU

(e) n € )’57]’7

(f) n€ X
Proof. Clearly, we have (b) = () = (d) = (¢) = () and (&) = (f). Therefore, to
complete the proof it suffices to show (b)) = (a) and @ = (b).

Suppose that (]ED holds and let A C N be %-admissible. Take b’ € Z and let

b € % be such that b | /. It follows by the {b}-admissibility of A that for some

0<r<b-—1, wehave (bZ+r)NA =0, so all the more, we have (VZ+r)NA =0,
ie., Ais {b'}-admissible and (@] follows.
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Suppose that @) holds. Then, for each b’ € &’ there exists 1 < v’ <V’ such that
r" & Fg mod b, i.e.,
VZ+1r' C )z

be#
It follows by Proposition that there exists b € Z such that b | ged(b’, '), so, in
particular, b | ¥/, i.e. (]ED holds. O

Corollary 4.31. Suppose that B,%’ are taut. Then the following conditions are
equivalent:

(a) X% :ngl,

(b) B=2R,
(¢c) n=1,
(@) Xy =Xy,

(e) ne )N(n/ and n' € )N(,,,

(f) n€ X and 0’ € X,

(g) )(77 = Xn/,
Proof. We have immediately (]ED = = @ = = @), (]ED = @ = @ and
= = @ We will show now the remaining implication @ = (]ED By the
corresponding implication in Corollary [4.30] for any b € % there exist b’ € %’ and
b € A such that b” | V' | b. Since A is taut, it is, in particular, primitive which

yields b = b = b, i.e. B C #'. Reversing the roles of # and %', we obtain
B =B O

5 Heredity (proofs of Theorem @ and Theorem

By Corollary (S, X,) is proximal whenever X, is hereditary. The converse to
that does not hold, cf. Example (proximality follows from Theorem . In
this section, we will show however that the proximality of (S, X,) and the heredity
of X, are equivalent when % has light tails.

Definition 5.1. We say that A C N is n-admissible whenever
(66) {k+1,...)k+n}NFg=A+k

for some k,n € N (in other words, supp 5[k + 1,k +n] = A+ k).
Definition 5.2. We say that A satisfies condition (The,|) whenever

(Ther) there exists {ny € Z: b € B} such that AN (bZ+np) = 0 and ged(b, ) |
her) py, — my for any b, b € A.
Our main goal in this section is to prove the following:

Theorem 5.1. Assume that 8 C N has light tails and satisfies (Au). Let n € N
and A C {1,...,n}. The following conditions are equivalent:

(a) A satisfies (Thed),
(b) A is n-admissible.
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In particular, X, is hereditary, i.e. X, = Xn-

Remark 5.2. Clearly, if A’ C A C Z and A satisfies (The]) then also A’ satisfies
(Ther). Thus, Theorem E i.e., the assertion that X, is hereditary in Theorem
follows immediately by the equivalence of @ and (]E[)

As an immediate consequence of Theorem [3.8] and Theorem [5.1] we have:

Corollary 5.3. Assume that 2 C N has light tails. Then X, is hereditary if and
only if (S, Xy) is prozimal.

Example 5.4 (cf. Example. Let Z C N be asin Example If additionally
A has light tails and satifies , then, by Theorem X, = X,. E.g. one can
take # = {4,6} U{p? :pe 2, p> 12}

On the other hand, if fails then, by Theorem X, fails to be proximal.
Hence, by Corollary X, also fails to be hereditary. E.g. one can take & =
{4,6}U{5p? :pe P, p>12}.

We leave the following question open:

Question 5.5. Are the heredity of X,, and proximality of (S, X,,) the same whenever
A is taut?

Remark 5.6. Notice that % from the construction on page 3] satisfies condi-
tion (Au)) whenever B;, C; are infinite, i.e. (S, X)) is proximal. We do not know

whether in this example X, = X,,.
For the proof of Theorem we will need several auxiliary results.
Lemma 5.7. Let n € N and suppose that A C {1,...,n} is n-admissible. Then A

satisfies (Ther)-

Proof. Suppose that

{k+1,...;k+n}NFg=A+k.

for some k. For b € £, let ny := —k. Since for any i € A, i + k € F5, we have
i+ k ¢ bZ for any b € . This means that i ¢ bVZ — k = bZ + np. It follows
immediately that A satisfies (The])- O

Lemma 5.7 gives the implication (b) = (a) in the assertion of Theorem[5.1] Now,
we will cover the converse implication. For n > 1, let

B .= {be B :p<n forany p € Spec(b)},

where Spec(b) stands for the set of all prime divisors of bE Our main tools are the
following two results:

Proposition 5.8. Assume that % C N satisfies (Au)) and ™) C of C B. Suppose
that

(67) {k+1,..k+n}nMy ={k+i,k+is,....k+ i}

2'For A C N the set Spec(A) is defined as the union of Spec(a), a € A.
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for some 1 <iq,...;i. <n,r < nlﬂ Then, for arbitrary ig € {1,...,n}, there exist
B C o C B and k' € T such that

{K'+1,.. K +n} N My ={K +io, k' +i1,..., kK +i.}.

Proposition 5.9. Assume that  C N has light tails and ™ C o C B. Suppose
that

(68) {k+1,...;k+n}n Mgy ={k+io,k+i,....k+ i}
for some 1 <ig,...,ir <n, r <n. Then the density of k' € N such that
{K'+1,.. K +n} N Mg ={K +io, k' +i1,.... K +i.}

18 positive@

Before we give the proofs of Proposition[5.8land Proposition[5.9} we will show how
these two results yield the implication (a) = (b) in Theorem Notice first that
an inductive procedure applied to Proposition together with Proposition [5.9]
implies immediately the following:

Corollary 5.10. Assume that % has light tails and satisfies (Au]). Assume that
B C of C B. Suppose that

(69) (k+1,...k+nNMy=k+C

for some C C {1,....,n}. Then, for arbitrary set C' such that C C C' C {1,...,n},
the density of the set of k' € Z such that

{'+1,... )k +n}nMg =k +C'
18 positive.

We will present now some auxiliary results.

Lemma 5.11. Let A C N be primitive, with Spec(A) finite. Then A is also finite.

Proof. The proof will use induction on |Spec(A)|. Clearly, if |[Spec(A)| = 1 then also
|A| = 1. Suppose that the assertion holds for any set A with [Spec(A)| < n—1. Let
now A be primitive with |Spec(A)| = n, i.e.

Spec(A) = {p1,...,pn} C Z.
For k > 0, let
AW —fa e A:k=max{f>0:(p1-...-pn)’|a}},
B® ={a/(pr-... - pn)F:a e AW}

For 1 <i <n, let
Bi(k) :={be B® :p, 1 b}.

22Tf » = 0, we interpret the right hand side of as the empty set.
23For the purposes of this section it would be sufficient to know that such k' exists. We will use this
result in its full form later.
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By the induction hypothesis, each of the sets Bi(k) is finite. Therefore B®*) is finite
because B*) = Ulgign B™ . Tt follows immediately that also

%
(70) A% s finite.

Suppose that [{k > 0 : A®) # @}| = co. Choose a = p* - ... -p2» € A. Let
ko > max{a; : 1 < i < n} be such that Ako) £ () and take o’ € A%0), Then a | a,
however a # a’, which yields a contradiction, i.e. we have

(71) {k>0: A% £ 0} < co.

Since A = J;50 A®, using and (7I)), we obtain [A| < oo, and the result
follows. N O

Lemma 5.12 (see, e.g., [38]). Let by,...,bx € N, ny...,n; € Z. The system of
congruences
m=n; modb;, 1<i<k

has a solution m € N if and only if ged(b;, b;) | (n; —nj) for any i, j=1,... k.

Proof of Theorem[5.1 In view of Lemmal[5.7, we have (b) = (a). We will now show
(a) = (b). Assume that A C {1,...,n} satisfies condition (The), with {n; : b € %}
as in the definition. Since £ is primitive, it follows from Lemma that 2™ is
finite. Therefore, by Lemma [5.12] there exists m € N such that

m = —n, mod b, b € B™.
It follows that

{m+1,....m+n}N Mgwm

=({1,...,n}n {J 0Z+m))+mc({L,...,n}\A)+m.
beB(n)

Applying Corollary tood =B k=m,C=1{1,...,n}N Upezm (VZ + np)
and C' ={1,...,n}\ A, we conclude that there exists m’ such that

{m +1,....m +n}NMg=({1,....,n}\ A) +m'.

Equivalently,
{m' +1,....m"+n}NFg=A+m,
which yields (a) = (b). In view of Remark this completes the proof. O

What remains to be proved is Proposition [5.8 and Proposition [5.9]
Proof of Proposition[5.8 For u=1,...,r, let j, be such that b;, € </ and
(72) bi, | k4 iu.

Let B := 2™ U {b;,,...,b;.}. Then

(73) any b € # \ B has a prime divisor p > n
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and, by Lemma [5.11
(74) B is finite.
Let 81 :=lecm B. Using and the assumption , we obtain

{ity oo yir} CHE+ 8L+, . k+ Bl +n} N Mp) — (k+ B10)
={k+1,...;k+n}nMp—kC{k+1,....k+n}NMy)—k={i1,...,i},
i.e. for any ¢ € Z we have
(75)  ({k+Bl+1,... k+ Bl +n}NMp)— (k+ Bil) = {ir,...,i,}.

Using (Au), we can find jo such that ged(b;,,51) = 1. It follows that there are
lo € Z and s € Z such that

6150 - Sbjo = —’io — k.

Hence, for k' := k + 14y, we have b;, | k' 4+ i9. Since bj, ¢ B, we have b;, > n. It
follows that

(76) bjo 1k +iforany 1 <i#ig<n
(indeed, if bj, | K’ + 4, then n < b, | (i — ip)). Let 8 := B1bj,. It follows from
and (with [ := lp + mb,,) that
(77) ({K'+pm+1,... K+ pm+n} NMpup,,y) — (K" + Bm)
= {i0,91,...,0r}
for any m € N. Hence, it suffices to take &7’ = B U {b;, }. O
The proof of Proposition [5.9] will be proceeded by several lemmas.

Lemma 5.13. Let Z be the intersection of finitely many arithmetic progressions
with steps dy, . ..,d.. Then either Z =0 or X is equal to an arithmetic progression
of step lem(dy, ..., d,).

Proof. Tt suffices to notice that if a € £ then Z = lem(dy,...,d,.)Z + a. O

Lemma 5.14. Let B,r,n € N, and assume that p > n is a prime that does not
divide B. Assume that Z is a union of finitely many arithmetic progressions with
steps not divisible by p. Then

(78) d <(ﬁZ+r) N (O (pZ—i)) m%) = %d((ﬁZJrr)ﬁ%)

and

X2

(79) d((BZ+r)\ ( (;;zq)u@)) - <1-Z> d((BZ + 1)\ %)
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Proof. By Lemma in order to prove , it suffices to prove it for Z = bZ + j,
where p 1 b. Moreover, since the progressions pZ — i are pairwise disjoint for 1 < i <
n, what we need to show is

(80) d((BZ +7)N(pZ — i) N (VZ + j)) = %d((ﬂZ +7r)N(Z+ j))

for each 1 < i < n. Clearly, the above equality holds if (8Z + r) N (bZ + j) = 0.
Otherwise, let 5 := lem(g, b) and take a € (BZ+r)N(bZ+j5). Then, by Lemmal5.13]
(BZ+7r)N(WZ+ j) = B'Z+ a and is equivalent to

(81) d((B'Z + a) N (pZ — i) = %d(ﬁ'Z +a).

Since ged(B’,p) = 1, it follows that (8'Z + a) N (pZ — i) # () and is a straight-
forward consequence of Lemma [5.13]
In order to prove , note that

d((ﬂZ—i—r)\ (O(pZ—i)U%’))
—d(ﬂZ+r)—d((6Z+r)m%)—d((ﬁZ+r)m (U(pZ—i)))
i=1
+d<(ﬁZ—|—r)ﬁ (CJ (pZ—i)ﬂ%’))

i=1

:d(ﬂZ+r)fd((6Z+r)ﬂ¢%’)fgd(ﬂz+r)+%d((52+r)ﬂ%’)
- (1—p) (BT + 1)\ B),

where the second equality follows from . O

Lemma 5.15. Let 8,r,n,cq,...,c, € N. Assume that p > n is a prime, p divides
C1y ..., Ck and p does not divide ci41, ..., Cm nor . Then

(82) d <(ﬂZ +1) N[ (Feriiemt — z’))

i=1
> (1 — Z) d ((BZ + 7“) n ﬂ (‘F{Ck+17-~~,c'm} — Z)) .
i=1
Proof. Notice first that
(83) (A—i)¢=A°—iforany A C Z,i € Z.

Therefore,

—:

B BZ+1)N[) (Flereny — 1) = (BZ+1)\ <

i=1

(M{Cla"'vcmr} - Z)) :

i=1
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Since
..... Cm} — pZ U M{ck+1,...,cm}a

53 Cm

using (84), we obtain

n

G+ () Frens oy — ) > <ﬁz+r>\(u<pz—i>uu<M{c,c+l,_..,cm}—z~>>.
=1 =1

i=1
To complete the proof, we apply Lemma to Z =U;—1(Myciy,emy — 1) and
use again . O
Remark 5.16. In the above lemma, we admit the situation when k& = m (we
interpret {cg11,...,cm} as the empty set and we have Fy = Z and My = ().

Lemma 5.17. Let 8,r,n € N. Suppose that {c,, : m > 1} C N is Besicovitch.
Assume that p > n is a prime, p divides ¢; but does not divide 5. Then the densities
of (BZA+r) NNy (Flepms1y — 1) and (BZ+ 1) Ny (Fie,m>2y — i) exist and

( BZ +r ﬁ m ‘F{Cm?mzl} - Z))
> <1 - Z) d ((ﬂZ —+ T) N n (]:{cm:mZZ} - l)) .

i=1

Proof. Fix M € N and assume that ¢, , ..., ¢;, are the elements of the set {c1,...,car}

which are not divisible by p (¢ can be equal to 0, cf. Remark|[5.16]). By Lemma [5.15]
it follows that

z<1z> <6Z+r ﬁ(f{% Z))

On the other hand, F., ey} C Fiey,,.c,}- Thus, we obtain

( ﬂZ+ N m f{cl,...,cM} - Z))
1=1
> <1 — Z) d <(6Z + 7") N ﬂ (‘F{Cz,...,CM} - 7’)) .

=1

In view of Theorem [2.28, we can pass to the limit with M — oo and the assertion
follows. 0

Lemma 5.18. Suppose that & has light tails. Assume that 5,7,n € N and by, , b, , ... €
% are such that each by; has a prime divisor greater than n and not dividing 3. Then
the density of

(67 + 1) (F, 2m) — 1)

i=1
exists and is positive.

53



Proof. Observe that by Lemma for any m > 1, we have
( ﬁZ + ’f' ﬂ ﬂ (f{bkm’bkm+1v"'} — Z))
=1
n = .
()1 )

i=1

where p > n is a prime divisor of by, . It follows that

m

( BZ 4 1)N ﬁ (J:{bkl,bkz,m} - ’))
=1
>p(m)d ((5Z +r)N ﬁ (‘F{bkmvbkmﬂ’“'} B Z)) ’

=1

where p (m) > 0 depends only on m. Since £ has light tails, for m large enough so
that d (M, 1, .)) < 75, we have

( BZ+1)N ﬁ (]:{bkm+1 biy oo} _2)> -0
=1

and the assertion follows. O
Proof of Proposition[5.9 For u=1,...,r, let j, be such that b;, € </ and

Without loss of generality, we may assume that o/ = {b;, : 0 < u < r} U B".
Then, by Lemma &/ is finite and we set 8 := ged(#/). It follows by that

(86)  ([k+Bm+ 1, k4 Bt} M) — (k+ fm) = {ior...ir}
for any m € N. Let
B:={be A\ & : all prime divisors of b greater than n divide 8}

(B may be empty) and notice that we have B is finite. Indeed, if p is a prime divisor
of b € B then either p < n or p > n and divides 5. Hence |Spec( )| < oo and we
can use Lemmaﬂ Since (™) C o7, we have B C %\ #™ and it follows that

(87) any b € B has a prime divisor p > n.

Let b € B and take a prime p | b, p > n (such p exists by ) By the definition of
B, we have p | 8, whence p | b;, for some 0 < u < r. It follows that if b | k+ fm +
for some 1 < i < n then i € {io,...,i,} (otherwise, using (85), we obtain p | i, — i,
which is impossible). Thus, by (86, we obtain

(88) {k+pm+1,....;k+m+nt N Mgyup) — (k+ Bm) = {io,i1,...,0r}
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for any m € N. Let
(%\W)\B: B/:{bkl,bk27...},

L.e. each by, has a prime divisor greater than n, not dividing 3. By Lemma [5.18]
the density of the set

(89) zB+k)n () Fiog, 5211 — 1)

i=1
exists and is positive. Therefore, for m € N from some positive density set, we have
bm+k+ie€ f{bkj ;j>1) for any i = 1,...,n. Using , it follows that for each
such m € N, we have
{k+Pm+1,...;k+pm+n}NMg)— (k+ Bm)
={k+Pm+1,..  k+m+n}NMgup) — (k+m) = {io,...,ir},

as required. O

Theorem [G]is an immediate consequence of Theorem [{.1] and of Proposition
(applied to & := AB).

6 Entropy

6.1 Entropy of )?,,7 and X4 (proof of Proposition )

In this section our main goal is to prove Proposition [K]To fix attention, we will
restrict ourselves to the case when % is infinite. The proof will be very similar to
the proof of Theorem 5.3 in [I]. However, since we dropped the assumptions , we
cannot use the Chinese Remainder Theorem directly and we will need an additional
ingredient:

Lemma 6.1 (Rogers, see [27], page 242). For any by, k > 1, any v, € Z/byZ and
K > 1, we have

(90) (U Bz + 1)) 2 d(Mg,,.a0)) -

k<K

Remark 6.2. Clearly, for any n € N,

a( U bz + ) = ﬁ‘[l,n-bl-...-b;{]ﬂ( U &z +70).

E<K o k<K
Proof of Proposition[Kl In view of Theorem[2.28] the result will follow once we show
Bitop(Sy X)) = Puop(S, X ) = d(Faz).

For n € N let
~v(n) == {B €{0,1}" : B is #-admissible}|

and, for K > 1,

v (n) :=|{B € {0,1}" : B is {by,..., bk }-admissible}|
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Clearly,
v(n) < vy (n) for any K > 1.
Moreover, any {b1, ..., bk }-admissible n-b; -...-bg-block B € {0, 1}[1’”'171""'1”{] can
be obtained in the following way:
(a) choose (r1,...,7x) € [[p<x Z/bxZ and set B(j) :==0for 1 <j<n-by-...-bg
satisfying j = ry mod by for some 1 < k < K,
(b) complete the word by choosing arbitrarily B(j) € {0,1} for all other 1 < j <
nble

(Clearly, (supp B) N (b;Z + 1;) = 0.) Notice that once (r1,...,7x) € [[,cx bkZ is
fixed, the freedom in Step (b) gives -

2n-b1-...-bK(1—d(UkSK bkzwk))

pairwise distinct {b1,...,bx }-admissible n - by - ... - bx-blocks (cf. Remark .
Moreover, in view of Lemma this number does not exceed

(91) 271-61-...-bK(].de)7

where dK = d(M{bl,...,bK}) B
We will show that Ay, (S, X5) < d(Fz). Fix e > 0. In view of Theorem [2.28} if

K is large enough then dg > 1 — d(Fz) — . Fix such K. It follows by Lemma [6.1]
Remark and the discussion preceeding that

'YK(n by bK) < H by, - 2n.bl-...~b}(.(1—clK)7
k<K

whenever n = n(K, ¢) is sufficiently large. Thus (since the number of possible choices

in Step (a) equals by - ... - bg), for such n, we obtain
vr(n-bi-...-br) < H by - 2mbrbic (A(Fa)te)
k<K
Therefore,

" .1 _
hiop(S; Xgg) = lim —logry(n) < lim —logyx(n) < d(Fz)-

We will now show that hap(S, )Z'n) > d(Fg). For n > 1, denote by p(n) the
number of n-blocks occurring on X,,. Let (IV}) be such that

1 _
lim — [07Nk] ﬂ]‘-@| = d(f@)

k—oo [N
(such a sequence exists by Theorem . Since
p(Ny) > 2|[0J\7k]ﬁ-7:%\7
it follows that

~ ) 1 _
hiop(S, Xy) = lim oA log p(Ni) > d(Fe).

k—oo INg

This concludes the proof. O
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Remark 6.3. Recall that a hereditary system has zero entropy if and only if
9(...,0,0,0,...) is the unique invariant measure (for the proof, see [37]). Therefore,

since both, X and X g, are hereditary, it follows by Proposition E that the follow-
ing condltlons are equivalent:

hd P(Sv X@) = {5(.4.70,0,07... )},
hd P(Sa j(v'n) = {6(“.,0,0,0,...)}7
e 0(Fyp)=0.

In particular, this applies to (S, X %) (cf. [3)), even though Xz is uncountable, cf.
Remark [2.44]

6.2 Entropy of some invariant subsets of )}n

In this section we will prove the following:

Proposition 6.4. If # is taut then
htO;n(Sa Y251,2827~~ n Xn) < htop(57 Xn)v
whenever s, > 1 for some k > 1.

For this, we will need some tools.

Lemma 6.5 (cf. Lemma 1.17 in [28] and Theorem [2.28)). Let # C N. For anyq € N
and 0 <1 < q—1 the logarithmic density of Mg U (qZ + r) exists and

§(Mz U (qZ+7)) = d(Mg U (qZ+ 1)) = lim d(M, 5,3 U (¢Z+7)).
Proof. Since

MzU(@Z+r)=(gZ+r)U ) Mzn(Z+s),
0<s#r<qg—1

it suffices to prove that the logarithmic density of Mg N (¢Z + s) exists and
(92) Od(MzN(gZ+s)) =dMzn (@Z+s)) = kli_)n;o d(M,,...bey N (GZ + 5))
for each 0 < s < ¢ — 1. Indeed, if holds, we have

(Mg U (¢Z+ 1)) > d(Mg U (¢Z + 1))

>dqZ+r)+ | dMzn(gZ+s))
0<s#r<g—1

=dgZ+r)+ |J O6Mzn(gZ+s)=08MgzU(qZ+1)).
0<s#r<g—1

To show , notice first that, for each & > 1, we have
dMz N (qZ + s)) = d(My,,...0} N (GZ + 5)),
whence

(93) d(Mz N (qZ + s)) > kh—>m d(Myp,,.. ey N (GZ + 8)).
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On the other hand, for each k > 1,
Mz N (qZ+ 5)) <d(Mp, by N (G2 +5)) +3( Mz \ Mg, 5,3),

whence, by Theorem

(94) (Mg N (gZ+s)) < lim d(My,, by 0 (4Z+9)).
The claim follows from and . O

Lemma 6.6. Assume that & is taut. Fiz kg > 1 and let 0 < r < bg,. Then
d(MzU (bg,Z +1)) > d(Mg).

Proof. By Lemma[6.5] we have

(95) dMz U (bryZ + 1)) = 6(Mgz U (b Z + 1)) = 6(Ma) + 8((bk Z + 1) \ M),

where

(96) O((broZ + 1) \ M) = 8((bryZ + 1) \ Mg\ b, });

since (by,Z+1)Nbg,Z = . Moreover, since (by,Z+1)UM g\ (5, ) is a disjoint union
of M\ (1,3 and (b, Z+1)\ M\ (1,3 (and the logarithmic density of (by,Z+1)U

M%\{bko} and M%\{bko} exists by Lemma and Theorem , respectively), we
obtain

O7)  8((brZ+ 1)\ Man1y,1) = 8((bs,Z 4 1) U Man ) — 5( M g, ).
By the tautness of 4,

(98) 8(Mz) > 8( M (1,})-

Therefore, by (95), (96), (97) and (95),

(99) d(./\/lgg U (kaZ + 7“)) >
d(Maa (b, 1) + 0((bkoZ + 1) U Mgy (1, 1) — 6 (M (1, })
=0((broZ + 1) UM\ (1, 1)

Moreover, applying consecutively Lemma Lemma [6.1] and Theorem we
obtain

O((bg,Z + 1)U M@\{bko}) = kliﬁr{.lo d((bp,Z + 1)U M{bi;lgiék,i?ﬁko})
> lim d(Mp,a<i<iy) = 6(Mz) = d(Mg).

k—o0

This, together with , completes the proof. O
Proof of Proposition[6.f} Fix ko > 1 such that sy, > 1. For 0 < r < by, let

D,

d(Mgp U (bg,Z+ 1))
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and D = min0<r<bk0 D,. In view of Lemma there exist € > 0, ¢ > 0 such that
(100) D —d(Mg)—2e>c>0.

Let K > kg be large enough so that

(101) dM,,. by U (OkgZ+1)) > d(Mgp U (bpyZ + 1)) — €

(such K exists by Lemma . Finally, let Ny € N be suffciently large, so that for
N > Ny we have

1

> d(M{bl,‘..,bK} U (kaZ + ’I“)) — €.

Fix N > Ny and take B which appears on Y281,252,---mgn7 with [B| = N-by-...-bk.
Then there exists k € Z such that

It follows by (103)) and by the choice of ko that there exists 0 < rg < by, such that

(104) supp n N[k, k+ N by -...-bg — 1N (b, Z + 10) = 0.
Therefore, using (104), (102), (101)), the definition of D,, and D and (L100), we
obtain
|B| — |supp B
Bl
1
> ———— |[k,k+N-by-...-bg — 1N (Mg U (bg,Z + 19))|
N-by-...- bk
1
> —[k,k+ N -by-...-bg — 1 by Z
=N b ... bx Ik, + N - by K = 1N (M, by U (bko Z + 10))|
1
= N e [0, N -by-... b — 1N (Mg, iy U (brZ +10))|

> dMyy,,. ey YOk Z+ 7)) —€ > d(Mg U (b, Z +10)) — 2¢
=D, —2e>D—2>d(Mg)+ec.

Thus

|supp B| -

(105) 1B < d(Fg) —c.

We will now proceed as in the proof of Proposition [K] For n € N, let
y¥s2(n) := |{B € {0,1}" : B appears on Y>g, >s,,.. N )?,,H
and, for K > 1,
Pt () = [{B € {0,1}" : |[supp B| < by — 55, for 1 < k < K}|.

Clearly,
P2 () < Akt () for any K > 1.

Consider the following procedure of defining a block B € {0,1}":
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(a) choose (r1,...,7x) € [lpcx Z/bkZ, set B(j) := 0 for 1 < j < n such that
j = 71, mod by, for some 1 < k < K; choose 77, # 7, mod b, and set B(j) := 0
for 1 < j < n such that j = ri, mod bg,,

(b) complete the block by choosing arbitrarily B(j) € {0,1} for all other 1 < j < n.
Notice that all B € {0,1}™ satisfying

bk_17 fork;éko,

106 B) mod by| <
(106) |(supp B) mo k|_{bk_27 for k = ko,

can be obtained this way. In particular, we obtain all blocks B € {0,1}" such that
|(supp B) mod by| < by, — s for k > 1.

Notice also that once the parameters (r1,...,7x) and r} in Step (a) are fixed, the
freedom in Step (b) gives, for n = N - by - ... - bk, in view of (105)), at most

2N~b1~4..'bk(a(}'@)—0)

N -by-...-bg-blocks. It follows that

1
NX,) = lim —log~®*2(n)

n—o00 N

1 _ ~
< lim —log~; " (n) < d(Fg) — ¢ = hiop(S, X)) — ¢,

n—oo N

htOP(S’ YZSth’z

yeus

which completes the proof. O

Corollary 6.7. Suppose that  C N is taut. Let v € P(S, )Z'n) be such that
h(S, Xy, v) = hiop(S, Xy)). Then v(Y N X,) = 1.

Proof. By considering the ergodic decomposition, we may restrict ourselves to v €
Pe(S, X,). Fix such v and suppose that h(S, X,,v) = hiop(S, X;;) but v(YNX,) =0
(by the ergodicity of v, we have v(Y N X,) € {0,1}). Note that, for each k > 1,

there exists 1 < s, < by, such that V(YSIZ NX,) =1, ie., we obtain (si)r>1 such that

v(Ys, 55, N )Z'n) =1, so, all the more, v(Y>s, >s5,,... N )?n) =1. Since v(Y N X,)) =
0, there exists k > 1 such~ that s > 2. But then,~by Proposition and the
variational principle, h(S, X, v) = h(S,Y>s, >s,,... N X0, V) < hiop(S,Y>s, >s,,... N
X’n) < hiop (S, )Z'n) This contradicts our assumption and we conclude. O

7 Tautness and support of v, (proof of Theorem

We will now use Theorem [C] and Proposition [E] to prove Theorem [H]

Proof of Theorem[H. Notice first that (a) = (b) is an immediate consequence of
Corollary Now, we will show that also (]ED = holds. We claim that

(107) v((8(Y N X)) = 1.
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Then, since by Remark we have @(H(Yﬂ)?n)) C Y, it will follow that v, (Y') = 1.
Moreover, since, by Proposition we have v, (X,) = 1, we obtain . Thus, we
are left to prove (107). Recall that by Remark we have 0, (v) = P. Therefore,

v((0(Y N X)) =P (p(6(Y N X,)))) > PO(Y N X,))
=0.00(Y NX,)=v@ O(YNX,))>v(YNnX,) =1,

i.e. (107) indeed holds.
It remains to show that (c|) implies @ Suppose that £ is not taut. Let %4’ be

as in the proof of Theorem [4.5| For simplicity, we assume that %’ is given by (52| .,
ie.

~—

%”:(93\Uan)U{cn:n21}:(%’\Ucnﬂ”)u{cn:nZI},

n>1 n>1

where &/, n 1, are Behrend sets. By Theorem [4.5], %’ is taut and we have

vy = vy. Let

v

Y’ :={x € {0,1}” : |supp = mod b},| = b}, — 1 for each k > 1}.

By the first part of the proof, we have v, (Y’ N X,/) = 1. We will show that
vy (Y N X,) = 0. Since v, = vy, it suffices to show that Y NY’" = (). Take a > 2
such that cia € # and ¢; € %’ and consider the natural projections

7% Z)craZ = 7 ey 7

(r1(n) = nmod cia for n € Z and ma(n) = nmod ¢; for n € Z/c1aZ). Then, for
any A C Z, we have
m1(A) € my ' (ma(m1(A))).

Moreover, for any B C Z/c1Z, we have |t '(B)| = a|B|. Therefore, for z € {0,1}%,
we have

|[supp  mod c¢ia| = |71 (supp z)| < |7T2_ (mo (71 (supp x)))|
= a|ma(m (supp x))| = a|supp = mod ¢1].
Therefore,

Y' C{x€{0,1}*: |supp 2 mod ¢;| = ¢; — 1}
c {z € {0,1}% : |supp = mod cia| < c1a — a}

and, on the other hand, we have
Y c {z € {0,1}7 : |supp = mod cia| = c;a — 1}.

Since cia — a < cia — 1, we conclude that indeed Y N Y’ = (). This completes the
proof. O

Remark 7.1. If # C N has light tails then v,(Y N X)) = 1 can be showed directly.
Namely, fix K > 1 and let

Yi = {x € {0,1}% : |supp  mod by| = by, — 1 for 1 < k < K}.

Then:
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e S(YkNX,)=YxkNX,,
o n€YgnNX, (by Corollary , in particular, Yx N X, # 0,

e Y N X, is open in X, (indeed, if z € Yx N X, and M € N is such that
supp « mod by, = (supp N[0, M]) mod by, for each k& > 1 then for each y € X,
with y[0, M| = [0, M], we have y € Yx N X,)).

In view of Theorem |G} since Yx NX,, is open and non-empty, we have v, (Yx NX,) >
0. By ergodicity and S-invariance, we obtain v, (Yx N X,) = 1. It follows that
(Y NX,) = Vn(mK21 Yk NX,) =1

8 Intrinsic ergodicity: taut case (Theorem |J| — first
steps)

Recall the following result:

Theorem 8.1 ([36]). If # C N is infinite, coprime then (S, Xn) is intrinsically
ergodic (in fact, X, = X,).
In this section we will extend Theorem [B.1] to the case when % is taut. The

main ideas come from [36]. We will present the sketch of the proof only, referring
the reader to [36] for the remaining details@

Theorem 8.2. Let 8 C N and suppose that 2 is taut. Then (S, )?77) is intrinsically
ergodic. In particular, if X, = Xn then (S, X,)) is intrinsically ergodic.

Remark 8.3. If Z C N is finite, even though X, C Xm the subshift (S, X)) is
intrinsically ergodic. Indeed, in view of Proposition X, is finite, with |X,| =

lem(%) and (S, X,)) is nothing but the rotation on lem(%) points. It is uniquely
ergodic, so, in particular, intrinsically ergodic.

Sketch of the proof of Theorem[8.3 We will only consider the case when 2 is infi-
nite. Let v be a measure of maximal entropy for (S, X,). Then, by Corollary

v(Y N )}n) = 1. What we need to show is that the conditional measures v, in the

disintegration
v= [ v, (g
G

(cf. Remark | of v over P given by the mapping 6: Y N )?77 — @ are unique
P-a.e. In order to do it, we will show that for A from some countable dense family
of measurable subsets of X,

(108) vg(A) does not depend on v, for P-a.e. g € G.

24 Another proof of Theorem will be presented in Section
*E.g. when 2 has light tails and satisfies (Au)), see Theorem [5.1
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Step 1. Let Q = (Qo, Q1) be the partition of Y N )N(,, according to the value at
the zero coordinate, i.e. Q; = {y € Y N X, : y(0) =i}, i = 0,1 (this is a generating
partition). Let

Q =\ $Qand A:=0""(B(G)).

Jj<-1
Then, for m > 0, one can show that we have the following commuting diagram:

S

N

— (YN X) ——
0 <<Ymin>/smcz,@ 0
-

(GP) ——————
U

T

where m,,: Y O)A(:n - (Yn )N(,,)/S*mQ* and ppm,: (YN )N(,,)/S*mQ* — G are the
natural quotient maps, Uy, 1= (mm)«(V), and (pm)«(Pm) = P. In this diagram, 0
is measure-preserving, while p: G — Y N )N(,, is defined P-a.e. and is not measure-
preserving (notice that by Theorem we can treat ¢ as a map with codomain
YNX,cYnX,).

Step 2. Fix m > 0 and let, for j =0, 1:
Cl=8"Q;={reyn 5(,, ca(m) =g},
= 1 (Ch) = {g € G plg)(m) = 13,
Bj, == p;M(CY,).

This gives us the following diagram:

— S TmQuUS Q=Y NX,=60"YC%)ue(CL)

Jﬁm

0 (YNX,)/STQ™ = pp(Ch) Upn (Ch) = BR,UBL, | ¥
me
G=0C%uCl,

Step 3. Using 971(6&) C S7™Qo, one can show that for each j € BY,,

(Tm(ST"QolS™"QR™ ), Um (ST @11STRQT)) = (1,0) =: (Ao(Q0), Mo(Q1)),
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whence
H,(S™Q|S™™Q™)(7) = 0 whenever 5 € BY,.

Therefore, using Proposition [K] and Theorem [I.1], we obtain

8(Fz) = hiop(S, X)) = h(S, X,,,v) = / H,(S™"Q|S™™Q™) dvn,
Y/Sfm,Qf

= | HASTQISTMQT) dvin < T (BL) = (pm)«(@m) (Ch)

=P(CL,) = p.P(CL,) = v,y (CL) = 6(Fz5).
It follows that for T,,-a.e. § € B},

(109)  (Tm(S™™QolS™™Q ™), Tm (ST Q1|ST"QT))
=(1/2,1/2) =: (M(Qo), M(Q1))-

Step 4. In view of Step 3., for U ,-a.e. T, we have
U (87" Qi [STQT) i - - - im—r—1) = Aj, (Qiy,. ),

where j,. = ©(pmTi-m - im—r-1))(Mm) = ©(pm(¥))(m + r). Therefore, using the
chain rule for conditional probabilities, one can show

(110) 7 (S™Qi,, N...N Qi NST'Qs , N...NS™™"Q;_. |S™™Q7) ()
2m 2m
= [170(S ™" Qi 1S " Q) i+ imr1) = [ X Qi)
r=0 r=0

For A e \/[_,. S'Q,
ve(A) = E"(A|G)(g) = E"(E"(A]Y/S™™"Q7)(¥,,)|G)(9).

Since (110) does not depend on 7 itself, but only on the values ¢(p,, (7))(m + 1), we
obtain (108)) for A € \/]~_, S'Q. The proof is complete as m > 0 was arbitrary. [

9 Invariant measures (proof of Theorem |l

In [36], a description of P (S, X,) was given in case of # infintie, coprime and thin
(recall that in this case we have X, = )?,7). Here, we extend this result by proving
Theorem which yields a description of P(S, )Z'n) for all # (in particular, when
X, = )?n, we obtain a description of P(S, X,)).

Remark 9.1. Notice that Theorem [[] result is stated in a different, more compact
form than in [36]. What coresponds directly to [36] is Theorem[9.2]in Section [0.1]and
Theorem in Section [9:2] Notice that Theorem is an immediate consequence
of Theorem (it suffices to take bj, = by, for all k > 1). The role of b}, | by, k > 1 will
become more clear later when we discuss the discrete rational part of the spectrum
of (S, X,,v), see Section

We will present only sketches of the proofs, referring the reader to [36] for the
remaining details (which can be repeated word by word). For the sake of simplicity,
we will restrict to the case when £ is infinite. For finite % the proofs go along the
same lines (and are sometimes simpler).
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9.1 Invariant measures on Y N 55,, (Theorem [I| - first steps)

Theorem 9.2. For any v € P*(S,Y NX,), there exists p € P¢(S x S, X, x {0,1}%)
such that plx, = v, and M.(p) = v, where M : X,, x {0,1}* — X,, stands for the
coordinatewise multiplication.

Remark 9.3. Notice that in order to prove Theorem [9.2] it suffices to find p €
P(S x S, X, x {0,1}%) such that p|x, = v, and M,(p) = v and use the ergodic
decomposition.

We will first present the outline of the proof. Notice that if v € P¢(S,Y N 5(77)
then v # 0. 0,0,0,...)-
Step 1. We define T: G x {0,1}2 — G x {0,1}% by

~ ) (Tg,z), ifp(g)(0) =0,
oo = {(Tg,sw, it o(9)(0) = 1.

We will define O: Yﬂf(n — G x{0,1}% a.e. with respect to any v € Pe(S,Yﬂ)N(n),
and ®: G x {0,1}? — X4 a.e. with respect to any T-invariant measure, so that the
following diagram commutes:

- S -
ynX, ———YnkX,

lo e
G x {0,1}% T ax {0,1}Z.
| |
Xz # Xz
Then, we will prove that
(111) ® 0 © = id a.e. with respect to any v € P¢(S,Y N )Z'n)
This will give, for any v € P¢(S,Y N )?n), the equality
v=2,0,v, with O,v € P*(T,G x {0,1}%).

Step 2. We will define ¥: G x {0,1}2 — G x {0,1}? a.e. with respect to any

T x S-invariant measure, so that W is onto a.e. with respect to any T-invariant
measure, and so that the following diagram commutes:

G x {0,137 225 6 s 0,137
(112) J\I’ qu
G x (0,1} — L G x {0,1}%

In fact, ¥ will be defined on Gy x {0,1}%, where Gy C G and P(Gp) = 1.
We will define a system of measures {A(,,) : (9,9) € Go x {0,1}*}, where
Mgy (¥ 7 (g,y)) =1 for (g,y) € Go x {0,1}* and such that
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(a) the map F: (g,y) = A(g,y) is measurable,

(b) (T X S)*)‘(shy) = )‘T(g,y)'

Then for any p € P¢(T, G x {0,1}%), we will obtain
pi= /A(gvy) dp(g,y) € P(T x S,G x {0,1}%) with U5 = p.

Step 3. We will show that
(113) Mo (p x idgy2) = o .
Then, for any v € P¢(S,Y N )?,7),

v==2,0,v=>0,7,0,r= M. (p x idgo,132)«Our,
with ©,v € P(T x S,G x {0,1}%).
Step 4. To conclude it suffices to notice that
@ xidg 1)z G x {0,1}" — X, x {0,1}”

induces a map from P(T xS, G x{0, 1}%) to the simplex of probability S x S-invariant
measures on X, x {0,1}% whose projection onto the first coordinate is v,.

Remark 9.4. The above sketch can be summarized on the following commuting

diagram:
& S z T'x z
YnX, ———vnx, G x {0,1)2 =22 @ x {0,1}
0 3 1
fwxfd
- z r N 11z y 2T xS i z
G x {0,1}% —1— @ x {0,1) X, % {0,1)2 —22 X, x {0,1}

Xp ———— Xz
Proof of Theorem[9.3 Let

Yoo :={y € Y : |supp y N (—00,0)| = [supp y N (0, 00)| = oo} [F|

26Notice that the definition of Yo, is different from the one in [36] — we have changed the notation to
simplify the proof.
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Since v # d(...0,0,0,...), We have v(Y,) = 1. For z € {0, 1}2, 2 € Yoo, let 7, be the
sequence obtained by reading consecutive coordinates of  which are in supp z, and
such that

Z,(0) = z(min{k > 0 : k € supp z}).

Step 1. By Remark , forye YN )?,,, we have ¢(0(y)) € Yoo. Let ©: Yo N
X, — G x {0,1}% be given by

O(y) = (0(v); Yp(o(y)))-

One can show that

(114) Srg. = {1 H20)=0,
87, if 2(0) = 1.

Hence, in view of and Remark it follows that © 0. =T 0 © on Ya.
Let ®: p~ (V) x {0,1}2 — X4 be the unique element in X4 such that

P(g,7) < p(g) and (P(g,2)) () = -

Since V(Yﬂ)?n) =1, by Theorem we have that Vn(Yﬂ)?n) =1, so, in particular,
Uy # 0(..00,0,.) It follows that ® is well-defined a.e. with respect to any T-

invariant measure. Moreover, using 7 one can show that So® = ® o T on
0 1 (Yoo) x {0, 1}2. Tt follows that also ® 0 © is well-defined a.e. with respect to any
veP(S,Yn )N(,,) Moreover, by the choice of ©® and ®, we obtain ® 0 © = id a.e.
with respect to any v € P(S,Y N )Z',])

Step 2. Let U: o 1(Yy) x {0,1}2 — ¢ 1(Y) x {0,1}% be given by ¥(g,x) =
(9,Ty(g))- Using again , one can show that diagram commutes. Notice
that § # U=1(g,y) C {g} x {0,1}%. Moreover, given (g,z) € U~!(g,y), all other
points in ¥~1(g,y) are obtained by changing in an arbitrary way these coordinates
in x which are not in the support of ¢(g). In particular, each fiber ¥=1(g,y) is
infinite. For k1 < -+ < kg and (i1, ...,15) € {0,1}*, we define the following cylinder
set:

(115) C=Cpry ={re{0,1}" 1 a(k;) =i;,1<j< s}
For each such C and for A € B(G), we put
Mg (A x C):=14(g)-27™, where m = [{1 < j < s:¢(g)(k;) = 0},

if ®(g,y)(k;) = i; whenever ¢(g)(k;) = 1 (otherwise we set A(y,)(A x C) := 0).
Conditions (a) and (b) required in Step 2. are proven in the same way as in [36].

Step 3. and Step 4. Formula (113) follows directly by the choice of ® and ¥
and the proof is complete. O
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9.2 Invariant measures on Xn (proof of Theorem
In this section we will prove the following:

Theorem 9.5. For any v € P¢(S, 5(:,7) there exist b}, | by, k > 1, and p € P°(S x
S, X,y x {0,1}%) such that Plx,, = vy and M.(p) = v, wheren' =15, (%" = {b} :
k>1}) and M: X,y x {0,1}2 — )~(7,/ stands for the coordinatewise multiplication.

For the proof we will need several tools. Notice first that if v = 6. 0,00,.)
then the above assertion holds true since M. (d(....0,0,0,...) ® k) = d(...0,0,0,...) for any
k € P(S,{0,1}%), and 8(..,0,0,0,...) = vy for 0’ associated to %' = {1}. Thus, we
only need to cover the case v # d(.. 0,00,..)-

Recall that _ B
X77 = U U Y;‘17827--- mXﬁ
k>10<sy<by

is a partition of X,, into Borel, S-invariant sets. Proceeding in a similar way as
in [36], we will now further refine this partition.

Fix s = (sg)k>1 with 1 < s, <by, —1,a = (alf7~--,6l§k)k21 with a¥ € Z/b,Z for
1<i<spand |[{a},...,ak }| = sp. Let

Yiswiaras, = 1€ € {0,1}% : supp x mod by = Z/bZ\ {as, ..., as, }}.

For each k > 1, any two sets of such form are either disjoint or they coincide. Since
supp Sz = supp « — 1, we have

(116) SYk,sk;a’f,.u,a’;‘k = Yk,sk;alffl,.“,a’;kfl‘
Let
(17 Hemming > 1 e,k ) = {ab— a1}

and note that b, > 2. Clearly, Sb;cyk’sk;allc"”yak =Y spsak,...ar and the sets

Sk Sk

---------
are pairwise disjoint. Finally, we define

by —1

- J
)/ﬁaﬂ i ﬂ U S Yk,sk;a’f,...,a’;k

k>1 j=0

(notice that if s, =1 for all k¥ > 1, we have Y; , =Y for any choice of a).
Fix s,a and suppose that P(S,Y, , N X,) # 0. Let

Goa=1{ng n €L} C Gy = [ 2/b}2.,
k>1

where b}, k> 1, are as in (117)), cf. . Define ¢g : Gsa — {0,1}% by

1, ifgr—af+n#0modby forall k > 1,1 <i < sy,

0, otherwise

Wﬁ,g(g)(n> = {
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(cf. ([20)). We also define 65 4: Yy ,q N )Z'n — G in the following way:

Osa(y) =9 <= —gr+ af ¢ supp(y) mod by, for all 1 < i < sy,
cf. (26). Notice that given y € Yy, and ko > 1, there exists N > 1 such that
(118) (supp y)N[=N, N] mod by, = Z/bpZ\ {—gr+a¥ : 1 <i < s} for 1 <k < ko
Remark 9.6. Notice that
(119) Os.0(Ysa N Xy) C G-

Indeed, take y € Yy, N X,. Given kg > 1, let N > 1 be such that (T18) holds
and let M € Z be such that y[-N,N] < n[-N + M,N + M]. It follows that
0(y) = (91,92, ..), where g = —M mod by, for 1 < k < ko. This yields (119)).

Remark 9.7. Note also that 0, , is continuous. Indeed, given y € Y, , and ky > 1,
let N be such that (118) holds. Then, if ' € Y, , is sufficiently close to y then ([118)
holds for 3’ as well. Therefore, if y, — y in Y; , then 05 o(yn) — 05.4(y).

Moreover, denote by T o: Gs,o = Gg,a the map given by
T§,gg :g+lgg/ = (gl + 1792 + 17"')7

where g = (91,92, - - - )-
Remark 9.8 (cf. Remark [2.53). We have:
¢ Tsq0050="050065,
o for each y € Yy N Xy, y < 0oa(0sa(y)),
o forany v € P(S,Yea 1 Xy), (s.0)s(v) =P

Lemma 9.9. Suppose that P(S,Yea N X)) # 0. Then (0s.0)«(Poa)(Yea) = 1. In
particular, (¢s.q)«(Ps.a) # 9(...0,0,0,...)-

Proof. Take v € P(S, Yy o N X,). It follows by Remark [9.8] that
(Ps.0)+(Psa)(Vsa) = (Psa)e(05.0)4 () (Ysa) > v(Ysa) = 1.
Since (...,0,0,0,...) & Ys 4, we conclude. O
For n € N, let M) ({0,1}%)*™ — {0,1}” be given by
MO (@M ic, -, @iez) = (@ 2Viea
Moreover, we define M(>): ({0, 1}2)N — {0,1}* as
M ((@M)iez, (@ )iez, .. ) = (@ 2P - ien

7

Lemma 9.10 (cf. Lemma 2.2.22 in [36]). We have (¢s,0)+(Ps,a) = M,Eoo)(p)7 where

p is a joining of a countable number of copies of (S,{0,1}%, v,y).

Proof. The proof is the same as in [36]. O

69



Lemma 9.11 (Lemma 2.2.23 in [36]). Let vy, ... ,vpn,vnr1 € P(S,{0,1}%). Then
for any joinings

o pin € J((S,{0,1}%,11),..., (8,{0,1}%, 1)),

o Pyt € J((S, 40,132, M (p1 1), (S, {0, 13, v 1))
there exist:

® pPant1 € J((Sv {0’ 1}27 V2)a ceey (Sa {0’ 1}27 Vn)a (S, {O, I}Zv n+ 1)):

o Pz € J((S {0,137, 1), (8,{0,1}%, M (p2.n41)))

such that ngz) (p(l,n),n+1) = M£2) (pl,(2,n+1))

Remark 9.12. The above lemma remains true when we consider infinite joinings,
i.e. instead of v, ...,v, we have vy, s, ..., and instead of M we consider M (>,

Proof of Theorem [9.3, Fix §(. 000,.) # v € P(S, )?77) and let s,a be such that

V(Y540 )N(n) = 1. In view of Lemma|9.10, Lemma and Remark it suffices
to show that there exists p € P(S x S,{0,1}% x {0,1}%) such that the projection of
p onto the first coordinate equals (¢s,4)«(Pso) and M. (p) = v.

By Lemma we have (¢s.q)«(Ps,a) 7 6(...,0,0,0,...)- The remaining part of the
proof goes exactly along the same lines as the proof of Theorem [9.2] with the follow-
ing modification: we need to replace some objects related to Y by their counterparts
related to Y, .. Namely, instead of G, ©, Y, T, ® and ¥, we use

Gsar 95,0, (Ys,a)oos Tﬁ&? Ps.q and Wy 4,
where
® Oy4: Y, N 5(?7 — Gg.a x {0,1}2 is given by O, 4(y) := (05,0(Y), Uy o (00.01))5
* (Yaa)oo :={y € Yoq :[supp y N (—00,0)] = supp y N (0, 00)| = oo},
. f§gz Gsa % {0,1}2 — Gy, x {0,1}% given by

T z) = (Tg,gg,x), if @é,g(g)(O)
Ts.a(9,2) { (Thog S0). it o (0)0)

0,
1

)

o O, ,(g,x) is the unique element in X5 such that

(i) Psa(9,7) < ¥s.a(9),
(ii) (Ps.a(gs z));\ () = T Le. the consecutive coordinates of = can be found

[ ]
S
It
Q
—
=
8
~ |
[l
—~
=
8)
©
5
e
S
'M/

Repeating the proof of Lemma we obtain the following:

Lemma 9.13. Fiz b, | b for k > 1. Then there ezists p € P(S x S, X, x {0,1}%)
such that p|x, = v, and M. (p) = v,y .

Theorem[[|is a consequence of Theorem[9.2] Theorem[9.5, Lemma Lemmal9.11
and Remark [0.12]

2"We could write this property as MP (M,E") (11 V- - Vun)Vipg1) = MP (1 v MM (v2V- - VrrVing1)).
However, until we say which joining we mean by each symbol V, this expression has no concrete meaning.
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9.3 Rational discrete spectrum (proof of Theorem

Remark 9.14. Let s,a be such that P(S,Y;,) # 0 and fix v € P(S,Y;,). Let
b, | bx, kK > 1, be as in the proof of Theorem (9.5l Recall (from the proof of
Theorem that there is an equivariant map Og4: Ysa — Gsa x {0,112, It
follows that (T4, Gs,q,Psa) is a factor of (S,Y;q,7). In particular, the rational
discrete spectrum of (5, Y} 4, v) includes all bj-roots of unity.

Theorem 9.15. Suppose that P(S, Yégﬂf(,,) # 0. Then @, o yields an isomorphism
of (Ts,a:Gs,a:Ps,a) and (S, Y50 N X a, (05,0)+ (Psa))-

Proof. Since, by Lemma[9.9} we have (¢4.4)+(Ps.q)(Ys.a) = 1, we obtain the following
equivariant maps:

Ps,a iy 0

(T§,g; G@Q’ ]Pjévﬁ) — (57 Yvﬁvﬂ N X777 (<p§7g)*(P§12)) £> (T@Q’ G§527 P§72)'

It follows by the coalescence of (Ts 4, Gs,q,Ps,a) that ¢s o yields an isomorphism of
(Ts.0: Gs.0,Ps.a) and (5, Y0, (Ps.a)(Ps.a))- O

As an immediate consequence of the above and of Corollary [6.7, we obtain The-
orem [F]

10 Tautness revisited

10.1 Tautness and combinatorics revisited (proof of Theo-
rem
We will prove an extension of Corollary [£:30] and Corollary

Corollary 10.1. Let 8,9 C N and suppose that B is taut. Conditions @ - @
from Corollary [[.30 are equivalent to each of the following:

(9) vy € P(S, Xy),
(h) P(S,X,) C P(S,Xy).

Proof. Notice first that (E[) from Corollary implies . Suppose now that (g
holds. In view of Theorem [I| and Lemma this yields (b). Suppose that (h)
holds. By the variational principle, we have

(120) htop(Sv )?77) = htop(Sa jzn N )?77’)-
Moreover, since )?n N )Afn/ CXgNXgp =Xpup C Xa,
(121) htop(‘s’a )?77 N )?77’) < htop(Sa X@U@') < htop(Sa X@)

By Proposition [K]

(122) heop(S, X)) = heop(S, Xas).
Putting together (120)), (121) and (122]), we obtain
(123) hiop(S, Xog) = hiop(S, Xepum)-
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Moroever, since Xguz C Xguyy C X for any b’ € &/, yields
hiop(S, Xz) = hiop(S, Xguyy) for any b’ € %',
It follows by Proposition [K] that
d(Mz) = 6(Mazupy)-

In view of Corollary either b € Mg or £ is not taut. The latter is impossible,
hence b | b’ for some b € % and we conclude that (b)) from Corollary holds. O

Corollary 10.2. Suppose that 8,9’ C N are taut. Conditions @ - from
Corollary [{.31) are equivalent to each of the following:

(h) V77 = 1/7]/,

(i) vy € P(S,X,y) and v,y € P(S, X,),

(1) P(8,Xy) = P(S. Xyp).

Proof. Clearly, from Corollary together with Proposition [E| implies (hl).
Moreover, implies ({ij) and, by Corollary implies (§j)). Suppose now that
(E[) holds. Applying again Corollary we obtain that (b)) from Corollary
holds. Moreover, (]ED from Corollary still holds when we exchange the roles of
PB and #'. Therefore, using (ED from Corollary we conclude that Xg = X4,
ie. @ from Corollary holds. This completes the proof. O

10.2 Tautness and invariant measures (proof of Theorem

Theorem[C]is an immediate consequence of Theorem [4.5] Theorem [Jand Theorem [[]
We will now prove Corollary[I.6] For this, we will need the following standard lemma:

Lemma 10.3. Let (T, X) be a topological dynamical system and let X' C X be
compact and T-invariant. Then the following are equivalent:

(a) P(T,X)="P(T,X'),
(b) for each x € X, we have lim,,_,o0 ngp, d(T"x, X') =0, where d(E;) = 0.
Proof. We will show first @ = (]E[) Assume that we have @ Suppose that (]ED

does not hold for some x € X, i.e. there exist 6 > 0 and E, C Z with d(E,) > 0
such that

(124) d(T"z,X") > 6 for n € E,.

Let f € C(X) be such that 0 < f < 1, f(x) =1 if d(z,X’) > § and f(x) = 0 if
z € X' Let (Ng)g>1 and v € P(T, X) be such that

1
(125) vy (Ey) = lim E‘Ex N[0, Ni]| >0
and
1
(126) N > Grng v
n<Ng
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Then, using (126]) and @, we obtain

(127) E%EZﬂW@%AfW=ij:0

n< N

On the other hand, by (124)), (125)) and by the definitions of F, and f, we have

1
lim — T"z) > d E 0
Jm, 3 S0 2 dwy (Fa) > 0

which contradicts (127)).

We will now show that (]ED implies @ Suppose that for some v € P¢(T, X),
we have v(X') = 0. Let X’ C U C X be an open set, such that v(U) < . Let
feC(X)besuch that 0 < f <1, f(x)=1forz € X' and f(z) =0for z € X\ U.
By the ergodicity of v, there exists x € X such that

1
(128) N Z (ST'rLz — V.
n<N

Then, by the choice of U and f, we have

(129) /f dv <e.

On the other hand, using and ([128)), we obtain
. 1 noN
[#av=gim & 3 -1,
n<N
which yields a contradiction with (129) and completes the proof. O

Definition 10.1. When (b) of Lemma holds, we say that X' is a quasi-attractor
in (T, X).

Corollary [1.6] follows immediately by Theorem [C|and by Lemma Moreover,
Corollary [T.6] can be rephrased as follows:

Corollary 10.4. For any % C N, the subshift (S, )?,,) has a quasi-attractor of the
form X, for some taut set B such that Fo C Fg. Moreover, such %' is unique.

11 Intrinsic ergodicity revisited

11.1 Taut case revisited

Now we present a second proof of Theorem [8:2]

Proof of Theorem[8.4 We will use the objects introduced in course of the proof of
Theorem There exists Cy C C (recall that C' was defined in (I8)) such that
every point from Cj returns to C' infinitely often under T' and P(Cy) = P(C). It
follows that every point from Cy x {0,1}% returns to C' x {0,1}? infinitely often
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under 7 and v(Cy x {0,1}%) = v(C x {0,1}%) for every v € P(T, G x {0,1}%). Thus,
the induced transformation Ty 49,132 is well-defined. Recall that
T T97 T), if g ¢ C’
T(g,2) = (To,z), 1
(Tg,Sz), ifgeC.
It follows that TCX (0,112 = Te xS a.e. for any T-invariant measure (cf. the definition
of T and C).
We will show now that 7" has a unique measure of maximal (measure-theoretic)
entropy. In view of Abramov’s formula, for this, it suffices to show that Ty 0,1} =

Tc x S has a unique measure of maximal entropy. For any T¢ X S-invariant measure
K, by the Pinsker formula, we have

h(S,{0,1}*, kl0.1y2) < M(Tc x S,C x {0,1}*, k)

(130) 7 Z
< h(TC7C7K‘C) + h(S7 {07 1} 7’€|{0,1}Z) = h‘(Su {Oa 1} 7’%‘{0,1}2)'

Since I{|{071}z can be arbitrary, it follows that the maximal entropy for T x S and
for S is the same. Moreover, the maximal entropy for T x S is achieved by k if
and only if the maximal entropy for S is achieved by #[{g 1yz. In other words, this
happens if and only if |9 132 is the Bernoulli measure B(1/2,1/2), i.e. when & is
a joining of the unique invariant measure for T and B(1/2,1/2). Since the unique
invariant measure for T¢ is of zero entropy, it follows by disjointness [24] that « is
the product measure. In particular, s is unique. B B

It follows from that © is 1-1. Hence, ©,: P(S,Y NX,) = P(T,G x{0,1}%)
is also 1-1 and for any v € P(S,Y N X,)), we have h(S,Y N X,,v) = h(T,G x
{0,1}%#,0,v). The result follows now from Corollary ﬁ O

Remark 11.1. Suppose that # C Nis taut. Notice that we have U, (P®B(1/2,1/2))
P® B(1/2,1/2). Moreover,

(P® B(1/2,1/2))cxf01y= = Pc ® B(1/2,1/2).

Since h(Tc x S,C x {0,1}2,Pc ® B(1/2,1/2)) = log 2, it follows by the above proof
of Theorem [R:2] that

DU, (P® B(1/2,1/2)) = M. (¢ x id).(P® B(1/2,1/2))
= M, (v, ® B(1/2,1/2))

is the unique measure of maximal entropy for (S, )?n)

11.2 General case (proof of Theorem |J|
Theorem [J] is an immediate consequence of Theorem [C] and Theorem
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12 Remarks on number theory

12.1 Consecutive gaps between #-free numbers (proof of Propo-
sition [M))

Fix % C N and denote by (n;);>1 the sequence of consecutive natural %-free num-
bers. In [3], the following was shown in case when 2 C N satisfies (I)):

Let 0,0 > 0 be such that 200 > 9 + 36066. Then, for N large
enough there exists j = j(N) > 1 such that n; € [N,N + N?]
and min(njy1 —nj,n; —nj_1) > ®(N), where ®(N) is the largest
positive integer such that H?i(lN) bj <N 9,

(131)

In particular,

(132) limsup inf(n;12 — njp1,nj41 — ny) = oo
J—00

Proof of Proposition[M It follows by Theorem |§| that X, = )?,,. Moroever, by
Theorem [G] X, is the topological support of v,. Since, by Proposition [E} 7 is
quasi-generic for v, the result follows.

Even though, contrary to (131]), the result included in Proposition is not
quantitative, it seems new and it strengthens ((132)).

12.2 Abundant numbers

Definition 12.1. For n € N, consider the aliquot sum s(n) := 3, 4., d- We say
that n € N is:

(i) abundant if s(n) > n,

(i) perfect if s(n) = n,

(iii) deficient if s(n) < n.
We will denote the set of abundant, perfect and deficient numbers by A, P and D,
respectively.

Notice that A is closed under taking multiples. It follows that
A=NNMg, and PUD =NNFg,

for some primitive 5 C N.
Lemma 12.1. %A is thin. In particular, Ba has light tails and is Besicovitch.
Proof. Erdss [20] showed that % N [0,n] = o(n/log?n). Let nj be the j-th Ba-

free natural number. Therefore, for n sufficiently large, n < j,(log? j,) . It follows
that, for large n, we have nlog®n < nlog?®j, < j,, whence

(133) Z 1/17 = Z 1/]'" < Z l/nlog2n < 00,

beBAa n>1 n>1

i.e. Bp is thin. To complete the proof, it suffices to use the fact that thin sets are
Besicovitch. 0
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Lemma 12.2. d(P) =0.

Proof. Euclid in Proposition IX.36 in Elements showed that {2%(2k*1 — 1) : 2k+1 —
1 € P} C 2ZNP. In a posthumous 1849 paper, Euler proved the other inclusion,
ie, 2ZNP C {2F(2F1 —1): 281 — 1 € P}, see [17]. Therefore,

27N P = {2F(2FH1 — 1) . 281 1 ¢ P},

In particular, d(2Z N P) = 0. Moreover, d((2Z + 1) N P) = 0 by [337] and we
conclude. O

Proof of Corollary[1.13 By Lemma and Corollary we have
(134) d{neN: A+ncCAand F+nCPUD}) > 0.
The assertion follows from (134) and Lemma [12.2] O

Proof of Corollary[1.14 Since {1,2,3,4,5} C D, the assertion is an immediate con-
sequence of Corollary [[.13] O

Remark 12.3. Notice that Corollary[I.14]yields an indenpendent proof and strength-
ens the result from [47] that there are infinitely many sequences of 5 consecutive
deficient numbers.

Lemma 12.4. %Ba contains an infinite coprime subset.

Proof. 1t follows from [21] that ();cpc(Mma — k) # 0 for any K > 1, ie,
(...,0,0,0,...) € X,. To conclude, it suffices to use Theorem O

Remark 12.5. Another way to prove the above lemma is this is to use the algorithm
presented in [31], outputting the smallest abundant number not divisible by the first
k primes.

Proof of Corollary[1.15 The assertion is an immediate consequence of Proposi-

tion [M] Lemma [T2.I] and Lemma [12:4] O

Proof of Corollary[1.16. Tt follows by Lemma Lemma and Theorem [D]
that X, = X,. In particular, by Theorem E (S, X,) is proximal. The intrinsic

ergodicity of (5, X,,) follows from the heredity of X, and from Theorem [J| Finally,
the intrinsic heredity of X, and Proposition [K|yields h:op(S, Xy) =1 —-d(A). O

Remark 12.6. It remains open, whether we have )?77 = Xg,. If the answer is
positive, it would imply that given finite disjoint sets A, B C N, one could always
check in a finite number of steps whether for some n € N we have A +n C A and
B +n C PUD (again, since d(P) = 0, this is equivalent to the existence of n € N
such that A+n C A and B+ n C D). Indeed, it would be sufficient to check
whether |supp B mod b| < b for each b € A N [1,max B — min B + 1].

28Tt is an open problem, whether (2Z + 1) NP = .
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