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resentations became a natural frame for the considerations. Obtained this way theory is
a unification of several trends in limit theory for sums and helps in understanding the
asymptotic structure of order statistics.

This is not a monograph on limit theory for sums and order statistics of dependent
stationary random variables. The choice of presented results and examples depends heavily
on the author’s taste and interest. In particular, we concentrate on results which we can
obtain by means developed in the paper, and on examples demonstrating how weak are
the assumptions usually made in the paper.
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Introduction
and Announcement of Results

Asymptotic Independent Representations for Sums

“From independence to dependence”: the head of Chapter IX in M. Loeve’s book ([Loe78])
is the shortest program for any attempt to build a limit theory extending the classical one
for independent random variables.

Considering sums of random variables, Loeve himself suggested “comparison of sum-
mands”(cf, p.41), which, in the simplest case, led to suppressing the dependence between
summands. Loeve’s conditions were, however, hardly applicable.

Much more fruitful is another approach, known as “Bernstein’s method” (see [IbLi71],
[los77]). Here the main idea is to divide the sum into almost independent segments. It is
possible, if summands possess “mixing” properties, describable in various ways. We refer
to [Bra86] and [Pel86] for the nearly up-to-dated survey on the present stage of the theory.

Some results obtained on the base of Bernstein’s method can be “visualized” in the
form of an almost sure invariance principle (ASIP): the original (dependent) sequence
can be redefined (without changing its law) onto another probability space, on which an
accompanied independent sequence exists, with sums of both sequences being close in a
strong sense (see [Phi86] for the survey). ASIP is a very powerful tool: as a rule it implies
functional convergence of the corresponding partial-sum process. On the other hand, it
is easy to find examples of 1-dependent sequences with partial sums weakly convergent,
when properly normalized, to a p-stable distribution, but not convergent in the functional
manner (see 5.8, 5.19 below, also [Sze89]). It follows that looking for the general theory,
we cannot expect results like ASIP (or even invariance principle in probability). Therefore
we suggest restricting the attention to the weakest approximation, which is still of interest.

Let {X;}jen be a strictly stationary sequence of random variables with partial sums
So =10, S, =", X;, n € IN. We will say that {X;} admits (or possesses) asymptotic
independent representation (a.i.r.) for partial sums, if there exist independent, identically
distributed random variables {)A{j}jew with partial sums S, such that

sup |P(S, <2)—P(5, <z)] — 0 asn — +oo.

zeR!
Trivial examples show that a.i.r. is not unique . However, if exists, it determines the
class of possible limit laws and the way of normalization and centering in limit theorems
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for S,’s. In particular, we will study only regular a.i.r., i.e. sequences {)A(;} such that
gn/Bn —p p for some normalizing constants B, — +o0o and some non-degenerate law
[

Suppose {X,} is a regular a.i.r. for {X;}. By the very definition also S,/B, —sp g,
and by the theory for independent identically distributed summands, B, must be a 1/p-
regularly varying sequence and g — a strictly p-stable distribution, for some p, 0 < p < 2.
Further, if p = 2, then B?/n must be equivalent to a non-decreasing positive sequence. Our
first observation (Theorem 1.1) states the converse: a regular asymptotic representation
for sums exists if, and only if, S,,/B, —p wu for some {B,} and pu specified above.

Notice the exceptionality of p = 2. It is interesting, that we can get rid of restrictions
on B2 /n, if we admit approximation by stationary and independent in rows arrays {X,, ; :
J,n € IN}: for every 6 > 1

max sup |P(S, <z)-— P(Z)A(Jw‘ <z)] — 0 asn— +oo.
n<m<6-n rcR! j=1

Suppose, as before, that S, —p p, where B,, — 400 and p is non-degenerated. Then
Theorem 1.4 says, that the above asymptotic independent representation (a.i.r. “in the
array setting”) exists if, and only if, for some p, 0 < p < 2, B, is 1/p-regularly varying
and p is strictly p-stable.

Observe, that approximation by arrays does not extend the class of possible limit laws
(to all infinitely divisible distributions, for example) and does not bring any new phenomena
in the case 0 < p < 2. On the other hand it exhibits an interesting structure of the Central
Limit Theorem for stationary sequences.

Theorem 1.4 restricts our attention to p-stable limit theorems, i.e. results on
weak convergence of 5, /B, to strictly p-stable laws, when B, is a 1/p-regularly varying
sequence.

We aim at finding necessary and sufficient conditions for p-stable limit
theorems.

All results in Chapters 1-4 without stated references are taken from [Jak90c].

Mixing conditions

At the first stage, we examine mixing properties of 5,,’s. It is proved in Theorem 2.1, that
a p-stable limit theorem implies Condition B: For each A\ € IR!,

max | E e?NEkt/Br) _ peiASk/Be) g /B0 ag n — 4oo.
1<k,I<n
k+i<n

Conversely, if Condition B holds, B, — oo and

Sh
B_n 7/«075507
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then p must be strictly p-stable and B,, is a 1/p-regularly varying sequence. This statement
slightly improves Theorem 18.1.1 in [IbLi71], replacing ,
— strong mizing by Condition B,

— non-degeneracy of p by p # dp and

— regular variation on integers by usual regular variation.
Under some technical assumptions (see Proposition 2.4) Condition B admits an alternative
formulation:

Skt Sk S
d 2k 2t
1];1?; (E( B, ),,C(Bn) *,C(Bn)) — 0 asn — +oo,
+i<n

where d is any metric, which metricizes the weak convergence of probability laws on IR'.
This means that under Condition B we can break sums into seemingly independent com-
ponents and that any application of Condition B in limit theorems is, in fact, a variant
of Bernstein’s method. What should be emphasized, is that Condition B does not im-
ply any mizing (in the intuitive sense) properties and that it depends on the particular
choice of B,,. Perhaps Example 2.5 is here most striking: if X is Cauchy distributed and
Xy =X, k=1,2,..., B, = n, then Condition B holds for this totally dependent sequence.

The most standard way of checking Condition B is based on separation of blocks: if
B, — 400, one can find m, — oo such that Condition B is equivalent to

max |F M Sktitm =Skt 1+58)/Bn _ poirSk/Bn Ee”s’"/B"| — 0 asn — +oo,
mnp<k,l,m

k+l+m<n

for every A € IR'. Now we can use Rosenblatt’s coefficient of strong mixing for estimation
of the above covariances. It follows that strongly mixing sequences satisfy Condition B for
every B, — oo. Brief discussion of most important mixing coefficients and their mutual
relations is given in Section 2.5.

Keeping in mind that the form with separated partial sums is the most applicable one,
we prefer the original version of Condition B, for the latter provides us with what we
want (“breaking”) without all unpleasant technicalities. Moreover, there are tools such as
Newman’s inequality for associated random variables which allow us to check Condition B
directly (see Section 2.4).

Regular variation in the limit

Suppose Z, —p [, where u is strictly p-stable. For each n, let {Y}, ;},en be a sequence
of independent copies of Z,,. By strict stability of u, for each k € IN we have

k
k_l/pZYnJ ? (oas n — +oo.

J=1



4 ANNOUNCEMENT OF RESULTS

Hence we can find a sequence {r,} of integers, r, /* oo, such that if k, = o(r,,), then

kn
-1
k) /p;YnJ ? (oas n — +oo.

If k, — oo, the array {Z,; = k7'/?Y, ;; 1 < j < k,,n € IN} of row-wise independent
random variables is infinitesimal. For such arrays we can use existing limit theorems for
independent summands (see Theorem A.5) and find expressions involving 7, ;’s (in fact:
Z,’s), which are necessary for 7, —p p. As a result we get Proposition 3.1.

Obtained this way conditions have a very special form: given a sequence of functions
fnoon IRY (e.g. fu.(x) = P(Z, > x)) we assume that there exists a sequence r,, /* oo such
that

xﬁfn(xn) — c,

whenever z,, — oo, x, = o(r,). If ¢ > 0, we say that the sequence {f,} is (—p)-regularly
varying in the limit. The name is motivated by the following natural example: take
a (—p)-regularly varying function f : IR*T — IRT and a sequence a, — oo of numbers.
Then {f.(2) = ¢- fla,2)/f(an)}new is (—p) -regularly varying in the limit.

In the classical limit theory for sums of independent identically distributed summands,
the notion of regular variation plays a fundamental role (see [Fel71, Chapter VIIL.9]). In
particular, Karamata’s Theorem (see Theorem B.11), establishing a link between truncated
moments and regularly varying tail probabilities, is a very useful tool. For sequences
regularly varying in the limit we can prove a result only partially corresponding to the
direct half of Karamata’s Theorem. Nevertheless, our Theorem 3.6 is still sufficient to
exhibit dependencies between conditions we obtained above as necessary for 7, —p p.
This enables us to reduce the number of conditions and to consider in Proposition 3.1 only
the essential ones.

Tauberian Limit Theorems

Recall that by our convention, a p-stable limit theorem holds for { X}, if 5,,/B, —»p p,
where the limit law g is non-degenerated and strictly p-stable and B, varies 1/p-regularly,
for some p, 0 < p < 2. Our final result—Theorem 4.1—gives two conditions which are
necessary and sufficient for a p-stable limit theorem to hold:

e There is a sequence {r,}, r, /* 400, such that for every sequence {k,} of integers
“tending to infinity slowly enough” (i.e. k, = o(r,)) we have
kn
k;l/pZYnJ ? (oas n — oo,
=1
where for each n, Y, 1,Y,9,..., are independent copies of S,/ B,.

e Condition B is satisfied for {S./B,}.
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The first condition is in the form independent of p; applying corresponding results for
arrays of independent summands we may “translate” it into the form specific to the case
0O<p<l,p=1,1<p<2orp=2 Thisis done in Theorems 4.2-4.5. Obtained this
way criteria are improvements of [DeJa89] and [JaSz90].

The above results are of “Tauberian” type. Indeed, we deal with necessary conditions
obtained by averaging independent copies and the extra information we need in order to
get sufficiency, is just Condition B (playing here the role of a “Tauberian condition”).

We have constructed a quite satisfactory theory of what we called “p-stable limit
theorems”. The traditional formulation of limit problems is, however, somewhat more
general: instead of

S,/ B - M

a convergence with centering

(Sn — As)/ B ? M

is considered. Fortunately, if Condition B holds for {S./B,}, there is no need to develop
the theory parallelling the preceding one (for example, with limits which are stable, and not
strictly stable). Theorem 4.9 asserts, that for p # 1 we can always find a number A € IR
such that (S, —n-A)/B, —p pu*d_,, where u*d_, is strictly stable. Since Xi=X;-A
is a strictly stationary sequence satisfying Condition B, Theorem 4.9 provides—in the case
p # 1—a complete reduction of the apparently more general limit problem with centering
to the restricted one considered in this paper.

Examples of p-stable limit theorems

Conditions appearing in Tauberian limit theorems are tractable.
We have already discussed Condition B (in Chapter 2), so now we are going to review
some methods of checking

kn
k;l/pZYnJ ? (oas n — oo,
i=1

where for each n, Y, 1,Y,2,..., are independent copies of S,,/B,, and k, — oo increases
slowly enough. Formally we solved the problem in Theorems 4.2-4.5 by means of corre-
sponding limit theorems for triangular arrays. The point is that in these theorems we deal
with expressions involving S, /B, and not individual summands. On the other hand the
required information is reduced and we claim that this is the proper level of reduction:
using our Tauberian theorems we can either prove most of existing results or at least
indicate the essential step in their proof.

For example, applying the Lindeberg Central Limit Theorem we obtain Denker’s crite-
rion [Den86] stating that under strong mixing, the uniform integrability of {S?/Var (S,)}

is necessary and sufficient for S, /y/Var (S,) —p N(0,1).
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In Theorem 5.5 we derive a similar criterion operating with truncated random variables.
Using this criterion it is possible to obtain recent CLT theorems for mixing random variables
with infinite variance due to Bradley [Bra88] and Peligrad [Pel90].

In Section 5.3 we apply Theorems 4.2-4.4 in proving non-central limit theorems from
[Dav83], [Sam84] and [JaKo89]. It is assumed in all the results that there are no clusters
of big values of summands. And this makes our computations easy.

If clusters of big values exist, our technique works as well. This is demonstrated in the
new, short proof of Theorem 5.16, being a one-dimensional refinement of limit theorems
for m - dependent random variables obtained in [JaKo89].

Our theory, although general, cannot replace such traditional and powerful methods as
“martingale approach” (see [HaHe80], [Jak86], [JaSh87]) or ASIP. Nevertheless, Tauberian

limit theorems constitute a unified tool in a wide variety of problems.

Asymptotic Representations for Order Statistics

In the second part of the paper we study asymptotic representations for order statistics
of sequences of random variables. The motivation is here the same as for sums: we are
interested in possibly general limit theory extending the classical one for independent
random variables and describing phenomena of “asymptotic independence”. We stress,
however, a different aspect of the theory: it is not only the tool for getting limit theorems
but it helps to understand better the limit structure of order statistics.

This is important particularly for higher order statistics, where we suggest using a sim-
ple (although dependent) universal model instead of difficult in analysis limit distributions.
But in the simplest case of maxima, we can refresh our point of view on such structural
notion as extremal index, either.

It should be pointed out, that our approximating sequences may exist even if the original
order statistics are not convergent under any linear normalization. This corresponds to the
fact, that linear normalization is natural for sums rather than for maxima, and that in
most cases limiting probability of exceedances over a given sequence is of interest only:

lim P( max Xj > v,) =7.
n—00 1<k<n

Therefore in our criteria we operate with conditions describing properties of order statistics
with respect to suitably chosen, but only one sequence of boundaries {v,}.

Asymptotic Independent Representations
for Maxima

Let { X };ev be a sequence of random variables. Define M,, = max, .;., X; and My = —oc.
We say that {X;} admits an asymptotic independent representation for maxima, if there

exists a sequence {)7]} of independent random variables with partial maxima M, such that
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sup |[P(M, < z)— P(M, <) -0 as n — oo.
rER?

If {X;} is stationary, it is quite natural to ask for {)7]} being an independent identically
distributed sequence. If G is the common distribution function for X;’s, then we can rewrite
the above definition in the form

sup |P(M,, <z)—-G"(2)]— 0 as n — oo,
reR!

which defines a phantom distribution function G for {X;}—the notion introduced by
O’Brien [OBr87]. O’Brien gave widely applicable sufficient conditions for existence of such
(; an improvement of his results obtained by the author [Jak9la] states that a stationary
sequence {X;} has a phantom distribution function (& satisfying

1 —G(x)

e SV 1 .
1—G(l‘—)—> as x G

G(G.—)=1 and

where G, = sup{u; G(u) < 1}, if, and only if, there is a sequence {v,} of numbers such
that
P(M, <v,) — «

for some a,0 < a < 1, and Condition B (v,) holds:

sup |P(Mjyx <v,) — P(M; <v,)P(My <w,)| — 0 as n — oo.
7,keIN

The restriction imposed on G is well known in the literature; it guarantees that for some
(and then for any) 0 < a < 1, one can find a sequence v, such that G"(v,) — a. By analogy
to sums we say that such (G determines a regular asymptotic independent representation.

We derive the above result as Theorem 6.17 being a consequence to more general The-
orem 6.2 on existence of a.i.r. for maxima of nonstationary sequences. There are some
reasons to consider here the nonstationary setup. First, Theorem 6.2 provides a criterion,
which is very convenient for stationary sequences (e.g. Markov chains with stationary ini-
tial distribution—see Theorem 6.15). Further, using this criterion we can find a regular
phantom distribution function even for nonstationary sequences (e.g. Markov chains with
arbitrary initial distribution—Corollary 6.16). And last but not least—Theorem 6.2 is in-
teresting by itself. Indeed, in this theorem we construct marginal laws of the approximating
independent sequence using the limiting function

ay = lm P(Mpg <wv,), t>0.

The construction is possible if oy > 0, ¢ > 0, sup,yq ¢ = 1, inf,. 5 oy = 0 and there exists
a concave function g, such that

ar = exp(ga(logt)).
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In particular, the limit a; = o' for some 0 < a < 1 (or g, = € - loga) “produces” an i.i.d.
sequence with marginal distribution function G given by the formula

0 if = <wy,
G(x) = allm it o, <@ < wvpg,
1 if x> sup, v

(We may assume that the sequence {v,} is non-decreasing). Theorems 6.2 and 6.15 and
Corollary 6.16 were originally proved in [Jak90a).

Theorem 6.17 and the explicit form of a phantom distribution function enables us to
generalize the notion of the extremal index and to prove easily a criterion for its existence
(Theorem 6.21). Let us give a sketch of the reasoning.

Let {X;} and {X}} be two stationary sequences. Suppose that for some non-decreasing
sequence {v,} Condition B..(v,,) holds for both sequences, and that as n — oo

P(M, <v,) = «a, P(M] <wv,)—d,

where 0 < a, o’ < 1. By Theorem 6.17, both {M,,} and { M} admit a phantom distribution
function G and G’ respectively, and

G=a"

where

0 — log o

~ loga’

It follows now by the very definition of an asymptotic independent representation, that

sup [P(M,, < z)— P(M! <)’ — 0, asn — +oo.
reR!

We call such number § the relative extremal index of {X;} with respect to {X?}. This
is a generalization of the (usual) extremal index, which in our terminology is the relative
extremal index of {X,} with respect to the i.i.d. sequence {X;} with the same marginal
distribution: £(X;) = ,C()?]) The concept of extremal index was introduced by Leadbetter
[Lea83], who perfected earlier ideas of Loynes [Loy65] and O’Brien [OBr74a]. Leadbetter’s
proofs and criteria of existence are, however, different from our Theorem 6.21.

The relative extremal index is not an artificial notion. In naturally arises, for instance,
in limit theorems for regenerative sequences, as interesting Example 6.20 due to Rootzén
[Roo88] shows.

Eventually, we point out that there are stationary processes without asymptotic inde-

pendent representation, for which the relative extremal index can be defined as well (see
Example 6.22).
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Equivalent Forms of Mixing Conditions

Describing “asymptotic independence” in the form of Condition B.,(v,) is not a common
practice. The tradition in the Extreme Value Limit Theory prefers Leadbetter’s Condition
D ([Lea74], [LLR83]) or its variants ([HHLSS8]) close to strong mixing.

We were partially inspired with O’Brien’s ([OBr87]) Condition AIM(u,). The main
difference is that we relate mixing properties to a single sequence {v,}, while O’Brien
(and others) used to consider “breaking probabilities” P(M;ir < v,(3)) for a family of
boundaries {v,(3); 8 € B}, but on bounded intervals only: j + k < n. Propositions 7.7
and 7.8 show, that both approaches are essentially equivalent.

In fact, for stationary sequences Condition B (v,) is nothing but asymptotic expo-
nential form of the path IR* 3 t — P(M,g < v,): by Proposition 7.5 it is equivalent
to

sup|P(Mpg < v,) — P(M,, < vn)t — 0 asn — +oo,
>0
P(M, <wv,) <limsup,_,. P(M, <wv,) <1.
The above results are taken from [Jak9la].

provided 0 < lim inf

n—0oo

Limiting Probabilities for Maxima

Existence of an a.i.r. and limit theorems for maxima require an effective tool for calculating
oo P(M,, < v,) in the presence of some mixing assumptions.
O’Brien [OBr87] obtained the representation

lim

P(M, <wv,)—exp(—nP(Xo >v,, M,, <wv,)) — 0, asn — +oo,

where {r,} is a suitable chosen sequence of integers. However such formula is useless, if
we want to calculate the limiting probability and r, tends to infinity: the expression under
exponent depends on increasing number of random variables X, hence is of the same type
as the approximated probability.

Therefore we investigate in detail other approximations, which are based on the knowl-
edge of asymptotic properties of finite dimensional joint distributions only:

|P(M,, <wv,) —exp(—nP(Xo > un, My, <wv,))| — 0, asn — +oo,
for m € IN fized, or

lim limsup|P(M, < v,) —exp(—nP(Xy > v,, M,,, < v,))| = 0.

m—00 n—0oo

For example, the first approximation holds for m- dependent random variables ([New64]),
while the second one is valid for uniformly strong mixing (i.e. ¢-mixing) sequences

([OBr74b]).
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It follows that the above approximations allow the following calculation:

lim sup

. T n—»co

nh—>r<r>lo log P(M,, <wv,) = ﬂ}l_r}rio T nP(Xo > v,, M, <w,).
n—00

In Chapter 10 we discuss several conditions, including generalizations of Leadbetter’s Con-
dition D’ ([Lea74], [LLRS83]), which enable us to apply this formula.
All the results are taken from [Jak90b].

Asymptotic (r-1) - dependent Representations
for rth Order Statistics

Let Xi,Xs,... be a stationary sequence of random variables. Denote by M(*) the kth
largest value of Xy, Xo,..., X,,.

It is well known, that for i.i.d. X7, X5, ... convergence in distribution of suitably nor-
malized partial maxima:

P(M, <wv,(z)) — G(x), z¢€ R,
implies convergence of all order statistics: for each ¢ > 2

q—1

P(M(q)<vn(:1;)) — G(x ( —I—Z_log—G))), x e R, asn— +oo.
k=1

(see e.g. [Gal78] or [LLR83]).

If we drop the assumption of independence, preserving only strong mizing property,
higher order statistics may fail to converge or they may converge to different limits. As-
suming they converge for each ¢ € IN, Dziubdziela [Dzi84] and Hsing, Hiisler & Leadbetter
[HHL88] describe possible limits in terms of parameters of certain compound Poisson dis-
tributions. We prefer the description given by Hsing [Hsi88] (see also Theorem 9.2): the

limit for M9 is of the form
-1
—log G(x
( o5 sttt 7) ,

where 0 < v, <1, k& = 1,2,...,¢ — 1, and G is the limit for maxima. However,
complexity of formulas for 7, ;’s quickly increases with ¢, what makes difficult the analysis
of asymptotic properties of higher order statistics. Therefore we suggest approximation
by a simple model in place of limiting distribution.

The model is simple, indeed: take 31, 3s,..., 8, > 0 such that 35/ _; 3, = 1 and a regular

distribution function ¢G. For each 1 < ¢ < r, let {f@ﬁmw be independent and identically
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distributed: wa ~ (%, and let sequences {1717]4}]4617\7, {1727]4}]4617\7, ce {Y/r,j}jel\f be mutually
independent. Define

X; = Yy
V(Ya; VYo i)
V(Y V Y5501V Y 00)

VY VY Vo VY ).

Finally, let Méq), g=1,2,...,r be order statistics of Yl,)?;, -
Then Theorem 9.1 asserts, that

sup |[P(M\9 < z)— P(MY <z)] — 0 asn — oo,
zeR!

for each ¢, 1 < ¢ < r, if, and only if, there is a non-decreasing sequence {v, } such that for
each ¢, 1 < g <r we have

P(M® <wv,) — a,, asn — oo,

where 0 < a3 < 1, and a natural mixing condition similar to Condition B..(v,) holds.
Practically: every time there exists the limit for r first order statistics, we can approximate
these statistics by our (r — 1)-dependent model built up from G and (4, B, ..., ..

It is a natural question, whether we can approximate simultaneously all order statistics
by order statistics of a sequence f/] obtained formally like )7] but for » = oc. This is not
automatic. For example, f/] can be trivial: f/] = (, a.s.. Some other possibilities are
discussed in Theorems 9.13 and 9.17.

All these results were originally obtained in [Jak91b].
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ANNOUNCEMENT OF RESULTS



Part 1

p - stable limit theorems
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Chapter 1

Asymptotic Independent
Representations for sums of random
variables

1.1 Simple Asymptotic Independent Representation

Let X1, X, ... be a strictly stationary sequence of random variables. Denote 5o =0, 5, =
?:1Xj n = 1,2,....

We will say that {X;} admits (or possesses) asymptotic independent representation

(a.i.r.) for partial sums, if one can find independent, identically distributed random vari-

ables X1, X5, ..., such that

sup |P(S, <x)— P(S, <z)] — 0 asn — 4oo, (1.1)
zeR!

where gn :Y1+Y2+...+Yn.

In general, such a representation is not unique; it precisely describes, however, asymp-
totic properties of distributions of sums 5,,. Therefore we will be interested in regular a.i.r.
only, i.e. sequences {)7]} such that

S

B, o "

for some normalizing constants B,, — 400 and some non-degenerate law p.

Theorem 1.1 A reqular asymptotic independent representation exists for S, if, and

only if,

St .

Bn D ILL7
where, for some p € (0,2], w is a non-degenerate strictly p - stable distribution, B, is a
1/p - regularly varying sequence and, if p = 2, then B*/n is equivalent to a non-decreasing

Sequence.

15
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PROOF FOR p # 1.

Let gn = )71 —I—)A(; +.. .—|—)7n be a regular a.i.r. for 5,,. If B, — 400 and non-degenerate
p are such that gn/Bn —p p, then S,,/B, —p pu, either, and B, and p possess the
required properties directly by Theorems A.2 and A.3. To prove the converse implication,
it is sufficient to find an i.i.d. sequence {X,} such that S,/B, —p . Indeed, knowing
that also S, /B, —p p, we get by continuity of u both

:;U‘Cm

sup |P(== < z) — pu((—o00,2])] — 0
zeR!
and

iﬁjﬂ ~ <) —p((—o0,z])] — 0.

IS

Hence (1.1) follows.

The construction of E()A(;) is based on Theorem A.5 and Lemma B.10 and is standard
for p # 1. The case p = 1, however, requires more delicate treatment.
e By Theorem B.7 we may and do assume, that B, is non-decreasing. If p = 2, we need
more: we assume that B?/n is non-decreasing.
e Case 0 < p < 1. By (A.6), u = Pois (v(p, cy,c_)) for some ¢;, ¢ >0, ¢t + ¢c- > 0.
Let ng be such that ¢; 4+ ¢_ < ng. Define

c_/n if =B, << -8B, and n > ny,
Flz)=13 1/2(1 — (¢4 —c_)/ng) if —B,, <z < B,,, (1.2)
l—cy/n if B, <x< B,y1and n > ng

If X, ~ F', then nP()?l > B,) = ¢y, nP()?l < —B,) = ¢_ and by Lemma B.10, both
fi(2) = P(Xy > ) and f_(2) = P(X; < —x) are regularly varying with index —p. Now,
using Theorem B.11, we can easy verify conditions (A.20)-(A.22) in Theorem A.5. Hence
gn —p M.

e Case 1 < p< 2. If Y@, g = 1,2,... are independent and distributed according to F
defined by (1.2), then EY/J exists and )A{] = f/] — Effj, 7 =1,2,... satisfy assumptions of
Theorem A.5 (iii).

e Case p = 2. In this case u = N(0,0?%) with 6 > 0. Set ,C(gnl) to be symmetric and
such that

o B2
EX?I(|X,| < B,) = 0?22, (1.3)
n

CASE p = 1.

Now p is of the form Pois (v(1,¢,c)) * 44, where ¢ > 0. Let Y, ~ F, with ¢y = c_ = .
Since Y] is symmetric,

Vit Yot ...+ Y,
B,

- Pois (v(1, ¢, ¢)).
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If « = 0, nothing else is to be proved. If a # 0, we will construct another i.i.d. sequence

{Z,}, being independent of {Y;} and such that

I+ Zo+ ...+ 7,
— a.
B, P

Without loss of generality, we can take @ = 1. A special representation for slowly varying
functions is necessary.

Lemma 1.2 Let () be a slowly varying function. Then there exists a random variable
7 such that

lx)~EZI(|Z] < ) (1.4)
i P21 0
m — 0 as z — +oo. (1.5)

PROOF. By Theorem B.6 one can find a; > 0 and a C**—function h defined on [ay, +00)
such that

l(x) ~ chlog ) — U (x). (1.6)
and for each n > 1
h(”)(:p) — 0 asx— +oo. (1.7)
Let zg > a; be such that
h'(log zo) < 1. (1.8)

For x > xg, set
glx) = (F{(x))7, ql=z) = (F(x)*. (1.9)
Let us observe that

M@@z/(ﬁ@+ﬂ}@ﬂx<+m. (1.10)

Indeed,

Aﬂx@::/ M1082) 3 (log 2) — B (log 2)(1 — ' (log )|« de,
where ¢*1°82) /2172 and |h"(log ) — h'(log x)(1—h'(log x))| are bounded functions and z~%/2
is integrable on [xq, +00). In particular, for @ > xq

(a0 = a=wydu = [T A=) = G@) = Tim Ay = f(2), (L)

x Y—>00

for ¢'(y) = y~teMloeV ! (log y) — 0 as y — oo.
We complete the definition of ¢, setting ¢(0) = 0 and for 0 < < xy,

gz)=D-—, q(—x)=0. (1.12)
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Here D is chosen in such a way that

l(x0) = go(ﬁ%}(qi 1 5 q( (i))fyztﬁxd
= 86’0 ;6’0 u u v ot
0 (1 (alw) = q(—u)) du) do (113)

= (1/2)xoD + O} (20)x
le.
1 — h'(log xo)
Lo ’

D= 261 (l’o)

Notice that D > 0 by (1.8). If
Ci= [ (a(e) + a(=e)) dz = D+ M(xo) (> 0),

then p(x) = C~'q(z), v € IR' is a probability density on IR'. Let £(W) has the density
p(x); then by (1.11) and (1.12)

Ux) ~ Ll (x) = ffo () du + 4 (x0)
= C [, (P(W>u)—P(W < —u))du+t
+C [ (PW >u)— P(W < —u))du
= C-EWI(|W|<a)+ Cx(P(W>2)— P(W < —a)).

(1.14)

Further, for x > xg

PUW| > 2) €= Ji(u) du
l(x) ™ (x)
" (log ) — W (log x)(1 — h'(log @))|
C(1 —h'(logx))

— 0 as z — +oo.

In particular, x(P(W > 2) — P(W < —x)) = o({1(x)) and l(z) ~ C - EWI(|W]| < 2).
Hence EWI(|W| < ) is slowly varying and

Uz) ~ C-EWI(|W| < 2) ~C - EWI(|W|< 2/C) = E(C-W)I(|C-W]| < z).

So Z = (' - W has the desired properties (1.4) and (1.5). O

Now we are ready to construct independent 7, Z,, ... satisfying

I+ 2o+ ...+ 7,

5 — 1. (1.15)
Let {p(x) be an (asymptotic) inverse to l-regularly varying By,. If E( ) = [x]/lB(2),
then it varies slowly and B, ~ (g(B,){(B,) ~ nl(B,). Now, set ,C( ;) = L(Z) for Z

satisfying (1.4) and (1.5) and apply Theorem A.4.
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1.2 A.L.R. in the Array Setting

The case p = 2 is exceptional: we impose on B, the requirement that “B*/n ~ ¢, >
0,¢, /7, which is equivalent to “liminf,_,  B2/n > 0 and B?/n ~ inf, ., B2 /m.”
This implies that B2/n must converge to nonzero limit (perhaps to infinity). Let us consider
the following example, due to Bradley [Bra80, Lemma 2]

Example 1.3 There exists a centered gaussian stationary sequence {X;} such that
B,, = {/Var (S,) is (1/2)-regularly varying and B2/n — 0. O

Clearly, for centered gaussian sequences, S, /1/Var (S,) ~ N(0,1), so still: “B,, is 1/p-
regularly varying and p is strictly p-stable”, while no a.i.r. exists. One can find, however,
an approximation via a stationary and independent in rows array.

We will say, that {5, } admits an asymptotic independent representation in the array
setting if there is an array {Yn],] € IN,n € IN} of independent and stationary in rows
random variables, such that for each 6§ > 1

max sup |P(S, <z)— P(Z)A(Jw‘ <z)] — 0 asn— +oo. (1.16)
7=1

n<m<8-n zeR!

Theorem 1.4 Suppose B, — oo and S,/B, —sp u, where p is non-degenerate.
Then the following conditions (i) and (ii) are equivalent:

(1) B, is 1/p-regularly varying and p is strictly p-stable for some p € (0,2].
(i1) {S.} admits an asymptotic independent representation in the array setting.

PRrROOF.
o (i) = (i1). If0<p<2, set

X,;=X,, jeN, ne N,

where )Tj’s are given by Theorem 1.1. Then

sup sup |P(S, <) — P(Z)A(Jw‘ <z)] — 0 asn— 4oo,
ngmxeﬂ%l ]‘:1

and (1.16) is satisfied. So let p = 2 and let u = N(0,0?). Set

P(X,,; = +0B,/Vn) = 1/2.

Ifn <k, <60-n, then

<1)=0, Vnel. (1.17)
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We have also for ¢ > 0 and n large enough

X,
knP(% > ) =0, (1.18)

and by 1/2-regular variation of B,, asn — 400

— 2 —
an |Xn1| 0'2 B2 2
pop(2mt) et oy TP 2 1.19

(Bkn) (Bkn =) n B 7 (1.19)

By Theorem A.5 (iv), conditions (1.17) — (1.19) imply that

kn
Bkn_lzXnJ ?} N(0,0‘z).

i=1

Since {k, } was arbitrary, (1.16) follows.
o (ii) = (i). By (1.16), for each t > 1, { S}/ Br} possesses the same limit in distribution

as Zgﬂ )A(JW‘/Bn (if there is any). But S,/B, —p u, so for each A € IR

Bl § NG ABE,, )
Ee“\Bnlzj=1X"J _ (Ee”\Ban"’l) _ {(Eez/\Bann,l) } — /:L()\)t

Hence

Xoj
Bn B[nt] Z N
converges in distribution to a non-degenerate limit, which is distinct from p. By the
convergence to types theorem, for each ¢ > 1
Biay

B — (1) # 1, (1.20)

where ¢ (¢) is finite and positive. By Theorem B.1, ¢(¢) = ¢” for some —oo < p < 400 and
(1.20) holds for each t > 0. Since B,, — oo and ¢(t) #Z 1, we have p = 1/p > 0, for some
p>0,and B, is 1/p-regularly varying. In particular, setting ¢t = 1/k we get

LIL/EY?)X)™ = £(X),
if £L(X) = p. By Proposition A.1, y is strictly p-stable and 0 < p <2. O

Remark 1.5 In the proof of (ii) = (i) we used only the property that for each ¢ > 1

(]

sup |P(Spyg < ) — P(Z X, <z)| — 0. (1.21)

reR! j=1

This is the alternative form of (1.16). We prefer, however, (1.16), for it shows the n-th row
provides a “good” approximation on intervals n <m < 6 - n.



Chapter 2

Discussion of mixing properties

2.1 Condition B

We introduced “p-stable limit theorems” as results on the weak convergence of sums to
strictly p-stable limit laws with 1/p-regularly varying normalizing constants. From the
previous chapter we know that a p-stable limit theorem holds if and only if one can find a
convergent (after normalizing) asymptotic independent representation in the array setting.
But existence of an a.i.r. implies a kind of “asymptotic independence” or “mixing”. We
are able to describe the minimal form of such mixing properties.

Theorem 2.1 Suppose B, — oo and

Sy

There exists p € (0,2] such that u is a strictly p-stable distribution and B, is a reqularly
varying sequence with index 1/p if and only if the following condition is satisfied:
CONDITION B  For each ) € IR*,

max | E eMOkt/Br) _ peiASk/Be) g SUB)) L 0 as i — +oo. (2.2)
1<k, l<n
k+i<n

PRrOOF. To prove the sufficiency, we need a variant of the convergence to types theorem.

Lemma 2.2 Suppose that B, — oo and that Sy/B, —op p. Letk, — oo, k, <n.
If u is non-degenerate and {Sy, /B, } is shift-tight, then

B
sup % <(C < +o0. (2.3)

In particular, {Sk,/B,} is tight and its every limit distribution is of the form L(C"- X),
where L(X)=p and 0 < C" < C.

21
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Proor. We know that
S, —

B
where S, is an independent copy of S, and @(A) = u(—A), A € BL.
Suppose By, , /B, — 400 along some subsequence {n'} C IN. Hence

? M*ﬁ?’ééov

Skn/ - Skn/ Bkn/ Skn/ - Skn/

Bn’ B Bn’ Bkn/

is not tight, i.e. {Sy ,/Bu} cannot be shift-tight. O
e SUFFICIENCY

First we will show that g is a strictly p-stable distribution and that By.,/B, — Ei/P
for each &k € IV.

Fix k € IN and observe that by (2.2)

S *k
(E(Bn )) = i asn — +oo.
k-n

If o =96,,a #0,then S,/By, —p a/k and By.,/B, — k. If 4 is non-degenerate, we
can apply the above lemma and see that {B,/By.,} is bounded. If ¢ is any limit point of
B,/ By, and L(X) = p, then

Ller- X)* = L(X),

and since p # dg, we have ¢ # 0. So for each k one can find a constant ¢, > 0 such that
/Q(X)*k =L((1/er)X).
By Proposition A.1, p is strictly p-stable for some p € (0,2]. Moreover, ¢, = k'/?, so

B

3 5 EY? asn — too. (2.4)

[t remains to prove that B, is 1/p-regularly varying. By Lemma B.4 we have to prove
that By, /By, +1, — 1 whenever k, — oo and [,,/k, — 0.
Since B,, — oo, there exists m, — oo such that

max Sj/Bkn-I-ln — 0.
1<j<my P

If [, < my along a subsequence {n'} C IV, then

Skn/ Bkn/ o Skn/ Skn/ +i, [
. — ~ — ,
Bkn/ Bkn/-l-ln/ Bkn/-l-ln/ Bkn/-l-ln/ D

and By /B, 41, — 1 by the convergence to types theorem (if y = d,, a # 0, we get
Bkn//Bkn/-l'ln/ — 1 by direct arguments). So we can assume that [, > m,, in particular,
that [,, — co. By the asymptotic decomposition given by (2.2)

Sk S
Bror ) * L( Bri, ) = p (2.5)

£(
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If ¢ is non-degenerate, we know by Lemma 2.2 that both By, /By, 41, and By, /By, 11,
are bounded.
If 4 = 4, say a > 0, then for each € > 0

This and (2.5) imply for each ¢ > 0

S
P(=t cate) — 1
B,

or

Sk By, +1
p 2k o Dhatln 1
(Bkn < B (a+¢e)] —

n

Hence liminf By, 4, /By, > 1 and By, / B, 41, is a bounded sequence. Similarly By, / By, 11,
is bounded.
Suppose that By, /By, 1, — ¢1 and By, /By, 11, — ¢2 along a subsequence. Then

L1 X)* LX) =L(X) =y,

and it follows from strict stability of u, that ¢f 4+ ¢ = 1. Hence

Bk P ( B[ )p
L + L — 1 asn— +0. 2.6
(Bkn+ln) B+, (2:6)

This in turn implies that for k,,[,, — oo

n— 0o kn_Hn

B
lim sup <1, (2.7)

If l,,/k, — 0 then {,, <k, /k for n large enough and by (2.7) and (2.4)

: By, . B,
lim sup < limsup ==

n—0o kn+in n—0o ko
. By,
< limsup
B B
= limsup I Zlkn/H

n—oo B, /i) Bk /K]
< BP0 ask— oo,

Hence (2.6) implies By, /B, +1,, — 1.
e NECESSITY
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By Theorem B.7 we can assume that B, is non-decreasing. Further, if &, /n — 0 then
for n large enough k, < n/k (k fixed) and

By, _ Br,  Bum  Brloa
B, Bumw Biwgn B
B
< CWHE kP as i — 4o
kln/k]

Since k is arbitrary, we conclude that By, /B, — 0 and, in particular,

Sk
R (2.8)

If (2.2) does not hold, one can find A € IR', sequences k,, and [, and a subsequence
{n’} C IN such that along n’

oo »
— S, —/—>t, S—|—t§1,
n

n/
and for some § > 0

Fe MOkt /Brr) g iNSk, [Bur) | g iNSL [ Br)

>94. (2.9)
If s > 0 and ¢ > 0, then by 1/p-regular variation of B,, Ee MOk /Bu) EeMsl/pX,
BB _y Rt PX and ettt/ B) _y EGM(SH)UPX, where £(X) = . Since p
is strictly p-stable,

ixst/px ixel/rx iN(s+t)/PX
Fe - Fe = BNt ,

what is in contradiction with (2.9).

If s =0 and ¢ > 0, we have by (2.8), Sk ,/Bn —p 0, S ,/By —p 17X and
Sk, /B —p tYPX | so again (2.9) is impossible. Similarly, if s = 0 and ¢ = 0, the
three limits are 0. O

2.2 Alternative versions of Condition B

Remark 2.3 If X,’s are non-negative, i.e. values of S, /B, liein [0, 00), we can use the
Laplace Transform instead of characteristic functions. Condition B takes then the form:

For each X > 0,

max |Ee NOkt/Br) _ pe=MEk/Bu) | pe=AS/Be) g (2.10)
1<k,I<n
k+i<n

Condition B means we can break sums into seemingly independent components. This
property becomes even more transparent, if we consider an alternative version of Condition

B.
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Proposition 2.4 Suppose B, — oo, {S,/B,} is tight and no limit point of {S,/B,}
is degenerated. Then Condition B holds if and only if for some (and then for any) metric
d, which metricizes the weak convergence of distributions on IR', we have

A
B, B,

max d (/Q(Sk“),ﬁ(
1<k,I<n Bn
k+i<n

) L( )) — 0 asn — +oo. (2.11)

PrOOF. Tightness of {S5,/B,} and either (2.11) or (2.2) imply shift tightness of
{Sk/B, ; 1 <k <n,n e IN}. If nolimit point of {5,,/B,} is degenerated, then we can
apply a slightly modified Lemma 2.2: sup; <<, nen Br/Bn < 400, hence, consequently,
{Sg/B, ; 1 <k <n,ne IN} is tight. S

Now suppose (2.11) is not satisfied. Then we can find sequences k, < n and [, < n
and a subsequence {n'} C IV such that along n’

Sk St

Sk s
_n n — n — n —
Bn/ D ILL17 Bn/ D /’L27 Bn/ D /’L37

and 11 # p2 * ps. So (2.2) cannot hold. The converse implication can be proved the same
way. O

2.3 Some Examples

It should be pointed out that Condition B can be satisfied even by non-ergodic sequences
and only for very particular choice of B,,. Examples (2.5) - (2.7) below provide three types
of such phenomena.

Example 2.5 Let X ~ Pois(v(1,¢,c¢)) (Cauchy distribution) and let for each j € IV,
X; = X. Then it is well known, that £((m/n)X) = L(X/n)*™, hence

(e o) e

and Condition B is fulfilled with { X7, X5, ...} totally dependent. O

Example 2.6 Let 0 < p < 1 and let p belongs to the domain of attraction of
Pois (v(p, eq,c)). f{X;} are ii.d. and L£(X;) = p, then

Xi+Xo+...+X,
B,

? Pois (I/(p, Cy, C_)) )

where B,, = n'/?{(n) varies regularly. Now take arbitrary random variable X and define

X, =X;+X, j=12....
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Then {X;} is a stationary sequence and

Xt Xot 4N X4 Nt X 0

X ? Pois (I/(p, C_|_,C_)) )

for n/B, = n'='"?/{(n) — 0 as n — 4o0. By Theorem 2.1, Condition B holds. O

Example 2.7 Let p; and py be two distinet probability distributions on IR! with
zero mean and variance 1. Let X, X5,... be conditionally independent over o-field 7 =
{A,A°,0,Q} (0 < P(A) < 1) and such that for each j, the regular conditional distribution
of X; given 7 is of the form p11x4 + ft2x4c. Then

Blesp(it 32 X, (VIT) = (Elexplit X [VmlT) —> <27 as

SO

Blexp(it - X, /Vi) = B(Blexplit 32 X,/ValT) — 27,

Here again Xy, X, ... satisfies Condition B by Theorem 2.1. O

2.4 Associated random variables
The next example is more subtle.

Example 2.8 Suppose that X;, X,, ... are associated, i.e. for each n € IV and each
pair f, g of functions f, g : IR® — IR', which are bounded, measurable and non-decreasing
in each coordinate separately,

COV (f(X17X27 s 7Xn)7g(X17X27 s 7Xn)) 2 0. (212)

This definition is due to [EPW67]. For associated random variables with finite variances,
Newman ([New80], see also [New84]) proved an inequality which we will use in the form

, . : \?
|EeMSk+Z/B" — Bkl Bn EeMSl/B"| < ECOV (Sk, Sk+1 — Sk) - (2.13)

Notice that if £+ < n and E£X; = 0 we have

k+1-1 n—1
COV (Sk75k+l — Sk) S Z ]EXOX] S Z]EXOX] . (214)

i=1 i=1

Corollary 2.9 Suppose X, X,,... are stationary associated with finite variances and
zero mean.

(1) If EXoX,, = o(1/n) then Condition B holds for B, = \/n.
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(i) {(n) = EX§4+2Y"_ ) EXoX; is a slowly varying sequence if and only if B, = \/Var S,
is 1/2-regularly varying. In such a case Condition B is satisfied for B,,.

PROOF. (i) is immediate from (2.13) and (2.14). Notice that here S,,/y/n need not be

tight; nevertheless Condition B holds.
(i1) For associated random variables with zero mean,

EXoX; > EXoEX; =0,

hence ((0) > 0 and /(n) is a non-decreasing sequence. By Corollary B.16, {(n) is slowly
varying if and only if £S? = £(0) + (1) + ...+ {(n — 1) ~ nl(n), i.e. ES?is 1-regularly
varying. But

n—1 n—1
Jj=1 7=1

Since ES? ~ nl(n) we see that
5o JEXoX;
ES?
and Condition B follows by (2.13) and (2.14). O
It is possible to weaken the assumptions of Newman’s inequality (2.13) at the cost
of a constant factor on the right-hand-side. The following definition was proposed by
Burton, Dabrowski and Dehling [BDD86]: Random variables X, X5,..., X, are said to

be weakly associated, if whenever 7 is a permutation of {1,2,...,n}, 1 < k < m, and
f:IRF — IR', g: IR — IR" are coordinatewise increasing then

Cov (F(Xa(rys - s Xai) ), (Xt 1)s -+ s Xogmy)) > 0.
Dabrowski and Dehling [DaDe88, Proposition 2.1] proved that

— 0,

Eexp(i(i A X))/ By) — ] Eexp(ir; X;/B,)

i=1

< 2B77 ) [NlIAlCov (X5, Xy, (2.15)

1<5<k<m

provided X1, X,,..., X, are weakly associated. In particular,
. . . )2
| Bkl Br _ BeidSk/Bn | peidi/Bn| < 275 Cov (S, Skt = ), (2.16)

and we get

Corollary 2.10 In Corollary 2.9 we may assume that Xy, X, ... are weakly associated
only. O

Remark 2.11 An example on p.302 [BDD86] shows that there are weakly associated
sequences, which are not associated. This means Corollary 2.10 essentially improves Corol-
lary 2.9.
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2.5 Strong mixing and Condition B

In the above examples we checked Condition B either by Theorem 3.1 or by means of
special tools like Newman’s inequality. It is not a traditional approach. The tradition,
initiated by Rosenblatt’s paper [Ros56], suggests describing mixing properties via “mixing
coefficients”, being specific measures of dependence between “future” and “past”. Let G

and H be o-fields in a probability space (©, F, P). Define:

a(G,H) = sup{|P(ANB) - P(A)P(B)|; Ac G, BeH). (2.17)
&G, H) = sup{| P(B|A)— P(B)|; A€ G, P(A)>0, B € H}. (2.18)
(G H) = sup{‘% — 1| A€, BeH, P(APB) >0}  (2.19)

Clearly
a(G, ") <min{¢(G, H),p(H,G) } < max{ (G, H),o(H,G)} < ¢(G.H). (2.20)

Mixing coeflicients provide a useful estimation of covariances, e.g. by [BrBr85, Theorem

1.1] (see also [Pel83]):

Lemma 2.12 Suppose 1 < p,q < oo and p~' + ¢ ' < 1. If X and Y are complex
random variables and X € L?(G), Y € LY(H), then

[EXY — EX - EY| < 27a(G, H)' (G, 1) Po(H, GV IX]L 1Y, (2.21)
where 1 <r < 0o is such that p™ + ¢t +r 1 =1. O

Another useful estimation can be obtained, if we set

|Cov (X, Y)]

p(G. H) ;
\/Var JVar (V)

(2.22)

where supremum is over all real X € L*(G),Y € L*(H) such that Var(X) > 0 and
Var (Y') > 0. The above “maximal correlation of G and H” was first studied in [Hir35] and
[Geb41]. By the very definition, for real X and Y,

[EXY — EX - BY| < p(G, 1) X|L.][Y | (2.23)

Further,

a(G.H) < p(G.H) < 2m\[6(G, H)S(H.G). (2:24)

where the second inequality follows from (2.21) with r = 4+00 and p = ¢ = 2.
Now, for k < m and stationary {X;},cn, define

Fl=o0(X;; k<j<m), F=0X;;75>k). (2.25)
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Set
a(n) = sup o F{", F,7

m—+n

), n>1, (2.26)

and say that {X}} is a-mixing (or, following [Ros56], strongly mixing), if a(n) — 0 as
n — oo. Replacing coefficient a(-,-) in (2.23) by ¥(-,-) or p(-,-), we get definitions of -
or p-mixing sequences, respectively. If for some m > 0, a(m + 1) = 0, then {X,} is said
to be m-dependent.

In a-, t- and p-coefficients we may change the role of “future” and “past”—the coeffi-
cients are symmetric in G and H. This is not true for ¢, so define

Bln) = sup §(F", Fiy) (2.27)

and

¢"(n) = sup §(F s F1). (2.28)
If ¢(n) — oo as n — oo, then {X;} is said to be ¢-mixing or, according to [Ibr59],
“uniformly strongly mixing”, while if ¢*(n) — 0 as n — oo, we deal with “reversed ¢-
mixing” or ¢*-mixing. ¢-mixing and ¢*-mixing are really different notions—a suitable
example can be found in [KeOB76].

Mixing conditions are useful tools in various respects. For checking Condition B, how-
ever, we need only the weakest one.

Proposition 2.13 If {X;},ew is a-mizing, then Condition B is satisfied for every
sequence B, — 0o.

PROOF. Let k, 4+, <n. We have to prove that

Since B, — oo, we can assume that both k, — oo and [, — oo. Let m,, < min{k,,(,},
m,, — oo be such that S, /B, —p 0. Define U, = Sk, _,, and V,, = S 11, — Sk, +m.,-
Then

FeiMSkntin/Bn _ [ iMUn+Va)/Bn

[ eNSka/Bn _ [ i\Un/Bn

L]

¢St /Br _ [ pi\Va/Bn
And by (2.21) with r =1, p = ¢ = +o0,
|E eNUntVa)[Bn _ [eidUn/Bn | eidVa/Bn| < 2ra(2m,) — 0 asn — +oo.

O
The idea we used above is known as “separation of blocks”—for each sequence B,, — oo
we can find m,, — oo such that Condition B is equivalent to

max | B M rtem =Sk S)/Be _ poidSe/Bn  peiSn/Bal (0 ag n — 400, (2.29)
mn<k,,m

k—l—lq—mgn
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for every X € IR'.

It is well-known, that an ergodic homogeneous Markov chain on a finite state space is
not a-mixing, if it is periodic with period r > 1. Nevertheless, it satisfies Condition B for
each B, — o0, as we shall see below. Following O’Brien([OBr87, p.286]), say that {X;} is

r-strongly mixing if
1 r—1
a,(n) =sup|= Y P(ANCy) — P(A)P(C)] — 0 asn — +oo, (2.30)
r k=0

where the supremum is taken over all positive integers m, all A € F*, all C' € F°  and

Cy is the shift of C for k steps (if C = {(X1, X2,...) € E} as. for some F € B>, then
Ck = {(Xk+1,Xk+2, . ) - E} a.s. )

Proposition 2.14 If {X;} is r-strongly mizing, then Condition B holds for every
B, — oo.

PROOF. We have to check (2.29). So take A € R*, r < m, < k,[,m; k+1+m < n,
and observe that it is enough to find an estimation for

el = EF(SE) F(Skstem — Skam) — BF(S) - EF(S1),

where f is either sin \B- () or cos AB;'(-). But

Cklm_ chlm-l—]—l_ chlm cklm-l—]) L+ 1.

We know that
+ oo + oo
EXY—EXEY:/ / (P(X > 2,Y >y)— P(X > 2)P(Y > y)) dedy

SO

+oo ptoo 17’1
| = ‘/ /. { (F(S8) > @, f(Skrttmss = Sitmes) > ¥)

7

— P(f(Sk) > 2)P(f(S) > y)} dxdy

< Ao, (m) <4a,(m,) — 0 asn — +oo,

uniformly in k,[, m. And for each ¢ > 0 we have

|f(@) = F(y)] < e+ 2X(ay>e3 (2, Y),
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hence
r—1
|| = 7Y EFOS)(f(Serivmas — Skrmai) = F(Skamat — Skam))]
7=0
r—1
< e+ 207 Y PUMI(Skitamts = Skamei) = (Skamat = Skam)| > €By)
7=0
r—1
< e+ ArTN Y PS> €/2) — & as n — +oo.
7=0
O

O’Brien ([OBr87, Theorem 5.2]) observed, that sequences being instantaneous functions
of a stationary Harris chain with period r, are r-strongly mixing. By the above proposition
we see that such sequences satisfy our Condition B.

2.6 Decoupling Methods

Besides “separation of blocks” another operation can be useful while checking Condition
B. Suppose we can decompose

S
= =SSl 1<k<n nel,

where S, —p 0 as n — oo uniformly in k, i.e.

max P(|S7’1'7k >e) — 0 asn — 4oo.
1<k<n

Then, obviously, Condition B is equivalent to

o ! o ! o !
max |Ee i+t — ek . Be™ni|  — 0 as n — +oo, (2.31)
k+i<n

and this may require much less information, than a-mixing or thereabout. Developing the
idea we come to e-approximation as suggested by Theorem 4.2 of [Bil68]: if

Sk

B_ = S;,k((s) + Sg,k@) ) (2-32)
where
limlim sup max P(|S] .(§)] >¢) =0, Ve>0, (2.33)
SN0 n—o0 1<k<n '
then Condition B holds if and only if
lim lim sup max |Ee™nmi® — et gt = ¢ (2.34)

SN0 n—=co k4i<n
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Example 2.15 Suppose {X;} is a stationary sequence with one-dimensional marginal

distribution belonging to the domain of attraction of a strictly p-stable law p =
Pois (v(p,eq,c-)), 0 <p <1, ey +ec_ =1. Let B, be such that

nP(|Xi| > B, — 1. (2.35)
For 6 > 0, define
Xo(0) = LI < 2 <57,

71=1
S,
Sg,k((s) = B_k - S;,k((s) =
k k
Xi 71Xl Xi 1 Xl
= —1 < —
25, =0, )
g=1 i=1
k k
= 2 Y0+ V().
71=1 7=1
By Karamata’s Theorem B.11
lim lim su B =0,
lim n_mpz_: Y, (9]
and
lim lim sup max P( Z Y (8)] > ¢)
ENO oo 1<k<n 2y

< limlim sup max P(max M >0
NGO n—oo  1<k<n 1<;<k n

X
< limlim sup P( max Xl > =0.
SN0 n—co 1<i<n By

Hence (2.33) holds and we can restrict our attention to S, (&) only.
Now observe that

' (8) = / 21(5 < |a| < 67Y) Ny a(dz), (2.36)
where N, x(-) are point processes on IR'\ {0} defined by
k
X
=> I(=-€A).
> I(GE e

Representation (2.36) allows us to apply the whole power of the point processes theory, as
described in the book [Kal83]. For more details we refer the reader to [JaKo89].



Chapter 3

Convergence to Strictly p-stable
Laws: Regular Variation in the
Limit

3.1 Necessary Conditions

Suppose Z, —p [, where u is strictly p-stable. For each n, let {Y}, ;},en be a sequence
of independent copies of Z,,. By strict stability of u, for each k € IN we have

k
k_l/pZYnJ ? (oas n — +oo.

i=1

Hence we can find a sequence {r,} of integers, r, /" oo, such that

k
max dL(,C(k_l/pZYnJ), p) — 0 asn — +oo,
i=1

1<k<rn

where dj, is the Lévy metric. In particular, if {k,} is a sequence of positive integers such
that k, — oo and k, = o(r,), then

kn
k;l/pZYnJ ? [{oas n — 4oo, (3.1)

i=1

and {Z,; = kZ'/?Y, ;1 < j < k,,n € IN} is an infinitesimal array of row-wise inde-
pendent random variables. For such arrays we can use Theorem A.5 and find expressions
involving Z,’s, which are necessary for (3.1) and so—necessary for 7, —p p.

Proposition 3.1 Suppose Z, converges in distribution to a (possibly degenerated)
strictly stable distribution . Then there exists a sequence r, / +oo such that for each
sequence {k,} C IN tending to infinity so slowly, that k,/r, — 0, one of listed below
statements (1)-(iv) holds:

33
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(1) If0<p< 1 and p = Pois (v(p,cy,c)),

ko P(Z, > kY/?P) — e, (3.2)
ko P(Z, < —k}P) — c_. '

(ii) If p=1 and p = Pois (v(1,¢,¢)) * &g,

ko P(Z, > EkYP) — ¢,
k,P(Z, < —k?) — ¢, (3.3)
EZ, 112, <k,) — a

(ii1) If1 <p <2 and p = co — Pois (v(p, ey, c2)),

ko P(Z, > kY?P) — e,
ko P(Z, < —k}P) — c_| (3.4)
FPEZ (2] < K37 — (e —co)/(L=p).

(iv) If p=2 and p = N(0,0%),

k,P(|Z,] > kM?) — 0,
F\PEZ, (|7, < kY% — 0, (3.5)
EZ21(|Z,| < kY — o2

ProoF. Conditions involving k, P((—1)'Z, > k/?) i = 0,1, are implied by (A.20)
with # = 1, if 0 < p < 2, and (A.25) with ¢ = 1, if p = 2. Conditions operating with
variances and expectations of truncated Z,’s are exactly as stated in Theorem A.5. O

We shall examine in details consequences and structure of conditions (3.1)-(3.5).

Proposition 3.2 Let (3.1) holds with strictly p-stable p and let along some subse-
quence {n'}, Z, converges to some strictly p-stable law v. Then v = p.

PROOF. Repeating the considerations from the beginning of the chapter, we see that
whenever k, tends to infinity slowly enough,

while by (3.1), it has to converge to . O

Proposition 3.3 Suppose either
o (3.2) with ¢y + ¢ >0 or
e (3.3) with ¢ >0 or
e (3.4) with cy +c- >0 or
e (3.5) with o* > 0.
Then {Z,} e is tight and no limit point of {Z,} is degenerated.
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Proor. If {Z,} is not tight, we may assume without loss of generality, that for some
n>0
lim limsup P(Z, > k) > 1.

k—oo TN—00

Take {r,} as in Proposition 3.1 and find N; > N;_; such that
P(Zy, > 1M7) > /2, (3.6)

and r, > [* for all n > N;. Define k, = if Ny <n < N,. Then k,/r, < 1/k, — 0 and
by (3.6)

P(Zn, > k]lv/lp) #0 asl— oo,
while we know that

sup kn, P(Zn, > k]lv/lp) < +oo.
!

Hence {Z,} is tight.
Now suppose that 0 < p < 2, ¢4 > 0, and along some subsequence {n'} C IV,
Zy —p aor Zy —a —p 0. By Proposition 3.1, (i)-(iii),

ke P(Zy —a > kM) = 0.

On the other hand, if [, = [(a + kl/p)p], then [,,; ~ &, and we have

n/

Fops
ke P(Zy —a > k7Y > Tl P(Zy > Py = el > 0.

n/

So consider the remaining case: p=2. If Z,, —p a,
EZyl(|1Zu| < kMY — a#0,
provided k,» — oo slowly enough. But then
EMPEZ01(|Z0| < EM?) 4 0.
g
Corollary 3.4 In assumptions of the above proposition, suppose that

bt 5%

along some subsequence {n'} C IN, where p is strictly p-stable defined by the corresponding
condition among (3.2)-(3.5). Then b, — 1 along {n'}.

PrROOF. We shall show that every subsequence {b,»} contains a further subsequence
converging to 1. Indeed, one can find a subsequence {n'’} such that Z,» —p v, where v
is non-degenerate. Since p is non-degenerate, too, the convergence to types theorem implies
by — b > 0. But then v is strictly p-stable with parameters determined by (3.2)-(3.5),
hence v = p. Consequently, b=1. O
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3.2 Regular Variation in the Limit

Conditions (3.2)-(3.5) have a very special form: given a sequence of functions f, on IR
(e.g. fulx)= P(Z, > x)) we assume that there exists a sequence r,, /' oo such that

2P fo(x,) — ¢>0, (3.7)
whenever x,, — oo, x,, = o(ry,).
Example 3.5 Let f be (—p)-regularly varying. Take a, — oo and define

flanz)
flan)

Then {f,} possesses property (3.7). Indeed, by (—p)-regular variation,

fn(x) =c

falz) — ca™, a>0.

and this convergence is uniform on compact subsets of (0, +00) (Theorem B.3). In partic-
ular,
() — ¢

uniformly on compacts in (0,00), hence (3.7) follows.

In a trivial sense the above example describes all sequences satisfying (3.7): let g(x) =
x7 P a, — oo and define
B Lglayx) 1 .

gn(l‘)— c g(an) :Zx

Then (3.7) means that

for all z,, — oo slowly enough.
Hence it is natural to say that a sequence of functions f, : (a,00) — IR" satisfying (3.7)
is (—p)-regularly varying in the limit. The analogies between regular variation and

regular variation in the limit go further: we can prove a result corresponding to the direct
half of Karamata’s Theorem (Theorem B.11)

Theorem 3.6 Let p > 0 and let for each n € IN, f, : (a,+o0) — IRT be measurable,
(—p)-regularly varying in the limit (i.e. (8.1) holds for some ¢ > 0) and such that for each
b>a

sup /b s1fu(s)ds < Kj < 4o0. (3.8)
Ifg—p+1>0, then
c
q—p+1
for all x,, — oo slowly enough. In particular, functions g2(x) = [ s1f.(s)ds are (q—p+1)-
reqularly varying in the limit.

g lmp L) /% sfu(s)ds (3.9)
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PROOF. Let {r,} be taken from (8.1). Let ¢« < y, < x, be such that x, = o(r,),
T, /Yy, — 0o but still y, — oco. Consider

gile) —giln) = [ shis)ds

1
= x%_p"'l/ (ua,)? foluz,)u?™P du.
yn/ﬁn

If y,/x, < u, <1, the sequence {u,x,} is tending to infinity slowly enough (i.e. is o(r,)).
Since (8.1) holds for every such sequence, (ux,)? f,(ux,) — ¢ uniformly in u € [y,/x,, 1].
Hence for some ¢, — 0,

1

gnlan) = gi(yn) = x%‘p+1(c+en)/ u' ™ du (3.10)

yn/ﬁn
xq—p-l—l c _|_ En - (y_n) g—p+1 ‘
" g—p+1 T,

But ¢ > 0, so ¢Z(x,) — g2(y,) — o0, and, in particular, g?(x,) — co. By (3.8) y, can be
chosen in such a way, that ¢2(x,)/g2(y,) — oo, and then (3.9) follows from (3.10). O
In the classical limit theory for independent summands, Karamata’s Theorem provides

a link between truncated moments and tail probabilities, and so is one of the most basic
tools (see [Fel7l, Chapter VIIL.9]). Our approach preserves only a part of the power of
Karamata’s results—but it is still enough to prove

Proposition 3.7 Suppose yu is a non-degenerate strictly p-stable law. Then (3.1) is
equivalent to the corresponding condition among (3.2)-(3.5).

PROOF. Fix p € (0,2] and consider the condition
ko P(Z, > ENPY = ey, ko P(Z, < —kMP) = ¢, (3.11)

for each sequence {k,} of integers such, that k, — oo and k,, = o(r,). Let x,, — o0 be a
sequence of reals such that x,, = o(r,,). Let k, = [,]. Then k,/r, — 0 and

(ko + V)P(Z, > kN?) > 2, P(Z, > «7) > ky P(Z, > (K, + 1)'/7). (3.12)

Hence (3.11) implies x, P(Z, > x'/?) — ¢,. In particular, for each x € IR* and k, — oo,
ky, = o(ry),

Z, _
S <) — = (3.13)

Zn
ko P(22 > 2) — kP
P P

k%/ P

Replacing (3.11) by (3.13) in each of (3.2)-(3.5), we get conditions (A.20) and (A.25) of
Theorem A.5 describing convergence to the Lévy measure v(p, c;,c_). It is enough in the
case p = 2: all conditions of Theorem A.5 are satisfied and k_'/? Z?zl Y,;, —op N(0,0%).
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So let 0 < p < 2. We have
Zy,

Zo \*
e (135) 1
< kTIPE(Z, N (6kYT))
5k711/P
_ zk}ﬁ/p/ tP(|Z,| > 1) d1 (3.14)
0
cy + c_
2—p
= 26%P(c; +c)/(2—p) — 0 asdN\0.

<)

~ qulz_z/p (5k711/p)1_p+1 by Theorem 3.6

This implies condition (A.22) and ends the proof for 1 < p < 2.
Let 0 < p < 1. Similarly, as above

Zy

ke | B2 1(

< 5)\
< BVREZ,) A (80)

1/p
~ k;—l/p/ék" P(|Z,] > t)dt (3.15)
c_?_—l—c_
L—p
= ey +e)/(1—p) — 0 asd 0,

~ kl—l/p

(5k1/p)—p+1

so (A.21) holds and we have also proved the case 0 < p < 1. O
The next lemma provides an equivalent form of (3.7), which is sometimes more useful.

Lemma 3.8 Let {h,} be a sequence of functions on (a,+o0). The following are equiv-
alent:

(i) There are: a constant ¢ € IR* U {400} U {—o0} and a sequence r, /" +oo such that
for each sequence x,, — oo, x, = o(r,).

(ii) For some (and then for any) 6 >0

¢ := limsuplim supﬁj(:p) = liminflim inf@i(l‘) =:c, (3.17)

T—r 00 n—0oo T—r 00 n—0oo

where for x € [mé,(m + 1)d), Ef(:z;) and h°(x) are, respectively, supremum and
infimum of h,, on [md,(m+ 1)4).

If (i) or (ii) holds, then ¢ =¢ = c.
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PrOOF. If @ > ¢, we can find sequences T,» and ., tending to infinity as slowly as
desired and such that h,/(T,) — ¢ and hyi(z,») = ¢. So implication (i) = (ii) follows.
To prove the converse, set

B = hy(mb), by, = b5, (md).

“n,m

and observe that if ©,, € [m,d, (m, + 1)d), then x,/m, — ¢ > 0 and

Hence it is sufficient to prove that if b, ,, < by, and

¢ = limsuplimsupb, ,, = liminfliminfb, ,, (3.18)
m—00 n—00 M—00 N—00

then there exists r, /* 4+oo such that

lim by, = lim b, ,, =c, (3.19)
for every sequence m,, — oo, m,, = o(r,).
Suppose that (3.18) is fulfilled. Let |¢| < co. For every p € IN there exists M, > M,_4
( My = 1), such that for each m > M, one can find N,,, satisfying

b—p !t < by < bpm <b+pt, forall n > N, .
Define Ny = 0 and for p > 1

N,=( max N,m)V(N,o1 +1). (3.20)
Mp<m<Mp41

Let

rn:{Mp, if N, <n < Ny ; (3.21)

1, if n < Nl.
Take m, < r,, m, — 4oo. Let g, be such, that M, < m, < M, 1. Then r, >

my, > M, and by (3.21), n > N,,. Moreover, ¢, — 400, and by definition (3.20) we have
n > N, > Ny, m,, hence

b_qgl <bn,mn Sgﬂﬂmn < b—l_qgl

The proof of the cases ¢ = +o00 and ¢ = —o0 is similar. O
Regularly varying in the limit functions, which we consider in the paper, are mostly of
the form

Jul(®) = by 101 (3.22)

where {b, ..} is an array of numbers. The other functions can be reduced to the above
form by reasoning given in (3.12). For functions (3.22) we have
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Corollary 3.9 (Lemma 1, [JaSz90]) Let {b,,.} be a double array of real num-
bers. Then

limsuplimsupb, ,, = liminfliminfb, ,, = ¢,
m—00 n—00 Mm—00  N—0o

if and only if there exists {r,}, .y ,lim, r, = 400, such that

bym, =+ b as n— 4oo
Jor every sequence {m,}, o of positive integers satisfying lim, m, = +oo and m, = o(ry,).
Remark 3.10 It should be pointed out that in general

lim sup lim sup A, (2) = lim inflim inf A, () (3.23)
is not sufficient for (3.16) to hold. Consider the following simple example: In each interval
[m, m 4+ 1) choose a sequence of distinct numbers: {an 1, @m2,...} C [m,m + 1). Let
A, ={amn; m € IN} and let f,(2) = xa,(x). Then for each x, limsup,,_,.., f.(z) =0, so
(3.23) is satisfied. On the other hand, f,(z,) =1 if 2, = as,, , for some m,, € IN. Now, if
my, = o(r,), m, — 0o, we see that (3.16) does not hold.



Chapter 4

Tauberian p-stable Limit Theorems

4.1 Tauberian Limit Theorems

Let, as usually, S,,, n € IN, be partial sums of a strictly stationary sequence {X;};en and
let B,, = +oo.

In Chapters 2 and 3 we derived several necessary conditions for 5, /B, to converge to
a strictly p-stable law p. Let us summarize:

e Proposition 3.1 provides four sets of necessary conditions in the form specific to p.

e Proposition 3.7 asserts, that if ¢ is non-degenerate, those conditions admit a unified
form, namely: there exists a sequence r, ' +oo such, that for every sequence

{k.,} C IN, k,, = 400, k, = o(r,,), we have

kn
-1/p ,
Ve (1)
where for each n, Y, 1,Y,2,... are independent copies of S,/ B,.

o If 4 # éo and B, is 1/p-regularly varying, then by Theorem 3.1, Condition B holds.

We aim at proving, that in the presence of Condition B, (4.1) is also sufficient for
Sn/Bn —p M.

Theorem 4.1 Suppose p is a non-degenerate strictly p-stable distribution. Then S, /B,

converges in distribution to p and B, is 1/p-regularly varying if and only if Condition B
is satisfied and (4.1) holds.

Before proving the theorem, it seems to be useful to rewrite it, using Corollary 3.9 and
in each of the cases 0 <p < 1,p=1,1 < p <2 and p = 2 separately.
Recall, that according to our convention, the p-stable limit theorem holds for S, /B, if

— 5,/ B,, converges in distribution to some strictly p-stable law g,

41
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— B, is 1/p-regularly varying.

Theorem 4.2 Let 0 < p < 1. Then the p-stable limit theorem holds with a non-
degenerate limit p if and only if Condition B is satisfied and

lim sup lim supm?P(S, /B, > m) =

= liminfliminfm?P(S,/B, >m) =: ¢4,
lim sup limsupm?P(S, /B, < —m) =
= liminfliminfm?P(S,/B, < —m) =: c_,

m—00 n—0oo

where 0 < ¢y + ¢c- < 400.
The above conditions imply p = Pois (v(p, cy,c_)). O

Theorem 4.3 The 1-stable limit theorem holds with a non-degenerate limit p if and
only if Condition B is satisfied, (4.2) holds with ¢, = ¢ =¢ >0, and

limsuplimsup B, 'ES,[(|S,] < mB,) =
MTeO MY (4.3)
= liminfliminf B, ES,[(|S.] <mB,) =: a,

m—00 n—0oo

for some a € IR,
The above conditions imply p = Pois (v(1,¢,¢)) * 6,. O

Theorem 4.4 Let 1 < p < 2. Then the p-stable limit theorem holds with a non-
degenerate limit p if and only if Condition B is satisfied, (4.2) holds and

Sn o 19,
lim sup lim sup mp_lE—[(| | <m) =
= liminfliminfmp_lE—n](| n| <m) =: (cy —c)/(1—=p).

The above conditions imply

p = ¢1 — Pois (v(p,cq,c2)) * ey —e_y/(1—p) = Coo — Pois (v(p,cq,c2)). O
Theorem 4.5 The Central (= 2-stable) Limit Theorem holds with a non-degenerate
limit p if and only if Condition B is satisfied and

lim lim supm®P( [5n|

m—00 n—+00 Bn

>m) = 0, (4.5)

lim limsupm ESn ](|

m—0oo  n—r00 Bn

2
lim sup lim sup Ei]( |gn| <m

S

)
e 218,
= liminflim inf E—”QI(

m—00  N—00 oy Bn

Go<ml| =0, (4.6)

7 o
<m) =: o?>0.

The above conditions imply p = N(0,0?).
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There are two prototypes for Theorems 4.2-4.5, both proved under the extra assumption
of a-mixing. Theorem 4.5 improves (weakening a-mixing to Condition B) Theorem 1 in
[JaSz90]. Similarly, Theorems 4.2-4.4 improve Theorem 1 in [DeJa89]. In addition, the
latter result deals only with symmetric limits in the cases p = 1 and 1 < p < 2, while in
Theorems 4.3 and 4.4 general strictly p-stable limits are considered.

The above results are of “Tauberian” type. Indeed, we deal with necessary conditions
obtained by averaging independent copies and the extra information we need in order to
get sufficiency, is just Condition B (playing here the role of a “Tauberian condition”).

PrROOF OF THEOREM 4.1 By the remarks preceding Theorem 4.1 and in the view of
Theorem 2.1, it remains to be proved that Condition B and (4.1) imply S,,/B, —p pu.
The general line of the proof is similar to that of [JaSz90]; the details are, however,
different, since we use Condition B instead of a-mixing and p is a general strictly p-stable
distribution.
First of all we shall find a sequence s, /* +oo such that n - 3;1 /" +oo and for every
sequence k, — +00, k, = o(s,), we have

— . (4.8)

Suppose (4.1) holds. By Proposition 3.3, we know that {5, /B, } is a tight sequence with no
degenerate limiting distribution. This in turn implies, via Proposition 2.4, that Condition
B is equivalent to (2.11). In particular, one can find a sequence 7, /* 400, I, = o(n) such

that .
Skn Sn\"
maXdL(/:<k),/:< ) ) — 0 as n — 4o, (4.9)

where, as previously, dy, is the Lévy metric.
Suppose, that k, — +o0, k, = o(r, A7,) (where r,, is taken from (4.1)), and

Skn/ -n! 1%
Bkn/ -n! D

along a subsequence {n'} C IV. It follows from (4.9) that

B,
Bkn/ -n!

kot
Z Yn’,j ?} Y.

i=1

On the other hand, by (4.1), ngl Y, ; converges to p, when normalized by ki,/p. Since Y
is non-degenerate, by the convergence to types theorem,

Bk )2 By, — ¢, 0 << +o0.

But then ¢™'Y ~ y, so L(Y) is strictly p-stable. By Proposition 3.2, ¥ ~ y and we have
proved (4.8) with the only exception that s, = r, A 7, may not satisfy n-s;* 7. To get
this property, let us define s; = ry A7y and for n > 1, s,41 = rag1 ATugpr A ((L4+n71)s,).
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Now, let
k, = 0(3[%;1]), k, = +o00. (4.10)

Then for large n’s

kn kn kn
< <

Slntkn)bn'l  Slnkn'l Fnesy]

— as n — +oo

and the growth of k,, is slow enough to get from (4.8)

Sinthn)kg ' hn

. 4.11
B — U (4.11)

[(nthn)kn Tk D

Observe that

P(B!

otk o STtk i T — Sl > €) S P((BR)™H max [y > <),

1<k<kn
where B = inf, 5, B, / +oc. If, in addition to (4.10) , &, is such, that

max |Sk|/B: — 0,
1<k<kn P
then by (4.11)
Sy .
T 1
Blnikki ke T
and by Corollary 3.4 also S,/B, —p p. O

Remark 4.6 We used Condition B only in the weak form (4.9), which, under assump-
tions of Proposition 3.3, is implied by

Condition B’. For each A € IR' and each k € IV

Ee?kn/Brn (EeMS"/Bk'")k — 0 asn — +oo. (4.12)

A review of methods of verifying conditions (4.2)-(4.7) is contained in Chapter 5.

4.2 Limit theorems with centering

We conclude our considerations with discussion of the general limit problem. From now
onwards suppose that S, normalized by B, satisfies Condition B and that there are
constants {4, } such that
Sp— An
B,
where y is a non-degenerate p-stable distribution (not necessarily strictly p-stable).
Taking in (4.13) symmetrizations and applying Theorem 2.1, we obtain

— . (1.13)
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Lemma 4.7 {B,} is a 1/p-reqularly varying sequence.

We are not going to develop the theory of convergence (4.13). Instead we suggest
reducing it, when possible, to the restricted case considered above. More precisely, we are
looking for constants A and a such that

S,—n-A

o — b (4.14)

If A and a exist, they provide a complete reduction: X! = X; — A, 7 =1,2,..., form a
new stationary sequence satisfying Condition B with the same normalizing constants B,
hence p * §_, must be strictly p-stable.

In general, such A and a do not exist.

Example 4.8 Let X, X,,... be i.i.d. with £(X;) = ¢; — Pois (¢(1,¢4,c_)). Then

X1+ X0+ + X, 1 &
Xy~ e I —(cp —co)logn = =D (X — (cg —c-)logn).

n " =1

If ey # c_, then £(X7) is a shift of no strictly 1-stable distribution. On the other hand, by
the convergence to types theorem, no essentially different centering exists and the centered
sums cannot be replaced by partial sums of a stationary sequence.

Fortunately, the case p = 1 is exceptional.
Theorem 4.9 Suppose S, /B, satisfies Condition B and for some constants {A,}

where p is a p-stable distribution, p # 1.
Let a € IR' be such, that u* 5_, is strictly p-stable.

(i) If0<p<1, then A,/B, — —a and

Sy,
B A (4.15)

(i) If 1 < p <2, then A,/n converges to some A € IR' and
— a asn — +oo. (4.16)

Further,
? /,L*(S_a. (417)
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Lemma 4.10 In assumptions of the above theorem, if p # 1, then for all {k,}, {l,} C
IN such that k,, + [, — +00 we have as n — +oo

Ap, 41 ) By, (Ak ) By (Al )
—4a|-—"|—74a|——=—"|—=—4+a] — 0. 4.18
(Bknm By 11, \ Bk, Byt \ Bu,, (4.18)
PrROOF OF THE LEMMA follows by the convergence to types theorem.

PROOF.PART (I). Set
A

h(n) = B—: +a.
Suppose that 0 < ho, = limsup,,_,.. h(n) < +o00. Let m,, /400 be such that
lim A(m,) = heo-

n—0oo

If k, = [m,/2], l, = m, — k,, then

B B
lim sup —2h (k) + —=h(l,) < 2" YPhey < he.
nseo’ B, B,

and (4.18) cannot hold. If h., = 400, take m,, such that

h(m,) = max h(k).

1<k<mn
With the same choice of k,, and [,, as above, we have for n large enough

By, b

(k) + ﬁh(ln) < Y1 4 e)h(m,). (4.19)

B,

If 2'=Y/7(1 4+ &) < 1, the gap between h(m,) and the sum on the left-hand-side of (4.19)
tends to infinity, hence (4.18) cannot hold, again. So limsup,_, . h(n) < 0.
The same way we prove that lim inf h(n)>0. O

PROOF.PART (II). Set
f(n) = (A, +aB,)/n. g(n)= B./n.

It is enough to prove, that f(n) converges to some A (i.e. A,/n — A), and that A— f(n) =
o(g(n)) (i.e. (n-A—A,)/B, — a).
Let k, =1, = n. Then by (4.18)

— 0 asn— +o0

B2n g(n)
and, since 2B,/ By, — 2'=1/7 20,
f(2n) — f(n)

— 0 as n — +oo. 4.20
g(n) (4.20)



4.2. CENTERINGS 47

Proceeding with induction, we get
Sk )~ fi(n)
g(n)
Further, it follows from (4.21) that for all &, [ € IV

f(k-n)—=f(l-n)
gk -n)

— 0 asn— 4oo,Vk e IN. (4.21)

— 0 asn — +oo. (4.22)

We will mimic the proof of [BGT87, Theorem 3.1.10¢, p.134]. Since 1/p — 1 < 0 and
g is (1/p — 1)-regularly varying, one can find my, such that g(2m)/g(m) < § < 1 and
g(n)/g(m) < C < +oo whenever n > m > mj,.

Let mg > my, be such that for m > mq, |f(2m)— f(m)|/g(m) < e. If | > k > myg, then
for every n € IN

D < LF@0) = F0)] g(2m1)
LT g0
D — SR g2
G@h gk
L F2) — F@TE)| g2 k)
D R

N i (270 = f(2F))|
< (B+1) (;55 ) +46 o) -

IA

The last term tends to zero as n — oo by (4.22). Finally, we have

[f(1) = ()] 1
YO <e(B+ 1)m

Since g(k) — 0, {f(n)} is a Cauchy sequence, so converges to some A. Letting [ — oo in
(4.23), we get A — f(k) = o(g(k)). O

(4.23)

Remark 4.11 Subtraction of A in the case 1 < p < 2 corresponds to centering by
expectation (if exists).
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Chapter 5

Examples of p-stable Limit
Theorems

In the previous chapter we have found necessary and sufficient conditions for p-stable limit
theorems. Below we are going to show that the conditions are tractable.

Some methods of checking Condition B were already presented in Chapter 2. So we
will mainly concentrate on examining

kn
Y Y = (5.1
7=1

for every sequence k, increasing to infinity slowly enough (i.e. k, = o(r,) for some “rate
sequence” {r,}), where for each n, Y, 1,Y,2,... are independent copies of S,/ B, and y is
a strictly stable distribution.

5.1 Uniform Integrability
and the Central Limit Theorem

Let us apply the simplest limit theorem for triangular arrays: the Lindeberg-Feller Central
Limit Theorem. By this theorem, in order to check (5.1) with g = N(0,1) (standard
normal), we need the following assumptions:

e Vnec N, EY,, = ES,/B,=0,ie EX, =0.

o Vne N, EY? = E(5,/B,)* < +oo, ie. EX] < +oo.

o Yk, = 00, ky = o(r,), kn B(Y, 1 /KD = ES?/B? — 1, ie. ES? ~ B2,
o Vk, = 00, ky = o(r,) and Ve > 0, k, E(Y, 1 /KD I(YE > ck,) — 0, e,

E(g—:)zl((g—:)z > chy) — 0. (5.2)

49
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Using Corollary 3.9 we may rewrite the above relation as
. Son2 . SN2
ﬂ}l_r}rio llgng(E) I( (B_n) >m) =0, (5.3)
what is nothing but uniform integrability of S?/B2.
On the other hand, if B, = /ES?, then S,/B, —p N(0,1) implies uniform inte-
grability of S2/B2 by [Bil68, Theorem 5.4]. So we have proved

Theorem 5.1 Suppose that EX? < +oo and EX; = 0. Let 02 = ES? — +oo. Then
L(o'S,) —* N(0,1) asn— 4oo

and o? is 1 -reqularly varying if, and only if, Condition B holds and {o;2S*},en  is
a uniformly integrable sequence.

The above theorem is an improvement of Theorem 3 in [Den86], where only strongly
mixing sequences were considered. Although stated formally so late, the theorem was used
implicitly in most central limit theorems obtained by Bernstein’s method, starting with
Ibragimov’s pioneer works [Ibr59] (¢- mixing) and [Ibr75] (p- mixing):

Lemma 5.2 Suppose that {X;} is p-mizing, EX, = 0, E|X;|*** < 4o for some
§>0 and 0> — +oo. Then

B 7 < Ol (5.4)
7=1

Jor some C > 0. (In particular, {c,;2S2} is a uniformly integrable sequence).

Observe, that “by the way” we obtained representation o2 = nf(n), where {(z) is a
slowly varying function on IR*. This property, however, does not require moments higher
than 2 and very strong mixing properties like p- mixing: it is easy to prove (using e.g.
Lemma B.4) that o2 varies 1-regularly if £5? — oo and

ESk(Sk—I—r—I—m - Sk—l—r)

7(n) := sup{
) VESE - ES2

When only second moments are finite, uniform integrability is not easily verifiable. One

ckyrem € Ny r>nt — 0 asn — +oo. (5.5)

may try, for example, to truncate random variables and then use some special tools, like
the following inequality due to Peligrad [Pel82]

ES? <K -n-EXZ, (5.6)

valid for centered p-mixing random variables with the rate of mixing
5" p(2) < +oo, (5.7)
i=1

and with K depending on coefficients {p(k)}ren only.
Using this inequality, one can prove the best possible result for p-mixing sequences,
when only second moments are assumed to exist:
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Theorem 5.3 ([IbI‘75]) Suppose {X;} is stationary, EX, = 0, EX{ < +oo. If
(5.7) holds, then there exists

ES?
lim = g? >0, (5.8)
n—oo N
and if o* > 0, then
Sy
—  — N(0,0?%).

yn D

In fact, in most cases we have o? > 0 in (5.8): Bradley [Bra81] proved that

Z T(Zi) < 400

=1

(where 7(n) < p(n) is defined by (5.5)), together with ES? — oo imply (5.8) with positive
limit (see also [Pel82]).

Examples in [Bra87] show that the rate of mixing (5.7) cannot be weakened.

The situation is different, when we pass to ¢- mixing sequences. Peligrad [Pel85] proved
that under ¢ - mixing, uniform integrability of {max,.;.,(S7/02)} is equivalent to uniform
integrability of {max, .., (X?/0?)}. But the latter sequence converges to 0 in L?, provided

2

E
lim inf o > 0. (5.9)

n—00 n

So we get

Theorem 5.4 ([P6185]) Suppose {X;} is a stationary and ¢-miving sequence,
EX, =0, EX}? < +oo. If (5.9) holds, then

Sh
— — N(0,1).
O D
Eventually, let us mention the paper [DDP86], where interesting equivalent (under
strong mixing) expressions for uniform integrability of {S52/02} were formulated: e.g.

I Tn <\ fr)2
11 su m .
el B[S, =

5.2 Central Limit Theorem for stationary sequences
with infinite variances

Central limit theorems for stationary sequences without finite second moment were con-
sidered by several authors, starting with the early eighties. We can mention here papers
by Lin [Lin81], Samur [Sam85], Heinrich [Hei82], [Hei85]. These papers generalized the

independent case, but their assumptions were either technical or too restrictive.
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On the contrary, assumptions of recent papers by Bradley [Bra88], Shao [Sha86],
Szewczak [Sze88] and Peligrad [Pel90] are probabilistic in nature and close to what we
know from the finite variance case.

For example, Theorem 1 in [Bra88] says that if {(z) := EX?I(|Xy] < z) is slowly
varying as * — oo, KXy =0 and

p(1) <1 and Zp ) < +oo, (5.10)

then S, /B, —p N(0,1) for some sequence B, — oo.
Similarly, [Pel90] shows that under ¢-mixing with ¢(1) < 1, the regular variation of
tail probabilities
P(|X]| > z) = 27%((x) (5.11)

is sufficient for CLT to hold.

Theoretically, all those theorems are contained in our Theorem 4.5. Conditions (4.5)-
(4.7) are, however, not the easiest in direct handling and therefore we suggest following
[JaSz90] and using a criterion similar to Theorem 5.1.

For b, > 0 define

Xn,j = X][(|X]| < bn) — EX][(|X]| < bn) (512)
=> X.j, T =Varl,. (5.13)
7=1

Theorem 5.5 Let {X;} be a strongly mizing stationary sequence. Suppose we can find
b, — +oo such that 7'73 — 400 and

n

Tn ;X][(|XJ| > b,) ? 0 as n — +oo. (5.14)
Then
/Q(Tn_l(Sn —nEX (| X1] < by))) ? N(0,1), as n — +oo, (5.15)

if and only if {77*T?} e is a uniformly integrable sequence of random variables.

PROOF. NECESSITY. From (5.14) and (5.15) we have L(7,'T,) —p N(0,1). Uniform
integrability of {7, ?T?} follows then by [Bil68, Theorem 5.4].

SUFFICIENCY. Let {X;}ien and {X, },—1. . nenv denote independent copies of {X;}
and {X,, ;}, respectively. Set
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First, we shall prove that conditions (4.5)-(4.6) hold when B,, and S, are replaced by
¢, and U,, i.e. that
L(¢TU,) - N(0,1) as n — +oo. (5.16)

Condition (4.6) is satisfied trivially, for U,’s are symmetric. To prove (4.5), observe
that by (5.14) ;' (U, — Z,) —p 0. Hence for every ¢ > 0 and m € IV

limsupm?P((1U, > m) <limsupm*P((1 7, > m — )

n—0oo n—0oo

<limsup2m?P(r,'T, > (m —)/V/2)
n— 0o
2

< lim sup4L2T;2E(TnZ](T{1Tn > (m — 5)/\/5))

n—-co (m—e)
—0 as m— 4+

by the uniform integrability of 772T2. Notice, that we have also checked condition (4.5)
for B, = (, and S,, = Z,. The sequence (7, satisfies condition (4.7), too:

EZAZ,] > mG) = m* P70 > mG) +2 [y P(IZ] > G) dy
<2t P(T| > 27 mG) +4 [y PUT > 27 o) dy

= 4 2ET?I(|T,] > m7, /V?2)
—0 as m — +oo.

So it is enough to compare (2 FEUZI(|U,| < m(,) and (2EZ21(|Z,| < m(,). But

n

CREURI(UL] < mG) =2 [ yP(UL > yG) dy = m* P, | > mG,)

and we have already known that the last term is negligible for large m’s (condition (4.5) !).
Since (U, — Z,)/¢, —p 0, we can replace the integral on the right-hand side by another
one, involving 7, instead of U,. This proves condition (4.7) and we conclude that (5.16)
holds. In particular

L 2,) = L(V2m) NI, = T,)) —+ N(0,1) as 0 — foo. (5.17)
Since {77, } e is obviously tight, we may assume that
L(VER) ) —> £(X)

along a subsequence n € Q C IN . Then also

L-(Var) T — LX)
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along n € @ and by (5.17) L(X)* L(—X) = N(0,1). According to the Cramer Theorem
(e.g. [Loé77, p.283]), there exist a € IR and o > 0, such that £(X) = N (a,0?). By our
main assumption {77} _, is uniformly integrable, so @ = 0 and ¢® = 1/2. Hence
the only possible limit point for tight sequence £(7.'T,) is N(0,1), i.e. we have weak
convergence to the standard normal law. Returning to non-truncated sums S, via (5.14)
completes the proof. O

Let us discuss briefly the assumptions of Theorem 5.5. The i.i.d. case suggests the
choice of {b,}: if £L(X1) is being attracted by the normal law ( £(X;) € DA(2) ), define

b, = inf{x; 2 PEX](|X1] < z) < 1/n}. (5.18)

So take b,,’s as above and consider the next assumption of Theorem 5.5, i.e.
77 = Var (D _ X;1(|X;] <b,)) — +oo.
7=1

It is satisfied if, for example, g1 < 1 — see [Bra88, Lemma 2.2]. In the class of m-dependent
sequences the latter condition is rather restrictive, as the following example shows:

Example 5.6 Let {}iey be an iid. sequence such that L(&) € DA(2) and let
nj =&+ &41. Then o1({n;}) = 1. To see this, let us introduce ¥; = &; — &;42 and
observe that by Theorem 1,[Bra88], o1({¢;})=1. Thus

I=01({9;}) = o((- -, 62 — &0, &0 — &2)5 (&2 — €4y &a — &6 -+ )

< Q(( v € =0y 6o1 — 61,60 — 52); (52 — &4, &3 — 65,60 — &6y - ))
= 0((- s =2 = N—1,m=1 = 70, M0 — M ); (N2 — 13,13 — N4y 1 — 755 - - -))
< o1({n;})-

For m-dependent sequences estimation of the rate of growth of 7,, can provide a very
useful information:

Theorem 5.7 Let {Xj}jew be an m-dependent, strictly stationary sequence such that
L(X,) € DA(2) and EX} = oo . Assume for simplicity that EX, = 0. Take b, as in
(5.18) and let 7, be defined by (5.13). Then

liminf 76" > 0 (5.19)

n— 0o
implies L(17S,) —p N(0,1).

PROOF. First notice that 7, — +oc. By the choice of b,

iy , | >
b XX 2 b s 0,

J=1
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so (5.19) implies condition (5.14). Further, it is easy to see that {b,*T>} . is uniformly
integrable, hence by (5.19) we have also uniform integrability of {7, *7?} ., and all
assumptions of Theorem 5.5 are satisfied. Consequently (5.15) holds and we have to prove
only, that

nt | EX (] X1] < b)) — 0 as n— +oo. (5.20)

But by Theorem 2, VIII, §9 in [Fel71] we have
nb 'E|X,1(| X1 >b,) — 0 as n — +oo.

Now (5.20) follows from the above formula, assumption (5.19) and the fact that .S, = 0.
g

The above theorem, although operating with p-mixing sequences, is not contained in
Bradley’s Theorem 1 [Bra88], since we have no restrictions on py.

It is worth noticing, that checking condition (5.19) is the key step in the proof of the
corresponding result in [Lin81] (for further discussion of m-dependent case we refer to
[Sze88]). On the other hand (5.19) is far from necessity:

Example 5.8 Let 1
PY>a2)=PY < —z)= 5,2

for x > 1 and

e*ln x

222

for v > e. Let {Yj}, v and {Z;},y be ii.d with £(Y) = L(Y) and L(Z:) = L(Z) .

Define X; =Y, + Z; — Z;41, then by Theorem, VIII, §8, [Fel71]

P(Z>uz)=P(Z < —x)=

71
P(IX1] > x) ~ ‘ 1;1:1; as T — 400,
T
S0
EXEI(|X:] < z) ~2e*(Inz)?, as x — +oo,
and

b ey/ninn
n \/5 b

On the other hand it is not difficult to see that

as n — +oo.

EYZI(|Yi| < z) ~2lnz, as z — +oo,

2 : -1 _
so 72 ~nlnn and lim, 7,06 "' =0.

5.3 Non-central Limit Theorems

When “second order” methods are useless, the analysis of the characteristic function of
a sum of dependent random variables can be very difficult. Maybe this is the reason
that the first general p-stable limit theorem with p < 2 was published only in 1983.In
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[Dav83], developing some ideas of the Extreme Value Limit Theory and using special
representation for stable laws, Davis proved two theorems, separately for cases 0 < p < 1
and 1 < p < 2. Especially his Theorem 2, corresponding to 0 < p < 1, is very interesting,
since its assumptions are flexible enough to cover existing examples (e.g. continued fraction
expansions) as well as the following

Example 5.9 Let {Y;};cnv be a stationary Gaussian sequence with zero mean, unit
variance and covariance function r, = EFY,Y, and let 171,172, ... be the independent im-
itation of {Y;}, i.e. iid. with the same marginal distributions £(Y;) = £(Y;). Let
H : IR" — IR be such that the law of H(Y}) belongs to the domain of attraction of a
stable law g with index 0 < p < 1. Finally, let B,, be such that

H(Y)) + H(Y;) + ...+ H(Y,)

B, o
If r, -logn — 0 or 332, 12 < 400, then also
HY)+ H(Y:)+...+ H(Y,
Y YD+ HOY)

B, D

Davis’ result was rederived in a particular case by Aaronson [Aar86] (see Corollary
5.12 below) and then applied in studying properties of f-expansions. Later, using a point
processes technique, Jakubowski and Kobus [JaKo89] generalized it to several dimensions
and for nonstationary sequences.

Here we shall join our general Theorem 4.2 and computations of Theorem 2 and Propo-
sition 3 [DeJa89] in order to prove a slight generalization of Davis’ Theorem.

Theorem 5.10 Let {X;} be a stationary sequence and let {X;} be its independent
imatation.
Suppose there exist constants B, such that

X+ Xo4...+ X,
+ — (5.21)

where p is strictly p - stable, 0 < p < 1.
Further, suppose the following Condition D' holds:

[n/k]
lim limsupn - > P(|Xi]| > eB,, |X;| >¢B,) =0, Ve>0. (5.22)
k—oo TN—00 j=2

Then

B, B
if, and only if, Condition B is satisfied.
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PROOF. By (5.21) we know that p = Pois (p, ¢4, c_) and that for each @ > 0

n-P(Xy>ax-B,) — ¢y /b,

n-P(Xy < (—2)-By) — e /ar. (5.23)
In particular, if z, — oo is increasing slowly enough, then
2 n- P(Xy > 2,B,) — ¢4, (5.24)

and similarly for c_.

Lemma 5.11 If Condition D' holds, then there exists a sequence r, — oo such that
for all sequences 0 < x, — oo with x,, = o(ry,),

lim 22 > P(|Xi| >z, By, |X;| > z,B,) = 0. (5.25)
n—00 1<i<j<n
ProoOF. Condition D’ implies
kn . Z P(|XZ| > 5Bkn~n7 |X]| > 5Bkn~n) — 0, (526)
1<i<y<n

for k, — oo, k, = o(7,). By regular variation of B,, there exists a sequence r, — oo,
T, < 7, such that
lim sup Sl/an/B[sn] =1. (5.27)

n—00 1<s<ry
Let z,, = k}l/pasn be such that x, — oo, ¢, — 1 and k, = o(r,). Then, for 0 < &’ < 1 and

n large enough,

zb Y P(IXi| > 2,B,, | X;| > 2,B,)

1<i<y<n

= 2k, Y. P(Xi| > kMre,B,,|X;| > ke, B,)

1<i<y<n
kPR kPR

= Pk Y P(IXi] > en 2B | X > 60— By, .0
1<i<j<n B, n B,.n

< Pk, - Z P(|XZ| > 5Bkn~n7 |X]| > 5Bkn~n) — 0.

1<i<y<n
g
In order to apply Theorem 4.2 we have to prove that
2P P(S, > x,B,) — ¢4 (5.28)

for all increasing slowly enough x,, — oo (and similar relation for ¢_). Let us observe that
by Karamata’s Theorem, function f(z) = F|X;| A x varies regularly with index 1 — p.
Hence for § > 0 and x,, increasing slowly enough

an(|X1| NSByxy,) ot-r
n B,x, 1—p

xgp(\zn;)(jmm < 6B,x,)| > Bur,) <2 (5.29)
iz

So
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hmhmsupxpP(‘ZX I(|X;] <éBux,)| > Bux ) =0,
5\0 n—00
and to prove (5.28) it is enough to show that
lim 2% P(3 X;1(1X;| > 6Buz,) > Buw,) = cy. (5.30)

So fix 0 < § < 1. We have

{ZX[|X|>5an)>an}A{ZX[X > Bury) > Bua, )

71=1

C {F#5:|Xi| > 0Bpx,, | X;| > 5Bn:1;n} = (J {IXi| > §Buan,|Xj| > 6Baan},

1<i<y<n

so using (5.25) for dx,, we obtain that

lim 2? (Z |X|>5B:1;n)>B:1;)— (Z X>B:1;n)>B:1;):0.
n—0oo _ 71=1
Moreover, since
{ZX[X > Bury) > Bu, | = U{X > B},
J=1 7=1
it follows from Bonferroni’s inequality and again by (5.25) that
lim «% | P(3 X;1(X; > B,) > Bux,) — nP(X1 > Bua,)
< lima? Y P(|Xi]| > 2B, |Xj| > 2.B,) = 0.
n—00 1<i<j<n
Now (5.30) follows by (5.24). O
Corollary 5.12 Condition D' holds, if for each ¢ > 0
supn- P(|X| >¢eB,) <C < +o0, (5.31)
nelN
and P %
Yoo(1) := sup sup ([X0] > o, [X5] > @) < +o0. (5.32)

jeN >0 (P(|Xi] > x))?

In particular, if {X;} is a stationary, ¢ - mizing sequence with (1) < +oo and B, is
such that (5.21) is satisfied, then
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PRrROOF.
[n/k]
n Z P(IX1| > eBn, | X;| > eBn) < ¢oo(l)nn/k]P(|X1| > aan)2 < 02;/;00(1) kT
7=2
O

Let us note that we used the assumption 0 < p < 1 in (5.29) only. One may use other
tools for this estimation. For example Peligrad’s inequality (5.6) gives us:

Theorem 5.13 Let {X;} be a stationary p - miving sequence with

Z ,0(2’“) < +o00.
k=1

If B, is such that
Bn D ILL7

where p is a non-degenerate strictly p - stable distribution, 1 < p < 2, and if Condition D’
holds, then

B, p

PROOF. Let us assume, for the sake of simplicity, that random variables X; have symmetric
laws. We have to check (5.29). By inequality (5.6) and by Karamata’s Theorem

KnE(X} A (6Baz,)?) K §2-p
B2x? 2—p’

xﬁP(‘i(Xj[ﬂXﬂ < 5ann))\ > By,) < af
iz

and this approaches 0 as 6 \,0. O
The above theorem is a (poor) counterpart of Ibragimov’s CLT and was proved (in the

nonstationary setting) in [JaKo89]. It improves Corollary 5.10 in [Sam84], where ¢- mixing
with (1) < 1 and 352, ¢'/%(k) < +oo is considered.

5.4 Limit Theorems for m-dependent Sequences

Recall, that {X;} is m-dependent if a(m + 1) = 0, i.e. for each n € IV, X1, Xs,..., X,
and X, 141, Xptmy2,... are independent. This notion was introduced by Hoeffding and
Robbins in [HoRo48], together with some, by now classic, statistical applications. Out-
side of statistics, 1-dependent sequences arise naturally in regeneration theory of certain
Markov processes—see [Asm87, Chapter VI].

In [HoRo48] a central limit theorem involving finiteness of third moments was proved.
Final form of the Central Limit Theorem for m- dependent sequences was found by Di-

ananda [Diah5, Theorem 4]:
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Theorem 5.14 If {X;};cn is a strictly stationary sequence of m - dependent random
variables with zero mean and finite variance, then

2
NG ? N(O,U ) (5.33)
where
m+1
o? = EX12 + Z EXyX;. (5.34)
7=2

(When o* = 0 we set N'(0,0) = dg).

Heinrich [Hei82] and [Hei85] proposed a general method of derivation of limit theorems
for m-dependent sequences, for both p = 2 and 0 < p < 2 (including estimations of
the rate of convergence). His conditions are, however, very technical and far from being
minimal.

The conditions in [JaKo89, Theorem 5.3] are very natural.

Theorem 5.15 Let {X,;} be a strictly stationary and m - dependent sequence. Assume
that the distribution of random vector Yo = (X1,..., Xpy1) belongs to the domain of attrac-
tion of a non-degenerate (m+1) - dimensional p - stable law p with the Lévy measure v, i.e.
there exist constants B, such that sums Y1 + Y+ ...+ Y, normalized by B, and suitably
centered are convergent in distribution to .
Let
g = Vl’1+~~~+l’m+1 Ve teatotamo (535)

where Vo 4. qame (A) = v({(21, 22, Tmq) € RO oy oy 4o+ 2y € A}) and
Uiy dagddan, 15 defined similarly.

(i) If0<p<1, then S,/B, —p Pois(1y).

(ii) If 1 <p <2, then (S, — ES,)/B, —p co — Pois (10).

(iii) If p=1, then (S, — A,)/B, —p ¢1 — Pois(1p), where

Ay =n(B(Xi+ Xo + .+ X ) (IXs + Xo -+ X < By)

— B(Xi+ X+ 4 X)X+ Xo+ .+ X < BY)).

Examples 5.6 and 5.7, [JaKo89, pp.237-239], show how formula (5.35) works. We turn
the attention to the fact that g is determined by asymptotic properties of £(X; + X5 +
coot Xogr) and L(X; + Xo + ...+ X)) only, and not by the whole £(Yp). The situation

in Theorem 5.14 is the same:
o =EXi . A X)) - B(X XA

Szewczak [Sze88] (p = 2, infinite variances) and Kobus [Kob90] (0 < p < 2) using
completely different tools proved that limit theorems for stationary m - dependent random
variables possess structure independent of p.

Let for each k& € IV, Ul(k), UQk), ... be independent copies of Sy = X7 + Xy 4+ ...+ X}.
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Theorem 5.16 Let X1, Xs,... be a stationary m-dependent sequence.
Suppose {B,.} is such that

gD L gt L g g —* (5.36)
and R R .
om o™+ 0B, — Hm, (5.37)

where 11 and p, are non-degenerate strictly p-stable distributions.
Then (X1 4+ Xy + ... 4+ X))/ By, converges in distribution to the strictly p - stable law p
with the characteristic function ”
~ /jm—l—l t
[(t) i) (5.38)
Proor. We will give a short proof based on our Theorem 4.2 for the case 0 < p < 1 only.
At first, let us observe that for each & > 0

P(X1>a-B,) < P(Spq1 > (2/2) - By)+ P(S, > (¢/2) - By). (5.39)
Estimating the same way P(X; < (—x)- B,) we get
sup nP(|Xy| > B,) < 4o0. (5.40)
nelN
As in the proof of Lemma 5.11, we obtain from m - dependence and (5.40)
lim af Z P(IXi| > 2, By, | Xj| > 2. Bn) =0, (5.41)
J—i>m

for all increasing slowly enough z,, — co.
Similarly, as in Theorem 5.10, it is sufficient to prove

P(Ss.nn > Bnan) — n(P(Ssnmi1 > Buwn) — P(Ssnm > ann))‘ — 0, (5.42)

P
T

where {x,} is increasing slowly enough and

k
Stk = ZX]‘[(|X]‘| > 0By1,), k=1,2,...,n.

7=1
Define
., = min{y: |X;| > iB,x,.},
Sinr = 2 XX > 8Buz,) - I(a +m > ) = S5 hn(rmtm)-
7=1
Since
W P(Ssin # Sipn) S0P U 1N > 82,8, |Xj| > 62,B,}) — 0
J—i>m

by (5.41), it is enough to deal with x? P(S%, > Byx,).
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Lemma 5.17 Let Zy,7Z,, ..., 7Z, be random variables with partial sums T), = Zle Z;,
To=0. Then for any C > 0,

n

Ty > C Ty <C)=> 1T, < C, Thmy > O). (5.43)

1 k=1

M=

(T, >C) =
k

O
Setting in the above lemma 7Z; = X;I(|X;| > dB,x,,) - (1, + m > j) we obtain

[(S:{,n,n > ann) = Z [(S:{,n,k > ann? Sg,n,k—l S ann) (544)
k=1

n

- Z [(S:{,n,k S ann? Sg,n,k—l > ann)
k=1

But & > 7, + m implies ngk = S§7n77n+m, SO

n Tn+m
Z [(S:{,n,k > ann? Sg,n,k—l S ann) = Z [(S:{,n,k > ann? Sg,n,k—l S ann)
k=1 k=1

On the other hand, if m < k£ <7, + m then
S:{,n,k — S5,n,k - SS,n,k—m—l and ngk_l — SS,n,k—l - SS,n,k—m—l-
Moreover,
0 S Z [(55,n,k - SS,n,k—m—l > anna SS,n,k—l - SS,n,k—m—l S ann)
k=1

Tn+m

- Z [(55,n,k - SS,n,k—m—l > anna SS,n,k—l - SS,n,k—m—l S ann)
k=1

< E ](|XZ| > (Sl‘an, |X]| > (Sl‘an)
J—i>m

Taking into account the three last relations and (5.41), we obtain

n—0oo

lim 2| B3 1(S5,0 > Buttn, S5t < Buwn) = nP(Ssnmir > Buww, Sspm < Buy)
k=1

< lim @B B|> (S5, > B, S5y < Bata)

k

[(55,n,k - SS,n,k—m—l > anna SS,n,k—l - SS,n,k—m—l S ann)
1

— 0 B

An analogous formula can be obtained for the second term on the right-hand side of (5.44).
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Eventually, observe that

P(S5,n,m+1 > anna SS,n,m S ann) - P(S5,n,m+1 S anna SS,n,m > ann)
= P(S5,n,m+1 > ann) - P(SS,n,m > ann)

O

Remark 5.18 Condition D’ considered in the previous section excludes clustering of
big values in the sequence {X;}. In general, Condition D’ need not be satisfied by m-
dependent sequences.

Example 5.19 Let Y;’s be i.i.d. with £(Y;) € D(u) for some p-stable y and set
X; =Y;VY,_. Clearly, in this sequence big values “go in pairs”, hence D’ cannot hold
and point processes technique cannot be applied, at least directly. This is the reason for
hard technical proof of Theorem 5.15 in [JaKo89]. The new approach using Tauberian
theorems seems to be much better tool.

This example illustrates also another phenomenon. Observe that finite dimensional dis-
tributions of the process [0,1] 3 ¢t — S, (t) = Zgﬂ X, converge and that the limit is stable.
But if p < 2, we do not have functional convergence! Indeed, the jumps of the limit are
produced by pairs of jumps of processes 5,,. And this is impossible in the Skorokhod topol-
ogy. Even if the limit is Gaussian, but Y} has infinite variance, the functional convergence
may fail. A suitable sequence is provided by Example 5.8: this time max,;c, X; # 0 in
probability—see [Sze89].

We refer to [Sam87] and [Dab87], where necessary and sufficient conditions for func-
tional convergence in some classes of mixing processes are given.
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Order statistics
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Chapter 6

Asymptotic Independent
Representations for Maxima

6.1 Main Criterion

Let {X;}jen be a sequence of random variables. Define M,,., = max,, ., X; for m <n,
M,.., = —oc for m > n and M, = My.,.

The concept of asymptotic independent representation for maxima is the same as for
sums: We say that {X;};cp admits an a.i.r. for maxima if there exists a sequence {X; };ieny
of independent random variables such that

sup |[P(M, < z) — P(M, < )] -0 as n — +oo, (6.1)
zeR!

where M,’s are partial maxima for {X;}.

Existence of independent asymptotic representation reduces many problems on asymp-
totic properties of laws of { M, },cn to the easily computable independent case. For exam-
ple, possible limit laws for suitably centered and normalized M,’s can be identified with
those found by Meizler ([Mei56]), see also [Gal78, Chapter 3].

In the Extreme Value Limit Theory, the idea of replacement of the “original” sequence
by an independent one, being equivalent from some point of view, goes back to paper
by Watson([Wat54]). Loynes([Loy65]) considered the “associated” sequence for {X;}—an
i.i.d. sequence {X,} with the same one-dimensional marginals: £(X;) = £(X;). We will
say that {X;} is the “independent imitation” of {X;}. Leadbetter ([Lea74]) proved that
in a wide class of stationary sequences the limit behaviour of all order statistics is the
same for both {X;} and {X;}. Even if the correspondence between higher order statistics
breaks, the maxima of {X;} and {)?]} can remain closely related. This holds, for example,
if so called extremal index of {X;} exists—see [Lea83], [LLR83, Chapter 3] and Section
6.5 below.

If {X;} is stationary, {X;} are i.i.d. and (7 is the distribution function of X;, then

67
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(6.1) can be rewritten as
P(M, <u,)—G(u,)" -0 asn— +oo, (6.2)

for every sequence {u, } C IR'. O’Brien [OBr87] calls any distribution function  satisfying
(6.2) a phantom distribution function for {X;} (in view of our considerations on sums, a
“max-phantom” in place of “phantom” would be more appropriate here).

We shall show, how to construct an a.i.r. knowing limit of paths

RY 51+ P(Mpyg <wv,)

for some sequence {v, } C IR!. If the limit is of the form e~% where 3 > 0, this construction
gives an i.i.d. sequence, i.e. we obtain a phantom distribution function. This means we
are going to find a universal tool for both stationary and nonstationary cases.

At the very beginning, let us observe that we may consider non-decreasing sequences

{v,} only.
Lemma 6.1 Suppose for some sequence {v,} and some subset D C IR,
P(M[m] < Un) — oy, tE D.

If sup,epar =1 and ay, < 1 for some ty € D, then one can find a non-decreasing sequence
k, C IN, k, — 400 such that {v} = vy, } is non-decreasing and satisfies

P(M[m] < U:;) —rqay, tEeD.

PROOF. Define (F. ). = sup;(F})., where (F;). = sup{x; F;(z) < 1}. Since oy, <1 for
some ty € D, we have v, < (F.). for n large enough. Hence we can define

. ) inf{v;:l e IN} if o> (Fo)efor 1 <k<n (6.3)
Un = max{vg : v < (Fo)s, | <k <n} otherwise. '
In particular, for large n
vy < vr < (Fo ). (6.4)
Set kg = min{/ : v; = v/} and
. ko i n < ko
on = { min{k < n:vp =0’} otherwise. (65)

Clearly, {k,} is non-decreasing. If k, = k., for n > ng, then for every j € IV and ¢t € D,
ap = lim P(Mp,q < wv,) < nh—>r£lo P(X; <wv,) < nh—>r£lo P(X; <v)=P(X; <wg.),

n—0oo

and, consequently, P(X; < vy ) = 1 for each j € IV, i.e. vy, > (F.).. But this is
impossible by (6.4) and thus k, — co. If so, for e > 0, ¢ € D and n large enough

ap —¢e < P(M[m] < Un) < P(M[m] < U;;)
= P(Mpg<ovp,) < P(Mp,g<wvi,) < ar+e

ie. P(Mpq <wv}) — oy O
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Theorem 6.2 Assume there is a sequence {v,} such that for each t in some dense
subset D C IRt = (0, +00)

P(M[m] < Un) — O, (66)
where
supoy = 1, (6.8)
teD
mfo, = 0. (6.9)
teD
Set
Qy = SUp Q.
D3u>t

Then the following statements (i) - (iv) are equivalent.
(1) {X;} admits an asymptotic independent representation.

(i1) {X,} admits an asymptotic independent representation defined by marginal dis-
tribution functions

N 0 itz <oy,
Xj~ Fya) = Gyynf@ioap i 0T <z <l (6.10)
1 if x> sup, v}
where numbers v} are defined by (6.3).

(ii1) For each u > 1 the function f,(t) = &ut/dy is non-increasing on (0, 00).

(iv) The function g, = logod o exp is concave.
Corollary 6.3 Suppose {X;};en are independent and (6.6)-(6.9) hold for some dense

D C IR*. Then lim P(Mp,q < v,) = aq¢ uniformly int > 0 and a(y = exp(ga(log(-)))
for some concave g, .

n—00

Corollary 6.4 Suppose that (6.6) is satisfied with o; = exp(—t-3), where 3 > 0. Then
{X;} admits a phantom distribution function G given by formula

0 if @<y,
G(x) = exp(—ﬁ)l/” if v <a<or, (6.11)
1 if x> sup, v}

where numbers v’ are defined by (6.3).
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Corollary 6.5 Assume, in addition to (6.6)-(6.9), that

sup |P(M; <w,) — P(My < v, )P(Myy <wv,)] — 0 as n — oo. (6.12)
k<l

Then {X;} admits an asymptotic independent representation.

Remark 6.6 If (6.8) and (6.9) are not satisfied, the limit function may contain no
information.

Example 6.7 Let
1—2 % forxz>1
Flx) = { 0 otherwise

If {Y;} are i.i.d. with Y; ~ F, define X; = j='/fY; and v, = log'/? . Then for every ¢ > 0,

P(M[m] < Un) — el

6.2 Proofs

We divide the proof of Theorem 6.2 into several steps. First we shall adapt the scheme of
getting uniform closeness, developed in [Jak90a] and [Jak9la]. The formulation of Lemma
6.8 below is more complicated than we need for the present purposes; this is motivated by
future applications.

Lemma 6.8 Let {Z,},en and {Zn}new be two non-decreasing sequences of random
variables and let {v,} be a non-decreasing sequence of numbers. Let g,q :[0,1] — [0,1] be
non-decreasing, ¢(0) = g(0) =0, g(1) =g(1) = 1.

Suppose that for each t in some dense subsel D C IRY, as n — oo

Fat) = g(P(Zpn)) — F(1)s Fult) = G(P(Zjag < 0a)) — [(1), (6.13)

where f: IRY — [0,1] is non-increasing and continuous and f(0) = 1, lim,_,. f(¢) = 0.
Then -
sup |g(P(Z, <)) —g(P(Z, <z))] =0, asn— +oo. (6.14)
reR!

PROOF. By properties of f, convergence (6.13) is uniform in ¢ € IRT. Hence
9(P(Zy < vm,)) = [(nfma) + (1), G(P(Zu < v,)) = f(n)/my) +o(1),  (6.15)

provided m, — oo. If m,» < M along a subsequence {n’} C IV, take another subsequence
k, > M such that k,, — oo so slowly that n’/k, — oo. Since {v,} is monotone,

9(P(Zy < vy L)) < g(P(Zy <)) = f(0'[kp) +0(1) — 0, (6.16)
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and similarly §(P(Zn/ < v ,)) = 0. Hence (6.15) holds for every sequence {m,}.
Let {u,} be any sequence of numbers. Define integers m,, = m,({u,}):

1, if wu, <wv
my, =14 m, il v, <u, < v, (6.17)
n? if w, >sup{v, :m € IN}.
If m, =1 along {n’}, then as in (6.16)
G(P(Zn S up)) = 0= g(P(Zy < v ,)) +o(1).
If m,, = (n')?, then
1> g(P(Zy <up)) > g(P(Z < vy ,)) = f(1/0")+0(1) = 1.
In the remaining case, when v,, , < v, 41,

F(n o) = (P(Zor < 0,)) = (1) < g(P(Zu < ) + 0
< 9(P(Zur < 0yn) +0(1) = (' + 1)) + of

So
and, similarly,

i.e. for every {u,}

9(P(Z, <wup))—g(P(Z, <wug)) — 0. (6.18)
This is exactly (6.14). O

Lemma 6.9 Properties (iii) and (iv) are equivalent.

PrROOF. Take u > 1 and ¢t > s > 0. Write h = logu,h’ = log(t/s) and x = logs. Let
ga = logoa o exp. Then property (iii) can be rewritten as

Gl + 1) = go(2) > galz + R+ 1) = go(z + 1)

or
galr +h) + galx + 1) > ga(x + b+ h') + ga()

for every x € IR' and h,h’ > 0. The last inequality is nothing but concavity of function

go- U

Lemma 6.10 Suppose {v,} is non-decreasing and conditions (6.6) - (6.9) hold. If the
limit function &y has property (iii), then {X;} admils an a.i.r. given by formula (6.10) .
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PROOF. Notice that v, = v’. Let Fj(x) be given by (6.10). For each k, Fj is a distribution
function. Indeed, if lim,_, . v, < +oo, then lim,_,  F;(x) = 1 trivially. If lim
+oo, then lim,_, . Fj(x) = lim,_, &/ lim,_,d&; = 1, in this case also. So we have to check
only monotonicity, i.e.

TN—>00 Un =

Qj—1/n  Oj_1/nt1

or, equivalently

Oé]/n < aj_l/n

a1~ Ojotfnt1
Setting u =n+1/n > 1,s =7 —1/n+1,t = j/n + 1, we see that the last inequality is
just property (ii) of function a.).
Let {)7]} be independent with )A(; distributed according to F; and let M, = max; )A(;
We have for each ¢ > 0

— O

P(Mpg <wva) =1]] e TUE- i) /-

Since (iv) (equivalent to (iii) by Lemma 6.9) provides continuity of a .y, we get (6.6) with
D =IR" and M, replaced by M[m].

Set g(x) = g(x) = x, f(t) = & and observe that all assumptions of Lemma 6.8 are
satisfied. But (6.14) means that {X;} constructed above is an a.i.r. for {X;}. O

Lemma 6.11 Suppose {v,} is non-decreasing and conditions (6.6) and (6.7) hold. If
for every 0 < s <t

then the limil function oy has property (iii).

ProoF. Note that (6.6) implies convergence of P(Mp,) < v,) to Gy in every point of
continuity of the limit. We shall prove that

Quo  Zut (6.20)

provided @, is continuous at s,us and ¢ and then we shall derive from (6.20) continuity
of & in the entire half-line. This will give us property (iii).

Solet u > 1 and let ¢ > s > 0 and us be continuity points of & . By (6.19), the fact
that a; > 0,7 > 0 and right continuity of a(,, it is enough to prove

P(Mppsjinus)) < 0n) = /@5 2
2 Qurgs/ar = lim, P(M[nt]:[n(ut+5)] < ),
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where ¢ is such that ut + § is a point of continuity of & (. Let us observe, that for large n

P(Mppginqusy < vn) = P(Mns/oail(ns/t)ut] <

< Vfgns/t)(t/s)])
P(Mitnsptyiinstyut) <

ns/])
P( Ml /08 {Ins/0(ut+8)] < Vlns/a])-

v
> v

>
The last expression approaches é,;15/d;, while the first one — a5/, as desired.

We conclude the proof while showing continuity of & on (0,00). If not, suppose d.,
has a jump at to: for some n > 0,1 —n > d4yq/dy—. Let s < 1o < (1 + £)s and let
s,(14¢)s, (1 +¢)s,(1 +¢)%s,... be points of continuity of &). Applying consecutively
(6.20) we get

&(l—l—s)s > a(1+6)25 > a(1+6)35

>

Og B a(1+6)5 a(1+6)25

and so on. In particular, for each £k =1,2,...

&(l—l—s)ks S ( ~

Choosing s close enough to ty and ¢ sufficiently small, we get &(14.);/as <1—n < 1 hence
Gy = Gy = 0. This contradicts (6.7). O

Now we are ready to complete the PROOF OF THEOREM 6.2. By Lemma 6.1, we can as-
sume that {v,} is non-decreasing. Next, Lemma 6.10 gives us implication (iii)=-(ii). Since
(ii)=(i) is trivial and (iii)&(iv) is proved in Lemma 6.9, the only remaining implication is
(i)=-(iii).

Let {)7]} be a max-phantom sequence for {X;}. By (6.1) , M,’s satisfy (6.6) and (6.7).
And condition (6.19) is obviously satisfied by an independent sequence. Hence we can
apply Lemma 6.11 in order to get property (iii) for ..

The PROOF OF COROLLARY 6.5 is similar:

— Reduction to non-decreasing {v, }. Take {v*} defined in by (6.3). Observe that condi-
tion (6.12) remains to be true with v, replaced by v’ = vy,,.

— Application of Lemma 6.11. Condition (6.19) is implied by (6.12).

— Construction of an a.i.r. by Lemma 6.10.

COROLLARIES 6.3 AND 6.4 are obvious consequences of Theorem 6.2.

6.3 Phantom Distribution Functions
for Markov Chains

Corollary 6.5 suggests verifying condition 6.12 as a method for checking property (iii) of
function &;. The procedure is standard: by (6.9) we can restrict our attention to maxima
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of length at most [nT], say. Next, if X,’s satisfy for each T' >0

max P(X; > v,) — 0, as n — oo,
j<nT

we can reduce the problem to proving

P(My, < vp, Mg trn)ia, < 0n)

6.21
—P(My, < vn)P(M,r,) (6.21)

In S Un) —>07

for all k,,,{, = o0, k, + 1, < [nT], where r, = oo is such that

r, max P(X; > v,) — 0.
J<[nT]

The form of (6.21) is already “typical” for mixing conditions and similar to O’Brien’s
condition AIM(u,) [OBr87].

It may happen, however, that direct checking property (iii) is possible without explicit
invoking arguments of “mixing”. For example, one can use a martingale approach in a
similar way as for sums.

Recall, that {Fi}rewugoy is a filtration if F}’s form a non-decreasing sequence of o-
algebras and that sequence { Xy} is adapted to {Fi} if X} is Fr-measurable for each k& € IV.

We will follow idea of the “Principle of Conditioning” due to [Jak86], being a heuris-
tic rule for derivation of limit theorems for dependent summands from results proved in
independent case only. We are going to show that this idea works in limit theorems for
maxima as well.

The heart of what follows is a lemma corresponding to Lemma 1.2 in [Jak86].

Lemma 6.12 Let {X;} be adapted to {F;} and suppose that
kn
]1:[1 P(X; <wv,|F;_1) —ra>0, (6.22)
where « s a constant. Then also
P(My, <wv,) — a.
g

PROOF. One can get this lemma immediately from Lemma 2, p.66,[JaSi86]. O
Here is well-known example of how to check assumption (6.22) of the above lemma.

Corollary 6.13 If

max P(X; > v,|Fj-1) — 0, (6.23)
1<j<kn P

kn

> PN >l Fia) — B, (6.24)

J=1
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then
kn

H P(X; <w,|Fj-1) ? e’

7=1
and
P(My, <v,) — e P

75

(6.25)

PrROOF. If Xy, Xy, ... are independent and F; = 0(X1, X, ..., X;) then (6.23) and (6.24)

become

max P(X; >v,) — 0,
1<) <hn

kn
ZP(X]‘ > Un) — ﬁ

i=1

Simple computations (see e.g. [Gal78, Chapter 3]) show that

So our corollary is true in this particular case.

By usual arguments we can assume that both (6.23) and (6.24) hold pointwise for each
w in a set of full measure. But in such w we can mimic the proof of the independent case

in order to get Hf;l P(X; <v,|F;_1)(w) — eP. O

Now we are ready to state our criterion based on the martingale approach:

Theorem 6.14 Suppose that {X;} is adapted to {F;} and the following two conditions

hold for each t > 0:

max P(X; > v,|F-1) — 0,
1<j<[nt] P

(]

ZP(X] > v Fio1) ? Bt
7=1

where {B;}e>0 are finite constants and

lim g, =0, lim 3 = +occ.

t—0+ t—+co

Then {X;} has an asymptotic independent representation.

ProOOF. By Corollary 6.13 we know that (6.6)—(6.9) hold with

ay = €

(6.26)

(6.27)

(6.28)
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Moreover, by the same corollary

()

i=1

for each ¢ > 0. For every 5 € IN choose a version of the regular conditional distribution of
X, with respect to F;_; and denote it by u;(A,w). Fixw € Q and let Xl(w), Xz(w), X:E)“’), ...be
independent and distributed according to (-, w), pao(+,w), us(-,w), ..., respectively. Then

P(X; <wv,|Fj-1)(w) = P(X](W) <w,) as.and
[n1]
[1P(X; <volFia)(w) = P(M¥) <wv,) as.

7=1
By (6.27) and (6.29) there exists a subsequence {n’} C IN such that

max P(X](w) > v,) — 0 and P(M[(:f])f] < vy ) — ay, t > 0,t-rational,
1<j<n]

for every w in a set Q' of probability 1. Fix w € €. Both Lemma 6.10 and Lemma 6.11
remain valid if we consider convergence along a subsequence {n'} instead of a full IN. Hence

we can assume that v, is non-decreasing and condition (6.19) holds (since P(M[(:;]) <w,) =

P(M[(:;)] < vn)P(M[(?;)]:[m] < wv,)). So @, has property (iii) of Theorem 6.2 and by this
theorem {X;} admits an a.j.r.. O

Compiling Theorem 6.14 and Corollary 6.4 seems to be most fruitful for Markov chains.

Theorem 6.15 Suppose {Z;} is a homogeneous Markov chain with state space (S, Bs),
transition probabilities P(x, A) and a unique stationary initial distribution v.  Let
f:(S,Bs) — (IR',BY) be a measurable function such that for some sequence {v,} we
have

nP(-,f>v,)— U(-) in LYS,Bs,v) (6.30)
If EU #£0, then {X; = foZ;}jen has a phantom distribution function.

ProOOF. By Corollary 6.4, it is enough to check assumptions of Theorem (6.2) with
By =1t-(EU). Set Fo ={0,Q} and F; = 0(Z1, Z3,...,Z;). Then for each ¢ > 0

E max (P(X; > v,|F;_1))°
1<j <[]
< W > o) + 2 E(P(Zimr, | > va))*

i=2

< nE(P(Zy, f>wv,)) — 0,
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since n (P(Zy, f > v,))? — 0 in probability and is dominated by the uniformly integrable
sequence {nP(Zy, f > v,)}. Checking (6.27) is a little bit more complicated. First, we
may neglect the term P(X; > v,|Fo) = v(f > v,). Then, by (6.30),

[n4] [nt]-1
EZPMﬁwwﬁﬂ—WMZ;W%)
[nt] — 1

EnP(Zy, f > v,) — U(Z)| — 0.

But the ergodic theorem gives

[nt]—1
(1/n) 2@3 U(Zj) — t- E(U(Z))

and our theorem follows. O
Using assumptions stronger then (6.30) we are able to work independently of whether
a stationary initial distribution for {Z;} exists or not.

Corollary 6.16 Suppose {Z;} is a homogeneous Markov chain on (S, Bs), with tran-
sition probabilities P(x, A) and initial distribution v. If f is such that

Yo = sup |8 —nP(x, f > v,)| — 0, (6.31)
€S

for some 3 >0 and
v(f>v,) —0, (6.32)

then {X; = foZ;};en has a phantom distribution function.

ProOOF. Following the notations from the proof of Theorem 6.15 we have

max P(X; > v,|F;_1)

1<j <[]
< v(f >wv,)+ max P(Z;_1, f > v,)
2<j<n
< v(f>wv)+8/n+ v /n— 0.
Similarly
(1]
nt| —1
> P(X; > vl Fjma) = (il =1) )5

i=1 "

(]

= (f > o) +n7 Y (nP(Zjor, f > va) = B

7=2
< v(f>v)+ntny, — 0.

Hence 3, = lim,_, ([nt] = 1)3/n =1tp. O
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6.4 Regular Phantom Distribution Functions
for Stationary Sequences

Recall, that any distribution function ' satisfying
P(M, <wu,)—G(u,)" — 0 (6.33)

for all sequences {u,}, is a phantom distribution function for {X;}. Notice that ¢ is not
uniquely determined.

From the point of view of limit theorems we are interested in sequences { X} for which
P(M, < wv,) converges to non-trivial limit at least for a single {v,} C IR'; this means that
also

Gv,)" — a, (6.34)

where o, 0 < a < 1. By a well-known observation due to O’Brien [OBr74a] (see also
[LLR83, p.24]), such sequence v, exists for some (and then for any) 0 < o < 1 iff

G(G.—)=1 and lim 1 - G(a)

—6le) 6.3
SRV e P (6:35)

where GG, = sup{x : G(x) < 1}. Say that G is regular (in the sense of O’Brien) if (6.35)
is fulfilled.

We are able to give a complete description of sequences possessing regular phantom
distribution functions.

Theorem 6.17 A stationary sequence {X;} has a regular phantom distribution func-
tion if and only if there is a sequence {v,} such that for some o, 0 < a <1,

P(M, <wv,) — a, (6.36)
and the following Condition B..(v,) holds:

sup |P(Mpq <v,) — P(M, <wv,)P(M, <wv,)] — 0, asn — +oo. (6.37)
p.g€IN

Moreover, given a sequence {v,} satisfying both (6.36) and B..(v,), a regular phantom
distribution function G can be constructed explicitly: If F(x) = P(X; < x) and

i : ‘ > <k<
U;:{mf{vl le N} if vpy>F. forl <k<n (6.38)

max{vy : v < Fi,1 <k <n} otherwise.
we can set

0 itz <of,
Glz) =14 a'/" if vi<a <, (6.39)
1 if @ > sup, v
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Proor. Given Corollary 6.4, sufficiency is an easy task. Indeed, we have to prove only
that for every pair of integers p,q > 0

P(Mipjqyn < va) — a9, asn — oo, (6.40)

Observe, that P(X; < v,) — 1 (if not, we would have P(M,, < v,/) — 0 by Condition
Beo(vn), at least along a subsequence {n'} C IN). Hence also P(My, < v,) — 1 for
bounded k,. In particular, P(M[g/qn < vn) = P(My[n/q < va) + o(1) and Condition
Beo(vy,) implies that

P(Mi1qym < vn) = (P(Mpuyq) < vn))” + o(1).

This proves (6.40).

So let us prove necessity of (6.36) and (6.37). Suppose that {X;} has a regular phantom
distribution function G. Fix o € (0,1). (6.36) holds by regularity of G. In order to check
Beo(vy,) for {X;}, it is enough to prove that

P(M,, 4y, < 0,) — P(M,, < 0,)P(M,, <v,) — 0, (6.41)

for every pair p,, ¢, of sequences of positive integers. Observe, that G(v,) — 1, hence one
can find a sequence {k,} tending to infinity so slowly that still G*»(v,,) — 1. If p,s < ks
along a subsequence {n'} C IV, then

P(Mp , < Un/) > P(Mkn/ < Un/) = Gk"’(vn/) + 0(1) — 1,

n! =

hence also

P(Mpn/-l—qn/ < v) — P(M,

and (6.41) holds along {n'}.

So without loss of generality we can assume that p, > k, and ¢, > k, for every n € IN.
In particular, both p, and ¢, tend to infinity. By the definition of a phantom distribution
function,

P(My,q, <vi) = G (0,) + 0(1)
= G (0) G (v) + o(1)
= (P(M,, <)+ o0(1)) (P(M, <vi)+o(1)) + of1)
= P(M,, <v,)P(M,, <v,) —|— 0(1)

i.e. (6.41) holds, either. O

In fact, we have proved

Corollary 6.18 If {X;} has a phantom distribution function and {v,} is such that
P(M, <wv,) — a, for some 0 < o <1, then By (v,) holds for {X;}. O
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Let us define
v, = inf{x : P(M, <z)>e '} (6.42)

Under different mixing assumptions, O’Brien [OBr87, Theorem 4.1] proved that G
defined by (6.39) with @ = e™! and v* = ¥, is a regular phantom distribution function for

{Xi1.
Our theorem improves O’Brien’s result in two aspects:
e we turn the attention to necessity

e we deal with arbitrary sequence {v,} satisfying (6.36) and (6.37)

In two subsequent chapters we will study equivalent forms of Condition B, (v,,) (Chap-
ter 7) and possible ways of effective checking the convergence P(M,, < v,) — a (Chapter
8). The rest of the present chapter will be devoted to a theoretical application of the
criterion obtained above.

Remark 6.19 Let G be a regular distribution function (e.g. continuous) and {v,} be
such that G"(v,) = o, 0 < o < 1. If {X|}en are i.i.d. with distribution function G, then
for each t € IRT

P(Mpg <wv,) = (Gn(vn))[m]/” — o', asn — 4oo,

i.e. (6.6) holds.

If G does not belong to the domain of attraction of a max-stable distribution (see
[LLR83, Theorem 1.4.1, p. 16]) then no linear normalization a,x + b, exists such that

G"(apz +b,) — H(z), asn— +oo, € R,

where H(x) is non-degenerate.
It follows that the convergence (6.6) is much weaker, than the classical convergence in
distribution of linearly normalized maxima.

6.5 Relative Extremal Index
of Two Stationary Sequences

Let us begin with an example, essentially due to Rootzén [Roo88]

Example 6.20 Let {X;};cnv be max-regenerative, i.e. there exist integer-valued ran-
dom variables 0 < Sy < S; < ... such that

o Yo = 50,Y =51 — 50, Y, =5, — 51, ... are independent with Y7, Ys, ... — identically
distributed.
o X = maxg g, Xj, X| = maxg .;jcs, Xj,... are independent, with X7, X7, ... -

identically distributed.
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There are naturally arising examples of such sequences, including instantaneous func-
tions of certain Harris recurrent Markov chains, or, more generally, of regenerative se-
quences — see Asmussen (1987), Chapter VI, for details.

Suppose we may neglect the influence of the null cycle:

P(X, > M) — 0, asn — +oo, (6.43)
and that the regeneration occurs after a finite average time:

Then, by the law of large numbers
VitYo+... 4V,

n

— [ a.s.,

hence, heuristically, My,  can be replaced by M. In fact, Theorem 3.1, [Roo88] shows
that

sup |P(M,, < z) — P(M! < 2)Y*| — 0.

reR!

Generalizing the above example, we will say that a stationary sequence {X;} has the
relative extremal index § with respect to another stationary sequence { X7}, if

sup |P(M, <) — P(M! <2)’| — 0 asn — +oo, (6.45)
zeR!

where M,, and M, are partial maxima for {X;} and {X}}, respectively. ~ Write

{Xa} ~" X0

In order to explain the meaning of this relation, we may repeat the remarks on asymptotic
independent representations: if {X,} ~% {X’}, then the asymptotic properties of laws of
M, are completely determined by those for M!. Further, if { X’} is an i.i.d. or exchange-
able sequence, then {X,} ~ {X’} provides information about necessary and sufficient
conditions for the convergence in law of suitably normalized and centered M,’s and about
possible limit laws.

In general, formula (6.45) does not determine uniquely the value of 6. The relative
extremal index of {X,} with respect to {X/} is well-defined by (6.45) iff one can find
a subsequence {n'} C IV and real numbers {v,/} such that

PM], <vy) — a, (6.46)
for some a, 0 < a < 1. Moreover, for any such a sequence {v,}, (6.45) implies

' < I
04— Im log P(M, < vn)‘
n! =00 log P( 7/7‘/ S Un/)

(6.47)
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The relative extremal index generalizes the notion of the extremal index due to Lead-
better.

Perfecting the ideas of Loynes [Loy65] and O’Brien [OBr74a], Leadbetter [Lea83] defined
the extremal index of a stationary sequence {X,,} as a number 0, 0 < § < 1, such that for
all 7 > 0,

P(M, < u,(1) — ™77 (6.48)

whenever

nP(Xy > u,(1)) — 7. (6.49)

Let {X; : n € IN} be the independent imitation of {X;}, i.e. X;’s are i.i.d. with the same
marginal distributions as X;: £(X;) = £(Xj). Then (6.49) means P(M, < u,(7)) — e~
and (6.48) and (6.49) imply

P(M, < u,) — P(M, <u,) —0 (6.50)

at least for sequences u,, = u,(7) defined by (6.49).

In fact, Leadbetter [Lea83] proved (6.50) for all sequences {u,}, provided § > 0. It
follows that (6.45) is satisfied and the extremal index 6 > 0 is our relative extremal index
of {X;} with respect to its independent imitation {)?]}

Now suppose that {X;} admits a regular phantom distribution function G. If { X'} is
an i.i.d. sequence with marginals (7, then (6.45) holds with § = 1. But more important is
for our purposes, that we may redefine (¢ according to formula (6.39).

Theorem 6.21 Assume there is a sequence {v,} such that P(M! < v,) — o', where
0 <o <1, and Condition B, (v,) is satisfied for {X'}.

Then there exists 0, 0 < § < oo, such that {X;} has the relative extremal index 6 with
respect to { X7} if, and only if, {X;} satisfies Bo,(vy,) and for some a, 0 < a <1, one
has P(M, <v,) — a.

In such a case

§ =loga/loga'. (6.51)

PROOF. By Theorem 6.17, {X}} has a regular phantom distribution function, say G'. If
{X;} ~% {X!}, then by definition (6.45), G = (G')? is a regular phantom distribution
function for {X;}. By (6.45), P(M,, < v,) — o = (o/)e. And Condition B.,(v,) holds
for {X;} by Corollary 6.18.

To prove the converse part, assume that P(M, < v,) — « for some a € (0,1)
and that B.(v,) holds for {X;}. By Theorem 6.17 both {X;} and {X}} admit phantom
distribution functions GG and G, respectively, given by formula (6.39), with « replaced by
o' in the latter case. If 0 is defined by (6.51), then G = (G')?, and (6.45) follows by the
definition of a phantom distribution function. O

Theorem 1.5 contains existing in the area results. We refer to [Lea83], [LeRo88] and
[Roo88] for standard examples of calculation of the extremal index.

It should be pointed out, that there are classes of stationary sequences with no phantom
distribution functions for which the relative extremal index can be calculated, as well.
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Example 6.22 Let Y be a positive (with probability one) and non-degenerate random
variable. Let Z = Y] 4+ Y5, where Y] and Y, are independent copies of Y. Fix v > 0 and
consider two random probability distribution functions F'(w, ) and G(w,x) such that as
T — 00

l—Gw,z) ~ Y(w)x™" as.
1= Flw,2) ~ Zlw)x™" as.

If {X,} and {X]} are exchangeable sequences given by the kernels w — ®* F(w, -)
and w — ®~ G(w, - ), respectively, then {X,,} has the relative extremal index § = 2 with
respect to {X’}. To see this, set v, = n'/? and observe that for ¢t > 0

P(M[Nt] S Un) = E(F(w,vn)[m]) g E e_t'Z
and that

2
P(Mj,q < v,)* — (Ee—“”) =Ee "7
Hence the assumptions of Lemma (6.8) are satisfied and

sup |[P(M, < z) — P(M! <2)*| — 0 asn — +oo.
zeR!

Observe that both {X,} and {X/} do not satisfy Condition B..(v,), for YV is non-

degenerate, so they cannot have a phantom distribution function.
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Chapter 7

Equivalent Forms of Mixing
Conditions

7.1 Exponential Forms

In this section we establish some equivalent forms of mixing properties of the sequence
{M,} with respect to a given sequence {v,} of numbers. For T > 0 let us introduce
Condition By(v,)

max |P(Mjyr <v,)— P(M; <v,)P(My, <wv,)] — 0, asn — +oo. (7.1)
J+k<L[Tn]

Setting formally T' = co we get Condition B, (v,) defined in the previous chapter.
Recently O’Brien [OBr87] has considered stationary sequences having “asymptotic in-
dependence of maxima” with respect to a sequence {v,} (AIM(v,)) :

max | P(max X; < v, max X, <wv,) — PM,; <v,)P(My <wv,) (7.2)

i<j JHan<i<jthtan
— 0, asn — +oo,

where the maximum is taken over all 5 and k& with the properties j > ¢,,k > ¢, and
J+k+q, <nand {g,} is a sequence of non-negative integers, ¢, = o(n).

Notice that By(v,) is a little bit stronger than AIM(v,). In most applications, how-
ever, ¢, is such that P(M,, < v,) — 1. Under this condition AIM(v,) and By(v,) are
equivalent. Bearing in mind that AIM(v,,) is the verifiable form of our mixing assumption,
we prefer By(v,,), for it effects in breaking probabilities into products without inconvenient
separation of blocks.

An example on p.287, [OBr87], shows that AIM(v,) (hence practically: Bi(v,)) is
weaker than commonly used in Extreme Value Limit Theory Leadbetter’s [Lea74] Con-
dition D(v,): there are constants {a, ;} with a, [, — 0 as n — oo, for all A > 0, such
that

85



86 CHAPTER 7. MIXING CONDITIONS

IP(AB) — PAP(B)] < aus
for all sets A of the form {X; < v,,...,X;, < v,} and sets B of the form {X; <
Uny s X, < v with 1 <oy <.o.<ip,<ji <...<jy <nandj —i, > 1 So for
checking By(v,,) one can use all tools developed in [Gal78], [Lea83] and [OBr87].

For sequences {X;} with the AIM(v,) property (and satisfying some additional con-
ditions, e.g. supnP(X; > v,) < +0o0), O'Brien found an asymptotic representation of
P(M, <wv,) in the exponential form:

P(M, <wv,)—exp(—nP(Xo > vy, M,, <wv,)) — 0, asn— +oo, (7.3)

where {r,} is a suitably chosen sequence of non-negative integers (if r, = 0, we set
MO = —OO)

For our purposes a stronger result is necessary.

Proposition 7.1 There exists a sequence {r,} of non-negative integers such that
r <1 -n and

max |P(My <wv,) —exp(—kP(Xo > v,, M,, <v,))] — 0, asn — +oo, (7.4
1<h<[Ton]

if and only if P(Xo > v,) — 0 and Br(v,) holds.
Moreover, if {r,} satisfies (7.4) then necessarily
P(M,, <v,) — 1. (7.5)

PROOF. NECESSITY Condition (7.4) implies Br(v,,), easily. Substituting in (7.4) k =1
we see that

1 — P(Xo > vn) > exp(—P(Xo > vy)) + o(1).
This implies P(Xo > v,) — 0. Further, observe that for each & <r,

P(My>wv,) > P ( U {X; >v,, max X; < vn}) (7.6)

1<j<k J<i<j+rn

= kP(Xo > v, M,, <wv,)
Hence, letting in (7.4) k = r, we get

1 = P(M,, >v,) = exp(—r,P(Xo>v,, M, <wv,))+o(l)
> exp(—P(M,, > v,)) +o(1),

and, again, P(M,, > v,) — 0.
SUFFICIENCY: Assume P(Xy > v,) — 0 and Bg(v,). First we shall prove that
whenever P(M, < wv,) —> 1 then for every sequence k, <T -n

P(My, <wv,) > exp(—k, - P(Xo>v,, M, <wv,))+o(l) (7.7)
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Set My, = max; ;¢ X; for k <l and My = —oo for &k > [. Let us introduce events
A ={Xi <w,} and
A;z,i = {Xz S Un} U {Xi-l—l > Un} U...uU {Xi—l—rn > Un}
Observe that for every 0 < j < k
k k k+7’n
ﬂ A;”\ ﬂ A, C U AL = { max X;>v,} ={Mppsr, > v.}.

i=j+1 i=j+1 i=k+1 k<i<k+rn

It follows that
! !
max | P ﬂ A;w' —P ﬂ Ani || £ max P(My4r, > v,) = P(M,., > v,) — 0.
k<l i=k+1 i=k+1 !
This in turn implies that for 0 < 3, <k, <[, < [nT]
In In
PO ) = [0 A+
P(Mln_jn S Un) —I_ 0(1)
= P(Mi,—r, <) P(My,—j, < vi)+0(1)
kn In
= P ﬂ A;m' P ﬂ A;m' +o(1),
i.e. Br(v,) being valid for {A,;} is transformed into
! k !
max P(() A)—P(() AL)P( () AL)|— 0, asn— +oo. (7.8)
0G<h<ISTn | =iy =l i=h41

Similarly

P(My, < v,) = P((_ﬁ Ani) = P(fj ALY +o(1)

Since also P((A;w»)c) = P(X; > vn, Miiqr, <v,) = P(Xo > v,, M, <wv,), we can rewrite

(7.7) as
P A = e (— §P<<A;,i>0>) Foll).

(7.9)

Noticing that P(A; ;) > P(An;) = P(Xo < v,) — 1, we get the above inequality from the

following lemma.

Lemma 7.2 Let {A", : 1 <i<k,,n € IN} be an array of events satisfying 7.8 and

such that min; ¢,y P(A;”) — 1. Then (7.9) holds.
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PROOF. Our assumptions constitute a part of what is presumed in Lemma 3.2 of [JaKo89].
An inspection of the proof of this lemma (inequality (3.21) on p. 226) shows that it is just
enough for (7.9) to hold. For completeness, we restate here this computation replacing A;
by A, ; without the “prime” sign.

It is sufficient to show that the convergence

kot

ZP((A:LI,Z) — C?

=1

along a subsequence {n'} C IV, where C € [0, +00), implies

kot
lim inf P (ﬂ AW) > e ", (7.10)
n!/—oo i=1
In the sequel we will write for simplicity n instead of n’.

If C =0, then (7.10) holds trivially. So assume that 0 < €' < +o0. Fix r € IN and
define

j;,o = 0

o inf{k; Y5, P(AZ,) > (p/r)C} if this set is non-empty
Tn.p ks, otherwise;

j;,r = kn

By the uniform infinitesimality of events P(A; ;), we have for every 1 < p <r
Inp
Z P(Afm) — C/r, asn— oo,
=ipp-1+]
and by (7.8), for r fixed,
kn r In,p
P ﬂAn,i —HP ﬂ A — 0, asn — 4oo.
=1 p=1 i:j;yp_l-l—l

Let {N,,r € IN} be such that N, > N,_; and for n > N,,

T

Php
max P(AS Y =C/rl < 1/r, (7.11)
1<p<r i:j;’;ﬁp_l‘l'l s
r jz,p
1<i<kn p=1  \i=i _,+1

For natural n, define
r,:=r iff N, <n< Ny
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Clearly, r,, — 0o as n — oco. Let
Muyp =73, p=0,1...,m.

Divide the intersection Ni<i<k, A, into r, blocks

Mn,p

B,,= ﬂ Anis p=12...r,,

i:mn,p—l‘l'l
(here Ny = Q). We have by (7.11) and (7.12)

max P(B;p) — 0, asn — +oo

1<p<rn
P(ﬂ Bnp) HP(Bnp) — 0, asn — +oo.
p=1 p=1

Since |exp(—z) — 1 + x| < (1/2)a? for z > 0, so

n n 1 n
I P(B.y) —exp = P(B; )| <5 max P(B; ) > P(B; )] =0, asn— +oo.
p=1 p=1 7 2 1<p<rn 7 p=1 7
Hence

kn n

liminf P | () Ani| = exp|—limsup> P(B; o)
n—co i=1 n—oo [ ’
kn
> exp | —lim supz P(A; ) | = exp(=C).

O

The proof of Proposition 7.1 will be complete if we are able to derive the converse
inequality to (7.7) for some sequence {r,} satisfying (7.5).
It suffices to find for every @ € IN a sequence {r, = r,(Q)} such that

P(M,, >v,) < Q7" +o(l)
and for any k, < T -n
P(My, <v,) < exp(—k, - P(Xo > v,, My, < v,)) +1/Q + o(1). (7.13)
To do this let us define
ro =min{k : P(My > v,) > 1/Q} AT - n). (7.14)

Suppose P(M, , > v,) < 1/Q along a subsequence {n'} C IN. Then ry = [n'T] and
by (7.6) for any k. < [n'T],

1/@ > P(M[n/T] > Un/) > kn/P(Xo > Un/,M[n/T] < Un/).
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Hence

1<e V4 1/Q

P(Mkn/ S Un') S
< ( kn’P Xo > vy 7M[n’T] < Un’)) + 1/@7

i.e. (7.13) holds along {n'}.

So we may assume that P(M,, > v,) > 1/Q, n € IN. Since P(X; > v,) — 0, we have
lim, ., P(M,, > v,)=1/Q. Choose an integer W such that ¢~ < 1/Q. Let IN; C IN
consists of those numbers n for which &, > QWr,. If n € INy, let ¢, = k, — QWr,.
Suppose IV; is infinite and assume for notational convenience that IN; = IN. Then by

BT(Un)
P(My,, <v,) = P(M, <v,)?" xP(M,, <uv,)+o(l)
< P(M,, <v,)?" +0(1)

— (1-1/Q)%" <" <1/Q,

and inequality (7.13) holds along IV;. If IV; is finite, we have k, < QWr, for n large
enough. For such n denote U, = [k,/r.], ¢. = k., — U, - r,. Then we can estimate

similarly as O’Brien ([OBr87, Corollary 2.2]):

P(My,, <v,) = P(M,, <uv,)" - P(M,, <uv,)+o(1) by Br(v,)
< exp(=U, - P(M,, > v,) — P(My, > v,)) + o(1)
< exp(—=(Up - 1o 4 ¢u) P(Xo > v, My, < w,)) 4 0(1) by (7.6).

This proves Proposition (7.1). O

Remark 7.3 It is easy to see that in definition (7.14) of r,, we could use any 0 < 7" < T
instead of T. So if By, (v,) is satisfied one can define r,, as for T = 1 and the proof still
works.

The asymptotic uniform representation given by (7.4) has consequences which are es-
pecially useful in our considerations.

Proposition 7.4 If for some T >0
hmian(M[nT] < Un) >0

n—0oo

then
P(Mp < v,) — P(Mpry < 0,)77 — 0 (7.15)

uniformly in t € [0, T] if and only if Condition Br(v,,) holds.
Proposition 7.5 Suppose
0 <liminf P(M, < wv,) <limsup P(M, <wv,) < 1.

n—0oo n—0oo

Then the following items (1)—(iii) are equivalent:
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(1) For each T > 0 Condition Br(v,) holds.
(ii) Condition B (v,) is satisfied.
(iii) P(M.q < vy,) is asymptotically exponential on [0, 00):

sup |P(Mp.q < v,) — P(M, < vn)t| — 0, asn— +oo. (7.16)

t>0

PROOF. Necessity of Br(v,) in Proposition 7.4 and the chain of implications (iii)=-(ii)=
(i) in Proposition 7.5 are obvious.

Let us assume By(v,). We claim that P(Xy > v,) — 0. Indeed, by Br(v,) we have for
each ¢

liminf P(Mp,7 < v,) < liminf P(M.1y/q < ve)? <liminf P(Xy < v,)%.

n—0c0 n—0c0 n—00
Now liminf,_,  P(Mpm < v,) > 0 implies liminf,_,_ P(Xy < v,) = 1. Hence we can

apply Proposition 7.1. Let {r,} be as in this proposition. Define
en = exp(—P(Xo > v,, M., < v,)).

By (7.4)

P(M[ntn] S Un) . c7[1ntn] — P(M[ntn] < Un) o (c[nto])[Ntn]/[nto]

— n

— 0,

for every sequence {t,} of numbers, 0 < ¢, < T, and fixed t5 > 0. If t, = T, we have
el = P(Mp.1) < v,) + o(1) and since P(Mp,7) < v,) > n > 0 for n large enough, we get

an equivalent form of (7.15), i.e.

P(Miat,] < 0a) = P(Mpury < 0)""T — 0

for every sequence {t¢,},0<t, <T.
We have already proved Proposition 7.4. To prove the remaining implication (i)=-(iii)
in Proposition 7.5, let us repeat the above considerations for ¢t = 1 and observe that

P(M[m] < Un) — P(Mn < Un)t — 0
uniformly on each interval [0, T]. Take ¢ > 0 and let () € IN be such that

lim sup P(M,, < Un)Q < e.

n—00
By Bo(v,), if t > @,

P(Mpg < v,) < P(Mug <v,) = P(M,, <v,)% +0(1) <e
for n large enough. For such n,

P(M, <v,)' < P(M, <v,)% <e,



92 CHAPTER 7. MIXING CONDITIONS

either, and we see that as n — oo
sup [P(Myuy < v,) = P(M, < v,)|
>0

<  sup ‘P(M[m] <w,)— P(M, < vn)t‘ + 26 — 2¢.
0<t<Q

7.2 Families of Mixing Conditions

Remark 7.6 In some problems (e.g. convergence in law of maxima) it is more nat-
ural to consider mixing conditions allowing “to break probabilities” for a family of levels
{v,(B) : B € B} but on bounded intervals only. In fact this situation is covered by the
preceding theory as we can see from the proposition below.

Proposition 7.7 The following conditions (i), (ii) and (iii) are equivalent.

(1) For some 0 < o < 1, there exists a sequence {v, = v,(a)} such that P(M, <
v,) — « and Bo(vy,) holds for {X;}.

(ii) One can find a sequence {v,(a)} as in (i) for each a € (0,1).

(ii1) There exist: a decreasing to zero sequence {oy : q¢ € IN} of positive numbers
and an array {v,(q) : n,q € IN} of numbers such that for each ¢ € IN Condition
Bi(vn(q)) holds and

lim P(M, <wv,(q)) = oy (7.17)
n— 0o
PROOF. To see (i) = (ii), choose 0 < o’ < 1 and set ¢ = log o/ log o’. By representation
(7.16)
P(M;, < vpug) = P(Mpug < vpug) ™0 4 0(1) — o9 = o

Eventually, we note that By (vjng) = Be(v,). The implication (ii) = (iii) is obvious, so
let us suppose (iii). We may assume oy < 1. Choose a,1 > o > oy and define

t, = log o/ log ay,.
Clearly, 1 > t, \, 0. By Proposition 7.4, condition (7.17) implies for each ¢ € IV
P(M[m] < Un(q)) — Oéé — 0

uniformly in ¢ € [0,1]. Hence one can find integers Ny < Ny < ... < N, < ... such that
By(n,t) := P(Mpg < va(q)) — al satisfy

sup sup [3;(n,1)] < 1/q.
n>Ngy te[0,1]
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For n € IN, let ¢ = g(n) be such that N, <n < N,11. We have

D4 By /t), Int) [n/4g)):

When n — oo, the first summand on the right-hand side tends to o' uniformly
int€[0,400).

Choose T' > 0 and let @ be so large that T -ty < 1. If n is large enough, ¢(n) > @
and [nt]/[n/t,] <1 whenever t < T. Since also [n/t,] > N,, we conclude that the absolute
value of the second term does not exceed 1/¢(n) — 0, provided ¢t <T'. Hence, setting

[l (eIt
P(Mpug < vpugeg(q) = (ale)

v, = U[n/tq](Q) if Nq <n< Nq-l-l

we get
P(M[m] < Un) —a' —0

uniformly in ¢ € [0,7T], for every T' > 0. In particular, P(M, < v,) — « and we may
apply Proposition 7.5 (i) in order to get Boo(v,,). O

The above proposition can be used to clarify the connections between our preferred
Condition B (v,) and conditions used in the literature (e.g. [LLRS83]).

First, it is mentioned in [Lea83], p. 293ff, that the minimal property we need in limit
theorems for maxima is “breaking”:

P(M,, < v,) — P(Mpyug < vi)* — 0,

for each & = 2,3,.... Hence in all proofs it is enough to assume By (v, ) instead of conditions
like Dy(v,) — as far as we deal with maxima only. This remark allows us to discuss two
known results using Bi-type conditions, while originally they were proved under Dy’s.
In analysis of both results we aim at proving (via Proposition 7.7), that a family of
mixing conditions can be replaced by a single condition of the form B..(v,,), for some {v,}.
Suppose that {M,}’s suitably centered and normalized are convergent in law to some
distribution function H:

P(M, <ayx+b,) — H(x)

on some dense subset D C IR'. Further, let for each x € Dy = DN{z : 0 < H(x) < 1},
Condition By(a,x +b,) is fulfilled. If H has no atom in its left end (i.e. H(.H) = 0, where
H=inf{x : H(x) > 0}), then (7.17) is satisfied and B.(a,x + b,,) holds for all € Dy.
The relation H(.H) = 0 can be derived directly, but we may use a result due to [Lea74]
asserting that H must be maa-stable (hence—continuous) whenever it is non-degenerate.
The assumptions of the next proposition are motivated by Leadbetter’s [Lea83] criterion
for the existence of the (ordinary) extremal index. Recall that the marginal distribution
function of { X} is regular—in the sense of (6.35)—if for each 7 > 0 one can find a sequence
u,(7) such that
nP(Xy > u,(1)) — 7. (7.18)

Proposition 7.8 Suppose X, has a regular distribution function. Let {u, (1)} denotes
a sequence satisfying (7.18).
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(1) If for each T from some dense subset S C IRT \ {0} Condition By(u,(7)) holds,
then Br(u,(7)) is satisfied for all >0 and T > 0.

(i1) 1f, in addition, for some 79 > 0

limsup P(M,, < u,(7)) <1,

n—0oo

then for each T >0, Condition By (u,(7)) holds.

PROOF. Notice that by Lemma 7.2, liminf, . P(M, < u,(7)) > €7 > 0. Hence we can
use Proposition 7.4 for checking Condition Br(u,(7)). Fix 7" > 0 and 75 > 0 and choose

7/, 7" € S in such a way that
7_/ 7_//
— <170 < =
Tt

By definition (7.18)

7_/

n(l = Flupn (7)) — 7

so at least for n large enough, u,,(70) < up,7(7'). Similarly, we may assume that up,7(7") <
un(70). This implies

P(My < upry(7")) < P(My < un(m0)) < P(My, < upery(7')), k€ IV
Moreover, if k < [nT],

P(My < upry(7)) = P(Mi < upary(7"))
< [nTVP(upr)(7") < Xy <wpy(7')) = 7" — 7" 4+ 0(1)

Let t, € [0,T],n € IN. Choosing 7" and 7" as close as desired, we see that both P(Mj,,,] <
Uy (70)) and P(Mp,7 < un(To))(t"/T) can be approximated by P(Mp,r@, /1) < upr)(7')) and
P(Mp,m < u[nT](T’))(t"/T), respectively. By By(u,(7')), the difference between the two last
expressions tends to zero. So Br(u,(7)) holds.

To prove (ii) observe that by the first part and by Proposition 7.5 it is enough to prove
that limsup,_,.. P(M, < u,(7)) < 1 for every 7 > 0. Let T > 0 be such that /T < 7.
Similarly as above we get u,(7) < up,7(70) for n large enough, hence

limsup P(M,, < u,(7))

n—0oo

limsup P(M,, < upr)(70))

n—0oo

<
< limsup P(M,, < un(To))(l/T) < 1.

n—0oo



Chapter 8

Limiting Probabilities for Maxima

8.1 The Problem

Let Xo, X1, X5, ... be a stationary sequence of random variables, and, as before, My = —o0
and for n > 1, M,, = max, 4, X;. Let {v,} be a sequence of numbers.
If X;’s are i.i.d., then the convergence

P(M, <wv,)—exp(—nP(Xo>wv,)) — 0 asn — o0 (8.1)

holds. The above relation is no longer true if we drop the assumption of independence:
there are simple examples of 1-dependent sequences not satisfying (8.1). On the other
hand, for m-dependent sequences a modification of (8.1) is valid:

P(M, <wv,)—exp(—nP(Xo > v,, M, <v,)) — 0. (8.2)
This was proved by Newell [New64] under the additional assumption

supnP(Xy > v,) < +oo.

O’Brien [OBr87] has considered stationary sequences having “asymptotic independence
of maxima” and obtained the representation

P(M, <wv,)—exp(—nP(Xy > v,, M,, <wv,)) —0, (8.3)

where {r,} is a suitably chosen sequence of integers.

Formulas like (8.3) are useful tools in structural problems, e.g. existence of phan-
tom distribution functions or extremal indices (see [Jak9la],[OBr87]). They are useless,
however, if r, tends to infinity and we want to calculate the limit for P(M,, < v,): the
expression under exponent depends on increasing number of random variables X, hence
it is of the same type as the approximated quantity P(M, < wv,). This inconvenience
disappears if we are able to approximate P(M, < v,) with m possibly large, but fized:

lim limsup |P(M,, < v,) —exp(—nP(Xy > v,, M,,, < v,))| = 0. (8.4)

m—00 n—0oo

95
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Say that {X;} satisfies Condition C(v,), if the above relation holds.
In the paper we study a version of C(v,,), which allows us to approximate P(Mj, < v,)
for every sequence k, < T - n:

Condition C’(v,)

lim limsup max |P(M; <wv,) —exp(—kP(Xo > v,, M, <wv,))| =0.

m—c0 n—c0  1<k<Tn

By the above condition, if k, < T - n, then

P(Mkn S Un) — eXp(_knP(XO > Up, Mm S Un)) + Umony (85)
where lim,,_, . limsup,_, ., |&m | = 0. In particular, denoting
A = lim,_. limsup, . k,P(Xo > v,, M,, < v,), (8.6)
A = lim,_ liminf, _  k,P(Xo > v,, M, <wv,), '
we get B
liminf P(My, <wv,) = e A
n— 0o
and

limsup P(My, <wv,) = e 4,

n—0oo

This leads to the most transparent (and immediate) consequence of Ch(v,,):

Theorem 8.1 Suppose Ci(v,,) holds. Let k, be a sequence of integers, k, < T -n, and
let A and A be defined by (8.6).

Then there exists A = lim

A=exp(—=A). O

P(M,, <wv,) if and only if A = A =: A. In such a case,

n—00

Note once again, that only finite-dimensional asymptotic properties of {X;} are in-
volved in checking the equality A = A.

Let j, and k, be non-negative integers, such that j, + k, < T -n,n € IN. If Cj(v,)
holds, then by (8.5)

P(M;, 4k, <vn) =exp(—0n + kn) P(Xo > v, My, <v,,)) + oz;nm
= exp(—jnP(Xo > v,, My, < v,,)) - exp(—k, P(Xo > vy, My, <v,,)) + oz;nm
= (P(M, < v+ alh) - (P(My, < 0,) + )+ o),
= P(M;, <wv,)- P(My, <v,) 4+ amn

!
m,n?

n

where lim,, , limsup, _, [am.,| = 0, and the same relation holds for a7, .,  and a]; .

Hence Ck(v,) is of “mixing” type. In particular, C%(v,) implies

Condition By(v,).

lim max [P(Mj1 <wv,)— P(M; <wv,)P(M <wv,)| =0. (8.7)

m—0o0 ]+k§T'n
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This condition is close to mixing assumptions considered in the literature—a brief discus-
sion of its relations to Leadbetter’s Condition D(v,) (see [LLR83]) and O’Brien’s [OBr87]
Condition AIM(v,) can be found in the previous chapter.

Mutual connections between C(v,,), Ch(v,) and Br(v,,) are examined in the next sec-
tion.

A collection of conditions, which are sufficient for C3(v,) is given in Section 8.3.

The last section of this chapter contains some illustrating the theory examples.

This section is concluded with discussion of the existence of the extremal index due to
Leadbetter [Lea83], when Condition Cr(v,) holds. (see Section 6.5, p. 82 for definitions).
For convenience, recall only that{X,} has the extremal index 6,0 < 6 < 1, iff (i) and (ii)
below hold:

(1) The distribution function F(x) = P(Xy < ) is regular in the sense of O’Brien, i.e.
for each 7 > 0 there are numbers w,(7) such that

nP(Xo > u,(7)) — 7. (8.8)

(ii) For each 7 > 0,
P(M, <uy(1)) — e b7,

Our result is a generalization of Theorem 1 [OBr74b].

Theorem 8.2 Suppose the marginal distribution function F of Xq is regular in the
sense of (8.8). Define
0 = lim liminf P(M,, < z|Xo > ),

m—o0 r—Fy—

0 = lim limsup P(M,, < z|X, > ),
m—+00 p—yFy—
where F, = sup{x : F(z) < 1}.
Let 70 > 0 and let {u,(70)} be numbers satisfying (8.8).
If Clu,(m0)) holds and Br(u,(710)) is satisfied for each T > 0, then {X;} has the extremal
index 0 if and only if 0 = 0. In such a case, § =0 = 0.

PROOF. NECESSITY. By C(u,(70)) and part (ii) of the definition of the extremal index,

fr = lim limsupnP(Xo >, (70), My, < un(70))

m—00 n—0oo

= 7 lim limsup P(M,, < u,(70)|Xo > u,(70)).

m—00 n—0oo

By Lemma 1, [OBr74b],

limsup P(M,, < u,(70)|Xo > un(70)) = limsup P(M,, < x|Xo > z),

n—00 z—yFy—

i.e. § = 0. We can check § = ¢ similarly.
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SUFFICIENCY. Assume that § = 0 = 0 > 0. By C(u,(m)) and Theorem 8.1
P(M,, < uy(m)) — e,

where 0 < ¢ < 1. By Proposition 7.5, validity of Conditions Br(u, (7)) for each T' > 0
is equivalent to Condition B (u,(70)):

lim max |P(Mjtr < un(m0)) — P(M; < un(70)) P(My, < un(7m0))] = 0. (8.9)

n—oo 5.k

Hence all assumptions of our Theorem 6.21 are satisfied and {X;} has the extremal
index 6.

In the case § = 0 we have no ready tools, but the situation is much simpler. First, let
us remark that if the sequence {uw,(7)} is given for some 7 > 0, one can find such sequences
for each 7" > 0: it is enough to define u,(7') = up,,;/-q(7). We claim, that for sequences
defined this way

lim limsupnP(Xo > u,(7"), M, < u,(7")) = 0. (8.10)

m—00 n—0oo

Indeed, this is true for 7" = 75 by C(u,(70)) and for other 7 > 0 by the definition of w,(7").
Eventually, the inclusion

{M, > un(7')} C

{max X,p; > u,(7)} U J{Xk > un(7), max Xpp; <un(r)}
1<j<m k=1 1<sksm

shows that (8.10) and P(Xo > u,(7")) — 0 imply P(M, < u,(7')) — 1 for each 7/ > 0.
Hence {X;} has the extremal index 0.
Note that in the case § = 0 we do not use Condition Br(u,(79)). O

8.2 Around Condition C/}(v,)

We have already checked that C5(v,,) implies Br(v,). Further, setting in (8.5) k, = 1 we
get
P(XO < Un) = P(Xl < Un)
= exp(—P(Xo > vy, My, <0,)) + o
> exp(—P(Xo > v,)) + o,

where lim lim sup,,_,.. |@m.n| = 0. Hence

mM—00

P(Xo>wv,) — 0 asn — oc. (8.11)

By Proposition 7.1, By(v,) and (8.11) are satisfied if and only if a uniform version of (8.3)
holds, i.e. there is a sequence r,, of integers such that

P(M,, <v,) — 1 (8.12)



8.2. EQUIVALENT CONDITIONS 99

and

lim max |P(My <wv,)—exp(—kP(Xo > v,, M,, <wv,))|=0. (8.13)

n—0o 1<k<Tn

It follows, that if C%(v,,) holds, then (8.12) and (8.13) are fulfilled by some sequence {r,}.
Can we say anything more on such sequence {r,} 7 An informal answer is—yes, {r,} is
increasing slowly enough. The formal statement is given in

Proposition 8.3 Condition C5(v,) holds if and only if (8.13) is fulfilled by every

sequence {r,} of integers increasing to infinity so slowly that
r,P(Xo >v,) — 0 as n — oo. (8.14)
PrOOF. Condition (8.13) is equivalent to
P(My, <wv,) =exp(—k,P(Xo > v,, M,, <wv,))+o(1) (8.15)

for every sequence k, < T -n. Solet k, <T -n and assume C%(v,). Let m. be such that
for n > N,

| | = [P(My, < v,) — exp(—Fk, P(Xo > vn, My, <v,))| < e
If n > N, and r, > m., then
P(My, <wv,) <exp(—k,P(Xo > v,, M,, <wv,))+e.
Hence C%(v,,) implies
P(My, <wv,) <exp(—k,P(Xo > v,, M,, <wv,))+ o(1) (8.16)

for every k, < T -n and every r, — oc.
To proceed further we need inequality (7.7), which we restate here in

Lemma 8.4 If By(u,) holds and {r,} satisfies (8.12), then for every sequence k, < T-n
P(My, < uy) > exp(—k,P(Xo > uy, M, < ug,))+o(l). (8.17)

By the above lemma, if

0= lim r,P(Xo > v,) > lim P(M,, > v,),
n—00 n—>00

then the converse to (8.16) inequality holds, too, and (8.15) follows for all {r,} satisfying
(8.14).

If C%(v,) does not hold, one can find a sequence {r,} increasing to infinity as slowly
as desired (for instance: satisfying (8.14) ) and such that (8.13) fails. O

We have proved that C7:(v,,) is stronger, than the uniform version of (8.3). The uniform
version of (8.2) is, in turn, stronger than C%(v,).
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Proposition 8.5 Fiz mo € IN. Condition Ci(v,,) is implied by

lim max |P(My <wv,)—exp(—=kP(Xo > vy, My, <v,))| =0. (8.18)

n—00 1<k<T n

PRrROOF. By (8.18), for every k, < T -n and m > mq,

P(My, <wv,) = exp(—k,P(Xo > v,, My < v,))+o0(1)
< exp(—k, P(Xo > vy, My, < w,)) + o(1).

The converse inequality is given by Lemma 8.4. O
Finally, we shall find additional assumptions which allow us to deduce from C(v,) its
uniform version C%(v,).

Proposition 8.6 Suppose that

liminf P(M,, <wv,)> 0. (8.19)

n—0oo

Then Condition Ci(v,) is satisfied if and only if both C(v,) and Br(v,) hold.

PROOF. Only sufficiency has to be proved. By Proposition 7.4, under (8.19), Condition
Br(v,,) is equivalent to

for every k, < T -n. In particular,
P(My, <wv,)=P(M, <v,)™™ +0(1). (8.20)

But C(v,) implies

P(M, < vn)k"/” = (exp(—nP(Xo > vy, M, <wv,)) + ozmm)k"/n

= exp(—k,P(Xo > v,, M, <w,))+ oz;nm,

where lim limsup,, ., |@m..| = 0 and similarly for o], . Hence C%(v,) holds. O

mM—00

Remark 8.7 Condition (8.19) can be verified using Lemma (8.4). It is satisfied if, for
example, P(Xoy > v,) — 0, Br(v,) holds and

lim limsupnP(Xo > v,, M, < v,) < +00. (8.21)

m—00 n—0oo
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8.3 Sufficient Conditions for C’(v,)

Consider again the representation
P(My, <wv,) =exp(—k,P(Xo > v,, M,, <wv,))+o(1) (8.22)

for k, < T -n, valid when Br(v,) and P(Xy > v,) — 0 hold. The expression under
exponent is the average number of gaps of length at least r, between two subsequent
exceedances of X,,’s over v,. Heuristically, it depends on the way the exceedances are
grouping: longer clusters—Ilonger gaps, small clusters—small gaps.! Hence controlling the
size of clusters allows us to get the desired length of r,’s. These remarks find their formal
counterpart in

Proposition 8.8 For Condition Ci(v,,) to hold it is enough, that Br(v,) is satisfied,
P(Xo > v,) = 0 and

[n/k]
lim lim limsup n > P(Xo>v,, X; > v,) = 0. (8.23)
m—oo k—soo N—0o0 j:m-l—l

Lemma 8.9 Condition (8.23) implies

sup nP(Xo > vy, My, <wv,) < K <400 (8.24)
for some mg € IN.
PROOF. As usually, let My, = max ;< X; for k <l and My, = —oo for k£ > [. We have
[n/k]
Z [(X] > Up, Mk:k—l—m S Un)
k=1

< [(M[n/k] > Un) + Z [(XZ' > v, X; > Un) .
1<i<j<[n/k]
J—i>m

Hence

nP(XO > UnaMm S Un)

< (k—l—l) 1+ Z P(X¢>Un,X]‘>Un)
1<i<j<[n/k]
J—i>m

[n/4]
< (k+ 1)+ (E+1)[n/kK] ( > P(Xg > v, X > vn))

7=m+1

[n/k]
< (k+1)42n ( Z P(Xo > v, X; > vn))

7=m+1

'Notice, that by the ergodic theorem, the number of exceedances over v, among X;(w), Xa(w),
.., Xp(w) is approximately nP(Xy > v,) and thus does not depend on the particular configuration
of clusters.
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and by (8.23) the last expression is finite for some k € IV and m € IN. O

PROOF OF PROPOSITION 3.1. Let {r,} satisfies (8.22). By Lemma 8.4 we can and
do assume that r, — oo but still P(M,, < v,) — 1. By the latter and (8.22), r, P(Xo >
Vn, M., < v,) — 0. Combining this with (8.24) we see that r, = o(n).

Let m and k be such that for n > Ny, k., r, < [n/k] and

[n/k]
n Z P(Xo > v, X; >uv,) <e.

j=m+1
Then
0 < exp(—k,P(Xo>vn, M., <wv,))—exp(—k,P(Xo > vy, M, <vy)

exp(—kn, P(Xo > vy, My, < 0,))
X (exp(kn P(Xo > vy My, < vy My, > v,)) — 1) (8.25)

< exp(ky, Z P(Xo>v,,X; >v,))—1< els—1=¢".

7=m+1

Hence for n large enough

exp(—kn, P(Xo > vy, My, < v,,)) < P(My,, < wv,) 4+ o(1)
< exp(—k, P(Xo > vp, My, <w,)) + 6" 4 0o(1)

and C5(v,) follows. O
With almost identical proof we get

Corollary 8.10 If Condition Br(v,) holds, P(Xo > v,) — 0, and for some mgy > 0

[n/k]
lim limsup n > P(Xo > vy, X; > v,) =0, (8.26)
k—oo TN—00 j=mo+1

then condition (8.18) is satisfied. O

Notice, that in the case mo = 0, (8.26) becomes the well-known Leadbetter’s Condition
D'(v,), while (8.18) takes the form

P(My, <wv,)—exp(—k,P(Xo > v,)) — 0. (8.27)

So our Corollary 8.10 contains Theorem 3.4.1 of [LLR83]. Note that the latter result is
derived under stronger than Br(v,) Condition Dr(v,). But the original proof can be easily
adapted to our assumptions—it is a typical situation as far as we deal with limit theorems
for mazima only. This observation is due to Leadbetter [Lea83], p. 293 ff.

Conditions like (8.23) and (8.26) depend on properties of two-dimensional distributions,
so they are easier in checking than C%(v,,) itself.
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Leadbetter [Lea74], using Berman’s results, shows D/(u,, (7)) for normal sequences with
covariances v, = EX; X, satisfying v, logn — 0 (here u,(7) is defined by (8.8)).

Now suppose that Xo, X1, X5, ... are m-dependent, i.e. for each k € IN, o(Xy,...,X;)
and o (X mi1, Xgtms2,-..) are independent. If

sup nP(Xo > v,) < K < 400,

then
[n/k]
n Z P(Xo> v, X;>v,) =
j=mo+1
[n/k] 1 [(2
= n Z P(Xy > v,)* < E(nP(XO > v,))? < - — 0
j=mo+1

as k — oo, hence (8.26) holds for mq and, by Corollary 8.10, condition (8.18) is satisfied.
This provides the uniform version of Newell’s result [New64].

It is also possible to derive (8.23) introducing “two-dimensional” mixing coefficients.
Suppose, for example, that sup, nP(Xy > v,) < K < +oo and for each u € IR

|P(Xo > u, X; >u) — P(Xo > u)?| < p(5)P(Xo > u),

where POy p(j) < +oo. Then (8.23) holds:

[n/k]
n Y P(Xo>v,X; >v,)
7=m+1
[n/k] [n/k]
< (n Z p(7)P(Xo > vn)) + (n Z P(Xo > vn)z)
j=m+1 J=m+1

7=m+1

I K*
< (K-> o) +—-—0

as k — oo and m — oo.

If {X,} has very strong mixing properties, then C%(v,) holds without extra rate of
mixing.

Recall, that { X, } is ¢-mixing (or: uniformly strongly mixing) iff as n — oo

d(n) =supsup{|P(BJ]A)— P(B)| : Aco(X;:5<m),B€o(X;:5>m+n)} —0.
Lemma 8.11 ( O'Brien [OBr74b], Lemma 3 )
If {X,} is ¢-mixing, then for integers p,q > 1,

|P(max X, < wv,) — P(X1 <v,)?| < olq).

1<i<p
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Corollary 8.12 For ¢-mizing {X,}, liminf

oo P(My, < wv,) > 0 if and only if
sup,, nP(Xo > v,) < K < 4o0.

Proor. By Lemma 8.4, liminf P(M, <wv,) >e¢® > 0. To get the converse

n— 0o
implication, observe that by Lemma 8.11

P(M, <wv,) < P( max X;, <wv,)
1<i<[n/q]
< P(Xo < v+ ¢(q)
exp(—[n/q]P(Xo > v,)) + &(q) + o(1).

If ¢(q) < liminf P(M, <wv,), then

sup nP(Xo > v,) <g¢q (sup [n/q|P(Xo > v,) + 1) < +o0.
g
Proposition 8.13 If {X,} is ¢-mizing and

liminf P(M, < v,) >0, (8.28)

n—0oo

then Ci(v,,) holds.

PROOF. Inspecting the proof of Proposition 8.8—and, especially, the chain of inequalities
(8.25)—we see, that it is enough to check

lim limsup nP(Xo > v, My, < v, Moy, > v,) = 0, (8.29)

m—00 n—0oo

where r, satisfies (8.22) and r, — oo.
By ¢-mixing, condition (8.28) is equivalent to nP(Xg > v,) < K < 400 and we have

nP(Xo > vy, My, < v,y My, > v)
< nP(Xo > v, My, > vy)
< n|P(Xo > vy, My, > v,) — P(Xo > v,) P(Mo.rr,, > 02|
+nP(Xo > v,)P(Mp.,, > vs,)
< K(8m)+ P(M,, > v,))
— K¢(m) asn — oo by (8.12)
— 0 asm — oco.

O

The above proofs show that given sequence {r, } satisfying (8.22), we can check C%(v,,)
by showing (8.29).
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One can prove, that under liminf, ,  P(M, < v,) > 0, conditions (8.29) and C%(v,)
are equivalent ( note that via {r,}, Condition Br(v,) is implicitly involved by (8.29)).
We prefer C%.(v,,), since it contains all useful information that is necessary in proving limit
theorems like our Theorems 8.1 and 8.2, while to (8.29) we can relate all remarks on formula
(8.3): (8.29) is not based on asymptotic properties of finite dimensional distribution and
thus, is difficult in direct checking.

Condition (8.29) is an easy form of Condition C introduced in [OBr74b]. Hence in some
sense, our Proposition 8.13 restates an observation due to O’Brien, [OBr74b, p. 58].

8.4 Some examples

All examples we are going to generate, are constructed the same way, with various param-
eters only. As parameters we take

e a number C& (0, 1].

e a function h : [, 00) — [0, 1] satisfying

1> h(x)>1/x foraz>C. (8.30)

e a random variable Y taking values in [1/C, o).
Given h and Y we define a regular conditional distribution function

0 it < 1/C
F(w :1;){

Y

Il =h(Y(w)) if 1/C <z<Y(w) (8.31)
1—1/z if «>Y(w)

For each w, F(w,-) is a distribution function by property (8.30). Let Xy, Xi,... be an
exchangeable sequence, which is conditionally independent over o(Y) and such that the
regular conditional distribution of X; given o(Y') equals to F'(w,-).

By conditional independence we can make explicit calculations, taking into account

that P(Y <n) — I:

P(Mpg <n) = E((F(w,n))")
= (=P <)
+ B((L =AY (@)Y (@) > n))
= (1= 1/n)" +o(1)
= e '+ o(l).

Since both f(t) = e™* and the path ¢ — P(M[,q < n) are monotonic,
P(Mpq <n)— e uniformly in ¢ € [0, +00).

In particular

P(My, <n)—P(M, <n)™/" —0. (8.32)
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This shows that C%(v, = n) holds if and only if
lim limsup|e™" — exp(—nP(Xo > n, M,, <n))| =0,

m—00 n—0oo

or, equivalently,

lim limsup [nP(Xo > n, M,, <n)—1|=0. (8.33)

But
nP(Xo>n, X1 <n,Xo<n,...., X, <n)
= (1—=1/n)"P(Y <n)
+nER(Y)1 =h(Y)™I(Y >n))

= Vm,n + Wm,n-
Since for m fixed, lim,_, . V., = 1, (8.33) is equivalent to
lim limsupW,, , = 0. (8.34)

m—00 n—0oo

But asymptotic properties of W, ,, essentially depend on h and the law of Y.
Example 8.14 Set h(u) = 1. Then for m =0
Wo,, =nP(Y >n)

and this may have an arbitrary asymptotics (convergence to zero, to infinity or to a finite
limit, oscillations, ... ), while for m =1, Wi, = 0, i.e. condition (8.18) holds.

Example 8.15 Let m > 0. Take A\ =1+ m™, 0 = (2m)~! and

1 if 1< 2l
h(u) = { 1l—w 7 if u> 21/0,

P(Ygx):[(-/w uNdu for x > 1.

1
Then integration gives

o]
Wipn ~ K 1 / W dy = K p2mom,
e

W, = 0, while lim

n—00

Wi—1n = K’ > 0. Thus (8.18) holds for m¢ = m,

Here lim,,_,
but not for mg =m — 1.

Example 8.16 Let A(u)=C,0<C <1land Y > C~! as. Then
Win=C(—=C)"nP(Y > n).

fnP(Y >n)— K,0< K < 400, then C}(v, = n) holds, but no myg exists such that
(8.18) is satisfied.
If lim, .. nP(Y > n) = 400, then Cj(v, = n) does not hold. Nevertheless, W,,,. — 0

for some r, — oo, 1, = o(1), i.e. (8.22) is fulfilled.



Chapter 9

Asymptotic (r-1) - dependent
Representations for rth Order
Statistics

9.1 Convergence of Order Statistics

Let X1, X,,... be a stationary sequence of random variables. Denote by M,i?l) the gth
largest value of X1, Xiqo2,..., X; (if K > 1l or ¢ > 1 —k, then by convention M,i?l) = —00).
For simplicity write M,, = Méln) and M9 = Méqg It is well known, that for i.i.d. Xy, X5, ...
convergence in distribution of suitably normalized partial maxima:

P(M, <v,(z)) — G(z), z€ R, (9.1)

implies convergence of all order statistics: for each ¢ > 2

P(MY <o, (x)) — Gz ( Z:l —10g—G())) , € R, asn— +oo. (9.2)

(see e.g. [Gal78] or [LLR83]).

If we drop the assumption of independence, preserving only strong mizing property,
convergence (9.2) may fail in two ways:

—higher order statistics do not converge at all

—they converge, but to different limits

Mori [Mor76] demonstrates the first possibility: he gives an example of 1-dependent
sequence Xy, Xo, ... satisfying (9.1) and such that M{?’s do not converge in distribution.

Unexpectedly, convergence in law of M,,’s and M{")’s for some r > 3 implies convergence
of all other M(?’s, 2 < q < r — 1. This was proved by Hsing [Hsi88, Theorem 3.3].

Assuming that {MD} converge weakly for each ¢ € IN—what is almost the convergence
in law of the corresponding point processes of exceedances—Dziubdziela [Dzi84] and Hsing,
Hiisler & Leadbetter [HHL88] describe possible limits in terms of parameters of certain

107
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compound Poisson distributions. We prefer the description given by Hsing [Hsi88] (see
also Theorem 9.2 below): the limit for M@ is of the form

( Z—_logG o) -vq,k), (9.3)

where 0 < v, <1, k& = 1,2,...,¢ — 1, and G is the limit for maxima. However,
complexity of formulas for 7, ;’s quickly increases with ¢, what makes difficult the analysis
of asymptotic properties of higher order statistics. Therefore we suggest taking into
account simple approximating models in place of limiting distributions.

9.2 Asymptotic representations

Let 31, B9, ..., 0, > 0 be such that
Zﬁq =1, (9.4)
q=1

and let GG be a distribution function. For each 1 < g < r, let {f@ﬁmw be independent,
identically distributed: ~
Yy, ~ G, (9.5)

and let sequences {1717]4}]4617\7, {1727]4}]4617\7, e {ﬁ,J}EW be mutually independent.
Define new, this time (r — 1)-dependent sequence:
Xj =Ny
(Y2 iV Y2 ]+1)
(Y3] N Y3]+1 N YSJ-I-?) (9'6)

VY VY Vo VY ).

We will say, that order statistics MY, M), ... M) of a stationary sequence Xy, X, ...

n

possess (or admit) asymptotic (G0, 5, ...,0,)-representation, if for each
1<q¢<r .
sup |[P(M® < 2) = P(MP < 2)] — 0 as n — +oo, (9.7)
reR!

where Mﬁq), g=1,2,...,r are order statistics of X;, Xs,... defined by (9.6)

The representation (G, 81, 52, ..., 3,) is regular, if GG is regular in the sense of O’Brien
([OBr74a]), i.e. satisfies (6.35). Recall, that this regularity means for some (and then for
all) 0 < o < 1 one can find a sequence v,, = v,(«) of numbers satisfying

G"(v,) — o, asn— +oo. (9.8)

Clearly, if » = 1, then (G, 1)-representation coincides with asymptotic independent
representation for maxima and G itself is a phantom distribution function (see Chapter 6).
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We know when a (G, 1)-representation exists: Theorem 6.17 states, that {X;} admits a
reqular asymptotic independent representation for maxima if and only if there is a sequence
{v,} such that for some o, 0 < a <1,

P(M, <v,) — a, (9.9)

and the following condition holds:
Condition B (v,):

sup |P(Myy <wv,) — P(My <v,)P(M; <wv,)] =0 asn — +oo. (9.10)
klEN

We aim at extending the above result to the case r > 2. Let us introduce
Condition B")(v,): for all p,q > 0,p+¢<r—1, asn — 4o

sup |P(M{I™Y <o, MER) <) = POMIHY <o) POV <o) 0. (9.11)
klelN

Observe that for each ¢ € IV

EIIMY. <) = (M < v,)| < j.P(X) > v,)
uniformly in k. So if {j,} and {v,} are such that j, P(X; > v,) — 0, then Condition
B (v,) is equivalent to

sup [POGELY < o MIET o < oa) = POMIZEY <o) POMEZY < o) — 00 (9.12)
Ww2In

asn — oo, for all p, ¢, p+qg < r—1. Now the blocks are separated and we can use “standard”
mixing arguments for checking Condition B{()(v,), e.g. strong mixing or slightly modified
condition A(v,) defined on p.99 [HHLSS].

It is intuitively clear (and can be proved rigorously following the line of the proof of
Corollary 6.18), that every sequence {X;} admitting a regular (G, 31,...,03,) - represen-
tation satisfies Condition BU)(v,), provided G(v,) — 1. For the converse we need more
information on properties of order statistics with respect to {v, }:

Theorem 9.1 Order statistics MV, M), ... M) of stationary Xy, X, ..
reqular (G, 81, B2, ..., B,) - representation if and only if for some non-decreasing sequence
{v,} Condition BU)(v,) holds and for each q, 1 < g <r

., admit a
P(Méq) <) — q as n — +oo, (9.13)
where 0 < ay < 1.

Theorem 9.2 Suppose that MV, M), ... M) admit a regular (G, 31, B2,...,05,) -

representation.
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Then for each 2 < q < r there are numbers v,1,%.2+- - Vqq—1 € [0,1] such that as
n — 0o

(= log POMYY < )

P(MP < z)— P(MY < 2)(1 + Z i

n

)| — 0. (9.14)

sup
r€R!

More precisely

k! ,
Yo,k = Z ﬁljlﬁgh .t ﬁq_qu_l . (915)

14
J1,J25- Jq 120 ]1]2 ]
k<z l]l<q 1
1]1 =k

Proofs of both theorems are deferred to the next section.
We conclude this section with several comments.

Remark 9.3 We do not know any stationary sequence satisfying Condition B{?)(v,)
and not Condition B)(v,), with ¢ < r.

Remark 9.4 A (G,3,,5,,...,8.)-representation may exist even if M,, M(?), ... does
not converge in distribution to a non-degenerate limit under any linear normalization: the
trivial example is provided by an i.i.d. sequence with regular marginal distribution function
GG which does not belong to the domain of attraction of any max-stable distribution.

Remark 9.5 Welsch [Wel72] described all possible two-dimensional limits for joint
distribution of suitably normalized and centered maxima and second maxima of strongly
mixing stationary sequences. However, Welsch’ representation is not easy in handling
and becomes very involved for higher order statistics. So again, limiting distributions
do not seem to be the best tool for analysis of asymptotic properties of joint laws of
(MM, M) M), Tt would be much more interesting to have a simple approximating
model, similar to what we introduced above (for one-dimensional distributions only).

Example 1 of [Mor76] gives some hope for the existence of (r — 1)-dependent represen-
tation in the following sense:

P(Mél) S x17M7g2) S L2y '7M7Y) < xr) (916)

sup
12T > .28y

—P(M()<:1;1,M()§:1;2,...,M(7’)<:1;,,)

Remark 9.6 1t is not difficult to identify numbers 31, 3s, . .., 3, considered above with
numbers 7(1),7(2),...,7(r) defined by Hsing in [Hsi88]. In particular, our formula (9.15)
is a “condensed” form of formula defining 7*/(7) in Theorem 3.3 of [Hsi88].

Remark 9.7 In Theorem 9.1, convergence of all P(M{) < v,), ¢ = 1,2,...,r, is
necessary, as the following example shows:



9.2. ASYMPTOTIC REPRESENTATIONS 111

Example 9.8 Let { X} iew, {Xo }ien, {X3,} e be mutually independent sequen-
ces of 1.i.d. random variables with one-dimensional marginals given by distribution func-
tions F, GG and H, respectively. Define

XJ — le] \/ (XQJ \/ X27]‘+1) \/ (X37]‘ \/ X37]‘_|_1 \/ X37]‘_|_2) (917)

Suppose numbers v, /oo are such that sup, n(1—F(v,)) < +oo, sup,, n(1—-G(v,)) < 400
and H(v,) /1. Then it is easy to see that

P(M, <v,) = exp(—n(l = F(v,) + 1~ G(v) + 1~ H(v,)) +o(1) (9.18)
P(MP < v,) = P(M, <v,)(1+n(l = F(v,))) +o(1) (9.19)
P(M® <wv,) = P(M,< vn)(l +n(l — F(v,)) + (;‘) (1 — F(v,))? (9.20)

+ (1l = G(v,))) + o(1)

We shall find F,G and H such, that {P(M, < n)} and {P(M{®) < n)} converge to
some limits different from 0 and 1 while {P(M(» < n)} does not converge. By (9.18)-
(9.20) it is enough to find non-negative functions f(x), ¢g(x) and h(x), x € IRT, such that
for some D, E >0

n/noo(f(u) () Fh(u)du  —s D (9.21)
n/noo(f(u) +g(w)) du+ (;‘) (/m ) du)2 K (9.22)
but -
n/n f(u)du does not converge. (9.23)
Set

flz)y=C i T (2% <@ < 28,

k=1
Then 22% [ f(u)du = 2C/3 while 228+t [, f(u)du = C/3, hence (9.23) holds. Now
take £ > C + C?. Then Ex™? > f(x) (1 +a [ flu) du), and

%] o] 2
g(x) :El’_z—f(l')<1—|-$/ f(u)du) —|—(1/2)</ f(u)du) > 0.
Integration by parts gives (9.22). And (9.21) is satisfied, if we set

h(z) = Da™* — f(x) — g(x)

with D > C +(1/2)C* + E.
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9.3 Proofs

9.3.1 Convergence under mixing conditions

Under assumptions of Theorem 9.1, we shall identify limits for r first coefficients of gener-
ating functions of N, = >77_, [(X; > v,).
We know that for 0 < ¢ <r —1,

P(N, = q) = P(M{"*) <) = P(M < v,) — ag —ag,
(where ap = 0). But numbers a;, g, . .., , are not arbitrary, for Condition B{)(v,) holds.

Lemma 9.9 Condition BU)(v,) is equivalent to

k kel
max (Z[ X;>wv)=p, >, [(X;>v,) = q) (9.24)
ki 7=1 7=k+1

— P(Y1(X; > v,) =p) -P(Z: [(X;>v,) =q)| — 0

=1
asn — oo, for everyp,q >0, p+qg<r—1.0

Hence for 0 < g <r —1

P(No=q) = > P(Numg=ai, No— Nyjo = ¢2)
q1+92=¢q
= > P(Npa=q)P(Ny— Nipjgp = q2) + o(1)
q1+92=¢q
= > P(Npyg=q)P(Npy = q2) + o(1)
q1+92=¢q
and
r—1
S s"P(N, =q) = Z > " P(Nyya = 01)s” P(Njpjz = q2) + o(1)
q=0 9=0q1+92=¢

(S ) o

where for the series w(s) = 3772, a;s’, L,(w(s)) is the polynomial obtained by taking only
r first coefficients:

L.(w(s))=ap+ais+...+a,_5" (9.25)

Similar reasoning shows that for each k& € IV

Tz;%qu(Nn = ((quP [n/k] = q))k) + o(1), (9.26)
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It follows that for every 0 < ¢ <r —1and k € IN, {P(Np./5] = q) }nen converges:

lim P(N[n/k] =q) = g1k — Oy ks

n—0oo

and that w(s) = Y7~ olage1 —a,)s? is infinitely divisible at the level r, i.e. for each k there
is a generating function wy(s) such that

Lo((wi(9))) = Lo(w(s). (9.27)

Lemma 9.10 [f w(s) is infinitely divisible at the level v and ag > 0, then there are
numbers (31, B, ..., 8, >0, X1 B, =1 (depending only on ag,ay,...,a,_1), such that

L(w(s)) = Ly (exp(~ log o - ilxw — 1), (9.28)

ProoF. Ifay = 1,set By = By = ... = B,-1 =0, 3. = 1. So let ap < 1 and let
wi(s) = ago+ ar1s + .... Clearly,

hence apo 1. We have also

and for2 <¢g<r—1

k! , , ,
: Jo J1 Jq
ﬁa,ﬁo . ak,l C .t ak,q‘ (929)
G071 rendq20 JOL e T
Z?:o lii=q
Z?:o =k

Clq:

It k> qand Y[, lj; = q, then >7_, j; <k, and the above formula can be rewritten as

q
ag=ao Y, 7 X [[(k-arg) (9.30)
J1,J210++,3q 20 ‘]1 ‘]2 =1
L =g

X a_(j1+~~~+jq) k"
o (k—(j1+ ...+ Jgg)) tkirttia

Notice that in each such expression there is a term of the form ag - (k - ay4)/aro and all
other summands depend on aj,, with m < ¢ — 1. It follows that for each 1 < ¢ <r —1
there exists

By =— lim k- ay4/logag > 0. (9.31)
k— 00
and B
Zﬁq = (—log ao) lim kZqu < (—log ao)_lk(l — agp) — 1.
— k— oo

q=1
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Hence

r—1
67’ =1- Zﬁq > 0.
q=1

Further, going with k to infinity in (9.30), we get

1 4 . .
ty = Qg Z ] X Hﬁ[]l(— log Clo)]l (932)
J1,J25--17¢>0 Jujz: .- "]q' =1
2oy Lir=a

forq=0,1,...,r—1,1.e (9.28). O
By the above lemma and by (9.26)

r—1 r
Z SqP(Nn = Q) = Lr (exp(—log oy - Zﬁq(sq - 1))) + 0(1)
g=0 g=1
for some (1, B2,...,0, >0, B1 + ...+ B, = 1. Again by (9.26), for each k € IV
1 r
quP /K = 4) = Ly (exp(—zlogal DI ACES 1))) +o(1).
g=1

Repeating arguments we get for all integers £ > 1, [ >0

ZS‘JP (/) = 49) = Ly (exp(—élog aq - Zﬁq - 1) )) + o(1). (9.33)

Fix ¢, 1 < ¢ < r, and set in Lemma 6.8 Z, = M{9, g(x) = x. Consider functions
BY >t fualt) = P(MY) < v,) (9.34)
and let f,(t) equals to sum of ¢ first coefficients of the generating function
wy(s) = exp(—t log o Y By(s” — 1))
q=1

Then (9.33) means that functions f,, converge to f, on the dense set of rationals and a
half of assumptions of Lemma 6.8 holds.

9.3.2 Proof of Theorem 9.1
Consider the (G, 3y, s, ..., 3.)-representation defined by (9.6). Define also

Xy =Y VY Vo VY (9.35)

We will find the limit for the generating functions of N, = 2=t [()A(; > vp,).
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Lemma 9.11 Let {v,} be such that G"(v,) — a1, a3 > 0. Then

lim Es™n = exp(— log a - Zr:ﬁq(sq — 1)) (9.36)

n—0oo q:1

PROOF. First note that random variables N,, can be replaced by r independent components:

2 (1F > 0) = 3 1%,y > 0,)

j=1 g=1
< 0 Y P(X,1 > 0.)P(Xg > v)

1<p<g<r

< S pa(nP(Y1 > v,))P(Y,1 > v,)

1<p<g<r

— > pa(—B,logar) -0 =0.

1<p<g<r

Further, each of Z\En = > [()A(JM‘ > v,) is asymptotically equivalent to ¢ - Nq(gl) =

219" [(?q,j > vp):

n+q—1 N n
0 < Z ql(Yy,; > v,) — Z[Xq]>vn
=1 7=1
n+qg—1 N N N
< g Y IYy>vn)talg—1) D (Y > v, Yok > v)
j=n+1 1<j<k<n
k—j<q-1
and, asn — 4oo
E|Nqn —q- N}% < qu(ff%l > v,) + q (nP(Y/qJ > vn))P(fqu >v,) — 0.
Finally
ESN" = H ESN‘Z’" + o(1)
q=1

N

i GRS
= TI( (1= G(w0) + GO ()" + o(1)

g=1

_ ﬁ (1 i n(l - Gﬁq(:?)) (Sq B 1)) +o(1)
g=1

R ﬁ B loga (s-1) 0

g=1
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Define functions B N
Fan(t) = P(M{) < 1), q=1,2,....7.

{X;}isan (r —1)-dependent sequence and so satisfies Condition B(**)(v,). Hence for f, .,
we can repeat all considerations we did for f, , defined by (9.34). In particular, f;n(t) con-
verge on rationals to the same limit f,. Applying the “tilde” - part of Lemma 6.8 we see that
2\7721), 2\7722), ey 2\7727’) form a regular asymptotic representation for M, M2 . M) O

9.3.3 Proof of Theorem 9.2

It is enough to prove (9.14) for the (G, By, Ba, . .., B,) - representation {)7]}
Fix 2 < ¢ <r and set

falt) = P(M[(q)] < v,

~ —! (—log P( (Mg < vg))*
fn(t) = P(M[nt <U”( Z k' t]_ )) ‘7q7k)'

By Lemma 6.8 we have to prove that both f, and fn converge on rationals to the same
limit f,(¢). It is easy to find limit for f,(¢):

-1 k
a1(1+2 Ogo‘l o). (9.37)

We know also the limit for f,,(¢): by Lemma 9.11 it is the sum of ¢ first coefficients of the
generating function g(s) = exp(—tloga (37—, 8,57 — 1)), i.e

q—1

[FOTES SHED SR | (s

m=0 j1,.,jm>0 I=1 Ji!

Zl L Li=m
-1 1 k !
— og al) k! o
= ay el oy B g, e
k=0 J1:J25--1Jq—120 J1 ]2 Jq
k<zq ! l]l<q 1
Zl | G1=

-1

_ Z —log al)k Vo

Notice that v, < 1, for the summands are elements of the multinomial expansion of
(Br+...+58)=1. 0

Corollary 9.12 Ifa reqular (G, 534, .., 3,) - representation exists and {v,} is such that
P(M, <v,) = ar, 0 <oy <1, then for each ¢,2 < q<r, and T > 1

lim P(Mé) <) <o (1 + Z Tlo—gozl))

(9.38)
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9.4 Convergence of all order statistics
Now assume that for every ¢ € IV
P(MW <v,) — a, asn — oo, (9.39)

where 0 < a; < 1, and that Condition B{)(v,) holds for all » € IN (shortly: Condition
B (>)(v,) holds), i.e. for all p,q >0, asn — +oo

sup |P(MI"™ < v, MUEY < v,) = PO <o) PV <o) = 0. (9.40)
klelN

By Theorem 9.2, for every ¢ € IN, P(M(? < x) admits an asymptotic uniform repre-
sentation in the form

k-1 ;
(—log P(M, < 2))
P(M, < :1;)(1 + Z; i "Yk,j), (9.41)
]:
where 7, can be expressed as functions of 3y, 3;,... > 0 such that
> B, <L (9.42)
q=1

(See (9.15) for explicit formulas for 7, ).
It is not difficult to exclude the possibility >.2, 8, < 1.

Theorem 9.13 Suppose that conditions (9.39) and (9.40) hold. Then numbers 7, in
(9.41) are built on the base of (1, (s, ... > 0 such that

S, =1 (9.43)
q=1

if and only if
lim o, = 1. (9.44)
q—+00

PROOF. Let N, = Y7, I(Xk > v,). By the well-known relation

(MY <} = {N, < ¢} (9.45)
we may interpret (9.44) as tightness of { N, },en. Hence (9.39) and (9.44) imply that N,
converges in law to some integer-valued a.s. finite random variable N. Clearly:

Es" = Z(aq+1 — )’

g=0
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where ap = 0. So by Lemma 9.11

r—1 r—1
EsN = li_>m exp(— log ay (Z Bes+ (1= 8,)s" — 1)) (9.46)
r—00 =1 =1

Consider the Lévy measures

v{g) =04 ¢=1,2,....,0r =1, v.({r}) zl—rz::ﬁq

and
v({g}) =6 q=1,2,....
By (9.46), 302, B, = v(IN) = lim, , , v,.(IN) = 1.

Conversely, if 202, 3, = 1, then the limit on the right-hand-side of (9.46) is a generating
function. So N,, converges in distribution, hence is tight and by (9.45) condition (9.44)
holds. O

The (r — 1)-dependent sequences considered in Section 2, satisfy assumptions of the

above theorem. Another example can be obtained by taking in (G, 31,32, ..., 3, )-repre-
sentations formal limit over r:

Example 9.14 Let

V (Yo V Yo i41) (9.47)
V(Y V Ys 40V Ys00)

where, as in (9.6), {1717]4}]4617\7, {}727]'}]4617\7, ... are mutually independent and wa ~ (% with
B, > 0.

The problem is that f/] can be trivial, i.e. f/] = (4, a.s. and that G may be not a
phantom distribution function for Yi, Ya, .. ..

Lemma 9.15
(1) Y, < G. as. if and only if

i_o:qﬁq < 0. (9.48)

(ii) G is a phantom distribution function for Y1,Ys, ... iff (9.48) holds and 3772, 3, = 1.
g

Lemma 9.16 If Yzt 4By < 400, G is regular and {v,} is such that G"(v,) — o,
0 <oy <1, then {Y;} satisfies both (9.39) and Condition B{>)(v,,).
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PrOOF. To prove Condition B{®)(v,), take p,¢ > 1, p < ¢, say, and consider the
difference

Dpy(k ) = [POM < vy ML, < 00) = PO < 0, PO < 0.
Let Ry € IN be such that Op, = Ziozl B > 0. Let e > 0. Take N, such that

(=0, N, 1 ’
oy (14 5~ (29 o ) ) <e (9.49)
k=1 :
Now choose R > Ry so large that
N, > <e (9.50)

r=R+1

and consider sequences:

17,/ = i\}l,]
V(Yo V Yo 1)

\/ (?R,] \/ ?R7]‘_|_1 \/ .« .. \/ ?R7]‘+R_1)
Yy = (Y/R+Lj v Y/R+1,j+1 V...V 17R+1,j+R)

V (Yaga; V VRi2 0 VooV Yagi0r V Yare jrre)

with order statistics 2\77’1(‘1) and Mg(q), respectively.
Notice the difference between Y/ and X; defined by (9.6): if we denote

R
Or =2
m=1

then Y/j’ is the (G9%.3,/Or, ..., Br/OR)-representation, for O may be different from 1.
We have

(M, < v,y C{M'Lpy < v} C{ME), <0} UMY, > 0.), (9.51)
hence
E[L(M") . <v,) = IM), <o) < min(P(M]@ < v,), P(M > v,)). (9.52)

{Y/]’} being (R — 1)-dependent sequence, satisfies Condition B{*)(v,). In particular, by
Lemma 9.11

P(M] <wv,) — af, (9.53)
P(MW <v,) — al, 9.54
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where o] = oz?R. By Corollary 9.12, if [ > N, - n, then

P(ME <o) < POIY), < v)
1
—N,log «
S /qu (1 _I_ ( qk’ 1) ) (1)
k=1 :
g—1 k
ORroNg ( ®R0N log al)
< oy (14 ;, ) +o(1)
k=1 :
< e+o(l)
Similarly, if £ > N, - n, then
P(MP <w,) <e+o(1).
Consequently, by (9.52)
A, (kD) < 4e (9.55)

for large n, provided £ > N,-nor{ > N,-n. So we can restrict our attention to k,l < N,-n.
In this case, (9.52) gives the estimation

Ay (k1) < AP(MY, > v,). (9.56)
And using the inequality
I—(1=¢6)"<26x if 0<6<1/2,
we obtain for large n

P(MJ]/\/fq% > Un) = 1- P(M]/\/fqn S Un)

= 1= ] (@ o)t

r=R+1

= 1—(1-(1-G(v)
2(n(1 = G(v.)) - N, 3 B +2(1 - Glua) Y. (r=1)5,

r=R+1 r=R+1

Ngn Z:.;R+1 ﬁr+z:.;R+1 (r—1)8r

IA

< 2e(—logay + ¢ +¢).

By (9.55) and (9.56), Condition B () (v,) holds for {Y;}.
Condition (9.39) follows similarly: by (9.52)

|P(M? <w,) = P(M,@ <v,)| < P(M} > v,),

while by (9.54) P(M! (9 < v,) converges. O
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It follows that at least for some stationary sequences, {Y/j}jelN provides a universal
model for all order statistics. If for each ¢ € IN

sup |[P(M® < 2) = P(MP < 2)] — 0 as n — +oo, (9.57)
zeR!

where Méq)’s are order statistics for {Y/]}, then we say that {X;};en admits an asymp-
totic (G, By, B2, . . .) - representation. The term “regular (G, 31, 3z, ...) - representation”
means that 7 is regular, 3°2, 3, = 1 and } /2, ¢f3; < +o0.

We are not able to give necessary and sufficient conditions for the existence of a reg-
ular (G, By, B2, . ..) - representation. However, we have found simple and natural sufficient
conditions:

Theorem 9.17 If for some non-decreasing sequence {v,} of numbers, a stationary
sequence {X;} satisfies (9.39), Condition B (v,) and

sup nP(X; > v,) < 400, (9.58)
neN

then there exists a reqular (G, 31, B2, .. .) - representation for all order statistics of {X;}.

PROOF. Let, as in the proof of Theorem 9.13, N, = >>7_; I( Xk > v,). By (9.58), {N,.} is
a tight sequence, hence (9.44) holds and by Theorem 9.13

Es™ — Es" = exp(—log a1 (D Bys? — 1)),

q=1
where 322, 3, = 1. Moreover, by Theorem 5.3 [Bil68],

EN <liminf EN,, < sup nP(X; > v,) < +oo.

n—0oo nelN

This implies that 372, g8, < +oo and using By, ;,... we can construct a non-trivial
sequence {Y;}. By Lemma 9.16, N, = Y7_, I(Y; > v,) converges in distribution to N,
either. Now we can check (9.57) the same way as in Section 3 for the finite case r < +oo.
g

Remark 9.18 When all order statistics converge in distribution, the case
2oz 4By < oo gives limits considered in [Dzi84], while 3°°2, 3, = 1 corresponds to
the convergence of point processes treated in [HHL88]. However, we cannot find any se-
quence {X;} with limits (for M(9)’s) computed from 3y, 32, ... such that >azi By =1 but
>ae1 qBq = +oo. The theory would also be completed, if we could find such {X;} for the

case 3.2, By < 1.
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Appendix A

Stable distributions

A.1 Definitions

A probability measure p on IR! is said to be stable if for every by > 0 and by > 0 one can
find b > 0 and « € IR such that

lel + bQXQ ~bX + a, (Al)

where £(X1) = L(X3) = L(X) = u, and X; and X, are independent. Following Feller
[Fel71], we say that p is strictly stable, if no additional centering is required:

lel —|— bQXQ ~ bX

In P. Lévy’s monograph [Lév54], stable, but not strictly stable distributions are called
quasistable, while the name stable is used for what we have defined as strictly stable.
The following well-known fact (see [Bre68, p.199], [Zol83, p.25]) can be used as an

alternative definition.

Proposition A.1

(1) u is stable if and only if for each k € IN there are by > 0 and ay € IR' such that
Xi+Xo+ ..+ X =6 X + ag, (A.2)

where L(X1) = ... = L(Xk) = L(X) =, and X1, Xs,..., Xy are independent.
Moreover, u is strictly stable, if a, =0, k=2,3,...in (A.2).

(i) If (A.2) holds for each k = 2,3,..., then there exists p € (0,2] such that

by = kP, k=23,.... (A.3)

123
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The number p € (0,2] mentioned in the above proposition is called the exponent of p,
and we say that p is p-stable or, respectively, strictly p-stable. In particular, if by, by and
b satisfy (A.1), then

b + b5 = 0P, (A4)

A.2) implies that u is infinitely divisible; its characteristic function is of the form
[
exp (ita + [pi (™ — 1) v(dz)) if 0<p<]1,

exp (ita + [ (e — 1 — itz l(|z| < 1)) v(d2))

f(t) = if p=1, (A.5)
exp (ita + [ ('™ — 1 —itz)v(dz))
if 1<p<?2,
exp (ita — (1/2)t*c?) if p=2,

where a € IR', 0> > 0 and v = v(p,cy,c_) is an absolutely continuous measure on IR
with density
folx) = (epl(2x > 0) + c_I(zx < ()))|;1;|—(1+p)‘

If 11 is strictly stable, then using the notation introduced by [ArGi80, Chapter 2], we
have

e if 0 < p <1, then u = Pois (i(p, s ), ive.
i(t) = exp (/Bl(em _1) V(dx)) . (A.6)

e if p= 1, then 1 = Pois (1, ¢,¢)) # 6, i.c.
i(t) = exp (@'m [ e - V(dx)) . (A7)

o if 1 < p <2, then p = coo —Pois (v(p,cy,c_)) = 1 —Pois (v(p, ey, c2)) ¥ (e —c )/ (1-p)5
ie.

(1) = exp (/Bl(em 1 —itr) V(dx)) . (A.8)
e if p=2 then u = N(0,0%), i.e.
(1) = exp(~(1/2)£26%). (A9)

In particular, if p # 1 and u is p-stable, then there exists « € IR' such that p * §_, is
strictly p-stable.

It is possible to calculate the above integrals explicitly (see [Zol83] for discussion of
various representations ). For our purposes, however, the Lévy-Khintchine representation
is quite satisfactory, since it operates with quantities a, 0% and v admitting an interpretation
in a much wider class than stable distributions only.



A.2. DOMAINS OF ATTRACTION 125

A.2 Domains of attraction

Stable distributions coincide with the class of possible (weak) limits for suitably normalized
and centered sums of independent and identically distributed summands. Strictly stable
distributions are limits for normalized sums (without centering). More precisely, we have

Theorem A.2 Let {X;};en be an i.i.d. sequence. If there exist constants B, > 0 and

A, € IR' such that
Xi+Xo+... .+ X, - A,

then p is stable. If

then p is strictly stable.

In both cases, if p is non-degenerated and p-stable, then B, is a 1/p-regularly varying
sequence.

Conversely, if p is stable (strictly stable), then one can find {X;}jen, {Antnen and
{B}new such that (A.10) ( (A.11) ) holds. O

If (A.10) is satisfied for some {A,} and {B,}, we say that £(X}) is in the domain of
attraction of u ( £(X1) € D(p) ). Necessary and sufficient conditions for £(X7) to be in
the domain of attraction of a non-degenerated p, can be found in many textbooks and

monographs, starting with [GnKo54, Chapter VII]. We follow [Fel71, Chapter IX].

Theorem A.3 Suppose that L(X,) is non-degenerated. Then

(i) L£(X1) € D(N(a,0?)) iff
g(z) = EX2I(|X,| < x) (A.12)

is slowly varying.

(ii) L£(X1) € D(p), where p is p-stable, 0 < p < 2, iff

h(z) = P(|X1] > ) (A.13)
is (—p)-regularly varying and
P(Xl > l’) P(Xl < —l')
Sy, =Y g A4
P(1X1] > ) P(IX1] > ) b ( )

(iii) Up to a constant factor, normalizing constants can be chosen to satisfy
n

SEXII(X| < B) — L (A.15)
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Results due to Rogozin [Rog76] and Maller [Mal78] show that laws d,, a # 0, (strictly

I-stable!) posses “domain of strict attraction”, as well.

Theorem A.4 Suppose P(|X,] > z) > 0) for everyx > 0. Then one can find B, — oo
such that

B,
if and only if EX11(|X1] < ) >0 for x large enough and

— p 1, (A.16)

zP(|X1] > 2)

— 0 asz — oo. (A.17)

The sequence B, is then 1-reqularly varying and satisfies

B, ~ nEXI(|X,| < By). (A.18)

A.3 Convergence of sums of independent random
variables to strictly stable laws

All criteria on convergence to stable laws are based on the general limit theory for inde-
pendent summands. We restate here a result of this type, being of central importance for
the whole paper.

Theorem A.5 (An adaptation of [ArGi80, Theorem 4.7, p.61])  Let {Z,:;1,n € IN}
be an array of random variables, which are independent and identically distributed in each
row. Let p be a strictly p-stable law.

In order that

kn
Y Zni — u (A.19)
; D
71=1
it is necessary and sufficient that:
(i)
kyP(Zn1 > ) — g /a?
ko P(Zoy < —2) — e fa7 Vo >0 (A.20)
limlimsup k,|EZ, 1 1(|Z,1] < 6)] = 0, (A.21)
§—0 n—oo
limlimsuphk, EZ2  1(|Z.1] <8) = 0, (A.22)

§—0 n—oo

provided 0 < p < 1 and p = Pois (v(p, cq,c_)).
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(ii) (A.20) with ¢y = c_ = ¢, (A.22) and
b EZui1(|Zpa] <6) — a,
provided p = 1 and u = Pois (v(1, ¢, ¢)) * .
(iii) (A4.20), (A.22) and

FnBZui (| Zaa] < 1) — (s — ) /(1 — p),

provided 1 < p <2 and p = ¢; — Pois (v(p, c4,¢_)) * §(c—c_)/(1-p)-

(iv)

knP(|Zn71| > 5) —
knEZ, i (| Z,1] < 1) — 0,
MEZ (1 Za| < 1) —

provided p =2 and = N(0,0?). 0
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(A.23)

(A.24)

(A.25)
(A.26)
(A.27)

All above sets of conditions are equivalent in the case p = & (strictly stable for each p!):

Corollary A.6

kn
Z an‘ ? 0

i=1

if and only if (A.25),(A.26) and (A.27) with 0* = 0 hold. O



128 APPENDIX A. STABLE DISTRIBUTIONS



Appendix B

Regularly varying functions

B.1 Definitions and basic properties

A measurable positive function f, defined on some neighbourhood [z, o0) of infinity and
such that for some —oco < p < 400

f(Az)

— A as z — 4o00,VA > 0, B.1
70) Y
is called regularly varying of index p.
Ifp=0,i.e.
f(Az)
— 1 asz — 400,V >0, B.2
() )

then f is said to be slowly varying. Clearly, if f varies regularly with index p then it is of
the form f(a) = x”{(x), where {(x) is slowly varying.
It is well-known that (B.1) can be apparently relaxed:

Theorem B.1 (see e.g. [Sen76, Theorem 1.3]) If f is measurable positive and defined
on (xs,+00) and if
f(Az)
f(z)
where S C (0,+00) is a set of positive Lebesgue measure, then (X)) = A for some —oo <
p < oo and f is p-regularly varying. O

— (X)) as x — +oo,VAE S, (B.3)

If f is monotone, condition (B.3) can be considerably weakened:

Theorem B.2 (see e.g. [Fel7l, Lemma 3, VIIL8]) If f is positive and monotone on
some neighbourhood of infinity, a,/a,v; — 1, ¥, — oo and

anf(Az,) — (X)) € (0,00), asn — +oo, (B.4)

for each X in some dense subset A of (0,00), then f varies regularly. O

129



130 APPENDIX B. REGULARLY VARYING FUNCTIONS

The next result is known as the Uniform Convergence Theorem:

Theorem B.3 (seee.g. [BGTST7, Theorem 1.5.2, p.22]) The convergence in (B.1) holds
uniformly for A in every compact subset of (0,00). O

Throughout the paper we deal with functions determined by a sequence {¢,} of positive
numbers:

where [z] is the integer part of x. If fi. () is p-regularly varying, we say that {c,} is a
regularly varying sequence of index p.

[t can be shown (see [BoSe73], also [BGT87, Theorem 1.9.5, p.52]), that {¢,} is regularly

varying iff
]

Cn

— (X)) € (0,00), asn — 4o0,VA> 0. (B.6)
Direct checking of (B.6) is, however, not easy and we prefer the following

Lemma B.4 {c.} varies p-regularly if and only if

Cp.
n kp
Cn

as n — +oo,Vk € IV, (B.7)

Y

and for all sequences {k,}, {l,} C IN, such that k, — oo,l,/k, — 0,

Ck

n

— 1, asn — +oo. (B.8)

Chntin
PRrROOF. By (B.7) and (B.8), we have for p,q € IV

Go/onl /]  Cpln/a | Cn/d | Caln/d]

Cn Cplnfql  Cln/ql  Caln/q] Cn

— 1-p-q?-1 asn — +oo.

Fix A > 0 and let p, /¢, \ A so slowly that still ¢}, /4,).n)/¢n — A?. Since also

)/ Clpnfan)n) = 1

by (B.8), we see that

] _ Dl Cllen/an)n] SV

Cn Cl(pn/qn)n] Cn

i.e. (B.6) holds. O

Remark B.5 “Regular variation on integers”, i.e. relation (B.7), is a weaker property,
than regular variation “on positive reals”: sequence ¢, = w(n) + /loglogn, where w(n) is
the number of prime divisors of n, satisfies (B.7), but not ¢,/c,—1 — 1 (see [GaSe73]).
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B.2 Smooth and monotone equivalents

We say that functions f; and f; are asymptotically equivalent (f; ~ f2), if

fi(=)
fa(2)

Theorem B.6 (see e.g. [BGTST7, Theorem 1.3.3, p.14]) Let { be slowly varying. Then
U~ {y, where {1 € C®[a,0), and hy(x) :=log (1(e”) has the property

— 1 as z — +oo.

h(ln)(:zj) — 0, asx—+4oo, n=1,2,.... (B.9)
g

Theorem B.7 (see e.g. [BGTS7, Theorem 1.5.3, p.23]) If f is p-regularly varying,
p#0, then f ~ fi, where f1 is non-decreasing if p > 0, and non-increasing, if p < 0. O

Now, let p > 0 and let f be p-regularly varying on [z, 00). Then
[T (@) = inf{y > 2y f(y) > o} (B.10)
is defined on [f(xf),00) and is monotone increasing to +oo. Further,
FU () ~ f7(f(z)) ~z as w — +oo.
f is an example of an “asymptotic inverse” of f.

Theorem B.8 (see e.g. [BGTST7, Theorem 1.5.12, p.28]) If f is reqularly varying with
index p > 0, there exists 1/p-reqularly varying g such that

flg(x)) ~ g(f(x)) ~ 2 asx — Foo. (B.11)

Here g is determined uniquely to within asymptotic equivalence, and one version of g is
fe. 0

Corollary B.9 Let a, b > 0 and let f(x) ~ z®({(2*))?, where [ is slowly varying. If

g is an asymptotic inverse of f, then

o) ~ 2 (£F(e4))?, (B.12)

where (¥ is the de Bruijn conjugate of (, i.c. the unique (up to asymptotic equivalence)
slowly varying function satisfying

) F (xl(x)) = 1, (F(a)(xl®) =1, as x — +oo. (B.13)
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In most cases, explicit calculation of the de Bruijn conjugate (or the asymptotic inverse)
is not an easy task. On the other hand, it is trivial, if f is monotone.

Lemma B.10 Let f be positive and monotone on some neighbourhood of infinity. Lel
{B,}nen and {C, }hen vary regularly with index 3> 0 and v € IR', respectively. If

Cof(B,) — a€(0,00), (B.14)
then [ varies reqularly with index p = —~ /(.

PROOF. Suppose f is non-increasing (then v > 0). Fix A > 0 and let 0 < M < A <
N < 4o00. we know, that for each 6 > 0,

Bigt1/e) ) ~ 0 - B,
hence for n large enough,
Cnf(B[(/\//)l/ﬁ.Bn]) S Cnf()\ . Bn) S Cnf(B[(/\’)l/ﬁ.Bn])-

Now, C/Cionyiie.,) — ((M)/7)¥ and the expression on the right approaches a - (\)~7/%,
Similarly, left-hand-side converges to a - (\")™"/# and, consequently, the middle term tends
to a - (A)™/f, for every A > 0. This implies that f varies regularly (see Theorem B.2),
hence

lim f(Ae) = lim Cnf(AB:)

= ZnJ A\ AP

B.3 Karamata’s Theorem

Theorem B.11 (The Direct Half) (see Theorem 1.5.11, p.28, in [BGT87]) Let
[ varies reqularly with index p, and let x; be such that f is locally bounded in [z, 00). Then

for any o > —(p+ 1)

7t f(x)
_ 1 B.15
ffftgf(t)dt — o+p+ as ¥ — +o0o, ( )
and for any o < —(p+ 1),
7t f(x)
- — 1 . B.1
= ) di — —(c+p+1) asax— +o0 (B.16)

Condition (B.16) holds also if o = —(p+ 1) and f;;) 1=tV f(t) dt < +o0. O

Theorem B.12 (The Converse Half) (see [BGTS7, Theorem 1.6.1, p.30]) Let

I be positive and locally integrable on [z, 00).
If for some o > —(p + 1) condition (B.15) holds, then f varies regularly with index p.
Similarly, (B.16) for some o < —(p + 1) implies p-regular variation of f. O
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B.4 The Hardy-Littlewood-Karamata Theorem

Theorem B.13 (see e.g. [BGTS87, Theorem 1.7.1, p.37]) Let U : IR* — IR' be a non-
decreasing right-continuous function with U(x) = 0 for all + < 0. If { varies slowly and
c¢>0, p>0, the following are equivalent

Ulx) ~ ca?l(z)/7(1+p) asax— +oo, (B.17)
U(S) ~ cs_pﬁ(é) as s — 0+ (B.18)

where U(s) = Jooy €7 dU(z). O

Remark B.14 The following also holds: U(x) = o(z?4(x)) is equivalent to (7(3) =
o(s™P(1/s)).

Remark B.15 Implication (B.17) = (B.18) is usually called “Abelian theorem”, while
the converse one is “Tauberian”. The next result is known as “Karamata’s Tauberian
Theorem for power series”

Corollary B.16 (see e.g. [BGT87, Corollary 1.7.3, p.40]) Suppose that a, > 0 and
the power series A(s) = 3 o2y ans”™ converges for s € [0,1).
Ifc,p >0, then

Zn: ag ~ enfln)/T(1+p) asn — +oo (B.19)
k=0

if and only if X
A(s) ~ ¢l — S)/(1 —s)f ass S 1—. (B.20)

If ep > 0 and a,, is ultimately monotone, both (B.19) and (B.20) are equivalent to

Gy ~ cnp_lﬁ(n)/? (p) asn — 4oo. (B.21)



134 APPENDIX B. REGULARLY VARYING FUNCTIONS



Bibliography

[Aar86]
[Asm8T7]

[ArGiso]

[Bil68]

[BGTST]

[BoSe73]

[Brag0]

[Bra81]

[Brag6]

[Bra87]

[Bra88]

[BrBr85]

[Bre68]

Aaronson, J., Random f -expansions, Ann. Probab., 14 (1986) 1037-1057.
Asmussen, S., Applied Probability and Queues, Wiley, New York 1987.

Araujo, A. & Giné, E., The Central Limit Theorem for Real and Banach
Valued Random Variables, Wiley, New York 1980.

Billingsley, P., Convergence of Probability Measures, Wiley, New York
1968.

Bingham, N.H., Goldie, C.M. & Teugels, J.L., Regular Variation, Cambridge
University Press, Cambridge 1987.

Bojanic, R. & Seneta, E., A unified theory of regularly varying sequences, Math.
Zeitschrift, 134 (1973) 91-106.

Bradley, R.C., A remark on the Central Limit Question for dependent random
variables, J. Appl. Prob., 17 (1980) 94-101.

Bradley, R.C., A sufficient condition for linear growth of variances in a stationary

sequence, Proc. Amer. Math. Soc. 83 (1981) 586-589.

Bradley, R.C., Basic Properties of strong mixing conditions, in: Eberlein, E. &
Taqqu, M.S., Eds., Dependence in Probability and Statistics pp. 165-192,
Progress in Probab. and Statist., Vol. 11., Birkhauser, Boston 1986.

Bradley, R.C., The central limit question under p - mixing, Rocky Mountain J.
Math., 17 (1987) 95-114.

Bradley, R. C., A Central Limit Theorem for Stationary po-mixing Sequences
with Infinite Variances, Ann. Proba., 16 (1988), 313-333.

Bradley, R.C. & Bryc, W., Multilinear forms and measures of dependence be-
tween random variables, J. Multivariate Anal., 16 (1985) 335-367.

Breiman, L., Probability, Addison-Wesley, Reading, Mass. 1968.

135



136

[BDDS6]

[Dab87]

[DaDe88]

[Dav83]

[DDPS6]

[Den86]

[DeJag9)]

[Dia55]

[Dzi84]

[EPW6T]

[Fel71]

[Gal78]

[GaSeT3]

[Geb4l]

[GnKo54]

BIBLIOGRAPHY

Burton, R.M., Dabrowski, A.R. & Dehling, H., An Invariance Principle for
weakly associated random vectors, Stoch. Proc. Appl., 23 (1986) 301-306.

Dabrowski, A. R., Invariance principles in probability for stable processes gen-
erated by a class of dependent sequences, Canad. J. Stat., 15 (1987) 253-267.

Dabrowski, A. R. & Dehling, H., A Berry-Esséen Theorem and a Functional law
of the Iterated Logarithm for weakly associated random vectors, Stoch. Proc.

Appl., 30 (1988) 277-289.

Davis, R. A., Stable limits for partial sums of dependent random variables, Ann.

Probab., 11 (1983) 262-269.

Dehling, H., Denker, M. & Philipp, W., Central limit theorems for mixing se-
quences of random variables under minimal conditions, 14 (1986) 1359-1370.

Denker, M., Uniform integrability and the central limit theorem for strongly
mixing processes, in: Eberlein, E. & Taqqu, M.S., Eds., Dependence in Prob-
ability and Statistics pp. 269-274, Progress in Probab. and Statist., Vol. 11.,
Birkhauser, Boston 1986.

Denker, M. & Jakubowski, A., Stable limit distributions for strongly mixing
sequences, Stat. and Proba. Letters, 8 (1989) 477-483.

Diananda, P.H., The central limit theorem for m -dependent variables, Proc.

Cambridge Phil. Soc., 51 (1955) 92-95.

Dziubdziela, W., Limit laws for kth order statistics from strong-mixing pro-

cesses, J. Appl. Prob., 21 (1984) 720-729.

Esary, J., Proschan, F. & Walkup, D., Association of random variables with
applications, Ann. Math. Statist., 38 (1967) 1466-1474.

Feller, W., An Introduction to Probability Theory and Its Applications,
Vol. I1I, 2nd Ed., Wiley, New York 1971.

Galambos, J., The asymptotic theory of extreme order statistics, Wiley,
New York 1987.

Galambos, J. & Seneta, E., Regularly varying sequences, Proc. Amer. Math.
Soc., 41 (1973) 110-116.

Gebelain, H., Das Statistische Problem der Korrelation als Zusammenhang mit

der Ausgleichungsrechnung, 7.. Angew. Math. Mech., 21 (1941) 364-379.

Gnedenko, B.V. & Kolmogorov, A.N., Limit Distributions for Sums of
Independent Random Variables, Addison-Wesley, Reading, Mass. 1954.



BIBLIOGRAPHY 137

[HaHe80]

[Hei82]

[Hei85]

[HeiS6]

[Hir35]

[HoRo48]

[HsiS8]

[HHLSS]

[HiisS6]

[Tbr59]

[Ibr75]

[IbLi71]

[los77]

[JaSh87]

[Jaks6]

Hall, P. & Heyde, C., Martingale Limit Theory and its Applications,
Academic Press, New York 1980.

Heinrich, L., A method for the derivation of limit theorems for sums of m -
dependent random variables, 7. Wahr. verw. Gebiete, 60 (1982) 501-515.

Heinrich, L., Stable limits for sums of m - dependent random variables, Serdica,

11 (1985) 189-199.

Heinrich, L., Stable Limit theorems for sums of multiply indexed m - dependent

random variables, Math. Nachr., 127 (1986) 193-210.

Hirschfeld, O., A connection between correlation and contigency, Proc. Camb.

Phil. Soc., 31 (1935) 520-524.

Hoeffding, W. & Robbins, H., The central limit theorem for dependent variables,
Duke Math. J., 15 (1948) 773-780.

Hsing, T., On the extreme order statistics for a stationary sequence, Stoch.

Proc. and Appl., 29 (1988) 155-169.

Hsing, T., Hiisler, J. & Leadbetter, M.R., On the Exceedance Point Process for
a Stationary Sequence, Probab. Th. Rel. Fields, 78 (1988) 97-112.

Husler, J., Extreme values of nonstationary random sequences, J.Appl.Prob.,

23 (1986) 937-950.

Ibragimov, [.A., Some limit theorems for strictly stationary stochastic processes,

Dokl. Akad. Nauk SSSR, 125 (1959) 711-714.

Ibragimov, I. A.; A note on the central limit theorem for dependent random

variables, Theory Probab. Appl., 20 (1975) 135-140.

Ibragimov, [.LA. & Linnik Y.V., Independent and Stationary Sequences of
Random Variables, Walters-Nordhoff, Groningen 1971.

losifescu, M., Limit theorems for ¢-mixing sequences. A survey. in: Proc. of
the Fifth Conf. on Probab. Theory, Brasov 1974, pp. 51-57, Editura
Acad. R.S.R., Bucuresti 1977.

Jacod, J. & Shiryaev, A. N., Limit Theorems for Stochastic Processes,
Springer, Berlin 1987.

Jakubowski, A., Principle of Conditioning in limit theorems for sums of random

variables, Ann. Probab., 14 (1986) 902-915.



138

[Jak90a]

[Jak90b)]

[Jak90c¢]

[Jak9la]

[Jako1b]

[JaKo89]

[JaSI86]

[JaSz90]

[Kal83]
[KeOB76]

[Kob90]

[Lea74]

[Lea83]

[LLRS3]

[LeRoS8]

BIBLIOGRAPHY

Jakubowski, A., An asymptotic independent representation in limit theorems for
maxima of nonstationary random sequences, tentatively accepted in The Annals

of Probab., (19904).

Jakubowski, A., Limits for maxima in terms of joint distributions of a fixed
dimension, submitted, (19904 ).

Jakubowski, A., Minimal Conditions in p-stable limit theorems, submitted,

(1990+).

Jakubowski, A., Relative extremal index of two stationary sequences, Stoch.

Proc. and their Appl., 37 (1991) 281-297.

Jakubowski, A., Asymptotic (r — 1)-dependent representation for rth order
statistic from a stationary sequence, submitted, (19914).

Jakubowski, A. & Kobus, M., a-stable limit theorems for sums of dependent
random vectors, J. Multivariate Anal., 29 (1989) 219-251.

Jakubowski, A. & Stominski, L., Extended Convergence to Continuous in Prob-
ability Processes with Independent Increments, Probab. Th. Rel. Fields, 72
(1986) 55-82.

Jakubowski, A. & Szewczak, Z. S., A normal convergence criterion for strongly
mixing stationary sequences, in: Coll. Math. Soc. Janos Bolyai 57. Limit The-
orems in Probability and Statistics, Pécs (Hungary) 1989), pp. 281-292, North-
Holland, Amsterdam 1990.

Kallenberg, O., Random measures, Akademie-Verlag, Berlin 1983.

Kesten, H. & O’Brien, G.L., Examples of mixing sequences, Duke Math. J., 43
(1976) 405-415.

Kobus, M., Generalized Poisson distributions as limits for arrays of dependent
random vectors, preprint, (1990+).

Leadbetter, M.R., On extreme values in stationary sequences, 7. Wahr. verw.

Gebicte, 28 (1974) 289-303.

Leadbetter, M.R., Extremes and local dependence in stationary sequences, 7.

Wahr. verw. Gebiete, 65 (1983) 291-306.

Leadbetter, M.R., Lindgren, G. & Rootzén, H., Extremes and related prop-
erties of random sequences and processes, Springer, Berlin 1983.

Leadbetter, M.R. & Rootzén, H., Extremal theory for stochastic processes, Ann.
Probab., 16 (1983) 431-478.



BIBLIOGRAPHY 139

[Lév54]

[Lin81]

[Loé77]
[LoeT8|
[Loy65]

[Mal78]

[Mei56]

[Mor76]

[New64]

[New80]

[New84]

[OBr74a]

[OBr74b]

[OBr86]

[OB187]

[Pel82]

Lévy, P., Théorie de l’addition des variables aleatoires, 2-me ed.,
Gauthier-Villars, Paris 1954.

Lin, 7., Limit Theorem for a Class of Sequences of Weakly Dependent Random
Variables, Chinese Ann. Math., 2 (1981), 181-185.

Loeve, M., Probability Theory I, 4th Ed., Springer, Berlin 1977.
Loeve, M., Probability Theory II., 4th Ed., Springer, Berlin 1978.

Loynes, R.M., Extreme values in uniformly mixing stationary processes, Ann.

Math. Statist., 36 (1965) 993-999.

Maller, R.A., Relative stability and the Strong Law of Large Numbers, 7. Wahr.
verw. Gebiete, 43 (1978) 144-148.

Meizler, D.G., On limit distributions for the maximum term of a variational
series, N. Zap. Lwow. Polit. Inst. (ser.math.-phys.), 38 (1956) 90-109 (in Rus-
sian).

Mori, T.,Limit laws for maxima and second maxima from strong-mixing pro-

cesses, Ann. Probab., 4 (1976) 122-126.

Newell, G. F., Asymptotic extremes for m-dependent random variables, Ann.

Math. Statist., 35 (1964) 1322-1325.

Newman, C.M., Normal fluctuations and the FKG inequalities, Comm. Math.
Phys., 74 (1980) 119-128.

Newman, C.M., Asymptotic independence and limit theorems for positively and
negatively dependent random variables, in: Inequalities in Statistics and
Probability, pp. 127140, IMS Lecture Notes, vol. 5, (1984).

O’Brien, G.L., Limit theorems for the maximum term of a stationary processes,

Ann. Probab.,2 (1974) 540-545.

O’Brien, G.L., The maximum term of uniformly mixing stationary processes, 7.

Wahr. verw. Gebiete, 30 (1974) 57-63.

O’Brien, G.L., Extreme values for stationary sequences, in: Eberlein, E. &
Taqqu, M.S., Eds., Dependence in Probability and Statistics pp. 429-437,
Progress in Probab. and Statist., Vol. 11., Birkhauser, Boston 1986.

O’Brien, G.L., Extreme values for stationary and Markov sequences, Ann.

Probab., 15 (1987) 281-291.

Peligrad, M., Invariance principles for mixing sequences of random variables,

Ann. Probab., 10 (1982) 968-981.



140

[Pel83]

[Pel85]

[Pel86]

[Pel90]

[Phis6]

[Rog76]

[Roo88]

[RosH6]

[Sam84]

[Sam85]

[Sam87]

[Sen76]

[Sha86]

[Sze88]

BIBLIOGRAPHY

Peligrad, M., A note on two measures of dependence and mixing sequences,

Adv. Appl. Prob., 15 (1983) 461-464.

Peligrad, M., An invariance principle for ¢ - mixing sequences, Ann. Probab., 13

(1985) 1304-1313.

Peligrad, M., Recent advances in the Central Limit Theorem and its weak In-
variance Principle for mixing sequences of random variables (A survey), in:
Eberlein, E. & Taqqu, M.S.; Eds., Dependence in Probability and Statis-
tics pp. 193-223, Progress in Probab. and Statist., Vol. 11., Birkhauser, Boston
1986.

Peligrad, M., On Ibragimov-losifescu conjecture for ¢ - mixing sequences, Stoch.

Proc. Appl., 35 (1990) 293-308.

Philipp, W., Invariance principles for independent and weakly dependent ran-
dom variables, in: Eberlein, E. & Taqqu, M.S., Eds., Dependence in Prob-
ability and Statistics pp. 225-268, Progress in Probab. and Statist., Vol. 11.,
Birkhauser, Boston 1986.

Rogozin, B.A., Relatively stable walks, Theory Proba. Appl, 21 (1976) 375-379.

Rootzén, H., Maxima and exceedances of stationary Markov chains, Adv. Appl.

Probab., 20 (1988) 371-390.

Rosenblatt, M., A central limit theorem and a strong mixing condition, Proc.

Natl. Acad. Sci. USA, 42 (1956) 43-47.

Samur, J. D.,; Convergence of sums of mixing triangular arrays of random vectors
with stationary rows, Ann. Prob., 12 (1984) 390-426.

Samur, J. D.; A note on the convergence to Gaussian laws of sums of stationary
¢-mixing arrays, in: Probability on Banach spaces V, Lecture Notes in
Math. 1153, pp. 387-399, Springer, Berlin 1985.

Samur, J. D., On the Invariance Principle for stationary ¢ - mixing triangular

arrays with infinitely divisible limits, Prob. Th. Rel. Fields, 75 (1987) 245-259.

Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematics,
Vol. 506, Springer, Berlin 1976.

Shao, Q., An invariance principle for stationary p - mixing sequences with infinite
variance, preprint (1986+).

Szewczak, 7. S., On a Central Limit Theorem for m-dependent Sequences, Bull.

of Pol. Ac. of Sc. Math., 36, No 5-6, (1988), 327-331.



BIBLIOGRAPHY 141

[Sze89]  Szewczak, Z. S., An Invariance Principle for strongly mixing stationary se-
quences when FEX? = +o0, to appear in Probability and Mathematical Statis-
tics, (19894).

[Wath4]  Watson, G.S., Extreme values in samples from m-dependent stationary stochas-
tic processes, Ann. Math. Statist., 25 (1954) 798-800.

[Wel72]  Welsch, R.E., Limit laws for extreme order statistics from strong-mixing pro-

cesses, Ann. Math. Statist., 43 (1972) 439-446.

[Z0183]  Zolotarev, W.M., One-dimensional stable distributions, Nauka, Moscow
1983, (in Russian).



