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Introductionand Announcement of ResultsAsymptotic Independent Representations for Sums\From independence to dependence": the head of Chapter IX in M. Lo�eve's book ([Lo�e78])is the shortest program for any attempt to build a limit theory extending the classical onefor independent random variables.Considering sums of random variables, Lo�eve himself suggested \comparison of sum-mands"(cf, p.41), which, in the simplest case, led to suppressing the dependence betweensummands. Lo�eve's conditions were, however, hardly applicable.Much more fruitful is another approach, known as \Bernstein's method" (see [IbLi71],[Ios77]). Here the main idea is to divide the sum into almost independent segments. It ispossible, if summands possess \mixing" properties, describable in various ways. We referto [Bra86] and [Pel86] for the nearly up-to-dated survey on the present stage of the theory.Some results obtained on the base of Bernstein's method can be \visualized" in theform of an almost sure invariance principle (ASIP): the original (dependent) sequencecan be rede�ned (without changing its law) onto another probability space, on which anaccompanied independent sequence exists, with sums of both sequences being close in astrong sense (see [Phi86] for the survey). ASIP is a very powerful tool: as a rule it impliesfunctional convergence of the corresponding partial-sum process. On the other hand, itis easy to �nd examples of 1-dependent sequences with partial sums weakly convergent,when properly normalized, to a p-stable distribution, but not convergent in the functionalmanner (see 5.8, 5.19 below, also [Sze89]). It follows that looking for the general theory,we cannot expect results like ASIP (or even invariance principle in probability). Thereforewe suggest restricting the attention to the weakest approximation, which is still of interest.Let fXjgj2IN be a strictly stationary sequence of random variables with partial sumsS0 = 0; Sn = Pnj=1Xj ; n 2 IN . We will say that fXjg admits (or possesses) asymptoticindependent representation (a.i.r.) for partial sums, if there exist independent, identicallydistributed random variables ffXjgj2IN with partial sums eSn, such thatsupx2IR1 jP (Sn � x)� P ( eSn � x)j �! 0 as n! +1:Trivial examples show that a.i.r. is not unique . However, if exists, it determines theclass of possible limit laws and the way of normalization and centering in limit theorems1



2 ANNOUNCEMENT OF RESULTSfor Sn's. In particular, we will study only regular a.i.r., i.e. sequences ffXjg such thateSn=Bn �!D � for some normalizing constants Bn ! +1 and some non-degenerate law�. Suppose ffXjg is a regular a.i.r. for fXjg. By the very de�nition also Sn=Bn �!D �,and by the theory for independent identically distributed summands, Bn must be a 1=p -regularly varying sequence and � | a strictly p - stable distribution, for some p, 0 < p � 2.Further, if p = 2, then B2n=n must be equivalent to a non-decreasing positive sequence. Our�rst observation (Theorem 1.1) states the converse: a regular asymptotic representationfor sums exists if, and only if, Sn=Bn �!D � for some fBng and � speci�ed above.Notice the exceptionality of p = 2. It is interesting, that we can get rid of restrictionson B2n=n, if we admit approximation by stationary and independent in rows arrays ffXn;j :j; n 2 INg: for every � > 1maxn<m���n supx2IR1 jP (Sm � x)� P ( mXj=1 fXn;j � x)j �! 0 as n! +1:Suppose, as before, that Sn �!D �, where Bn ! +1 and � is non-degenerated. ThenTheorem 1.4 says, that the above asymptotic independent representation (a.i.r. \in thearray setting") exists if, and only if, for some p, 0 < p � 2, Bn is 1=p - regularly varyingand � is strictly p - stable.Observe, that approximation by arrays does not extend the class of possible limit laws(to all in�nitely divisible distributions, for example) and does not bring any new phenomenain the case 0 < p < 2. On the other hand it exhibits an interesting structure of the CentralLimit Theorem for stationary sequences.Theorem 1.4 restricts our attention to p - stable limit theorems, i.e. results onweak convergence of Sn=Bn to strictly p - stable laws, when Bn is a 1=p - regularly varyingsequence.We aim at �nding necessary and su�cient conditions for p - stable limittheorems.All results in Chapters 1-4 without stated references are taken from [Jak90c].Mixing conditionsAt the �rst stage, we examine mixing properties of Sn's. It is proved in Theorem 2.1, thata p-stable limit theorem implies Condition B: For each � 2 IR1,max1�k;l�nk+l�n jE ei�(Sk+l=Bn) � Eei�(Sk=Bn) � Eei�(Sl=Bn)j �! 0 as n! +1:Conversely, if Condition B holds, Bn !1 andSnBn �!D � 6= �0 ;



ANNOUNCEMENT OF RESULTS 3then � must be strictly p-stable and Bn is a 1=p-regularly varying sequence. This statementslightly improves Theorem 18.1.1 in [IbLi71], replacing ,| strong mixing by Condition B,| non-degeneracy of � by � 6= �0 and| regular variation on integers by usual regular variation.Under some technical assumptions (see Proposition 2.4) Condition B admits an alternativeformulation: max1�k;l�nk+l�n d�L(Sk+lBn );L(SkBn ) � L( SlBn )� �! 0 as n! +1;where d is any metric, which metricizes the weak convergence of probability laws on IR1.This means that under Condition B we can break sums into seemingly independent com-ponents and that any application of Condition B in limit theorems is, in fact, a variantof Bernstein's method. What should be emphasized, is that Condition B does not im-ply any mixing (in the intuitive sense) properties and that it depends on the particularchoice of Bn. Perhaps Example 2.5 is here most striking: if X is Cauchy distributed andXk = X; k = 1; 2; . . ., Bn = n, then Condition B holds for this totally dependent sequence.The most standard way of checking Condition B is based on separation of blocks: ifBn ! +1, one can �nd mn !1 such that Condition B is equivalent tomaxmn�k;l;mk+l+m�n jE ei�(Sk+l+m�Sk+l+Sk)=Bn � Eei�Sk=Bn � Eei�Sm=Bnj �! 0 as n! +1;for every � 2 IR1. Now we can use Rosenblatt's coe�cient of strong mixing for estimationof the above covariances. It follows that strongly mixing sequences satisfy Condition B forevery Bn ! 1. Brief discussion of most important mixing coe�cients and their mutualrelations is given in Section 2.5.Keeping in mind that the form with separated partial sums is the most applicable one,we prefer the original version of Condition B, for the latter provides us with what wewant (\breaking") without all unpleasant technicalities. Moreover, there are tools such asNewman's inequality for associated random variables which allow us to check Condition Bdirectly (see Section 2.4).Regular variation in the limitSuppose Zn �!D �, where � is strictly p-stable. For each n, let fYn;jgj2IN be a sequenceof independent copies of Zn. By strict stability of �, for each k 2 IN we havek�1=p kXj=1Yn;j �!D � as n! +1:



4 ANNOUNCEMENT OF RESULTSHence we can �nd a sequence frng of integers, rn %1, such that if kn = o(rn), thenk�1=pn knXj=1Yn;j �!D � as n! +1:If kn ! 1, the array fZn;j = k�1=pn Yn;j ; 1 � j � kn; n 2 INg of row-wise independentrandom variables is in�nitesimal. For such arrays we can use existing limit theorems forindependent summands (see Theorem A.5) and �nd expressions involving Zn;j 's (in fact:Zn's), which are necessary for Zn �!D �. As a result we get Proposition 3.1.Obtained this way conditions have a very special form: given a sequence of functionsfn on IR+ (e.g. fn(x) = P (Zn > x)) we assume that there exists a sequence rn %1 suchthat xpnfn(xn) �! c ;whenever xn !1; xn = o(rn). If c > 0, we say that the sequence ffng is (�p) - regularlyvarying in the limit. The name is motivated by the following natural example: takea (�p) - regularly varying function f : IR+ ! IR+ and a sequence an ! 1 of numbers.Then ffn(x) = c � f(anx)=f(an)gn2IN is (�p) - regularly varying in the limit.In the classical limit theory for sums of independent identically distributed summands,the notion of regular variation plays a fundamental role (see [Fel71, Chapter VIII.9]). Inparticular, Karamata's Theorem (see Theorem B.11), establishing a link between truncatedmoments and regularly varying tail probabilities, is a very useful tool. For sequencesregularly varying in the limit we can prove a result only partially corresponding to thedirect half of Karamata's Theorem. Nevertheless, our Theorem 3.6 is still su�cient toexhibit dependencies between conditions we obtained above as necessary for Zn �!D �.This enables us to reduce the number of conditions and to consider in Proposition 3.1 onlythe essential ones.Tauberian Limit TheoremsRecall that by our convention, a p - stable limit theorem holds for fXjg, if Sn=Bn �!D �,where the limit law � is non-degenerated and strictly p - stable and Bn varies 1=p - regularly,for some p, 0 < p � 2. Our �nal result|Theorem 4.1|gives two conditions which arenecessary and su�cient for a p - stable limit theorem to hold:� There is a sequence frng, rn % +1, such that for every sequence fkng of integers\tending to in�nity slowly enough" (i.e. kn = o(rn)) we havek�1=pn knXj=1Yn;j �!D � as n! +1;where for each n, Yn;1; Yn;2; . . . ; are independent copies of Sn=Bn.� Condition B is satis�ed for fSk=Bng.



ANNOUNCEMENT OF RESULTS 5The �rst condition is in the form independent of p; applying corresponding results forarrays of independent summands we may \translate" it into the form speci�c to the case0 < p < 1, p = 1, 1 < p < 2 or p = 2. This is done in Theorems 4.2{4.5. Obtained thisway criteria are improvements of [DeJa89] and [JaSz90].The above results are of \Tauberian" type. Indeed, we deal with necessary conditionsobtained by averaging independent copies and the extra information we need in order toget su�ciency, is just Condition B (playing here the role of a \Tauberian condition").We have constructed a quite satisfactory theory of what we called \p - stable limittheorems". The traditional formulation of limit problems is, however, somewhat moregeneral: instead of Sn=Bn �!D �a convergence with centering (Sn �An)=Bn �!D �is considered. Fortunately, if Condition B holds for fSk=Bng, there is no need to developthe theory parallelling the preceding one (for example, with limits which are stable, and notstrictly stable). Theorem 4.9 asserts, that for p 6= 1 we can always �nd a number A 2 IR1such that (Sn�n �A)=Bn �!D ����a, where ����a is strictly stable. Since X 0j = Xj�Ais a strictly stationary sequence satisfying Condition B, Theorem 4.9 provides|in the casep 6= 1|a complete reduction of the apparently more general limit problem with centeringto the restricted one considered in this paper.Examples of p-stable limit theoremsConditions appearing in Tauberian limit theorems are tractable.We have already discussed Condition B (in Chapter 2), so now we are going to reviewsome methods of checking k�1=pn knXj=1Yn;j �!D � as n! +1;where for each n, Yn;1; Yn;2; . . . ; are independent copies of Sn=Bn and kn ! 1 increasesslowly enough. Formally we solved the problem in Theorems 4.2{4.5 by means of corre-sponding limit theorems for triangular arrays. The point is that in these theorems we dealwith expressions involving Sn=Bn and not individual summands. On the other hand therequired information is reduced and we claim that this is the proper level of reduction:using our Tauberian theorems we can either prove most of existing results or at leastindicate the essential step in their proof.For example, applying the Lindeberg Central Limit Theorem we obtain Denker's crite-rion [Den86] stating that under strong mixing, the uniform integrability of fS2n=Var (Sn)gis necessary and su�cient for Sn=qVar (Sn) �!D N (0; 1).



6 ANNOUNCEMENT OF RESULTSIn Theorem 5.5 we derive a similar criterion operating with truncated random variables.Using this criterion it is possible to obtain recent CLT theorems for mixing random variableswith in�nite variance due to Bradley [Bra88] and Peligrad [Pel90].In Section 5.3 we apply Theorems 4.2{4.4 in proving non-central limit theorems from[Dav83], [Sam84] and [JaKo89]. It is assumed in all the results that there are no clustersof big values of summands. And this makes our computations easy.If clusters of big values exist, our technique works as well. This is demonstrated in thenew, short proof of Theorem 5.16, being a one-dimensional re�nement of limit theoremsfor m - dependent random variables obtained in [JaKo89].Our theory, although general, cannot replace such traditional and powerful methods as\martingale approach" (see [HaHe80], [Jak86], [JaSh87]) or ASIP. Nevertheless, Tauberianlimit theorems constitute a uni�ed tool in a wide variety of problems.Asymptotic Representations for Order StatisticsIn the second part of the paper we study asymptotic representations for order statisticsof sequences of random variables. The motivation is here the same as for sums: we areinterested in possibly general limit theory extending the classical one for independentrandom variables and describing phenomena of \asymptotic independence". We stress,however, a di�erent aspect of the theory: it is not only the tool for getting limit theoremsbut it helps to understand better the limit structure of order statistics.This is important particularly for higher order statistics, where we suggest using a sim-ple (although dependent) universal model instead of di�cult in analysis limit distributions.But in the simplest case of maxima, we can refresh our point of view on such structuralnotion as extremal index, either.It should be pointed out, that our approximating sequences may exist even if the originalorder statistics are not convergent under any linear normalization. This corresponds to thefact, that linear normalization is natural for sums rather than for maxima, and that inmost cases limiting probability of exceedances over a given sequence is of interest only:limn!1P ( max1�k�nXk > vn) =?:Therefore in our criteria we operate with conditions describing properties of order statisticswith respect to suitably chosen, but only one sequence of boundaries fvng.Asymptotic Independent Representationsfor MaximaLet fXjgj2IN be a sequence of random variables. De�ne Mn = max1�j�nXj and M0 = �1.We say that fXjg admits an asymptotic independent representation for maxima, if thereexists a sequence ffXjg of independent random variables with partial maxima fMn such that



ANNOUNCEMENT OF RESULTS 7supx2IR1 jP (Mn � x)� P (fMn � x)j ! 0 as n!1:If fXjg is stationary, it is quite natural to ask for ffXjg being an independent identicallydistributed sequence. IfG is the common distribution function for fXj 's, then we can rewritethe above de�nition in the formsupx2IR1 jP (Mn � x)�Gn(x)j �! 0 as n!1;which de�nes a phantom distribution function G for fXjg|the notion introduced byO'Brien [OBr87]. O'Brien gave widely applicable su�cient conditions for existence of suchG; an improvement of his results obtained by the author [Jak91a] states that a stationarysequence fXjg has a phantom distribution function G satisfyingG(G��) = 1 and 1�G(x)1 �G(x�) �! 1 as x% G�;where G� = supfu;G(u) < 1g, if, and only if, there is a sequence fvng of numbers suchthat P (Mn � vn) �! �for some �; 0 < � < 1, and Condition B1(vn) holds:supj;k2IN jP (Mj+k � vn)� P (Mj � vn)P (Mk � vn)j �! 0 as n!1:The restriction imposed on G is well known in the literature; it guarantees that for some(and then for any) 0 < � < 1, one can �nd a sequence vn such that Gn(vn) ! �. By analogyto sums we say that such G determines a regular asymptotic independent representation.We derive the above result as Theorem 6.17 being a consequence to more general The-orem 6.2 on existence of a.i.r. for maxima of nonstationary sequences. There are somereasons to consider here the nonstationary setup. First, Theorem 6.2 provides a criterion,which is very convenient for stationary sequences (e.g. Markov chains with stationary ini-tial distribution|see Theorem 6.15). Further, using this criterion we can �nd a regularphantom distribution function even for nonstationary sequences (e.g. Markov chains witharbitrary initial distribution|Corollary 6.16). And last but not least|Theorem 6.2 is in-teresting by itself. Indeed, in this theorem we construct marginal laws of the approximatingindependent sequence using the limiting function�t = limP (M[nt] � vn); t > 0:The construction is possible if �t > 0; t > 0, supt>0 �t = 1, inft>0 �t = 0 and there existsa concave function g� such that �t = exp(g�(log t)):



8 ANNOUNCEMENT OF RESULTSIn particular, the limit �t = �t for some 0 < � < 1 (or g� = ex � log�) \produces" an i.i.d.sequence with marginal distribution function G given by the formulaG(x) = 8><>: 0 if x < v1;�1=n if vn � x < vn+1;1 if x � supk vk(We may assume that the sequence fvng is non-decreasing). Theorems 6.2 and 6.15 andCorollary 6.16 were originally proved in [Jak90a].Theorem 6.17 and the explicit form of a phantom distribution function enables us togeneralize the notion of the extremal index and to prove easily a criterion for its existence(Theorem 6.21). Let us give a sketch of the reasoning.Let fXjg and fX 0jg be two stationary sequences. Suppose that for some non-decreasingsequence fvng Condition B1(vn) holds for both sequences, and that as n!1P (Mn � vn) ! �; P (M 0n � vn) ! �0;where 0 < �;�0 < 1. By Theorem 6.17, both fMng and fM 0ng admit a phantom distributionfunction G and G0, respectively, and G = G0�;where � = log�log�0 :It follows now by the very de�nition of an asymptotic independent representation, thatsupx2IR1����P (Mn � x)� P (M 0n � x)����� �! 0; as n! +1:We call such number � the relative extremal index of fXjg with respect to fX 0jg. Thisis a generalization of the (usual) extremal index, which in our terminology is the relativeextremal index of fXjg with respect to the i.i.d. sequence fcXjg with the same marginaldistribution: L(Xj ) = L(cXj). The concept of extremal index was introduced by Leadbetter[Lea83], who perfected earlier ideas of Loynes [Loy65] and O'Brien [OBr74a]. Leadbetter'sproofs and criteria of existence are, however, di�erent from our Theorem 6.21.The relative extremal index is not an arti�cial notion. In naturally arises, for instance,in limit theorems for regenerative sequences, as interesting Example 6.20 due to Rootz�en[Roo88] shows.Eventually, we point out that there are stationary processes without asymptotic inde-pendent representation, for which the relative extremal index can be de�ned as well (seeExample 6.22).



ANNOUNCEMENT OF RESULTS 9Equivalent Forms of Mixing ConditionsDescribing \asymptotic independence" in the form of Condition B1(vn) is not a commonpractice. The tradition in the Extreme Value Limit Theory prefers Leadbetter's ConditionD ([Lea74], [LLR83]) or its variants ([HHL88]) close to strong mixing.We were partially inspired with O'Brien's ([OBr87]) Condition AIM(un). The maindi�erence is that we relate mixing properties to a single sequence fvng, while O'Brien(and others) used to consider \breaking probabilities" P (Mj+k � vn(�)) for a family ofboundaries fvn(�) ; � 2 Bg, but on bounded intervals only: j + k � n. Propositions 7.7and 7.8 show, that both approaches are essentially equivalent.In fact, for stationary sequences Condition B1(vn) is nothing but asymptotic expo-nential form of the path IR+ 3 t 7! P (M[nt] � vn): by Proposition 7.5 it is equivalentto supt>0 �����P (M[nt] � vn)� P (Mn � vn)t����� �! 0 as n! +1;provided 0 < lim infn!1 P (Mn � vn) � lim supn!1 P (Mn � vn) < 1.The above results are taken from [Jak91a].Limiting Probabilities for MaximaExistence of an a.i.r. and limit theorems for maxima require an e�ective tool for calculatinglimn!1 P (Mn � vn) in the presence of some mixing assumptions.O'Brien [OBr87] obtained the representationP (Mn � vn)� exp(�nP (X0 > vn;Mrn � vn)) �! 0; as n! +1;where frng is a suitable chosen sequence of integers. However such formula is useless, ifwe want to calculate the limiting probability and rn tends to in�nity: the expression underexponent depends on increasing number of random variables Xj , hence is of the same typeas the approximated probability.Therefore we investigate in detail other approximations, which are based on the knowl-edge of asymptotic properties of �nite dimensional joint distributions only:jP (Mn � vn)� exp(�nP (X0 > un;Mm � vn))j �! 0; as n! +1;for m 2 IN �xed, orlimm!1 lim supn!1 jP (Mn � vn)� exp(�nP (X0 > vn;Mm � vn))j = 0:For example, the �rst approximation holds for m- dependent random variables ([New64]),while the second one is valid for uniformly strong mixing (i.e. � - mixing) sequences([OBr74b]).



10 ANNOUNCEMENT OF RESULTSIt follows that the above approximations allow the following calculation:limn!1 logP (Mn � vn) = � limm!18<: lim supn!1lim infn!1 9=;nP (X0 > vn;Mm � vn):In Chapter 10 we discuss several conditions, including generalizations of Leadbetter's Con-dition D' ([Lea74], [LLR83]), which enable us to apply this formula.All the results are taken from [Jak90b].Asymptotic (r-1) - dependent Representationsfor rth Order StatisticsLet X1;X2; . . . be a stationary sequence of random variables. Denote by M (k)n the kthlargest value of X1;X2; . . . ;Xn.It is well known, that for i.i.d. X1;X2; . . . convergence in distribution of suitably nor-malized partial maxima: P (Mn � vn(x)) �! G(x); x 2 IR1;implies convergence of all order statistics: for each q � 2P (M (q)n � vn(x)) �! G(x)0@1 + q�1Xk=1 (� logG(x))kk! 1A ; x 2 IR1; as n! +1:(see e.g. [Gal78] or [LLR83]).If we drop the assumption of independence, preserving only strong mixing property,higher order statistics may fail to converge or they may converge to di�erent limits. As-suming they converge for each q 2 IN , Dziubdziela [Dzi84] and Hsing, H�usler & Leadbetter[HHL88] describe possible limits in terms of parameters of certain compound Poisson dis-tributions. We prefer the description given by Hsing [Hsi88] (see also Theorem 9.2): thelimit for M (q)n is of the formG(x)0@1 + q�1Xk=1 (� logG(x))kk! � 
q;k1A ;where 0 � 
q;k � 1; k = 1; 2; . . . ; q � 1, and G is the limit for maxima. However,complexity of formulas for 
q;k's quickly increases with q, what makes di�cult the analysisof asymptotic properties of higher order statistics. Therefore we suggest approximationby a simple model in place of limiting distribution.The model is simple, indeed: take �1; �2; . . . ; �r � 0 such that Prq=1 �q = 1 and a regulardistribution function G. For each 1 � q � r, let f eYq;jgj2IN be independent and identically



ANNOUNCEMENT OF RESULTS 11distributed: eYq;j � G�q , and let sequences f eY1;jgj2IN , f eY2;jgj2IN ; . . . ; f eYr;jgj2IN be mutuallyindependent. De�ne fXj = eY1;j_ ( eY2;j _ eY2;j+1)_ ( eY3;j _ eY3;j+1 _ eY3;j+2)..._ ( eYr;j _ eYr;j+1 _ . . . _ eYr;j+r�1):Finally, let fM (q)n ; q = 1; 2; . . . ; r be order statistics of fX1; fX2; . . ..Then Theorem 9.1 asserts, thatsupx2IR1 jP (M (q)n � x)� P (fM (q)n � x)j �! 0 as n! +1;for each q; 1 � q � r, if, and only if, there is a non-decreasing sequence fvng such that foreach q; 1 � q � r we haveP (M (q)n � vn) �! �q; as n! +1;where 0 < �1 < 1, and a natural mixing condition similar to Condition B1(vn) holds.Practically: every time there exists the limit for r �rst order statistics, we can approximatethese statistics by our (r � 1) - dependent model built up from G and �1; �2; . . . ; �r.It is a natural question, whether we can approximate simultaneously all order statisticsby order statistics of a sequence eYj obtained formally like fXj but for r = 1. This is notautomatic. For example, eYj can be trivial: eYj = G� a.s.. Some other possibilities arediscussed in Theorems 9.13 and 9.17.All these results were originally obtained in [Jak91b].
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Chapter 1Asymptotic IndependentRepresentations for sums of randomvariables1.1 Simple Asymptotic Independent RepresentationLet X1;X2; . . . be a strictly stationary sequence of random variables. Denote S0 = 0; Sn =Pnj=1Xj ; n = 1; 2; . . ..We will say that fXjg admits (or possesses) asymptotic independent representation(a.i.r.) for partial sums, if one can �nd independent, identically distributed random vari-ables fX1; fX2; . . ., such thatsupx2IR1 jP (Sn � x)� P ( eSn � x)j �! 0 as n! +1; (1:1)where eSn = fX1 + fX2 + . . . + fXn.In general, such a representation is not unique; it precisely describes, however, asymp-totic properties of distributions of sums Sn. Therefore we will be interested in regular a.i.r.only, i.e. sequences ffXjg such that eSnBn �!D �;for some normalizing constants Bn ! +1 and some non-degenerate law �.Theorem 1.1 A regular asymptotic independent representation exists for Sn if, andonly if, SnBn �!D �;where, for some p 2 (0; 2], � is a non-degenerate strictly p - stable distribution, Bn is a1=p - regularly varying sequence and, if p = 2, then B2n=n is equivalent to a non-decreasingsequence. 15



16 CHAPTER 1. A.I.R. FOR SUMSProof for p 6= 1.Let eSn = fX1+fX2+. . .+fXn be a regular a.i.r. for Sn. If Bn ! +1 and non-degenerate� are such that eSn=Bn �!D �, then Sn=Bn �!D �, either, and Bn and � possess therequired properties directly by Theorems A.2 and A.3. To prove the converse implication,it is su�cient to �nd an i.i.d. sequence ffXjg such that eSn=Bn �!D �. Indeed, knowingthat also Sn=Bn �!D �, we get by continuity of � bothsupx2IR1 jP ( eSnBn � x)� �((�1; x])j �! 0and supx2IR1 jP (SnBn � x)� �((�1; x])j �! 0:Hence (1.1) follows.The construction of L(fXj) is based on Theorem A.5 and Lemma B.10 and is standardfor p 6= 1. The case p = 1, however, requires more delicate treatment.� By Theorem B.7 we may and do assume, that Bn is non-decreasing. If p = 2, we needmore: we assume that B2n=n is non-decreasing.� Case 0 < p < 1. By (A.6), � = Pois (�(p; c+; c�)) for some c+; c� � 0; c+ + c� > 0.Let n0 be such that c+ + c� < n0. De�neF (x) = 8><>: c�=n if �Bn+1 � x < �Bn and n � n0;1=2(1 � (c+ � c�)=n0) if �Bn0 � x < Bn0;1 � c+=n if Bn � x < Bn+1 and n � n0 (1:2)If fX1 � F , then nP (fX1 > Bn) = c+, nP (fX1 < �Bn) = c� and by Lemma B.10, bothf+(x) = P (fX1 > x) and f�(x) = P (fX1 < �x) are regularly varying with index �p. Now,using Theorem B.11, we can easy verify conditions (A.20){(A.22) in Theorem A.5. HenceeSn �!D �.� Case 1 < p < 2. If eYj; j = 1; 2; . . . are independent and distributed according to Fde�ned by (1.2), then E eYj exists and fXj = eYj � E eYj; j = 1; 2; . . . satisfy assumptions ofTheorem A.5 (iii).� Case p = 2. In this case � = N(0; �2) with �2 > 0. Set L( eSn1) to be symmetric andsuch that EfX21I(jfX1j � Bn) = �2B2nn : (1:3)Case p = 1.Now � is of the form Pois (�(1; c; c)) � �a, where c > 0. Let eY1 � F , with c+ = c� = c.Since eY1 is symmetric, eY1 + eY2 + . . . + eYnBn �!D Pois (�(1; c; c)):



1.1. SIMPLE A.I.R. 17If a = 0, nothing else is to be proved. If a 6= 0, we will construct another i.i.d. sequencef eZjg, being independent of f eYjg and such thateZ1 + eZ2 + . . . + eZnBn �!P a:Without loss of generality, we can take a = 1. A special representation for slowly varyingfunctions is necessary.Lemma 1.2 Let `(x) be a slowly varying function. Then there exists a random variableZ such that `(x) � EZI(jZj � x) (1:4)and xP (jZj � x)EZI(jZj � x) �! 0 as x! +1: (1:5)Proof. By Theorem B.6 one can �nd a` > 0 and a C1{function h de�ned on [a`;+1)such that `(x) � eh(logx) = `1(x): (1:6)and for each n � 1 h(n)(x) �! 0 as x! +1: (1:7)Let x0 > a` be such that h0(log x0) < 1: (1:8)For x � x0, set q(x) = (`001(x))�; q(�x) = (`001(x))+: (1:9)Let us observe that M(x0) = Z 1x0 (q(x) + q(�x)) dx < +1: (1:10)Indeed, M(x0) = Z 1x0 eh(logx)jh00(log x)� h0(log x)(1� h0(log x))jx�2 dx;where eh(logx)=x1=2 and jh00(log x)�h0(log x)(1�h0(log x))j are bounded functions and x�3=2is integrable on [x0;+1). In particular, for x � x0Z 1x (q(u)� q(�u)) du = Z 1x d(�`01(u)) = `01(x)� limy!1 `01(y) = `01(x); (1:11)for `0(y) = y�1eh(log y)h0(log y) ! 0 as y!1.We complete the de�nition of q, setting q(0) = 0 and for 0 < x < x0,q(x) = D � 1x0 ; q(�x) = 0: (1:12)



18 CHAPTER 1. A.I.R. FOR SUMSHere D is chosen in such a way that`1(x0) = R x00 (R1x (q(u)� q(�u)) du) dx= R x00 (R x0x (q(u)� q(�u)) du) dx++ R x00 �R1x0 (q(u)� q(�u)) du� dx= (1=2)x0D + `01(x0)x00 (1:13)i.e. D = 2`1(x0)1 � h0(log x0)x0 :Notice that D > 0 by (1.8). IfC := Z 10 (q(x) + q(�x)) dx = D +M(x0) (> 0);then p(x) = C�1q(x); x 2 IR1 is a probability density on IR1. Let L(W ) has the densityp(x); then by (1.11) and (1.12)`(x) � `1(x) = R xx0 `01(u) du+ `1(x0)= C R xx0 (P (W > u)� P (W < �u)) du++ C R x00 (P (W > u)� P (W < �u)) du= C � EWI(jW j � x) + Cx(P (W > x)� P (W < �x)): (1:14)Further, for x � x0xP (jW j � x)`1(x) = C�1 R1x j`001(u)j dux�1`1(x) �� jh00(log x)� h0(log x)(1� h0(log x))jC(1� h0(log x)) �! 0 as x! +1:In particular, x(P (W > x) � P (W < �x)) = o(`1(x)) and `(x) � C � EWI(jW j � x).Hence EWI(jW j � x) is slowly varying and`(x) � C � EWI(jW j � x) � C � EWI(jW j � x=C) = E(C �W )I(jC �W j � x):So Z = C �W has the desired properties (1.4) and (1.5).Now we are ready to construct independent eZ1; eZ2; . . . satisfyingeZ1 + eZ2 + . . . + eZnBn �!P 1: (1:15)Let `B(x) be an (asymptotic) inverse to 1-regularly varying B[x]. If `(x) = [x]=`B(x),then it varies slowly and Bn � `B(Bn)`(Bn) � n`(Bn). Now, set L( eZj) = L(Z) for Zsatisfying (1.4) and (1.5) and apply Theorem A.4.



1.2. A.I.R. IN THE ARRAY SETTING 191.2 A.I.R. in the Array SettingThe case p = 2 is exceptional: we impose on Bn the requirement that \B2n=n � cn >0; cn % ", which is equivalent to \lim infn!1 B2n=n > 0 and B2n=n � infm�nB2m=m. "This implies that B2n=nmust converge to nonzero limit (perhaps to in�nity). Let us considerthe following example, due to Bradley [Bra80, Lemma 2]Example 1.3 There exists a centered gaussian stationary sequence fXjg such thatBn = qVar (Sn) is (1=2)-regularly varying and B2n=n! 0.Clearly, for centered gaussian sequences, Sn=qVar (Sn) � N(0; 1), so still: \Bn is 1=p-regularly varying and � is strictly p-stable", while no a.i.r. exists. One can �nd, however,an approximation via a stationary and independent in rows array.We will say, that fSng admits an asymptotic independent representation in the arraysetting if there is an array ffXn;j; j 2 IN; n 2 INg of independent and stationary in rowsrandom variables, such that for each � > 1maxn�m���n supx2IR1 jP (Sm � x)� P ( mXj=1 fXn;j � x)j �! 0 as n! +1: (1:16)Theorem 1.4 Suppose Bn ! 1 and Sn=Bn �!D �, where � is non-degenerate.Then the following conditions (i) and (ii) are equivalent:(i) Bn is 1=p-regularly varying and � is strictly p-stable for some p 2 (0; 2].(ii) fSng admits an asymptotic independent representation in the array setting.Proof.� (i) ) (ii). If 0 < p < 2, setfXn;j = fXj ; j 2 IN; n 2 IN;where fXj 's are given by Theorem 1.1. Thensupn�m supx2IR1 jP (Sm � x)� P ( mXj=1 fXn;j � x)j �! 0 as n! +1;and (1.16) is satis�ed. So let p = 2 and let � = N(0; �2). SetP (fXn;j = ��Bn=pn) = 1=2:If n � kn � � � n, then knE fXn;1Bkn I( jfXn;1jBkn � 1) = 0; 8n 2 IN: (1:17)



20 CHAPTER 1. A.I.R. FOR SUMSWe have also for " > 0 and n large enoughknP ( jfXn;1jBkn > ") = 0; (1:18)and by 1=2-regular variation of Bn, as n! +1knE fXn;1Bkn !2I( jfXn;1jBkn � 1) = kn � �2n � B2nB2kn �! �2: (1:19)By Theorem A.5 (iv), conditions (1.17) { (1.19) imply thatBkn�1 knXj=1 fXn;j �!D N(0; �2):Since fkng was arbitrary, (1.16) follows.� (ii)) (i). By (1.16), for each t > 1, fS[nt]=Bng possesses the same limit in distributionas P[nt]j=1 fXn;j=Bn (if there is any). But Sn=Bn �!D �, so for each � 2 IR1Eei�B�1n P[nt]j=1 eXn;j = �Eei�B�1n eXn;1�[nt] = ��Eei�B�1n eXn;1�n�[nt]=n �! �̂(�)t:Hence B[nt]Bn 0@ 1B[nt] [nt]Xj=1 fXn;j1Aconverges in distribution to a non-degenerate limit, which is distinct from �. By theconvergence to types theorem, for each t > 1B[nt]Bn �!  (t) 6= 1; (1:20)where  (t) is �nite and positive. By Theorem B.1,  (t) = t� for some �1 < � < +1 and(1.20) holds for each t > 0. Since Bn ! 1 and  (t) 6� 1, we have � = 1=p > 0, for somep > 0, and Bn is 1=p-regularly varying. In particular, setting t = 1=k we getL((1=k1=p)X)�k = L(X);if L(X) = �. By Proposition A.1, � is strictly p-stable and 0 < p � 2.Remark 1.5 In the proof of (ii) ) (i) we used only the property that for each t > 1supx2IR1 jP (S[nt] � x)� P ( [nt]Xj=1 fXn;j � x)j �! 0: (1:21)This is the alternative form of (1.16). We prefer, however, (1.16), for it shows the n-th rowprovides a \good" approximation on intervals n � m � � � n.



Chapter 2Discussion of mixing properties2.1 Condition BWe introduced \p-stable limit theorems" as results on the weak convergence of sums tostrictly p-stable limit laws with 1=p-regularly varying normalizing constants. From theprevious chapter we know that a p-stable limit theorem holds if and only if one can �nd aconvergent (after normalizing) asymptotic independent representation in the array setting.But existence of an a.i.r. implies a kind of \asymptotic independence" or \mixing". Weare able to describe the minimal form of such mixing properties.Theorem 2.1 Suppose Bn !1 andSnBn �!D � 6= �0 : (2:1)There exists p 2 (0; 2] such that � is a strictly p-stable distribution and Bn is a regularlyvarying sequence with index 1=p if and only if the following condition is satis�ed:CONDITION B For each � 2 IR1,max1�k;l�nk+l�n jE ei�(Sk+l=Bn) � Eei�(Sk=Bn) � Eei�(Sl=Bn)j �! 0 as n! +1: (2:2)Proof. To prove the su�ciency, we need a variant of the convergence to types theorem.Lemma 2.2 Suppose that Bn ! 1 and that Sn=Bn �!D �. Let kn ! 1; kn � n.If � is non-degenerate and fSkn=Bng is shift-tight, thensupn BknBn � C < +1 : (2:3)In particular, fSkn=Bng is tight and its every limit distribution is of the form L(C 0 �X),where L(X) = � and 0 � C 0 � C. 21



22 CHAPTER 2. MIXING PROPERTIESProof. We know that Sn � SnBn �!D � � � 6= �0;where Sn is an independent copy of Sn and �(A) = �(�A); A 2 B1.Suppose Bkn0=Bn0 ! +1 along some subsequence fn0g � IN . HenceSkn0 � Skn0Bn0 = Bkn0Bn0 � Skn0 � Skn0Bkn0is not tight, i.e. fSkn0=Bn0g cannot be shift-tight.� SufficiencyFirst we will show that � is a strictly p-stable distribution and that Bk�n=Bn ! k1=pfor each k 2 IN .Fix k 2 IN and observe that by (2.2)�L( SnBk�n )��k =) � as n! +1:If � = �a; a 6= 0, then Sn=Bk�n �!D a=k and Bk�n=Bn ! k. If � is non-degenerate, wecan apply the above lemma and see that fBn=Bk�ng is bounded. If ck is any limit point ofBn=Bk�n and L(X) = �, then L(ck �X)� k = L(X) ;and since � 6= �0, we have ck 6= 0. So for each k one can �nd a constant ck > 0 such thatL(X)� k = L((1=ck)X) :By Proposition A.1, � is strictly p-stable for some p 2 (0; 2]. Moreover, ck = k1=p, soBk�nBn �! k1=p as n! +1: (2:4)It remains to prove that Bn is 1=p-regularly varying. By Lemma B.4 we have to provethat Bkn=Bkn+ln ! 1 whenever kn !1 and ln=kn ! 0.Since Bn !1, there exists mn !1 such thatmax1�j�mn Sj=Bkn+ln �!P 0 :If ln0 � mn0 along a subsequence fn0g � IN , thenSkn0Bkn0 � Bkn0Bkn0+ln0 = Skn0Bkn0+ln0 � Skn0+ln0Bkn0+ln0 �!D � ;and Bkn0=Bkn0+ln0 ! 1 by the convergence to types theorem (if � = �a; a 6= 0, we getBkn0=Bkn0+ln0 ! 1 by direct arguments). So we can assume that ln > mn, in particular,that ln !1. By the asymptotic decomposition given by (2.2)L( SknBkn+ln ) � L( SlnBkn+ln ) =) �: (2:5)



2.1. CONDITION B 23If � is non-degenerate, we know by Lemma 2.2 that both Bkn=Bkn+ln and Bln=Bkn+lnare bounded.If � = �a, say a > 0, then for each " > 0P ( SlnBkn+ln > �") �! 1 as n! +1 :This and (2.5) imply for each " > 0P ( SknBkn+ln < a+ ") �! 1or P  SknBkn < Bkn+lnBkn (a+ ")! �! 1 :Hence lim infBkn+ln=Bkn � 1 and Bkn=Bkn+ln is a bounded sequence. SimilarlyBln=Bkn+lnis bounded.Suppose that Bkn=Bkn+ln ! c1 and Bln=Bkn+ln ! c2 along a subsequence. ThenL(c1X) � L(c2X) = L(X) = � ;and it follows from strict stability of �, that cp1 + cp2 = 1. Hence BknBkn+ln!p +  BlnBkn+ln!p �! 1 as n! +1 : (2:6)This in turn implies that for kn; ln !1lim supn!1 BknBkn+ln � 1 : (2:7)If ln=kn ! 0 then ln � kn=k for n large enough and by (2.7) and (2.4)lim supn!1 BlnBkn+ln � lim supn!1 BlnBkn� lim supn!1 BlnBk[kn=k]= lim supn!1 BlnB[kn=k] � B[kn=k]Bk[kn=k]� k�1=p �! 0 as k !1 :Hence (2.6) implies Bkn=Bkn+ln ! 1.� Necessity



24 CHAPTER 2. MIXING PROPERTIESBy Theorem B.7 we can assume that Bn is non-decreasing. Further, if kn=n! 0 thenfor n large enough kn � n=k (k �xed) andBknBn = BknB[n=k] � B[n=k]Bk[n=k] � Bk[n=k]Bn� B[n=k]Bk[n=k] �! k�1=p as n! +1 :Since k is arbitrary, we conclude that Bkn=Bn ! 0 and, in particular,SknBn �!P 0 : (2:8)If (2.2) does not hold, one can �nd � 2 IR1, sequences kn and ln and a subsequencefn0g � IN such that along n0kn0n0 ! s; ln0n0 ! t; s+ t � 1 ;and for some � > 0���Eei�(Skn0+ln0 =Bn0) � Eei�(Skn0 =Bn0) �Eei�(Sln0 =Bn0)��� � � : (2:9)If s > 0 and t > 0, then by 1=p-regular variation of Bn, Eei�(Skn0 =Bn0) ! Eei�s1=pX ,Eei�(Sln0 =Bn0) ! Eei�t1=pX and Eei�(Skn0+ln0 =Bn0) ! Eei�(s+t)1=pX , where L(X) = �. Since �is strictly p-stable, Eei�s1=pX � Eei�t1=pX = Eei�(s+t)1=pX ;what is in contradiction with (2.9).If s = 0 and t > 0, we have by (2.8), Skn0=Bn0 �!P 0, Sln0=Bn0 �!D t1=pX andSkn0+ln0=Bn0 �!D t1=pX, so again (2.9) is impossible. Similarly, if s = 0 and t = 0, thethree limits are 0.2.2 Alternative versions of Condition BRemark 2.3 If Xj's are non-negative, i.e. values of Sn=Bn lie in [0;1), we can use theLaplace Transform instead of characteristic functions. Condition B takes then the form:For each � > 0, max1�k;l�nk+l�n jEe��(Sk+l=Bn) � Ee��(Sk=Bn) � Ee��(Sl=Bn)j �! 0 : (2:10)Condition B means we can break sums into seemingly independent components. Thisproperty becomes even more transparent, if we consider an alternative version of ConditionB.



2.3. SOME EXAMPLES 25Proposition 2.4 Suppose Bn !1, fSn=Bng is tight and no limit point of fSn=Bngis degenerated. Then Condition B holds if and only if for some (and then for any) metricd, which metricizes the weak convergence of distributions on IR1, we havemax1�k;l�nk+l�n d�L(Sk+lBn );L(SkBn ) � L( SlBn )� �! 0 as n! +1: (2:11)Proof. Tightness of fSn=Bng and either (2.11) or (2.2) imply shift tightness offSk=Bn ; 1 � k � n; n 2 INg. If no limit point of fSn=Bng is degenerated, then we canapply a slightly modi�ed Lemma 2.2 : sup1�k�n; n2IN Bk=Bn < +1, hence, consequently,fSk=Bn ; 1 � k � n; n 2 INg is tight.Now suppose (2.11) is not satis�ed. Then we can �nd sequences kn � n and ln � nand a subsequence fn0g � IN such that along n0Skn0+ln0Bn0 �!D �1; Skn0Bn0 �!D �2; Sln0Bn0 �!D �3;and �1 6= �2 � �3. So (2.2) cannot hold. The converse implication can be proved the sameway.2.3 Some ExamplesIt should be pointed out that Condition B can be satis�ed even by non-ergodic sequencesand only for very particular choice of Bn. Examples (2.5) - (2.7) below provide three typesof such phenomena.Example 2.5 Let X � Pois (�(1; c; c)) (Cauchy distribution) and let for each j 2 IN ,Xj = X. Then it is well known, that L((m=n)X) = L(X=n)�m, henceL�Sk+ln � = L k + ln X! = L�Xn �� (k+l)= L�Xn �� k � L�Xn �� l = L�Skn � � L�Sln �and Condition B is ful�lled with fX1;X2; . . .g totally dependent.Example 2.6 Let 0 < p < 1 and let � belongs to the domain of attraction ofPois (�(p; c+; c�)). If ffXjg are i.i.d. and L(fXj) = �, thenfX1 + fX2 + . . . + fXnBn �!D Pois (�(p; c+; c�)) ;where Bn = n1=p`(n) varies regularly. Now take arbitrary random variable X and de�neXj = fXj +X ; j = 1; 2; . . . :



26 CHAPTER 2. MIXING PROPERTIESThen fXjg is a stationary sequence andX1 +X2 + . . . +XnBn = fX1 + fX2 + . . . + fXnBn + nBnX �!D Pois (�(p; c+; c�)) ;for n=Bn = n1�1=p=`(n) ! 0 as n! +1. By Theorem 2.1, Condition B holds.Example 2.7 Let �1 and �2 be two distinct probability distributions on IR1 withzero mean and variance 1. Let X1;X2; . . . be conditionally independent over �-�eld I =fA;Ac; ;;
g (0 < P (A) < 1) and such that for each j, the regular conditional distributionof Xj given I is of the form �1�A + �2�Ac. ThenE(exp(it nXj=1Xj=pn)jI) = (E(exp(itX1=pn)jI))n �! e�(1=2)t2 a.s.;so E(exp(it nXj=1Xj=pn)) = E(E(exp(it nXj=1Xj=pn)jI)) �! e�(1=2)t2 :Here again X1;X2; . . . satis�es Condition B by Theorem 2.1.2.4 Associated random variablesThe next example is more subtle.Example 2.8 Suppose that X1;X2; . . . are associated, i.e. for each n 2 IN and eachpair f; g of functions f; g : IRn ! IR1, which are bounded, measurable and non-decreasingin each coordinate separately,Cov (f(X1;X2; . . . ;Xn); g(X1;X2; . . . ;Xn)) � 0: (2:12)This de�nition is due to [EPW67]. For associated random variables with �nite variances,Newman ([New80], see also [New84]) proved an inequality which we will use in the formjEei�Sk+l=Bn � Eei�Sk=Bn � Eei�Sl=Bnj � �2B2nCov (Sk; Sk+l � Sk) : (2:13)Notice that if k + l � n and EXj = 0 we haveCov (Sk; Sk+l � Sk) � k+l�1Xj=1 jEX0Xj � n�1Xj=1 jEX0Xj : (2:14)Corollary 2.9 Suppose X1;X2; . . . are stationary associated with �nite variances andzero mean.(i) If EX0Xn = o(1=n) then Condition B holds for Bn = pn.



2.4. ASSOCIATION 27(ii) `(n) = EX20 +2Pnj=1 EX0Xj is a slowly varying sequence if and only if Bn = pVarSnis 1=2-regularly varying. In such a case Condition B is satis�ed for Bn.Proof. (i) is immediate from (2.13) and (2.14). Notice that here Sn=pn need not betight; nevertheless Condition B holds.(ii) For associated random variables with zero mean,EX0Xj � EX0EXj = 0 ;hence `(0) > 0 and `(n) is a non-decreasing sequence. By Corollary B.16, `(n) is slowlyvarying if and only if ES2n = `(0) + `(1) + . . . + `(n � 1) � n`(n), i.e. ES2n is 1-regularlyvarying. But ES2n = nEX20 + 2 n�1Xj=1(n� j)EX0Xj = n`(n) � 2 n�1Xj=1 jEX0Xj :Since ES2n � n`(n) we see that Pn�1j=1 jEX0XjES2n �! 0 ;and Condition B follows by (2.13) and (2.14).It is possible to weaken the assumptions of Newman's inequality (2.13) at the costof a constant factor on the right-hand-side. The following de�nition was proposed byBurton, Dabrowski and Dehling [BDD86]: Random variables X1;X2; . . . ;Xm are said tobe weakly associated, if whenever � is a permutation of f1; 2; . . . ; ng, 1 � k < m, andf : IRk ! IR1; g : IR(m�k) ! IR1 are coordinatewise increasing thenCov (f(X�(1); . . . ;X�(k)); g(X�(k+1); . . . ;X�(m))) � 0 :Dabrowski and Dehling [DaDe88, Proposition 2.1] proved that������E exp(i( mXj=1�jXj)=Bn)� NYj=1E exp(i�jXj=Bn)������� 2B�2n X1�j<k�m j�jjj�kjCov (Xj;Xk); (2.15)provided X1;X2; . . . ;Xm are weakly associated. In particular,jEei�Sk+l=Bn � Eei�Sk=Bn � Eei�Sl=Bnj � 2 �2B2nCov (Sk; Sk+l � Sk) ; (2:16)and we getCorollary 2.10 In Corollary 2.9 we may assume that X1;X2; . . . are weakly associatedonly.Remark 2.11 An example on p.302 [BDD86] shows that there are weakly associatedsequences, which are not associated. This means Corollary 2.10 essentially improves Corol-lary 2.9.



28 CHAPTER 2. MIXING PROPERTIES2.5 Strong mixing and Condition BIn the above examples we checked Condition B either by Theorem 3.1 or by means ofspecial tools like Newman's inequality. It is not a traditional approach. The tradition,initiated by Rosenblatt's paper [Ros56], suggests describing mixing properties via \mixingcoe�cients", being speci�c measures of dependence between \future" and \past". Let Gand H be �-�elds in a probability space (
; F ; P ). De�ne:�(G;H) = supfjP (A \B)� P (A)P (B) j ; A 2 G; B 2 Hg: (2.17)�(G;H) = supfjP (BjA)� P (B) j ; A 2 G; P (A) > 0; B 2 Hg: (2.18) (G;H) = supf����� P (A \B)P (A)P (B) � 1����� ; A 2 G; B 2 H; P (A)P (B) > 0g: (2.19)Clearly�(G;H) � minf�(G;H); �(H;G) g � maxf�(G;H); �(H;G) g �  (G;H): (2:20)Mixing coe�cients provide a useful estimation of covariances, e.g. by [BrBr85, Theorem1.1] (see also [Pel83]):Lemma 2.12 Suppose 1 � p; q � 1 and p�1 + q�1 � 1. If X and Y are complexrandom variables and X 2 Lp(G); Y 2 Lq(H), thenjEXY � EX �EY j � 2��(G;H)1=r�(G;H)1=p�(H;G)1=qkXkpkY kq ; (2:21)where 1 � r �1 is such that p�1 + q�1 + r�1 = 1.Another useful estimation can be obtained, if we set�(G;H) = sup jCov (X;Y )jqVar (X)Var (Y ) ; (2:22)where supremum is over all real X 2 L2(G); Y 2 L2(H) such that Var (X) > 0 andVar (Y ) > 0. The above \maximal correlation of G and H" was �rst studied in [Hir35] and[Geb41]. By the very de�nition, for real X and Y ,jEXY � EX � EY j � �(G;H)kXk2kY k2: (2:23)Further, �(G;H) � �(G;H) � 2�q�(G;H)�(H;G) ; (2:24)where the second inequality follows from (2.21) with r = +1 and p = q = 2.Now, for k < m and stationary fXjgj2IN , de�neFmk = �(Xj ; k � j � m); F1k = �(Xj ; j � k): (2:25)



2.5. STRONG MIXING AND CONDITION B 29Set �(n) = supm �(Fm1 ;F1m+n) ; n � 1 ; (2:26)and say that fXkg is �-mixing (or, following [Ros56], strongly mixing), if �(n) ! 0 asn ! 1. Replacing coe�cient �(�; �) in (2.23) by  (�; �) or �(�; �), we get de�nitions of  -or �-mixing sequences, respectively. If for some m � 0; �(m + 1) = 0, then fXjg is saidto be m-dependent.In �-,  - and �-coe�cients we may change the role of \future" and \past"|the coe�-cients are symmetric in G and H. This is not true for �, so de�ne�(n) = supm �(Fm1 ;F1m+n) (2:27)and ��(n) = supm �(F1m+n;Fm1 ): (2:28)If �(n) ! 1 as n ! 1, then fXjg is said to be �-mixing or, according to [Ibr59],\uniformly strongly mixing", while if ��(n) ! 0 as n ! 1, we deal with \reversed �-mixing" or ��-mixing. �-mixing and ��-mixing are really di�erent notions|a suitableexample can be found in [KeOB76].Mixing conditions are useful tools in various respects. For checking Condition B, how-ever, we need only the weakest one.Proposition 2.13 If fXjgj2IN is �-mixing, then Condition B is satis�ed for everysequence Bn !1.Proof. Let kn + ln � n. We have to prove thatE ei�(Skn+ln=Bn) � Eei�(Skn=Bn) � Eei�(Sln=Bn) �! 0 as n! +1:Since Bn ! 1, we can assume that both kn ! 1 and ln ! 1. Let mn � minfkn; lng,mn !1 be such that Smn=Bn �!P 0. De�ne Un = Skn�mn and Vn = Skn+ln � Skn+mn .Then Eei�Skn+ln=Bn � Eei�(Un+Vn)=Bn �! 0 ;Eei�Skn=Bn �Eei�Un=Bn �! 0 ;Eei�Sln=Bn � Eei�Vn=Bn �! 0 :And by (2.21) with r = 1; p = q = +1,jE ei�(Un+Vn)=Bn � Eei�Un=Bn � Eei�Vn=Bnj � 2��(2mn) �! 0 as n! +1:The idea we used above is known as \separation of blocks"|for each sequence Bn !1we can �nd mn !1 such that Condition B is equivalent tomaxmn�k;l;mk+l+m�n jE ei�(Sk+l+m�Sk+l+Sk)=Bn � Eei�Sk=Bn � Eei�Sm=Bnj �! 0 as n! +1; (2:29)



30 CHAPTER 2. MIXING PROPERTIESfor every � 2 IR1.It is well-known, that an ergodic homogeneous Markov chain on a �nite state space isnot �-mixing, if it is periodic with period r > 1. Nevertheless, it satis�es Condition B foreach Bn !1, as we shall see below. Following O'Brien([OBr87, p.286]), say that fXjg isr-strongly mixing if�r(n) = sup �����1r r�1Xk=0P (A \ Ck)� P (A)P (C)����� �! 0 as n! +1 ; (2:30)where the supremum is taken over all positive integers m, all A 2 Fm1 , all C 2 F1m+n andCk is the shift of C for k steps (if C = f(X1;X2; . . .) 2 Eg a.s. for some E 2 B1, thenCk = f(Xk+1;Xk+2; . . .) 2 Eg a.s. ).Proposition 2.14 If fXjg is r-strongly mixing, then Condition B holds for everyBn !1.Proof. We have to check (2.29). So take � 2 IR1; r � mn � k; l;m; k + l + m � n,and observe that it is enough to �nd an estimation forcfk;l;m = Ef(Sk)f(Sk+l+m � Sk+m)� Ef(Sk) � Ef(Sl) ;where f is either sin�B�1n (�) or cos�B�1n (�). Butcfk;l;m = 1r r�1Xj=0 cfk;l;m+j + 1r r�1Xj=0(cfk;l;m � cfk;l;m+j) = I1 + I2 :We know thatEXY � EXEY = Z +1�1 Z +1�1 (P (X > x; Y > y)� P (X > x)P (Y > y)) d x d y ;so jI1j = ������Z +1�1 Z +1�1 8<:1r r�1Xj=0P (f(Sk) > x; f(Sk+l+m+j � Sk+m+j) > y)� P (f(Sk) > x)P (f(Sl) > y)9=; d x d y������� 4�r(m) � 4�r(mn) �! 0 as n! +1 ;uniformly in k; l;m. And for each " > 0 we havejf(x)� f(y)j � "+ 2�fjx�yj>"g(x; y) ;



2.6. DECOUPLING METHODS 31hence jI2j = jr�1 r�1Xj=0Ef(Sk)(f(Sk+l+m+j � Sk+m+j )� f(Sk+m+l � Sk+m))j� "+ 2r�1 r�1Xj=0P (j�jj(Sk+l+m+j � Sk+m+j )� (Sk+m+l � Sk+m)j > "Bn)� "+ 4r�1 r�1Xj=0P (j�jjSjj > "=2) �! " as n! +1:O'Brien ([OBr87, Theorem 5.2]) observed, that sequences being instantaneous functionsof a stationary Harris chain with period r, are r-strongly mixing. By the above propositionwe see that such sequences satisfy our Condition B.2.6 Decoupling MethodsBesides \separation of blocks" another operation can be useful while checking ConditionB. Suppose we can decomposeSkBn = S0n;k + S00n;k; 1 � k � n; n 2 IN;where S00n;k �!P 0 as n!1 uniformly in k, i.e.max1�k�nP (jS00n;k > ") �! 0 as n! +1:Then, obviously, Condition B is equivalent tomaxk+l�n jEei�S0n;k+l �Eei�S0n;k � Eei�S0n;lj �! 0 as n! +1; (2:31)and this may require much less information, than �-mixing or thereabout. Developing theidea we come to "-approximation as suggested by Theorem 4.2 of [Bil68]: ifSkBn = S0n;k(�) + S00n;k(�) ; (2:32)where lim�&0 lim supn!1 max1�k�nP (jS00n;k(�)j > ") = 0; 8" > 0 ; (2:33)then Condition B holds if and only iflim�&0 lim supn!1 maxk+l�n jEei�S0n;k+l(�) � Eei�S0n;k(�) � Eei�S0n;l(�)j = 0 : (2:34)



32 CHAPTER 2. MIXING PROPERTIESExample 2.15 Suppose fXkg is a stationary sequence with one-dimensional marginaldistribution belonging to the domain of attraction of a strictly p-stable law � =Pois (�(p; c+; c�)), 0 < p < 1, c+ + c� = 1. Let Bn be such thatnP (jX1j > Bn) �! 1 : (2:35)For � > 0, de�ne Xn;j(�) = XjBn I(� < XjBn � ��1) ;S0n;k(�) = kXj=1Xn;j(�) ;S00n;k(�) = SkBn � S0n;k(�) == kXj=1 XjBn I( jXjjBn � �) + kXj=1 XjBn I( jXjjBn > ��1)= kXj=1 Y 0n;j(�) + kXj=1 Y 00n;j(�) :By Karamata's Theorem B.11lim�&0 lim supn!1 nXj=1EjY 0n;j(�)j = 0 ;and lim�&0 lim supn!1 max1�k�nP (j kXj=1Y 00n;j(�)j > ")� lim�&0 lim supn!1 max1�k�nP ( max1�j�k jXjjBn > ��1)� lim�&0 lim supn!1 P ( max1�j�n jXjjBn > ��1) = 0 :Hence (2.33) holds and we can restrict our attention to S0n;k(�) only.Now observe that S0n;k(�) = Z xI(� < jxj � ��1) Nn;k(d x) ; (2:36)where Nn;k(�) are point processes on IR1 n f0g de�ned byNn;k(A) = kXj=1 I(XjBn 2 A) :Representation (2.36) allows us to apply the whole power of the point processes theory, asdescribed in the book [Kal83]. For more details we refer the reader to [JaKo89].



Chapter 3Convergence to Strictly p-stableLaws : Regular Variation in theLimit3.1 Necessary ConditionsSuppose Zn �!D �, where � is strictly p-stable. For each n, let fYn;jgj2IN be a sequenceof independent copies of Zn. By strict stability of �, for each k 2 IN we havek�1=p kXj=1Yn;j �!D � as n! +1:Hence we can �nd a sequence frng of integers, rn %1, such thatmax1�k�rn dL(L(k�1=p kXj=1Yn;j) ; �) �! 0 as n! +1;where dL is the L�evy metric. In particular, if fkng is a sequence of positive integers suchthat kn !1 and kn = o(rn), thenk�1=pn knXj=1Yn;j �!D � as n! +1; (3:1)and fZn;j = k�1=pn Yn;j ; 1 � j � kn; n 2 INg is an in�nitesimal array of row-wise inde-pendent random variables. For such arrays we can use Theorem A.5 and �nd expressionsinvolving Zn's, which are necessary for (3.1) and so|necessary for Zn �!D �.Proposition 3.1 Suppose Zn converges in distribution to a (possibly degenerated)strictly stable distribution �. Then there exists a sequence rn % +1 such that for eachsequence fkng � IN tending to in�nity so slowly, that kn=rn ! 0, one of listed belowstatements (i)-(iv) holds: 33



34 CHAPTER 3. CONVERGENCE TO STABLE LAWS(i) If 0 < p < 1 and � = Pois (�(p; c+; c�)),knP (Zn > k1=pn ) �! c+ ;knP (Zn < �k1=pn ) �! c� : (3:2)(ii) If p = 1 and � = Pois (�(1; c; c)) � �a,knP (Zn > k1=pn ) �! c ;knP (Zn < �k1=pn ) �! c ;EZnI(jZnj � kn) �! a : (3:3)(iii) If 1 < p < 2 and � = c1 � Pois (�(p; c+; c�)),knP (Zn > k1=pn ) �! c+ ;knP (Zn < �k1=pn ) �! c� ;k1�1=pEZnI(jZnj � k1=pn ) �! (c+ � c�)=(1� p) : (3:4)(iv) If p = 2 and � = N(0; �2), knP (jZnj > k1=2n ) �! 0 ;k1=2EZnI(jZnj � k1=2n ) �! 0 ;EZ2nI(jZnj � k1=2n �! �2: (3:5)Proof. Conditions involving knP ((�1)iZn > k1=pn ) ; i = 0; 1, are implied by (A.20)with x = 1, if 0 < p < 2, and (A.25) with " = 1, if p = 2. Conditions operating withvariances and expectations of truncated Zn's are exactly as stated in Theorem A.5.We shall examine in details consequences and structure of conditions (3.1)-(3.5).Proposition 3.2 Let (3.1) holds with strictly p-stable � and let along some subse-quence fn0g, Zn0 converges to some strictly p-stable law �. Then � = �.Proof. Repeating the considerations from the beginning of the chapter, we see thatwhenever kn0 tends to in�nity slowly enough,k�1=pn0 kn0Xj=1Yn0;j �!D � ;while by (3.1), it has to converge to �.Proposition 3.3 Suppose either� (3.2) with c+ + c� > 0 or� (3.3) with c > 0 or� (3.4) with c+ + c� > 0 or� (3.5) with �2 > 0.Then fZngn2IN is tight and no limit point of fZng is degenerated.



3.1. NECESSARY CONDITIONS 35Proof. If fZng is not tight, we may assume without loss of generality, that for some� > 0 limk!1 lim supn!1 P (Zn > k) � � :Take frng as in Proposition 3.1 and �nd Nl > Nl�1 such thatP (ZNl > l1=p) > �=2 ; (3:6)and rn > l2 for all n � Nl. De�ne kn = l if Nl � n < Nl+1. Then kn=rn < 1=kn ! 0 andby (3.6) P (ZNl > k1=pNl ) 6! 0 as l!1 ;while we know that supl kNl P (ZNl > k1=pNl ) < +1 :Hence fZng is tight.Now suppose that 0 < p < 2; c+ > 0, and along some subsequence fn0g � IN ,Zn0 �!P a or Zn0 � a �!P 0. By Proposition 3.1, (i)-(iii),kn0P (Zn0 � a > k1=pn0 ) ! 0 :On the other hand, if ln0 = [(a+ k1=pn0 )p], then ln0 � kn0 and we havekn0P (Zn0 � a > k1=pn0 ) � kn0ln0 ln0P (Zn0 > l1=pn0 ) ! c+ > 0 :So consider the remaining case: p = 2. If Zn0 �!P a,EZn0I(jZn0 j � k1=2n0 ) �! a 6= 0 ;provided kn0 !1 slowly enough. But thenk1=2n0 EZn0I(jZn0j � k1=2n0 ) 6! 0 :Corollary 3.4 In assumptions of the above proposition, suppose thatbn0Zn0 �!D �along some subsequence fn0g � IN , where � is strictly p-stable de�ned by the correspondingcondition among (3.2)-(3.5). Then bn0 ! 1 along fn0g.Proof. We shall show that every subsequence fbn00g contains a further subsequenceconverging to 1. Indeed, one can �nd a subsequence fn000g such that Zn000 �!D �, where �is non-degenerate. Since � is non-degenerate, too, the convergence to types theorem impliesbn000 ! b > 0. But then � is strictly p-stable with parameters determined by (3.2)-(3.5),hence � = �. Consequently, b = 1.



36 CHAPTER 3. CONVERGENCE TO STABLE LAWS3.2 Regular Variation in the LimitConditions (3.2)-(3.5) have a very special form: given a sequence of functions fn on IR+(e.g. fn(x) = P (Zn > x)) we assume that there exists a sequence rn %1 such thatxpnfn(xn) �! c > 0 ; (3:7)whenever xn !1; xn = o(rn).Example 3.5 Let f be (�p)-regularly varying. Take an !1 and de�nefn(x) = cf(anx)f(an) :Then ffng possesses property (3.7). Indeed, by (�p)-regular variation,fn(x) �! cx�p ; x > 0:and this convergence is uniform on compact subsets of (0;+1) (Theorem B.3). In partic-ular, xpfn(x) �! cuniformly on compacts in (0;1), hence (3.7) follows.In a trivial sense the above example describes all sequences satisfying (3.7) : let g(x) =x�p, an !1 and de�ne gn(x) = 1c g(anx)g(an) = 1cx�p :Then (3.7) means that fn(xn)gn(xn) �! 1for all xn !1 slowly enough.Hence it is natural to say that a sequence of functions fn : (a;1) ! IR1 satisfying (3.7)is (�p)-regularly varying in the limit. The analogies between regular variation andregular variation in the limit go further: we can prove a result corresponding to the directhalf of Karamata's Theorem (Theorem B.11)Theorem 3.6 Let p > 0 and let for each n 2 IN , fn : (a;+1) ! IR+ be measurable,(�p)-regularly varying in the limit (i.e. (8.1) holds for some c > 0) and such that for eachb > a supn Z ba sqfn(s) ds � Kb < +1: (3:8)If q � p + 1 > 0, then x�(q�p+1)n Z xna sqfn(s) d s �! cq � p+ 1 (3:9)for all xn !1 slowly enough. In particular, functions gqn(x) = R xa sqfn(s) d s are (q�p+1)-regularly varying in the limit.



3.2. REGULAR VARIATION IN THE LIMIT 37Proof. Let frng be taken from (8.1). Let a < yn < xn be such that xn = o(rn),xn=yn !1 but still yn !1. Considergqn(xn)� gqn(yn) = Z xnyn sqfn(s) d s= xq�p+1n Z 1yn=xn (uxn)pfn(uxn)uq�p d u :If yn=xn � un � 1, the sequence funxng is tending to in�nity slowly enough (i.e. is o(rn)).Since (8.1) holds for every such sequence, (uxn)pfn(uxn) ! c uniformly in u 2 [yn=xn; 1].Hence for some "n ! 0,gqn(xn)� gqn(yn) = xq�p+1n (c+ "n) Z 1yn=xn uq�p d u (3.10)= xq�p+1n c+ "nq � p + 1  1 � �ynxn�q�p+1! :But c > 0, so gqn(xn) � gqn(yn) ! 1, and, in particular, gqn(xn) !1. By (3.8) yn can bechosen in such a way, that gqn(xn)=gqn(yn) !1, and then (3.9) follows from (3.10).In the classical limit theory for independent summands, Karamata's Theorem providesa link between truncated moments and tail probabilities, and so is one of the most basictools (see [Fel71, Chapter VIII.9]). Our approach preserves only a part of the power ofKaramata's results|but it is still enough to proveProposition 3.7 Suppose � is a non-degenerate strictly p-stable law. Then (3.1) isequivalent to the corresponding condition among (3.2)-(3.5).Proof. Fix p 2 (0; 2] and consider the conditionknP (Zn > k1=pn ) ! c+; knP (Zn < �k1=pn ) ! c� ; (3:11)for each sequence fkng of integers such, that kn ! 1 and kn = o(rn). Let xn !1 be asequence of reals such that xn = o(rn). Let kn = [xn]. Then kn=rn ! 0 and(kn + 1)P (Zn > k1=pn ) � xnP (Zn > x1=pn ) � knP (Zn > (kn + 1)1=p) : (3:12)Hence (3.11) implies xnP (Zn > x1=pn ) ! c+. In particular, for each x 2 IR+ and kn !1,kn = o(rn), knP ( Znk1=pn > x) �! c+xp ; knP ( Znk1=pn < �x) �! c�xp : (3:13)Replacing (3.11) by (3.13) in each of (3.2)-(3.5), we get conditions (A.20) and (A.25) ofTheorem A.5 describing convergence to the L�evy measure �(p; c+; c�). It is enough in thecase p = 2: all conditions of Theorem A.5 are satis�ed and k�1=2n Pknj=1 Yn;j �!D N(0; �2).



38 CHAPTER 3. CONVERGENCE TO STABLE LAWSSo let 0 < p < 2. We haveknE  Znk1=pn !2 I(����� Znk1=pn ����� � �)� k1�2=pn E(Zn ^ (�k1=pn ))2= 2k1�2=pn Z �k1=pn0 tP (jZnj > t) d t (3.14)� 2k1�2=pn c+ + c�2� p (�k1=pn )1�p+1 by Theorem 3.6= 2�2�p(c+ + c�)=(2 � p) �! 0 as �& 0 :This implies condition (A.22) and ends the proof for 1 � p < 2.Let 0 < p < 1. Similarly, as abovekn �����E Znk1=pn I(����� Znk1=pn ����� � �)������ k1�1=pn EjZnj ^ (�k1=pn )= k1�1=pn Z �k1=pn0 P (jZnj > t) d t (3.15)� k1�1=pn c+ + c�1 � p (�k1=pn )�p+1= �1�p(c+ + c�)=(1 � p) �! 0 as �& 0 ;so (A.21) holds and we have also proved the case 0 < p < 1.The next lemma provides an equivalent form of (3.7), which is sometimes more useful.Lemma 3.8 Let fhng be a sequence of functions on (a;+1). The following are equiv-alent:(i) There are: a constant c 2 IR1 [ f+1g [ f�1g and a sequence rn % +1 such thathn(xn) �! c ; (3:16)for each sequence xn !1; xn = o(rn).(ii) For some (and then for any) � > 0c := lim supx!1 lim supn!1 h �n(x) = lim infx!1 lim infn!1 h�n(x) =: c ; (3:17)where for x 2 [m�; (m + 1)�), h �n(x) and h�n(x) are, respectively, supremum andin�mum of hn on [m�; (m+ 1)�).If (i) or (ii) holds, then c = c = c.



3.2. REGULAR VARIATION IN THE LIMIT 39Proof. If c > c, we can �nd sequences xn0 and xn00, tending to in�nity as slowly asdesired and such that hn0(xn0) ! c and hn00(xn00) ! c. So implication (i) ) (ii) follows.To prove the converse, set bn;m = h �n(m�); bn;m = h�n(m�) ;and observe that if xn 2 [mn�; (mn + 1)�), then xn=mn ! � > 0 andbn;mn = h�n(xn) � hn(xn) � h �n(xn) = bn;mn :Hence it is su�cient to prove that if bn;m � bn;m andc = lim supm!1 lim supn!1 bn;m = lim infm!1 lim infn!1 bn;m ; (3:18)then there exists rn % +1 such thatlimn!1 bn;mn = limn!1 bn;mn = c ; (3:19)for every sequence mn !1, mn = o(rn).Suppose that (3.18) is ful�lled. Let jcj <1. For every p 2 IN there exists Mp > Mp�1(M0 = 1 ), such that for each m �Mp one can �nd Np;m satisfyingb� p�1 < bn;m � bn;m < b+ p�1; for all n � Np;m:De�ne N0 = 0 and for p � 1Np = ( maxMp�m<Mp+1 Np;m) _ (Np�1 + 1): (3:20)Let rn = �Mp; if Np � n < Np+1 ;1; if n < N1: (3:21)Take mn � rn , mn ! +1. Let qn be such, that Mqn � mn < Mqn+1. Then rn �mn �Mqn and by (3.21), n � Nqn. Moreover, qn ! +1, and by de�nition (3.20) we haven � Nqn � Nqn;mn, hence b� q�1n < bn;mn � bn;mn < b+ q�1n :The proof of the cases c = +1 and c = �1 is similar.Regularly varying in the limit functions, which we consider in the paper, are mostly ofthe form fn(x) = bn;[x] (3:22)where fbn;mg is an array of numbers. The other functions can be reduced to the aboveform by reasoning given in (3.12). For functions (3.22) we have



40 CHAPTER 3. CONVERGENCE TO STABLE LAWSCorollary 3.9 (Lemma 1, [JaSz90]) Let fbn;mg be a double array of real num-bers. Then lim supm!1 lim supn!1 bn;m = lim infm!1 lim infn!1 bn;m = c;if and only if there exists frngn2N , limn rn = +1 , such thatbn;mn ! b as n! +1for every sequence fmngn2N of positive integers satisfying limnmn = +1 and mn = o(rn).Remark 3.10 It should be pointed out that in generallim supx!1 lim supn!1 hn(x) = lim infx!1 lim infn!1 hn(x) (3:23)is not su�cient for (3.16) to hold. Consider the following simple example: In each interval[m;m + 1) choose a sequence of distinct numbers: fam;1; am;2; . . .g � [m;m + 1). LetAn = fam;n ; m 2 INg and let fn(x) = �An(x). Then for each x, lim supn!1 fn(x) = 0, so(3.23) is satis�ed. On the other hand, fn(xn) = 1 if xn = amn;n for some mn 2 IN . Now, ifmn = o(rn), mn !1, we see that (3.16) does not hold.



Chapter 4Tauberian p - stable Limit Theorems4.1 Tauberian Limit TheoremsLet, as usually, Sn ; n 2 IN , be partial sums of a strictly stationary sequence fXjgj2IN andlet Bn ! +1.In Chapters 2 and 3 we derived several necessary conditions for Sn=Bn to converge toa strictly p-stable law �. Let us summarize:� Proposition 3.1 provides four sets of necessary conditions in the form speci�c to p.� Proposition 3.7 asserts, that if � is non-degenerate, those conditions admit a uni�edform, namely: there exists a sequence rn % +1 such, that for every sequencefkng � IN , kn ! +1, kn = o(rn), we havek�1=pn knXj=1 Yn;j �!D � ; (4:1)where for each n, Yn;1; Yn;2; . . . are independent copies of Sn=Bn.� If � 6= �0 and Bn is 1=p-regularly varying, then by Theorem 3.1, Condition B holds.We aim at proving, that in the presence of Condition B, (4.1) is also su�cient forSn=Bn �!D �.Theorem 4.1 Suppose � is a non-degenerate strictly p-stable distribution. Then Sn=Bnconverges in distribution to � and Bn is 1=p-regularly varying if and only if Condition Bis satis�ed and (4.1) holds.Before proving the theorem, it seems to be useful to rewrite it, using Corollary 3.9 andin each of the cases 0 < p < 1, p = 1, 1 < p < 2 and p = 2 separately.Recall, that according to our convention, the p-stable limit theorem holds for Sn=Bn if| Sn=Bn converges in distribution to some strictly p-stable law �,41



42 CHAPTER 4. TAUBERIAN LIMIT THEOREMS| Bn is 1=p-regularly varying.Theorem 4.2 Let 0 < p < 1. Then the p-stable limit theorem holds with a non-degenerate limit � if and only if Condition B is satis�ed andlim supm!1 lim supn!1 mpP (Sn=Bn > m) == lim infm!1 lim infn!1 mpP (Sn=Bn > m) = : c+ ;lim supm!1 lim supn!1 mpP (Sn=Bn < �m) == lim infm!1 lim infn!1 mpP (Sn=Bn < �m) = : c� ; (4:2)where 0 < c+ + c� < +1.The above conditions imply � = Pois (�(p; c+; c�)).Theorem 4.3 The 1-stable limit theorem holds with a non-degenerate limit � if andonly if Condition B is satis�ed, (4.2) holds with c+ = c� = c > 0, andlim supm!1 lim supn!1 B�1n ESnI(jSnj � mBn) == lim infm!1 lim infn!1 B�1n ESnI(jSnj � mBn) = : a ; (4:3)for some a 2 IR1.The above conditions imply � = Pois (�(1; c; c)) � �a.Theorem 4.4 Let 1 < p < 2. Then the p-stable limit theorem holds with a non-degenerate limit � if and only if Condition B is satis�ed, (4.2) holds andlim supm!1 lim supn!1 mp�1E SnBn I( jSnjBn � m) == lim infm!1 lim infn!1 mp�1E SnBn I( jSnjBn � m) = : (c+ � c�)=(1 � p) : (4:4)The above conditions imply� = c1 � Pois (�(p; c+; c�)) � �(c+�c�)=(1�p) = c1 � Pois (�(p; c+; c�)):Theorem 4.5 The Central (= 2-stable) Limit Theorem holds with a non-degeneratelimit � if and only if Condition B is satis�ed andlimm!1 lim supn!1 m2P ( jSnjBn > m) = 0 ; (4.5)limm!1 lim supn!1 m �����E SnBn I( jSnjBn � m)����� = 0 ; (4.6)lim supm!1 lim supn!1 E S2nB2n I( jSnjBn � m) == lim infm!1 lim infn!1 E S2nB2n I( jSnjBn � m) = : �2 > 0 : (4:7)The above conditions imply � = N(0; �2).



4.1. TAUBERIAN LIMIT THEOREMS 43There are two prototypes for Theorems 4.2-4.5, both proved under the extra assumptionof �-mixing. Theorem 4.5 improves (weakening �-mixing to Condition B) Theorem 1 in[JaSz90]. Similarly, Theorems 4.2-4.4 improve Theorem 1 in [DeJa89]. In addition, thelatter result deals only with symmetric limits in the cases p = 1 and 1 < p < 2, while inTheorems 4.3 and 4.4 general strictly p-stable limits are considered.The above results are of \Tauberian" type. Indeed, we deal with necessary conditionsobtained by averaging independent copies and the extra information we need in order toget su�ciency, is just Condition B (playing here the role of a \Tauberian condition").Proof of Theorem 4.1 By the remarks preceding Theorem 4.1 and in the view ofTheorem 2.1, it remains to be proved thatCondition B and (4.1) imply Sn=Bn �!D �.The general line of the proof is similar to that of [JaSz90]; the details are, however,di�erent, since we use Condition B instead of �-mixing and � is a general strictly p-stabledistribution.First of all we shall �nd a sequence sn % +1 such that n � s�1n % +1 and for everysequence kn ! +1, kn = o(sn), we haveSkn�nBkn�n �!D � : (4:8)Suppose (4.1) holds. By Proposition 3.3, we know that fSn=Bng is a tight sequence with nodegenerate limiting distribution. This in turn implies, via Proposition 2.4, that ConditionB is equivalent to (2.11). In particular, one can �nd a sequence ern % +1, ern = o(n) suchthat max1�k�ern dL  L�Sk�nBk�n� ; L� SnBk�n��k! �! 0 as n! +1; (4:9)where, as previously, dL is the L�evy metric.Suppose, that kn ! +1, kn = o(rn ^ ern) (where rn is taken from (4.1)), andSkn0 �n0Bkn0 �n0 �!D Yalong a subsequence fn0g � IN . It follows from (4.9) thatBn0Bkn0 �n0 kn0Xj=1 Yn0;j �!D Y :On the other hand, by (4.1), Pkn0j=1 Yn0;j converges to �, when normalized by k1=pn0 . Since Yis non-degenerate, by the convergence to types theorem,Bn0(kn0)1=p=Bkn0 �n0 ! c ; 0 < c < +1 :But then c�1Y � �, so L(Y ) is strictly p-stable. By Proposition 3.2, Y � � and we haveproved (4.8) with the only exception that sn = rn ^ ern may not satisfy n � s�1n %. To getthis property, let us de�ne s1 = r1 ^ er1 and for n � 1, sn+1 = rn+1 ^ ern+1 ^ ((1 + n�1)sn).



44 CHAPTER 4. TAUBERIAN LIMIT THEOREMSNow, let kn = o(s[ns�1n ]) ; kn ! +1 : (4:10)Then for large n's kns[(n+kn)k�1n ] � kns[n�k�1n ] � kns[n�s�1n ] �! as n! +1and the growth of kn is slow enough to get from (4.8)S[(n+kn)k�1n ] knB[(n+kn)k�1n ]kn �!D � : (4:11)Observe thatP (B�1[(n+kn)k�1n ] knjS[(n+kn)k�1n ]kn � Snj > ") � P ((B�n)�1 max1�k�kn jSkj � ") ;where B�n = infm�n Bm % +1. If, in addition to (4.10) , kn is such, thatmax1�k�kn jSkj=B�n �!P 0;then by (4.11) SnB[(n+kn)k�1n ]kn �!D �and by Corollary 3.4 also Sn=Bn �!D �.Remark 4.6 We used Condition B only in the weak form (4.9), which, under assump-tions of Proposition 3.3, is implied byCondition B'. For each � 2 IR1 and each k 2 INEei�Sk�n=Bk�n � (Eei�Sn=Bk�n)k �! 0 as n! +1: (4:12)A review of methods of verifying conditions (4.2)-(4.7) is contained in Chapter 5.4.2 Limit theorems with centeringWe conclude our considerations with discussion of the general limit problem. From nowonwards suppose that Sn normalized by Bn satis�es Condition B and that there areconstants fAng such that Sn �AnBn �!D � ; (4:13)where � is a non-degenerate p-stable distribution (not necessarily strictly p-stable).Taking in (4.13) symmetrizations and applying Theorem 2.1, we obtain



4.2. CENTERINGS 45Lemma 4.7 fBng is a 1=p-regularly varying sequence.We are not going to develop the theory of convergence (4.13). Instead we suggestreducing it, when possible, to the restricted case considered above. More precisely, we arelooking for constants A and a such thatSn � n �ABn �!D � � ��a : (4:14)If A and a exist, they provide a complete reduction: X 0j = Xj � A ; j = 1; 2; . . ., form anew stationary sequence satisfying Condition B with the same normalizing constants Bn,hence � � ��a must be strictly p-stable.In general, such A and a do not exist.Example 4.8 Let X1;X2; . . . be i.i.d. with L(X1) = c1 � Pois (�(1; c+; c�)). ThenX1 � X1 +X2 + . . . +Xnn � (c+ � c�) log n = 1n nXj=1(Xj � (c+ � c�) log n) :If c+ 6= c�, then L(X1) is a shift of no strictly 1-stable distribution. On the other hand, bythe convergence to types theorem, no essentially di�erent centering exists and the centeredsums cannot be replaced by partial sums of a stationary sequence.Fortunately, the case p = 1 is exceptional.Theorem 4.9 Suppose Sn=Bn satis�es Condition B and for some constants fAng(Sn �An)=Bn �!D �;where � is a p-stable distribution, p 6= 1.Let a 2 IR1 be such, that � � ��a is strictly p-stable.(i) If 0 < p < 1, then An=Bn !�a andSnBn �!D � � ��a : (4:15)(ii) If 1 < p � 2, then An=n converges to some A 2 IR1 andn �A�AnBn �! a as n! +1: (4:16)Further, Sn � n �ABn �!D � � ��a : (4:17)



46 CHAPTER 4. TAUBERIAN LIMIT THEOREMSLemma 4.10 In assumptions of the above theorem, if p 6= 1, then for all fkng ; flng �IN such that kn + ln ! +1 we have as n! +1 Akn+lnBkn+ln + a!� BknBkn+ln  AknBkn + a!� BlnBkn+ln  AlnBln + a! �! 0 : (4:18)Proof of the lemma follows by the convergence to types theorem.Proof.Part (i). Set h(n) = AnBn + a :Suppose that 0 < h1 = lim supn!1 h(n) < +1. Let mn % +1 be such thatlimn!1 h(mn) = h1:If kn = [mn=2], ln = mn � kn, thenlim supn!1 BknBmn h(kn) + BlnBmn h(ln) � 21�1=ph1 < h1 ;and (4.18) cannot hold. If h1 = +1, take mn such thath(mn) = max1�k�mn h(k) :With the same choice of kn and ln as above, we have for n large enoughBknBmn h(kn) + BlnBmn h(ln) � 21�1=p(1 + ")h(mn) : (4:19)If 21�1=p(1 + ") < 1, the gap between h(mn) and the sum on the left-hand-side of (4.19)tends to in�nity, hence (4.18) cannot hold, again. So lim supn!1 h(n) � 0.The same way we prove that lim infn!1 h(n) � 0.Proof.Part (ii). Set f(n) = (An + aBn)=n ; g(n) = Bn=n:It is enough to prove, that f(n) converges to some A (i.e. An=n! A), and that A�f(n) =o(g(n)) (i.e. (n �A�An)=Bn ! a).Let kn = ln = n. Then by (4.18)2BnB2n f(2n) � f(n)g(n) �! 0 as n! +1and, since 2Bn=B2n ! 21�1=p 6= 0,f(2n) � f(n)g(n) �! 0 as n! +1: (4:20)



4.2. CENTERINGS 47Proceeding with induction, we getf(k � n)� f(n)g(n) �! 0 as n! +1;8k 2 IN : (4:21)Further, it follows from (4.21) that for all k; l 2 INf(k � n)� f(l � n)g(k � n) �! 0 as n! +1: (4:22)We will mimic the proof of [BGT87, Theorem 3.1.10c, p.134]. Since 1=p � 1 < 0 andg is (1=p � 1)-regularly varying, one can �nd m00 such that g(2m)=g(m) � � < 1 andg(n)=g(m) � C < +1 whenever n � m � m00.Let m0 � m00 be such that for m � m0, jf(2m)� f(m)j=g(m) � ". If l > k � m0, thenfor every n 2 INjf(l)� f(k)jg(k) � g(l)g(k) nXj=1 jf(2j l)� f(2j�1l)jg(2j�1l) g(2j�1l)g(l)+ jf(2nl)� f(2nk)jg(2nk) g(2nk)g(k)+ nXj=1 jf(2jk)� f(2j�1k)jg(2j�1k) g(2j�1k)g(k)� (B + 1)0@ nXj=1 "�j�11A+ �n jf(2nl)� f(2nk)jg(2nk) :The last term tends to zero as n!1 by (4.22). Finally, we havejf(l)� f(k)jg(k) � "(B + 1) 11 � � : (4:23)Since g(k) ! 0, ff(n)g is a Cauchy sequence, so converges to some A. Letting l !1 in(4.23), we get A� f(k) = o(g(k)).Remark 4.11 Subtraction of A in the case 1 < p � 2 corresponds to centering byexpectation (if exists).



48 CHAPTER 4. TAUBERIAN LIMIT THEOREMS



Chapter 5Examples of p - stable LimitTheoremsIn the previous chapter we have found necessary and su�cient conditions for p - stable limittheorems. Below we are going to show that the conditions are tractable.Some methods of checking Condition B were already presented in Chapter 2. So wewill mainly concentrate on examiningk�1=pn knXj=1 Yn;j �!D � (5:1)for every sequence kn increasing to in�nity slowly enough (i.e. kn = o(rn) for some \ratesequence" frng), where for each n, Yn;1; Yn;2; . . . are independent copies of Sn=Bn and � isa strictly stable distribution.5.1 Uniform Integrabilityand the Central Limit TheoremLet us apply the simplest limit theorem for triangular arrays: the Lindeberg-Feller CentralLimit Theorem. By this theorem, in order to check (5.1) with � = N (0; 1) (standardnormal), we need the following assumptions:� 8n 2 IN , EYn;1 = ESn=Bn = 0, i.e. EX1 = 0.� 8n 2 IN , EY 2n;1 = E(Sn=Bn)2 < +1, i.e. EX21 < +1.� 8kn !1; kn = o(rn), knE(Yn;1=k(1=2)n )2 = ES2n=B2n ! 1, i.e. ES2n � B2n.� 8kn !1; kn = o(rn) and 8" > 0, knE(Yn;1=k(1=2)n )2I(Y 2n;1 > "kn) ! 0, i.e.E�SnBn�2I(�SnBn�2 > "kn) �! 0: (5:2)49



50 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSUsing Corollary 3.9 we may rewrite the above relation aslimm!1 lim supn!1 E�SnBn �2I(�SnBn �2 > m) = 0; (5:3)what is nothing but uniform integrability of S2n=B2n.On the other hand, if Bn = qES2n, then Sn=Bn �!D N (0; 1) implies uniform inte-grability of S2n=B2n by [Bil68, Theorem 5.4]. So we have provedTheorem 5.1 Suppose that EX21 < +1 and EX1 = 0. Let �2n = ES2n ! +1. ThenL(��1n Sn) �!D N (0; 1) as n! +1and �2n is 1 - regularly varying if, and only if, Condition B holds and f��2n S2ngn2IN isa uniformly integrable sequence.The above theorem is an improvement of Theorem 3 in [Den86], where only stronglymixing sequences were considered. Although stated formally so late, the theorem was usedimplicitly in most central limit theorems obtained by Bernstein's method, starting withIbragimov's pioneer works [Ibr59] (� - mixing) and [Ibr75] (� - mixing):Lemma 5.2 Suppose that fXjg is � - mixing, EX1 = 0, EjX1j2+� < +1 for some� > 0 and �2n ! +1. Then E��� nXj=1Xj ���2+� � Cj�nj2+� (5:4)for some C > 0. (In particular, f��2n S2ng is a uniformly integrable sequence).Observe, that \by the way" we obtained representation �2n = n`(n), where `(x) is aslowly varying function on IR+. This property, however, does not require moments higherthan 2 and very strong mixing properties like � - mixing: it is easy to prove (using e.g.Lemma B.4) that �2n varies 1 - regularly if ES2n !1 and� (n) := supfESk(Sk+r+m � Sk+r)qES2k � ES2m : k; r;m 2 IN; r � ng �! 0 as n! +1: (5:5)When only second moments are �nite, uniform integrability is not easily veri�able. Onemay try, for example, to truncate random variables and then use some special tools, likethe following inequality due to Peligrad [Pel82]ES2n � K � n �EX21 ; (5:6)valid for centered � - mixing random variables with the rate of mixing1Xi=1 �(2i) < +1; (5:7)and with K depending on coe�cients f�(k)gk2IN only.Using this inequality, one can prove the best possible result for � - mixing sequences,when only second moments are assumed to exist:



5.2. CLT: INFINITE VARIANCES 51Theorem 5.3 ([Ibr75]) Suppose fXjg is stationary, EX1 = 0; EX21 < +1. If(5.7) holds, then there exists limn!1 ES2nn = �2 � 0; (5:8)and if �2 > 0, then Snpn �!D N (0; �2):In fact, in most cases we have �2 > 0 in (5.8): Bradley [Bra81] proved that1Xi=1 � (2i) < +1(where � (n) � �(n) is de�ned by (5.5)), together with ES2n !1 imply (5.8) with positivelimit (see also [Pel82]).Examples in [Bra87] show that the rate of mixing (5.7) cannot be weakened.The situation is di�erent, when we pass to � - mixing sequences. Peligrad [Pel85] provedthat under � - mixing, uniform integrability of fmax1�j�n(S2j =�2n)g is equivalent to uniformintegrability of fmax1�j�n(X2j =�2n)g. But the latter sequence converges to 0 in L2, providedlim infn!1 ES2nn > 0: (5:9)So we getTheorem 5.4 ([Pel85]) Suppose fXjg is a stationary and � - mixing sequence,EX1 = 0, EX21 < +1. If (5.9) holds, thenSn�n �!D N (0; 1):Eventually, let us mention the paper [DDP86], where interesting equivalent (understrong mixing) expressions for uniform integrability of fS2n=�2ng were formulated: e.g.lim supn!1 �nEjSnj � q�=2:5.2 Central Limit Theorem for stationary sequenceswith in�nite variancesCentral limit theorems for stationary sequences without �nite second moment were con-sidered by several authors, starting with the early eighties. We can mention here papersby Lin [Lin81], Samur [Sam85], Heinrich [Hei82], [Hei85]. These papers generalized theindependent case, but their assumptions were either technical or too restrictive.



52 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSOn the contrary, assumptions of recent papers by Bradley [Bra88], Shao [Sha86],Szewczak [Sze88] and Peligrad [Pel90] are probabilistic in nature and close to what weknow from the �nite variance case.For example, Theorem 1 in [Bra88] says that if `(x) := EX21I(jX1j � x) is slowlyvarying as x!1, EX1 = 0 and�(1) < 1 and 1Xi=1 �(2i) < +1; (5:10)then Sn=Bn �!D N (0; 1) for some sequence Bn !1.Similarly, [Pel90] shows that under � - mixing with �(1) < 1, the regular variation oftail probabilities P (jX1j > x) = x�2`(x) (5:11)is su�cient for CLT to hold.Theoretically, all those theorems are contained in our Theorem 4.5. Conditions (4.5){(4.7) are, however, not the easiest in direct handling and therefore we suggest following[JaSz90] and using a criterion similar to Theorem 5.1.For bn > 0 de�ne Xn;j = XjI (jXjj < bn)� EXjI (jXj j < bn) (5:12)Tn = nXj=1Xn;j ; � 2n = V arTn: (5:13)Theorem 5.5 Let fXjg be a strongly mixing stationary sequence. Suppose we can �ndbn ! +1 such that � 2n ! +1 and��1n nXj=1XjI (jXj j � bn) �!P 0 as n! +1: (5:14)Then L(��1n (Sn � nEX1I(jX1j < bn))) �!D N (0; 1); as n! +1; (5:15)if and only if f��2n T 2ngn2IN is a uniformly integrable sequence of random variables.Proof. Necessity. From (5.14) and (5.15) we have L(��1n Tn) �!D N (0; 1) . Uniformintegrability of f��2n T 2ng follows then by [Bil68, Theorem 5.4].Sufficiency. Let fcXjgj2IN and fcXn;jgj=1;...;n; n2IN denote independent copies of fXjgand fXn;jg, respectively. Set bSn = nXj=1 cXj; Un = Sn � bSn;bTn = nXj=1 cXn;j ; Zn = Tn � bTn; �2n = VarZn = 2� 2n:



5.2. CLT: INFINITE VARIANCES 53First, we shall prove that conditions (4.5)-(4.6) hold when Bn and Sn are replaced by�n and Un, i.e. that L(��1n Un) �!D N (0; 1) as n! +1: (5:16)Condition (4.6) is satis�ed trivially, for Un's are symmetric. To prove (4.5), observethat by (5.14) ��1n (Un � Zn) �!P 0. Hence for every " > 0 and m 2 INlim supn!1 m2P (��1n Un > m) � lim supn!1 m2P (��1n Zn > m� ")� lim supn!1 2m2P (��1n Tn > (m� ")=p2)� lim supn!1 4 m2(m� ")2 ��2n E(T 2nI(��1n Tn > (m� ")=p2))�! 0 as m! +1by the uniform integrability of ��2n T 2n . Notice, that we have also checked condition (4.5)for Bn = �n and Sn = Zn. The sequence ��1n Zn satis�es condition (4.7), too:��2n EZ2nI(jZnj � m�n) = m2P (jZnj > m�n) + 2 Z 1m y P (jZnj > �ny) dy� 2m2P (jTnj > 2�1m�n) + 4 Z 1m y P (jTnj > 2�1�ny) dy= 4��2n ET 2nI(jTnj � m�n=p2)! 0 as m! +1:So it is enough to compare ��2n EU2nI(jUnj � m�n) and ��2n EZ2nI(jZnj � m�n). But��2n EU2nI(jUnj � m�n) = 2 Z m0 yP (jUnj > y�n) dy �m2P (jUnj > m�n)and we have already known that the last term is negligible for large m's (condition (4.5) !).Since (Un�Zn)=�n �!P 0, we can replace the integral on the right-hand side by anotherone, involving Zn instead of Un. This proves condition (4.7) and we conclude that (5.16)holds. In particularL(��1n Zn) = L((p2�n)�1(Tn � bTn)) �!D N (0; 1) as n! +1: (5:17)Since f��1n Tngn2IN is obviously tight, we may assume thatL((p2�n)�1Tn) �!D L(X)along a subsequence n 2 Q � IN . Then alsoL(�(p2�n)�1 bTn) �!D L(�X)



54 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSalong n 2 Q and by (5.17) L(X) � L(�X) = N (0; 1). According to the Cramer Theorem(e.g. [Lo�e77, p.283]), there exist a 2 IR and � > 0 , such that L(X) = N (a; �2) . By ourmain assumption f��2n T 2ngn2IN is uniformly integrable, so a = 0 and �2 = 1=2 . Hencethe only possible limit point for tight sequence L(��1n Tn) is N (0; 1), i.e. we have weakconvergence to the standard normal law. Returning to non-truncated sums Sn via (5.14)completes the proof.Let us discuss brie
y the assumptions of Theorem 5.5. The i.i.d. case suggests thechoice of fbng: if L(X1) is being attracted by the normal law ( L(X1) 2 DA(2) ), de�nebn := inffx; x�2EX21 (jX1j < x) � 1=ng: (5:18)So take bn's as above and consider the next assumption of Theorem 5.5, i.e.� 2n = Var ( nXj=1XjI(jXjj � bn)) ! +1:It is satis�ed if, for example, %1 < 1 | see [Bra88, Lemma 2.2]. In the class of m-dependentsequences the latter condition is rather restrictive, as the following example shows:Example 5.6 Let f�jgj2Z be an i.i.d. sequence such that L(�1) 2 DA(2) and let�j = �j + �j+1 . Then %1(f�jg) = 1 . To see this, let us introduce #j = �2j � �2j+2 andobserve that by Theorem 1,[Bra88], %1(f#jg) = 1 . Thus1 = %1(f#jg) = %((. . . ; ��2 � �0; �0 � �2); (�2 � �4; �4 � �6; . . .))� %((. . . ; ��2 � �0; ��1 � �1; �0 � �2); (�2 � �4; �3 � �5; �4 � �6; . . .))= %((. . . ; ��2 � ��1; ��1 � �0; �0 � �1); (�2 � �3; �3 � �4; �4 � �5; . . .))� %1(f�jg):For m-dependent sequences estimation of the rate of growth of �n can provide a veryuseful information:Theorem 5.7 Let fXjgj2IN be an m-dependent, strictly stationary sequence such thatL(X1) 2 DA(2) and EX21 = 1 . Assume for simplicity that EX1 = 0 . Take bn as in(5.18) and let �n be de�ned by (5.13). Thenlim infn!1 �nb�1n > 0 (5:19)implies L(��1n Sn) �!D N (0; 1).Proof. First notice that �n ! +1. By the choice of bnb�1n nXj=1XjI(jXjj � bn) �!P 0;



5.3. NON-CENTRAL LIMIT THEOREMS 55so (5.19) implies condition (5.14). Further, it is easy to see that fb�2n T 2ngn2IN is uniformlyintegrable, hence by (5.19) we have also uniform integrability of f��2n T 2ngn2IN and allassumptions of Theorem 5.5 are satis�ed. Consequently (5.15) holds and we have to proveonly, that n��1n jEX1I(jX1j < bn)j �! 0 as n! +1: (5:20)But by Theorem 2, VIII, x9 in [Fel71] we havenb�1n EjX1jI(jX1j � bn) �! 0 as n! +1:Now (5.20) follows from the above formula, assumption (5.19) and the fact that ESn = 0.The above theorem, although operating with %-mixing sequences, is not contained inBradley's Theorem 1 [Bra88], since we have no restrictions on %1.It is worth noticing, that checking condition (5.19) is the key step in the proof of thecorresponding result in [Lin81] (for further discussion of m-dependent case we refer to[Sze88]). On the other hand (5.19) is far from necessity:Example 5.8 Let P (Y > x) = P (Y < �x) = 12x2 ;for x > 1 and P (Z > x) = P (Z < �x) = e2lnx2x2 ;for x � e . Let fYjgj2IN and fZjgj2IN be i.i.d. with L(Y1) = L(Y ) and L(Z1) = L(Z) .De�ne Xj = Yj + Zj � Zj+1 , then by Theorem, VIII, x8, [Fel71]P (jX1j > x) � e2 lnxx2 as x �! +1;so EX21I(jX1j < x) � 2e2(lnx)2; as x �! +1;and bn � epnlnnp2 ; as n �! +1:On the other hand it is not di�cult to see thatEY 21 I(jY1j < x) � 2lnx; as x �! +1;so � 2n � nlnn and limn �nb�1n = 0 .5.3 Non-central Limit TheoremsWhen \second order" methods are useless, the analysis of the characteristic function ofa sum of dependent random variables can be very di�cult. Maybe this is the reasonthat the �rst general p - stable limit theorem with p < 2 was published only in 1983.In



56 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMS[Dav83], developing some ideas of the Extreme Value Limit Theory and using specialrepresentation for stable laws, Davis proved two theorems, separately for cases 0 < p < 1and 1 � p < 2. Especially his Theorem 2, corresponding to 0 < p < 1, is very interesting,since its assumptions are 
exible enough to cover existing examples (e.g. continued fractionexpansions) as well as the followingExample 5.9 Let fYjgj2IN be a stationary Gaussian sequence with zero mean, unitvariance and covariance function rn = EY1Yn and let bY1; bY2; . . . be the independent im-itation of fYjg, i.e. i.i.d. with the same marginal distributions L(Yj) = L( bYj). LetH : IR1 ! IR1 be such that the law of H(Y1) belongs to the domain of attraction of astable law � with index 0 < p < 1. Finally, let Bn be such thatH( bY1) +H( bY2) + . . . +H( bYn)Bn �!D �:If rn � log n! 0 or P1k=1 r2n < +1, then alsoH(Y1) +H(Y2) + . . . +H(Yn)Bn �!D �:Davis' result was rederived in a particular case by Aaronson [Aar86] (see Corollary5.12 below) and then applied in studying properties of f - expansions. Later, using a pointprocesses technique, Jakubowski and Kobus [JaKo89] generalized it to several dimensionsand for nonstationary sequences.Here we shall join our general Theorem 4.2 and computations of Theorem 2 and Propo-sition 3 [DeJa89] in order to prove a slight generalization of Davis' Theorem.Theorem 5.10 Let fXjg be a stationary sequence and let fcXjg be its independentimitation.Suppose there exist constants Bn such thatcX1 + cX2 + . . . + cXnBn �!D �; (5:21)where � is strictly p - stable, 0 < p < 1.Further, suppose the following Condition D0 holds:limk!1 lim supn!1 n � [n=k]Xj=2 P (jX1j > "Bn; jXjj > "Bn) = 0; 8" > 0: (5:22)Then X1 +X2 + . . . +XnBn �!D �if, and only if, Condition B is satis�ed.



5.3. NON-CENTRAL LIMIT THEOREMS 57Proof. By (5.21) we know that � = Pois (p; c+; c�) and that for each x > 0n � P (X1 > x �Bn) �! c+=xp;n � P (X1 < (�x) �Bn) �! c�=xp: (5:23)In particular, if xn !1 is increasing slowly enough, thenxpn � n � P (X1 > xnBn) �! c+; (5:24)and similarly for c�.Lemma 5.11 If Condition D0 holds, then there exists a sequence rn ! 1 such thatfor all sequences 0 < xn !1 with xn = o(rn),limn!1 xpn X1�i<j�n P (jXij > xnBn; jXjj > xnBn) = 0: (5:25)Proof. Condition D0 implieskn � X1�i<j�n P (jXij > "Bkn�n; jXjj > "Bkn�n) �! 0; (5:26)for kn ! 1, kn = o(ern). By regular variation of Bn, there exists a sequence rn ! 1,rn � ern such that limn!1 sup1�s�rn s1=pBn=B[sn] = 1: (5:27)Let xn = k1=pn "n be such that xn ! 1, "n ! 1 and kn = o(rn). Then, for 0 < "0 < 1 andn large enough,xpn X1�i<j�n P (jXij > xnBn; jXjj > xnBn)= "pnkn X1�i<j�n P (jXij > k1=pn "nBn; jXjj > k1=pn "nBn)= "pnkn X1�i<j�n P�jXij > "nk1=pn BnBkn�n Bkn�n; jXj j > "n k1=pn BnBkn�n Bkn�n�� 2pkn � X1�i<j�n P (jXij > "Bkn�n; jXjj > "Bkn�n) �! 0:In order to apply Theorem 4.2 we have to prove thatxpnP (Sn > xnBn) �! c+ (5:28)for all increasing slowly enough xn !1 (and similar relation for c�). Let us observe thatby Karamata's Theorem, function f(x) = EjX1j ^ x varies regularly with index 1 � p.Hence for � > 0 and xn increasing slowly enoughxpnP���� nXj=1XjI(jXjj � �Bnxn)��� > Bnxn� � xpnnE(jX1j ^ �Bnxn)Bnxn � �1�p1 � p: (5:29)So



58 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSlim�&0 lim supn!1 xpnP���� nXj=1XjI(jXjj � �Bnxn)��� > Bnxn� = 0;and to prove (5.28) it is enough to show thatlimn!1 xpnP� nXj=1XjI(jXjj > �Bnxn) > Bnxn� = c+: (5:30)So �x 0 < � < 1. We haven nXj=1XjI(jXjj > �Bnxn) > Bnxno4 n nXj=1XjI(Xj > Bnxn) > Bnxno� f9i 6= j : jXij > �Bnxn; jXjj > �Bnxng = [1�i<j�nfjXij > �Bnxn; jXjj > �Bnxng;so using (5.25) for �xn we obtain thatlimn!1 xpn ������P� nXj=1XjI(jXjj > �Bnxn) > Bnxn�� P� nXj=1XjI(Xj > Bnxn) > Bnxn������� = 0:Moreover, since n nXj=1XjI(Xj > Bnxn) > Bnxno = n[j=1fXj > Bnxng;it follows from Bonferroni's inequality and again by (5.25) thatlimn!1 xpn ������P� nXj=1XjI(Xj > Bn) > Bnxn�� nP (X1 > Bnxn)������� limn!1 xpn X1�i<j�n P (jXij > xnBn; jXjj > xnBn) = 0:Now (5.30) follows by (5.24).Corollary 5.12 Condition D0 holds, if for each " > 0supn2IN n � P (jX1j > "Bn) � C < +1; (5:31)and  1(1) := supj2IN supx>0 P (jX1j > x; jXjj > x)(P (jX1j > x))2 < +1: (5:32)In particular, if fXjg is a stationary,  -mixing sequence with  (1) < +1 and Bn issuch that (5.21) is satis�ed, then Sn=Bn �!D �:



5.4. M-DEPENDENT SEQUENCES 59Proof.n [n=k]Xj=2 P (jX1j > "Bn; jXj j > "Bn) �  1(1)n[n=k]P (jX1j > "Bn)2 � C2 1(1) � k�1:Let us note that we used the assumption 0 < p < 1 in (5.29) only. One may use othertools for this estimation. For example Peligrad's inequality (5.6) gives us:Theorem 5.13 Let fXjg be a stationary � - mixing sequence with1Xk=1 �(2k) < +1:If Bn is such that cX1 + cX2 + . . . + cXnBn �!D �;where � is a non-degenerate strictly p - stable distribution, 1 � p < 2, and if Condition D0holds, then X1 +X2 + . . . +XnBn �!D �:Proof. Let us assume, for the sake of simplicity, that random variablesXj have symmetriclaws. We have to check (5.29). By inequality (5.6) and by Karamata's TheoremxpnP���� nXj=1�XjI(jXjj � �Bnxn)���� > Bnxn� � xpnKnE(X21 ^ (�Bnxn)2)B2nx2n � K �2�p2 � p ;and this approaches 0 as � & 0.The above theorem is a (poor) counterpart of Ibragimov's CLT and was proved (in thenonstationary setting) in [JaKo89]. It improves Corollary 5.10 in [Sam84], where � - mixingwith �(1) < 1 and P1k=1 �1=2(k) < +1 is considered.5.4 Limit Theorems for m-dependent SequencesRecall, that fXjg is m - dependent if �(m + 1) = 0, i.e. for each n 2 IN , X1;X2; . . . ;Xnand Xn+m+1;Xn+m+2; . . . are independent. This notion was introduced by Hoe�ding andRobbins in [HoRo48], together with some, by now classic, statistical applications. Out-side of statistics, 1 - dependent sequences arise naturally in regeneration theory of certainMarkov processes|see [Asm87, Chapter VI].In [HoRo48] a central limit theorem involving �niteness of third moments was proved.Final form of the Central Limit Theorem for m - dependent sequences was found by Di-ananda [Dia55, Theorem 4]:



60 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSTheorem 5.14 If fXjgj2IN is a strictly stationary sequence of m - dependent randomvariables with zero mean and �nite variance, thenX1 +X2 + . . . +Xnpn �!D N (0; �2); (5:33)where �2 = EX21 + m+1Xj=2 EX1Xj : (5:34)(When �2 = 0 we set N (0; 0) = �0).Heinrich [Hei82] and [Hei85] proposed a general method of derivation of limit theoremsfor m - dependent sequences, for both p = 2 and 0 < p < 2 (including estimations ofthe rate of convergence). His conditions are, however, very technical and far from beingminimal.The conditions in [JaKo89, Theorem 5.3] are very natural.Theorem 5.15 Let fXjg be a strictly stationary and m - dependent sequence. Assumethat the distribution of random vector Y0 = (X1; . . . ;Xm+1) belongs to the domain of attrac-tion of a non-degenerate (m+1) - dimensional p - stable law � with the L�evy measure �, i.e.there exist constants Bn such that sums bY1 + bY2 + . . . + bYn normalized by Bn and suitablycentered are convergent in distribution to �.Let �0 := �x1+...+xm+1 � �x1+x2+...+xm ; (5:35)where �x1+...+xm+1 (A) := �(f(x1; x2; . . . ; xm+1) 2 IR(m+1) : x1 + x2 + . . . + xm+1 2 Ag) and�x1+x2+...+xm is de�ned similarly.(i) If 0 < p < 1, then Sn=Bn �!D Pois (�0).(ii) If 1 < p < 2, then (Sn �ESn)=Bn �!D c1 � Pois (�0).(iii) If p = 1 , then (Sn �An)=Bn �!D c1 � Pois (�0), whereAn = n�E(X1 +X2 + . . . +Xm+1)I(jX1 +X2 + . . . +Xm+1j � Bn)� E(X1 +X2 + . . . +Xm)I(jX1 +X2 + . . . +Xmj � Bn)�:Examples 5.6 and 5.7, [JaKo89, pp.237{239], show how formula (5.35) works. We turnthe attention to the fact that �0 is determined by asymptotic properties of L(X1 + X2 +. . . +Xm+1) and L(X1 +X2 + . . . +Xm) only, and not by the whole L(Y0). The situationin Theorem 5.14 is the same:�2 = E(X1 + . . . +Xm+1)2 � E(X1 + . . . +Xm)2:Szewczak [Sze88] (p = 2, in�nite variances) and Kobus [Kob90] (0 < p < 2) usingcompletely di�erent tools proved that limit theorems for stationary m - dependent randomvariables possess structure independent of p.Let for each k 2 IN , bU (k)1 ; bU (k)2 ; . . . be independent copies of Sk = X1 +X2 + . . . +Xk.



5.4. M-DEPENDENT SEQUENCES 61Theorem 5.16 Let X1;X2; . . . be a stationary m-dependent sequence.Suppose fBng is such thatbU (m+1)1 + bU (m+1)2 + . . . + bU (m+1)n =Bn �!D �m+1 (5:36)and bU (m)1 + bU (m)2 + . . . + bU (m)n =Bn �!D �m; (5:37)where �m+1 and �m are non-degenerate strictly p-stable distributions.Then (X1 +X2 + . . . +Xn)=Bn converges in distribution to the strictly p - stable law �with the characteristic function b�(t) = b�m+1(t)b�m(t) : (5:38)Proof. We will give a short proof based on our Theorem 4.2 for the case 0 < p < 1 only.At �rst, let us observe that for each x > 0P (X1 > x �Bn) � P (Sm+1 > (x=2) �Bn) + P (Sm > (x=2) �Bn): (5:39)Estimating the same way P (X1 < (�x) �Bn) we getsupn2IN nP (jX1j > xBn) < +1: (5:40)As in the proof of Lemma 5.11, we obtain from m - dependence and (5.40)limn!1 xpn X1�i<j�nj�i>m P (jXij > xnBn; jXjj > xnBn) = 0; (5:41)for all increasing slowly enough xn !1.Similarly, as in Theorem 5.10, it is su�cient to provexpn���P (S�;n;n > Bnxn)� n(P (S�;n;m+1 > Bnxn)� P (S�;n;m > Bnxn))��� �! 0; (5:42)where fxng is increasing slowly enough andS�;n;k = kXj=1XjI(jXjj > �Bnxn); k = 1; 2; . . . ; n:De�ne �n = minfj : jXjj > �Bnxng;S��;n;k = nXj=1XjI(jXjj > �Bnxn) � I(�n +m � j) = S�;n;k^(�n+m):SincexpnP (S�;n;n 6= S��;n;n) � xpnP� [1�i<j�nj�i>m fjXij > �xnBn; jXjj > �xnBng� �! 0by (5.41), it is enough to deal with xpnP (S��;n;n > Bnxn).



62 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMSLemma 5.17 Let Z1; Z2; . . . ; Zn be random variables with partial sums Tk = Pkj=1 Zj ,T0 = 0. Then for any C > 0,I(Tn > C) = nXk=1 I(Tk > C;Tk�1 � C)� nXk=1 I(Tk � C;Tk�1 > C): (5:43)Setting in the above lemma Zj = XjI(jXjj > �Bnxn) � I(�n +m � j) we obtainI(S��;n;n > Bnxn) = nXk=1 I(S��;n;k > Bnxn; S��;n;k�1 � Bnxn) (5.44)� nXk=1 I(S��;n;k � Bnxn; S��;n;k�1 > Bnxn):But k > �n +m implies S��;n;k = S��;n;�n+m, sonXk=1 I(S��;n;k > Bnxn; S��;n;k�1 � Bnxn) = �n+mXk=1 I(S��;n;k > Bnxn; S��;n;k�1 � Bnxn):On the other hand, if m < k � �n +m thenS��;n;k = S�;n;k � S�;n;k�m�1 and S��;n;k�1 = S�;n;k�1 � S�;n;k�m�1:Moreover,0 � nXk=1 I(S�;n;k � S�;n;k�m�1 > Bnxn; S�;n;k�1 � S�;n;k�m�1 � Bnxn)� �n+mXk=1 I(S�;n;k � S�;n;k�m�1 > Bnxn; S�;n;k�1 � S�;n;k�m�1 � Bnxn)� X1�i<j�nj�i>m I(jXij > �xnBn; jXj j > �xnBn):Taking into account the three last relations and (5.41), we obtainlimn!1 xpn���E nXk=1 I(S��;n;k > Bnxn; S��;n;k�1 � Bnxn)� nP (S�;n;m+1 > Bnxn; S�;n;m � Bnxn)���� limn!1 xpnE��� nXk=1 I(S��;n;k > Bnxn; S��;n;k�1 � Bnxn)� nXk=1 I(S�;n;k � S�;n;k�m�1 > Bnxn; S�;n;k�1 � S�;n;k�m�1 � Bnxn)���= 0:An analogous formula can be obtained for the second term on the right-hand side of (5.44).



5.4. M-DEPENDENT SEQUENCES 63Eventually, observe thatP (S�;n;m+1 > Bnxn; S�;n;m � Bnxn)� P (S�;n;m+1 � Bnxn; S�;n;m > Bnxn)= P (S�;n;m+1 > Bnxn)� P (S�;n;m > Bnxn):Remark 5.18 Condition D0 considered in the previous section excludes clustering ofbig values in the sequence fXjg. In general, Condition D0 need not be satis�ed by m -dependent sequences.Example 5.19 Let Yj 's be i.i.d. with L(Yj) 2 D(�) for some p - stable � and setXj = Yj _ Yj�1. Clearly, in this sequence big values \go in pairs", hence D0 cannot holdand point processes technique cannot be applied, at least directly. This is the reason forhard technical proof of Theorem 5.15 in [JaKo89]. The new approach using Tauberiantheorems seems to be much better tool.This example illustrates also another phenomenon. Observe that �nite dimensional dis-tributions of the process [0; 1] 3 t 7! Sn(t) = P[nt]j=1Xj converge and that the limit is stable.But if p < 2, we do not have functional convergence! Indeed, the jumps of the limit areproduced by pairs of jumps of processes Sn. And this is impossible in the Skorokhod topol-ogy. Even if the limit is Gaussian, but Yj has in�nite variance, the functional convergencemay fail. A suitable sequence is provided by Example 5.8: this time max1�j�nXj 6! 0 inprobability|see [Sze89].We refer to [Sam87] and [Dab87], where necessary and su�cient conditions for func-tional convergence in some classes of mixing processes are given.



64 CHAPTER 5. EXAMPLES OF P - STABLE LIMIT THEOREMS
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Chapter 6Asymptotic IndependentRepresentations for Maxima6.1 Main CriterionLet fXjgj2IN be a sequence of random variables. De�ne Mm:n = maxm<j�nXj for m < n,Mn:m = �1 for m � n and Mn = M0:n.The concept of asymptotic independent representation for maxima is the same as forsums: We say that fXjgj2IN admits an a.i.r. for maxima if there exists a sequence ffXjgj2INof independent random variables such thatsupx2IR1 jP (Mn � x)� P (fMn � x)j ! 0 as n! +1; (6:1)where fMn's are partial maxima for ffXjg.Existence of independent asymptotic representation reduces many problems on asymp-totic properties of laws of fMngn2IN to the easily computable independent case. For exam-ple, possible limit laws for suitably centered and normalized Mn's can be identi�ed withthose found by Meizler ([Mei56]), see also [Gal78, Chapter 3].In the Extreme Value Limit Theory, the idea of replacement of the \original" sequenceby an independent one, being equivalent from some point of view, goes back to paperby Watson([Wat54]). Loynes([Loy65]) considered the \associated" sequence for fXjg|ani.i.d. sequence fcXjg with the same one-dimensional marginals: L(Xj) = L(cXj). We willsay that fcXjg is the \independent imitation" of fXjg. Leadbetter ([Lea74]) proved thatin a wide class of stationary sequences the limit behaviour of all order statistics is thesame for both fXjg and fcXjg. Even if the correspondence between higher order statisticsbreaks, the maxima of fXjg and fcXjg can remain closely related. This holds, for example,if so called extremal index of fXjg exists|see [Lea83], [LLR83, Chapter 3] and Section6.5 below.If fXjg is stationary, ffXjg are i.i.d. and G is the distribution function of fX1, then67



68 CHAPTER 6. A.I.R. FOR MAXIMA(6.1) can be rewritten asP (Mn � un)�G(un)n ! 0 as n! +1; (6:2)for every sequence fung � IR1. O'Brien [OBr87] calls any distribution function G satisfying(6.2) a phantom distribution function for fXjg (in view of our considerations on sums, a\max-phantom" in place of \phantom" would be more appropriate here).We shall show, how to construct an a.i.r. knowing limit of pathsIR+ 3 t 7! P (M[nt] � vn)for some sequence fvng � IR1. If the limit is of the form e�t�, where � > 0, this constructiongives an i.i.d. sequence, i.e. we obtain a phantom distribution function. This means weare going to �nd a universal tool for both stationary and nonstationary cases.At the very beginning, let us observe that we may consider non-decreasing sequencesfvng only.Lemma 6.1 Suppose for some sequence fvng and some subset D � IR+,P (M[nt] � vn) �! �t; t 2 D:If supt2D �t = 1 and �t0 < 1 for some t0 2 D, then one can �nd a non-decreasing sequencekn � IN , kn ! +1 such that fv�n = vkng is non-decreasing and satis�esP (M[nt] � v�n) �! �t; t 2 D:Proof. De�ne (F1)� = supj(Fj)�, where (Fj)� = supfx ; Fj(x) < 1g. Since �t0 < 1 forsome t0 2 D, we have vn < (F1)� for n large enough. Hence we can de�nev�n = ( inffvl : l 2 INg if vk � (F1)� for 1 � k � nmaxfvk : vk < (F1)�; 1 � k � ng otherwise. (6:3)In particular, for large n vn � v�n < (F1)�: (6:4)Set k0 = minfl : vl = v�l g andkn = ( k0 if n < k0minfk � n : vk = v�ng otherwise. (6:5)Clearly, fkng is non-decreasing. If kn = k1 for n � n0, then for every j 2 IN and t 2 D,�t = limn!1P (M[nt] � vn) � limn!1 P (Xj � vn) � limn!1 P (Xj � v�n) = P (Xj � vk1);and, consequently, P (Xj � vk1) = 1 for each j 2 IN , i.e. vk1 � (F1)�. But this isimpossible by (6.4) and thus kn !1. If so, for " > 0; t 2 D and n large enough�t � " < P (M[nt] � vn) � P (M[nt] � v�n)= P (M[nt] � vkn) � P (M[knt] � vkn) < �t + "i.e. P (M[nt] � v�n) �! �t.



6.1. MAIN CRITERION 69Theorem 6.2 Assume there is a sequence fvng such that for each t in some densesubset D � IR+ = (0;+1) P (M[nt] � vn) �! �t; (6:6)where �t > 0; t 2 D (6.7)supt2D �t = 1; (6.8)inft2D�t = 0: (6.9)Set e�t = supD3u>t�u:Then the following statements (i) - (iv) are equivalent.(i) fXjg admits an asymptotic independent representation.(ii) fXjg admits an asymptotic independent representation de�ned by marginal dis-tribution functionsfXj � Fj(x) = 8><>: 0 if x < v�1;e�j=n=e�j�1=n if v�n � x < v�n+1;1 if x � supk v�k (6:10)where numbers v�n are de�ned by (6.3).(iii) For each u � 1 the function fu(t) = e�ut=e�t is non-increasing on (0;1).(iv) The function g� = log �e� � exp is concave.Corollary 6.3 Suppose fXjgj2IN are independent and (6.6)-(6.9) hold for some denseD � IR+. Then limn!1 P (M[nt] � vn) = �t uniformly in t � 0 and �(�) = exp(g�(log(�)))for some concave g�.Corollary 6.4 Suppose that (6.6) is satis�ed with �t = exp(�t��), where � > 0. ThenfXjg admits a phantom distribution function G given by formulaG(x) = 8><>: 0 if x < v�1;exp(��)1=n if v�n � x < v�n+1;1 if x � supk v�k (6:11)where numbers v�n are de�ned by (6.3).



70 CHAPTER 6. A.I.R. FOR MAXIMACorollary 6.5 Assume, in addition to (6.6)-(6.9), thatsupk�l jP (Ml � vn) � P (Mk � vn)P (Mk:l � vn)j �! 0 as n!1: (6:12)Then fXjg admits an asymptotic independent representation.Remark 6.6 If (6.8) and (6.9) are not satis�ed, the limit function may contain noinformation.Example 6.7 Let F (x) = ( 1 � x�� for x � 10 otherwiseIf fYjg are i.i.d. with Yj � F , de�ne Xj = j�1=�Yj and vn = log1=� n. Then for every t > 0,P (M[nt] � vn) �! e�1:6.2 ProofsWe divide the proof of Theorem 6.2 into several steps. First we shall adapt the scheme ofgetting uniform closeness, developed in [Jak90a] and [Jak91a]. The formulation of Lemma6.8 below is more complicated than we need for the present purposes; this is motivated byfuture applications.Lemma 6.8 Let fZngn2IN and f eZngn2IN be two non-decreasing sequences of randomvariables and let fvng be a non-decreasing sequence of numbers. Let g; eg : [0; 1] ! [0; 1] benon-decreasing, g(0) = eg(0) = 0, g(1) = eg(1) = 1.Suppose that for each t in some dense subset D � IR+, as n!1fn(t) = g(P (Z[nt])) ! f(t); efn(t) = eg(P ( eZ[nt] � vn)) ! f(t); (6:13)where f : IR+ ! [0; 1] is non-increasing and continuous and f(0) = 1; limt!1 f(t) = 0.Then supx2IR1 jg(P (Zn � x))� eg(P ( eZn � x))j ! 0; as n! +1: (6:14)Proof. By properties of f , convergence (6.13) is uniform in t 2 IR+. Henceg(P (Zn � vmn)) = f(n=mn) + o(1); eg(P ( eZn � vmn)) = f(n=mn) + o(1); (6:15)provided mn !1. If mn0 �M along a subsequence fn0g � IN , take another subsequencekn0 �M such that kn0 !1 so slowly that n0=kn0 !1. Since fvng is monotone,g(P (Zn0 � vmn0 )) � g(P (Zn0 � vkn0 )) = f(n0=kn0) + o(1) �! 0; (6:16)



6.2. PROOFS 71and similarly eg(P ( eZn0 � vmn0 )) ! 0. Hence (6.15) holds for every sequence fmng.Let fung be any sequence of numbers. De�ne integers mn = mn(fung):mn = 8><>: 1; if un < v1m; if vm � un < vm+1n2; if un � supfvm : m 2 INg: (6:17)If mn0 = 1 along fn0g, then as in (6.16)g(P (Zn0 � un0)) ! 0 = g(P (Zn0 � vmn0 )) + o(1):If mn0 = (n0)2, then1 � g(P (Zn0 � un0)) � g(P (Zn0 � vmn0 )) = f(1=n0) + o(1) ! 1:In the remaining case, when vmn0 � vmn0+1,f(n0=mn0) = g(P (Zn0 � vmn0 )) = o(1) � g(P (Zn0 � un0)) + o(1)� g(P (Zn0 � vmn0+1)) + o(1) = f(n0=(mn0 + 1)) + o(1) = f(n0=mn0) + o(1):So g(P (Zn � un)) = g(P (Zn � vmn)) + o(1) = f(n=mn) + o(1)and, similarly, eg(P ( eZn � un)) = f(n=mn) + o(1);i.e. for every fung g(P (Zn � un))� eg(P ( eZn � un)) ! 0: (6:18)This is exactly (6.14).Lemma 6.9 Properties (iii) and (iv) are equivalent.Proof. Take u � 1 and t > s > 0. Write h = log u; h0 = log(t=s) and x = log s. Letg� = log �e� � exp. Then property (iii) can be rewritten asg�(x+ h)� g�(x) � g�(x+ h+ h0)� g�(x+ h0)or g�(x+ h) + g�(x+ h0) � g�(x+ h+ h0) + g�(x)for every x 2 IR1 and h; h0 � 0. The last inequality is nothing but concavity of functiong�.Lemma 6.10 Suppose fvng is non-decreasing and conditions (6.6) - (6.9) hold. If thelimit function e�(�) has property (iii), then fXjg admits an a.i.r. given by formula (6.10) .



72 CHAPTER 6. A.I.R. FOR MAXIMAProof. Notice that vn = v�n. Let Fj(x) be given by (6.10). For each k; Fj is a distributionfunction. Indeed, if limn!1 vn < +1, then limx!1 Fj(x) = 1 trivially. If limn!1 vn =+1, then limx!1 Fj(x) = limt!0 e�t= limt!0 e�t = 1, in this case also. So we have to checkonly monotonicity, i.e. e�j=ne�j�1=n � e�j=n+1e�j�1=n+1or, equivalently e�j=ne�j=n+1 � e�j�1=ne�j�1=n+1 :Setting u = n + 1=n > 1; s = j � 1=n + 1; t = j=n + 1, we see that the last inequality isjust property (ii) of function e�(�).Let ffXjg be independent with fXj distributed according to Fj and let fMn = maxj�n fXj .We have for each t > 0 P (fM[nt] � vn) = [nt]Yj=1 e�j=ne�j�1=n = e�[nt]=n:Since (iv) (equivalent to (iii) by Lemma 6.9) provides continuity of e�(�), we get (6.6) withD = IR+ and M[nt] replaced by fM[nt].Set g(x) = eg(x) = x; f(t) = e�t and observe that all assumptions of Lemma 6.8 aresatis�ed. But (6.14) means that ffXjg constructed above is an a.i.r. for fXjg.Lemma 6.11 Suppose fvng is non-decreasing and conditions (6.6) and (6.7) hold. Iffor every 0 < s < tP (M[nt] � vn)� P (M[ns] � vn)P (M[ns]:[nt] � vn) �! 0; (6:19)then the limit function e�(�) has property (iii).Proof. Note that (6.6) implies convergence of P (M[n(�)] � vn) to e�(�) in every point ofcontinuity of the limit. We shall prove thate�use�s � e�ute�t ; (6:20)provided e�(�) is continuous at s; us and t and then we shall derive from (6.20) continuityof e�(�) in the entire half-line. This will give us property (iii).So let u > 1 and let t > s > 0 and us be continuity points of e�(�) . By (6.19), the factthat e�t > 0; t � 0 and right continuity of e�(�), it is enough to provelimn!1 P (M[ns]:[n(us)] � vn) = e�us=e�s �� e�ut+�=e�t = limn!1 P (M[nt]:[n(ut+�)] � vn);



6.3. MARKOV CHAINS 73where � is such that ut+ � is a point of continuity of e�(�). Let us observe, that for large nP (M[ns]:[n(us)] � vn) = P (M[(ns=t)t]:[(ns=t)ut] � v[(ns=t)(t=s)])� P (M[(ns=t)t]:[(ns=t)ut] � v[ns=t])� P (M[[ns=t]t]:[[ns=t](ut+�)] � v[ns=t]):The last expression approaches e�ut+�=e�t, while the �rst one | e�us=e�s, as desired.We conclude the proof while showing continuity of e�(�) on (0;1). If not, suppose e�(�)has a jump at t0: for some � > 0; 1 � � > e�t0+=e�t0�. Let s < t0 < (1 + ")s and lets; (1 + ")s; (1 + ")2s; (1 + ")3s; . . . be points of continuity of e�(�). Applying consecutively(6.20) we get e�(1+")se�s � e�(1+")2se�(1+")s � e�(1+")3se�(1+")2s � . . . ;and so on. In particular, for each k = 1; 2; . . .e�(1+")ks � ( e�(1+")se�s )k e�s:Choosing s close enough to t0 and " su�ciently small, we get e�(1+")s=e�s � 1� � < 1 hencee�t0+ = e�t0 = 0. This contradicts (6.7).Now we are ready to complete the Proof of Theorem 6.2. By Lemma 6.1, we can as-sume that fvng is non-decreasing. Next, Lemma 6.10 gives us implication (iii))(ii). Since(ii))(i) is trivial and (iii),(iv) is proved in Lemma 6.9, the only remaining implication is(i))(iii).Let ffXjg be a max-phantom sequence for fXjg. By (6.1) , fMn's satisfy (6.6) and (6.7).And condition (6.19) is obviously satis�ed by an independent sequence. Hence we canapply Lemma 6.11 in order to get property (iii) for e�(�).The Proof of Corollary 6.5 is similar:| Reduction to non-decreasing fvng. Take fv�ng de�ned in by (6.3). Observe that condi-tion (6.12) remains to be true with vn replaced by v�n = vkn.| Application of Lemma 6.11. Condition (6.19) is implied by (6.12).| Construction of an a.i.r. by Lemma 6.10.Corollaries 6.3 and 6.4 are obvious consequences of Theorem 6.2.6.3 Phantom Distribution Functionsfor Markov ChainsCorollary 6.5 suggests verifying condition 6.12 as a method for checking property (iii) offunction e�t. The procedure is standard: by (6.9) we can restrict our attention to maxima



74 CHAPTER 6. A.I.R. FOR MAXIMAof length at most [nT ], say. Next, if Xj's satisfy for each T > 0maxj�nT P (Xj � vn) �! 0; as n!1;we can reduce the problem to provingP (Mkn � vn;M(kn+rn):ln � vn)�P (Mkn � vn)P (M(kn+rn):ln � vn) �! 0; (6:21)for all kn; ln !1; kn + ln � [nT ], where rn !1 is such thatrn maxj�[nT ]P (Xj > vn) �! 0:The form of (6.21) is already \typical" for mixing conditions and similar to O'Brien'scondition AIM(un) [OBr87].It may happen, however, that direct checking property (iii) is possible without explicitinvoking arguments of \mixing". For example, one can use a martingale approach in asimilar way as for sums.Recall, that fFkgk2IN[f0g is a �ltration if Fk's form a non-decreasing sequence of �-algebras and that sequence fXkg is adapted to fFkg if Xk is Fk-measurable for each k 2 IN .We will follow idea of the \Principle of Conditioning" due to [Jak86], being a heuris-tic rule for derivation of limit theorems for dependent summands from results proved inindependent case only. We are going to show that this idea works in limit theorems formaxima as well.The heart of what follows is a lemma corresponding to Lemma 1.2 in [Jak86].Lemma 6.12 Let fXjg be adapted to fFjg and suppose thatknYj=1P (Xj � vnjFj�1)�!P � > 0; (6:22)where � is a constant. Then also P (Mkn � vn) �! �:Proof. One can get this lemma immediately from Lemma 2, p.66,[JaS l86].Here is well-known example of how to check assumption (6.22) of the above lemma.Corollary 6.13 If max1�j�kn P (Xj > vnjFj�1) �!P 0; (6.23)knXj=1P (Xj > vnjFj�1) �!P �; (6.24)



6.3. MARKOV CHAINS 75then knYj=1P (Xj � vnjFj�1) �!P e�� (6:25)and P (Mkn � vn) �! e��:Proof. If X1;X2; . . . are independent and Fj = �(X1;X2; . . . ;Xj) then (6.23) and (6.24)become max1�j�kn P (Xj > vn) �! 0;knXj=1P (Xj > vn) �! �:Simple computations (see e.g. [Gal78, Chapter 3]) show thatP (Mn � vn) = knYj=1P (Xj � vn) �! exp(��):So our corollary is true in this particular case.By usual arguments we can assume that both (6.23) and (6.24) hold pointwise for each! in a set of full measure. But in such ! we can mimic the proof of the independent casein order to get Qknj=1 P (Xj � vnjFj�1)(!) �! e��.Now we are ready to state our criterion based on the martingale approach:Theorem 6.14 Suppose that fXjg is adapted to fFjg and the following two conditionshold for each t > 0: max1�j�[nt]P (Xj > vnjFj�1) �!P 0; (6.26)[nt]Xj=1P (Xj > vnjFj�1) �!P �t; (6.27)where f�tgt�0 are �nite constants andlimt!0+�t = 0; limt!+1 �t = +1: (6:28)Then fXjg has an asymptotic independent representation.Proof. By Corollary 6.13 we know that (6.6){(6.9) hold with�t = e��t:



76 CHAPTER 6. A.I.R. FOR MAXIMAMoreover, by the same corollary[nt]Yj=1P (Xj � vnjFj�1) �!P �t (6:29)for each t � 0. For every j 2 IN choose a version of the regular conditional distribution ofXj with respect to Fj�1 and denote it by �j(A;!). Fix ! 2 
 and letX(!)1 ;X(!)2 ;X(!)3 ; . . . beindependent and distributed according to �1(�; !); �2(�; !); �3(�; !); . . ., respectively. ThenP (Xj � vnjFj�1)(!) = P (X(!)j � vn) a.s. and[nt]Yj=1P (Xj � vnjFj�1)(!) = P (M (!)[nt] � vn) a.s.By (6.27) and (6.29) there exists a subsequence fn0g � IN such thatmax1�j�[n0t]P (X(!)j > vn0) �! 0 and P (M (!)[n0t] � vn0) �! �t; t � 0; t{rational;for every ! in a set 
0 of probability 1. Fix ! 2 
0. Both Lemma 6.10 and Lemma 6.11remain valid if we consider convergence along a subsequence fn0g instead of a full IN . Hencewe can assume that vn is non-decreasing and condition (6.19) holds (since P (M (!)[nt] � vn) =P (M (!)[ns] � vn)P (M (!)[ns]:[nt] � vn)). So e�s has property (iii) of Theorem 6.2 and by thistheorem fXjg admits an a.i.r..Compiling Theorem 6.14 and Corollary 6.4 seems to be most fruitful for Markov chains.Theorem 6.15 Suppose fZjg is a homogeneous Markov chain with state space (S;BS),transition probabilities P (x;A) and a unique stationary initial distribution �. Letf : (S;BS) ! (IR1;B1) be a measurable function such that for some sequence fvng wehave nP ( � ; f > vn) �! U(�) in L1(S;BS; �) (6:30)If EU 6= 0, then fXj = f � Zjgj2IN has a phantom distribution function.Proof. By Corollary 6.4, it is enough to check assumptions of Theorem (6.2) with�t = t � (EU). Set F0 = f;;
g and Fj = �(Z1; Z2; . . . ; Zj). Then for each t > 0E max1�j�[nt] (P (Xj > vnjFj�1))2� (�(f > vn))2 + nXj=2E (P (Zj�1; f > vn))2� nE (P (Z1; f > vn))2 �! 0;



6.3. MARKOV CHAINS 77since n (P (Z1; f > vn))2 �! 0 in probability and is dominated by the uniformly integrablesequence fnP (Z1; f > vn)g. Checking (6.27) is a little bit more complicated. First, wemay neglect the term P (X1 > vnjF0) = �(f > vn). Then, by (6.30),E ������ [nt]Xj=2P (Xj > vnjFj�1)� (1=n) [nt]�1Xj=1 U(Zj)������� [nt]� 1n EjnP (Z1; f > vn)� U(Z1)j �! 0:But the ergodic theorem gives(1=n) [nt]�1Xj=1 U(Zj) �!L1 t � E(U(Z1))and our theorem follows.Using assumptions stronger then (6.30) we are able to work independently of whethera stationary initial distribution for fZjg exists or not.Corollary 6.16 Suppose fZjg is a homogeneous Markov chain on (S;BS), with tran-sition probabilities P (x;A) and initial distribution �. If f is such that
n = supx2S j� � nP (x; f > vn)j �! 0; (6:31)for some � > 0 and �(f > vn) �! 0; (6:32)then fXj = f � Zjgj2IN has a phantom distribution function.Proof. Following the notations from the proof of Theorem 6.15 we havemax1�j�[nt]P (Xj > vnjFj�1)� �(f > vn) + max2�j�nP (Zj�1; f > vn)� �(f > vn) + �=n+ 
n=n �! 0:Similarly ������ [nt]Xj=1P (Xj > vnjFj�1)� ([nt]� 1)n �������= j�(f > vn) + n�1 [nt]Xj=2(nP (Zj�1; f > vn)� �)j� �(f > vn) + n�1 � n � 
n �! 0:Hence �t = limn!1([nt]� 1)�=n = t�.



78 CHAPTER 6. A.I.R. FOR MAXIMA6.4 Regular Phantom Distribution Functionsfor Stationary SequencesRecall, that any distribution function G satisfyingP (Mn � un)�G(un)n �! 0 (6:33)for all sequences fung, is a phantom distribution function for fXjg. Notice that G is notuniquely determined.From the point of view of limit theorems we are interested in sequences fXjg for whichP (Mn � vn) converges to non-trivial limit at least for a single fvng � IR1; this means thatalso G(vn)n �! �; (6:34)where �; 0 < � < 1. By a well-known observation due to O'Brien [OBr74a] (see also[LLR83, p.24]), such sequence vn exists for some (and then for any) 0 < � < 1 i�G(G��) = 1 and limx!G�� 1�G(x)1 �G(x�) = 1; (6:35)where G� = supfx : G(x) < 1g. Say that G is regular (in the sense of O'Brien) if (6.35)is ful�lled.We are able to give a complete description of sequences possessing regular phantomdistribution functions.Theorem 6.17 A stationary sequence fXjg has a regular phantom distribution func-tion if and only if there is a sequence fvng such that for some �; 0 < � < 1,P (Mn � vn) �! �; (6:36)and the following Condition B1(vn) holds:supp;q2IN jP (Mp+q � vn)� P (Mp � vn)P (Mq � vn)j �! 0; as n! +1: (6:37)Moreover, given a sequence fvng satisfying both (6.36) and B1(vn), a regular phantomdistribution function G can be constructed explicitly: If F (x) = P (X1 � x) andv�n = ( inffvl : l 2 INg if vk � F� for 1 � k � nmaxfvk : vk < F�; 1 � k � ng otherwise. (6:38)we can set G(x) = 8><>: 0 if x < v�1;�1=n if v�n � x < v�n+1;1 if x � supk v�k (6:39)



6.4. STATIONARY SEQUENCES 79Proof. Given Corollary 6.4, su�ciency is an easy task. Indeed, we have to prove onlythat for every pair of integers p; q > 0P (M[(p=q)n] � vn) �! �(p=q); as n! +1: (6:40)Observe, that P (X1 � vn) ! 1 (if not, we would have P (Mn0 � vn0) ! 0 by ConditionB1(vn), at least along a subsequence fn0g � IN). Hence also P (Mkn � vn) ! 1 forbounded kn. In particular, P (M[(p=q)n] � vn) = P (Mp�[n=q] � vn) + o(1) and ConditionB1(vn) implies that P (M[(p=q)n] � vn) = (P (M[n=q] � vn))p + o(1):This proves (6.40).So let us prove necessity of (6.36) and (6.37). Suppose that fXjg has a regular phantomdistribution function G. Fix � 2 (0; 1). (6.36) holds by regularity of G. In order to checkB1(vn) for fXjg, it is enough to prove thatP (Mpn+gn � vn)� P (Mpn � vn)P (Mqn � vn) �! 0; (6:41)for every pair pn; qn of sequences of positive integers. Observe, that G(vn) ! 1, hence onecan �nd a sequence fkng tending to in�nity so slowly that still Gkn(vn) ! 1. If pn0 � kn0along a subsequence fn0g � IN , thenP (Mpn0 � vn0) � P (Mkn0 � vn0) = Gkn0 (vn0) + o(1) �! 1;hence also P (Mpn0+qn0 � vn0)� P (Mqn0 � vn0) �! 0;and (6.41) holds along fn0g.So without loss of generality we can assume that pn > kn and qn > kn for every n 2 IN .In particular, both pn and qn tend to in�nity. By the de�nition of a phantom distributionfunction,P (Mpn+qn � vn) = Gpn+qn(vn) + o(1)= Gpn(vn)Gqn(vn) + o(1)= (P (Mpn � vn) + o(1)) (P (Mqn � vn) + o(1)) + o(1)= P (Mpn � vn)P (Mqn � vn) + o(1);i.e. (6.41) holds, either.In fact, we have provedCorollary 6.18 If fXjg has a phantom distribution function and fvng is such thatP (Mn � vn) �! �, for some 0 < � < 1, then B1(vn) holds for fXjg.



80 CHAPTER 6. A.I.R. FOR MAXIMALet us de�ne evn = inffx : P (Mn � x) � e�1g: (6:42)Under di�erent mixing assumptions, O'Brien [OBr87, Theorem 4.1] proved that Gde�ned by (6.39) with � = e�1 and v�n = evn is a regular phantom distribution function forfXjg.Our theorem improves O'Brien's result in two aspects:� we turn the attention to necessity� we deal with arbitrary sequence fvng satisfying (6.36) and (6.37)In two subsequent chapters we will study equivalent forms of Condition B1(vn) (Chap-ter 7) and possible ways of e�ective checking the convergence P (Mn � vn) ! � (Chapter8). The rest of the present chapter will be devoted to a theoretical application of thecriterion obtained above.Remark 6.19 Let G be a regular distribution function (e.g. continuous) and fvng besuch that Gn(vn) ! �, 0 < � < 1. If fXjgj2IN are i.i.d. with distribution function G, thenfor each t 2 IR+ P (M[nt] � vn) = (Gn(vn))[nt]=n �! �t; as n! +1;i.e. (6.6) holds.If G does not belong to the domain of attraction of a max-stable distribution (see[LLR83, Theorem 1.4.1, p. 16]) then no linear normalization anx+ bn exists such thatGn(anx+ bn) �! H(x); as n! +1; x 2 IR1;where H(x) is non-degenerate.It follows that the convergence (6.6) is much weaker, than the classical convergence indistribution of linearly normalized maxima.6.5 Relative Extremal Indexof Two Stationary SequencesLet us begin with an example, essentially due to Rootz�en [Roo88]Example 6.20 Let fXjgj2IN be max-regenerative, i.e. there exist integer-valued ran-dom variables 0 < S0 < S1 < . . . such that� Y0 = S0; Y1 = S1 � S0; Y2 = S2 � S1; . . . are independent with Y1; Y2; . . . { identicallydistributed.� X 00 = max0<j�S0 Xj ;X 01 = maxS0<j�S1 Xj ; . . . are independent, with X 01;X 02; . . . {identically distributed.



6.5. EXTREMAL INDEX 81There are naturally arising examples of such sequences, including instantaneous func-tions of certain Harris recurrent Markov chains, or, more generally, of regenerative se-quences | see Asmussen (1987), Chapter VI, for details.Suppose we may neglect the in
uence of the null cycle:P (X 00 > M 0n) �! 0; as n! +1; (6:43)and that the regeneration occurs after a �nite average time:� = EY1 < +1: (6:44)Then, by the law of large numbersY1 + Y2 + . . . + Ynn �! � a.s.,hence, heuristically, M[n�] can be replaced by M 0n. In fact, Theorem 3.1, [Roo88] showsthat supx2IR1 jP (Mn � x)� P (M 0n � x)1=�j �! 0:Generalizing the above example, we will say that a stationary sequence fXjg has therelative extremal index � with respect to another stationary sequence fX 0jg, ifsupx2IR1 jP (Mn � x)� P (M 0n � x)�j �! 0 as n! +1; (6:45)where Mn and M 0n are partial maxima for fXjg and fX 0jg, respectively. WritefXng �� fX 0ng:In order to explain the meaning of this relation, we may repeat the remarks on asymptoticindependent representations: if fXng �� fX 0ng, then the asymptotic properties of laws ofMn are completely determined by those for M 0n. Further, if fX 0ng is an i.i.d. or exchange-able sequence, then fXng �� fX 0ng provides information about necessary and su�cientconditions for the convergence in law of suitably normalized and centered Mn's and aboutpossible limit laws.In general, formula (6.45) does not determine uniquely the value of �. The relativeextremal index of fXng with respect to fX 0ng is well-de�ned by (6.45) i� one can �nda subsequence fn0g � IN and real numbers fvn0g such thatP (M 0n0 � vn0) �! �; (6:46)for some �; 0 < � < 1. Moreover, for any such a sequence fvn0g, (6.45) implies� = limn0!1 logP (Mn0 � vn0)logP (M 0n0 � vn0) : (6:47)



82 CHAPTER 6. A.I.R. FOR MAXIMAThe relative extremal index generalizes the notion of the extremal index due to Lead-better.Perfecting the ideas of Loynes [Loy65] and O'Brien [OBr74a], Leadbetter [Lea83] de�nedthe extremal index of a stationary sequence fXng as a number �; 0 � � � 1, such that forall � > 0, P (Mn � un(� ) �! e��� (6:48)whenever nP (X1 > un(� )) �! �: (6:49)Let fcXj : n 2 INg be the independent imitation of fXjg, i.e. cXj 's are i.i.d. with the samemarginal distributions as Xj : L(cXj) = L(Xj). Then (6.49) means P (cMn � un(� )) ! e��and (6.48) and (6.49) implyP (Mn � un)� P (cMn � un)� �! 0 (6:50)at least for sequences un = un(� ) de�ned by (6.49).In fact, Leadbetter [Lea83] proved (6.50) for all sequences fung, provided � > 0. Itfollows that (6.45) is satis�ed and the extremal index � > 0 is our relative extremal indexof fXjg with respect to its independent imitation fcXjg.Now suppose that fXjg admits a regular phantom distribution function G. If fX 0jg isan i.i.d. sequence with marginals G, then (6.45) holds with � = 1. But more important isfor our purposes, that we may rede�ne G according to formula (6.39).Theorem 6.21 Assume there is a sequence fvng such that P (M 0n � vn) �! �0, where0 < �0 < 1, and Condition B1(vn) is satis�ed for fX 0jg.Then there exists �; 0 < � <1, such that fXjg has the relative extremal index � withrespect to fX 0jg if, and only if, fXjg satis�es B1(vn) and for some �; 0 < � < 1, onehas P (Mn � vn) �! �.In such a case � = log�= log �0: (6:51)Proof. By Theorem 6.17, fX 0jg has a regular phantom distribution function, say G0. IffXjg �� fX 0jg, then by de�nition (6.45), G = (G0)� is a regular phantom distributionfunction for fXjg. By (6.45), P (Mn � vn) �! � = (�0)�. And Condition B1(vn) holdsfor fXjg by Corollary 6.18.To prove the converse part, assume that P (Mn � vn) �! � for some � 2 (0; 1)and that B1(vn) holds for fXjg. By Theorem 6.17 both fXjg and fX 0jg admit phantomdistribution functions G and G0, respectively, given by formula (6.39), with � replaced by�0 in the latter case. If � is de�ned by (6.51), then G = (G0)�, and (6.45) follows by thede�nition of a phantom distribution function.Theorem 1.5 contains existing in the area results. We refer to [Lea83], [LeRo88] and[Roo88] for standard examples of calculation of the extremal index.It should be pointed out, that there are classes of stationary sequences with no phantomdistribution functions for which the relative extremal index can be calculated, as well.



6.5. EXTREMAL INDEX 83Example 6.22 Let Y be a positive (with probability one) and non-degenerate randomvariable. Let Z = Y1 + Y2, where Y1 and Y2 are independent copies of Y . Fix 
 > 0 andconsider two random probability distribution functions F (!; x) and G(!; x) such that asx!1 1�G(!; x) � Y (!)x�
 a.s.1� F (!; x) � Z(!)x�
 a.s.If fXng and fX 0ng are exchangeable sequences given by the kernels ! 7! N1 F (!; � )and ! 7! N1G(!; � ), respectively, then fXng has the relative extremal index � = 2 withrespect to fX 0ng. To see this, set vn = n1=
 and observe that for t > 0P (M[nt] � vn) = E(F (!; vn)[nt]) �! E e�t�Zand that P (M 0[nt] � vn)2 �!  E e�t�Y !2 = E e�t�Z:Hence the assumptions of Lemma (6.8) are satis�ed andsupx2IR1 jP (Mn � x)� P (M 0n � x)2j �! 0 as n! +1:Observe that both fXng and fX 0ng do not satisfy Condition B1(vn), for Y is non-degenerate, so they cannot have a phantom distribution function.



84 CHAPTER 6. A.I.R. FOR MAXIMA



Chapter 7Equivalent Forms of MixingConditions7.1 Exponential FormsIn this section we establish some equivalent forms of mixing properties of the sequencefMng with respect to a given sequence fvng of numbers. For T > 0 let us introduceCondition BT (vn)maxj+k�[T �n] jP (Mj+k � vn)� P (Mj � vn)P (Mk � vn)j �! 0; as n! +1: (7:1)Setting formally T = 1 we get Condition B1(vn) de�ned in the previous chapter.Recently O'Brien [OBr87] has considered stationary sequences having \asymptotic in-dependence of maxima" with respect to a sequence fvng (AIM(vn)) :max �����P (maxi�j Xi � vn; maxj+qn<i�j+k+qn Xi � vn) � P (Mj � vn)P (Mk � vn)����� (7.2)�! 0; as n! +1;where the maximum is taken over all j and k with the properties j � qn; k � qn andj + k + qn � n and fqng is a sequence of non-negative integers, qn = o(n).Notice that B1(vn) is a little bit stronger than AIM(vn). In most applications, how-ever, qn is such that P (Mqn � vn) �! 1. Under this condition AIM(vn) and B1(vn) areequivalent. Bearing in mind that AIM(vn) is the veri�able form of our mixing assumption,we prefer B1(vn), for it e�ects in breaking probabilities into products without inconvenientseparation of blocks.An example on p.287, [OBr87], shows that AIM(vn) (hence practically: B1(vn)) isweaker than commonly used in Extreme Value Limit Theory Leadbetter's [Lea74] Con-dition D(vn): there are constants f�n;lg with �n;[n�] ! 0 as n ! 1, for all � > 0, suchthat 85



86 CHAPTER 7. MIXING CONDITIONSjP (AB)� P (A)P (B)j � �n;l;for all sets A of the form fXi1 � vn; . . . ;Xip � vng and sets B of the form fXj1 �vn; . . . ;Xjp0 � vng with 1 � i1 < . . . < ip < j1 < . . . < jp0 � n and j1 � ip � l. So forchecking B1(vn) one can use all tools developed in [Gal78], [Lea83] and [OBr87].For sequences fXjg with the AIM(vn) property (and satisfying some additional con-ditions, e.g. sup nP (X1 > vn) < +1), O'Brien found an asymptotic representation ofP (Mn � vn) in the exponential form:P (Mn � vn)� exp(�nP (X0 > vn;Mrn � vn)) �! 0; as n! +1; (7:3)where frng is a suitably chosen sequence of non-negative integers (if rn = 0, we setM0 = �1).For our purposes a stronger result is necessary.Proposition 7.1 There exists a sequence frng of non-negative integers such thatrn � T � n andmax1�k�[T �n] jP (Mk � vn)� exp (�kP (X0 > vn;Mrn � vn))j �! 0; as n! +1; (7:4)if and only if P (X0 > vn) �! 0 and BT (vn) holds.Moreover, if frng satis�es (7.4) then necessarilyP (Mrn � vn) �! 1: (7:5)Proof. Necessity Condition (7.4) implies BT (vn), easily. Substituting in (7.4) k = 1we see that 1 � P (X0 > vn) � exp(�P (X0 > vn)) + o(1):This implies P (X0 > vn) �! 0. Further, observe that for each k � rnP (Mk > vn) � P 0@ [1�j�kfXj > vn; maxj<i�j+rn Xi � vng1A (7.6)= kP (X0 > vn;Mrn � vn)Hence, letting in (7.4) k = rn we get1 � P (Mrn > vn) = exp(�rnP (X0 > vn;Mrn � vn)) + o(1)� exp(�P (Mrn > vn)) + o(1);and, again, P (Mrn > vn) �! 0.Sufficiency: Assume P (X0 > vn) �! 0 and BT (vn). First we shall prove thatwhenever P (Mrn � vn) �! 1 then for every sequence kn � T � nP (Mkn � vn) � exp(�kn � P (X0 > vn;Mrn � vn)) + o(1) (7:7)



7.1. EXPONENTIAL FORMS 87Set Mk:l = maxk<j�lXj for k < l and Mk:l = �1 for k � l. Let us introduce eventsAn;i = fXi � vng andA0n;i = fXi � vng [ fXi+1 > vng [ . . . [ fXi+rn > vng= An;i [Acn;i+1 [ . . . [Acn;i+rnObserve that for every 0 � j < kk\i=j+1A0n;i n k\i=j+1An;i � k+rn[i=k+1Acn;i = f maxk<i�k+rn Xi > vng = fMk:k+rn > vng:It follows thatmaxk<l ������P 0@ l\i=k+1A0n;i1A� P 0@ l\i=k+1An;i1A������ � maxl P (Ml:l+rn > vn) = P (Mrn > vn) ! 0:This in turn implies that for 0 � jn � kn � ln � [nT ]P 0@ ln\i=jn+1A0n;i1A = P 0@ ln\i=jn+1An;i1A+ o(1)= P (Mln�jn � vn) + o(1)= P (Mln�kn � vn) � P (Mkn�jn � vn) + o(1)= P 0@ kn\i=jn+1A0n;i1AP 0@ ln\i=kn+1A0n;i1A+ o(1);i.e. BT (vn) being valid for fAn;ig is transformed intomax0�j�k�l�T �n ������P ( l\i=j+1A0n;i)� P ( k\i=j+1A0n;i)P ( l\i=k+1A0n;i)������ �! 0; as n! +1: (7:8)Similarly P (Mkn � vn) = P ( kn\i=1An;i) = P ( kn\i=1A0n;i) + o(1)Since also P ((A0n;i)c) = P (Xi > vn;Mi:i+rn � vn) = P (X0 > vn;Mrn � vn), we can rewrite(7.7) as P ( kn\i=1A0n;i) � exp0@� knXi=1 P ((A0n;i)c)1A + o(1): (7:9)Noticing that P (A0n;i) � P (An;i) = P (X0 � vn) ! 1, we get the above inequality from thefollowing lemma.Lemma 7.2 Let fA0n;i : 1 � i � kn; n 2 INg be an array of events satisfying 7.8 andsuch that min1�i�kn P (A0n;i) �! 1. Then (7.9) holds.



88 CHAPTER 7. MIXING CONDITIONSProof. Our assumptions constitute a part of what is presumed in Lemma 3.2 of [JaKo89].An inspection of the proof of this lemma (inequality (3.21) on p. 226) shows that it is justenough for (7.9) to hold. For completeness, we restate here this computation replacing A0n;iby An;i without the \prime" sign.It is su�cient to show that the convergencekn0Xi=1 P ((Acn0;i) �! C;along a subsequence fn0g � IN , where C 2 [0;+1), implieslim infn0!1 P 0@kn0\i=1An0;i1A � e�C: (7:10)In the sequel we will write for simplicity n instead of n0.If C = 0, then (7.10) holds trivially. So assume that 0 < C < +1. Fix r 2 IN andde�ne jrn;0 = 0;jrn;p = ( inffk ; Pki=1 P (Acn;i) � (p=r)Cg if this set is non-emptykn otherwise;jrn;r = kn:By the uniform in�nitesimality of events P (Acn;i), we have for every 1 � p � rjrn;pXi=jrn;p�1+1P (Acn;i) �! C=r; as n! +1;and by (7.8), for r �xed,P 0@ kn\i=1An;i1A� rYp=1P 0@ jrn;p\i=jrn;p�1+1An;i1A �! 0; as n! +1:Let fNr; r 2 INg be such that Nr > Nr�1 and for n � Nr,max1�p�r ������ jrn;pXi=jrn;p�1+1P (Acn;i)� C=r������ � 1=r; (7.11)������P 0@ \1�i�knAn;i1A � rYp=1P 0@ jrn;p\i=jrn;p�1+1An;i1A������ � 1=r: (7.12)For natural n, de�ne rn := r i� Nr � n < Nr+1:



7.1. EXPONENTIAL FORMS 89Clearly, rn !1 as n!1. Letmn;p := jrnn;p; p = 0; 1; . . . ; rn:Divide the intersection \1�i�knAn;i into rn blocksBn;p = mn;p\i=mn;p�1+1An;i; p = 1; 2; . . . ; rn;(here \; = 
). We have by (7.11) and (7.12)max1�p�rn P (Bcn;p) �! 0; as n! +1P 0@ rn\p=1Bn;p1A� rnYp=1P (Bn;p) �! 0; as n! +1:Since j exp(�x)� 1 + xj � (1=2)x2 for x � 0, so������ rnYp=1P (Bn;p)� exp0@� rnXp=1P (Bcn;p)1A������ � 12 max1�p�rn P (Bcn;p)0@ rnXp=1P (Bcn;p)1A! 0; as n! +1:Hence lim infn!1 P 0@ kn\i=1An;i1A = exp0@� lim supn!1 rnXp=1P (Bcn;p)1A� exp0@� lim supn!1 knXi=1 P (Acn;i)1A = exp(�C):The proof of Proposition 7.1 will be complete if we are able to derive the converseinequality to (7.7) for some sequence frng satisfying (7.5).It su�ces to �nd for every Q 2 IN a sequence frn = rn(Q)g such thatP (Mrn > vn) � Q�1 + o(1)and for any kn � T � nP (Mkn � vn) � exp(�kn � P (X0 > vn;Mrn � vn)) + 1=Q+ o(1): (7:13)To do this let us de�nern = minfk : P (Mk > vn) > 1=Qg ^ [T � n]: (7:14)Suppose P (Mrn0 > vn0) � 1=Q along a subsequence fn0g � IN . Then rn0 = [n0T ] andby (7.6) for any kn0 � [n0T ],1=Q � P (M[n0T ] > vn0) � kn0P (X0 > vn0;M[n0T ] � vn0):



90 CHAPTER 7. MIXING CONDITIONSHence P (Mkn0 � vn0) � 1 � e�1=Q + 1=Q� exp��kn0P (X0 > vn0;M[n0T ] � vn0)�+ 1=Q;i.e. (7.13) holds along fn0g.So we may assume that P (Mrn > vn) > 1=Q; n 2 IN . Since P (X1 > vn) �! 0, we havelimn!1 P (Mrn > vn) = 1=Q. Choose an integer W such that e�W � 1=Q. Let IN1 � INconsists of those numbers n for which kn > QWrn. If n 2 IN1, let qn = kn � QWrn.Suppose IN1 is in�nite and assume for notational convenience that IN1 = IN . Then byBT (vn) P (Mkn � vn) = P (Mrn � vn)QW � P (Mqn � vn) + o(1)� P (Mrn � vn)QW + o(1)�! (1� 1=Q)QW � e�W � 1=Q;and inequality (7.13) holds along IN1. If IN1 is �nite, we have kn � QWrn for n largeenough. For such n denote Un = [kn=rn]; qn = kn � Un � rn. Then we can estimatesimilarly as O'Brien ([OBr87, Corollary 2.2]):P (Mkn � vn) = P (Mrn � vn)Un � P (Mqn � vn) + o(1) by BT (vn)� exp(�Un � P (Mrn > vn)� P (Mqn > vn)) + o(1)� exp(�(Un � rn + qn)P (X0 > vn;Mrn � vn)) + o(1) by (7.6):This proves Proposition (7.1).Remark 7.3 It is easy to see that in de�nition (7.14) of rn we could use any 0 < T 0 � Tinstead of T . So if B1(vn) is satis�ed one can de�ne rn as for T = 1 and the proof stillworks.The asymptotic uniform representation given by (7.4) has consequences which are es-pecially useful in our considerations.Proposition 7.4 If for some T > 0lim infn!1 P (M[nT ] � vn) > 0then P (M[nt] � vn)� P (M[nT ] � vn)t=T �! 0 (7:15)uniformly in t 2 [0; T ] if and only if Condition BT (vn) holds.Proposition 7.5 Suppose0 < lim infn!1 P (Mn � vn) � lim supn!1 P (Mn � vn) < 1:Then the following items (i){(iii) are equivalent:



7.1. EXPONENTIAL FORMS 91(i) For each T > 0 Condition BT (vn) holds.(ii) Condition B1(vn) is satis�ed.(iii) P (M[nt] � vn) is asymptotically exponential on [0;1):supt>0 jP (M[nt] � vn)� P (Mn � vn)tj �! 0; as n! +1: (7:16)Proof. Necessity of BT (vn) in Proposition 7.4 and the chain of implications (iii))(ii))(i) in Proposition 7.5 are obvious.Let us assume BT (vn). We claim that P (X0 > vn) ! 0. Indeed, by BT (vn) we have foreach q lim infn!1 P (M[nT ] � vn) � lim infn!1 P (M[[nT ]=q] � vn)q � lim infn!1 P (X0 � vn)q:Now lim infn!1 P (M[nT ] � vn) > 0 implies lim infn!1 P (X0 � vn) = 1. Hence we canapply Proposition 7.1. Let frng be as in this proposition. De�necn = exp(�P (X0 > vn;Mrn � vn)):By (7.4) P (M[ntn] � vn)� c[ntn]n = P (M[ntn] � vn)� �c[nt0]n �[ntn]=[nt0] �! 0;for every sequence ftng of numbers, 0 � tn � T , and �xed t0 > 0. If t0 = T , we havec[nT ]n = P (M[nT ] � vn) + o(1) and since P (M[nT ] � vn) � � > 0 for n large enough, we getan equivalent form of (7.15), i.e.P (M[ntn] � vn)� P (M[nT ] � vn)tn=T �! 0for every sequence ftng; 0 � tn � T .We have already proved Proposition 7.4. To prove the remaining implication (i))(iii)in Proposition 7.5, let us repeat the above considerations for t0 = 1 and observe thatP (M[nt] � vn)� P (Mn � vn)t �! 0uniformly on each interval [0; T ]. Take " > 0 and let Q 2 IN be such thatlim supn!1 P (Mn � vn)Q < ":By BQ(vn), if t > Q,P (M[nt] � vn) � P (MnQ � vn) = P (Mn � vn)Q + o(1) � "for n large enough. For such n,P (Mn � vn)t � P (Mn � vn)Q < ";



92 CHAPTER 7. MIXING CONDITIONSeither, and we see that as n!1supt�0 ���P (M[nt] � vn)� P (Mn � vn)t���� sup0�t�Q ���P (M[nt] � vn)� P (Mn � vn)t���+ 2" �! 2":7.2 Families of Mixing ConditionsRemark 7.6 In some problems (e.g. convergence in law of maxima) it is more nat-ural to consider mixing conditions allowing \to break probabilities" for a family of levelsfvn(�) : � 2 Bg but on bounded intervals only. In fact this situation is covered by thepreceding theory as we can see from the proposition below.Proposition 7.7 The following conditions (i), (ii) and (iii) are equivalent.(i) For some 0 < � < 1, there exists a sequence fvn = vn(�)g such that P (Mn �vn) �! � and B1(vn) holds for fXjg.(ii) One can �nd a sequence fvn(�)g as in (i) for each � 2 (0; 1).(iii) There exist: a decreasing to zero sequence f�q : q 2 INg of positive numbersand an array fvn(q) : n; q 2 INg of numbers such that for each q 2 IN ConditionB1(vn(q)) holds and limn!1P (Mn � vn(q)) = �q (7:17)Proof. To see (i) ) (ii), choose 0 < �0 < 1 and set t = log�= log �0. By representation(7.16) P (Mn � v[nt]) = P (M[nt] � v[nt])(n=[nt]) + o(1) �! �(1=t) = �0:Eventually, we note that B1(v[nt]) � B1(vn). The implication (ii) ) (iii) is obvious, solet us suppose (iii). We may assume �1 < 1. Choose �; 1 > � > �1 and de�netq = log �= log �q:Clearly, 1 > tq & 0. By Proposition 7.4, condition (7.17) implies for each q 2 INP (M[nt] � vn(q))� �tq �! 0uniformly in t 2 [0; 1]. Hence one can �nd integers N1 < N2 < . . . < Nq < . . . such that�q(n; t) := P (M[nt] � vn(q))� �tq satisfysupn�Nq supt2[0;1] j�q(n; t)j � 1=q:



7.2. FAMILIES OF MIXING CONDITIONS 93For n 2 IN , let q = q(n) be such that Nq � n < Nq+1. We haveP (M[nt] � v[n=tq](q)) = ��tqq �[nt]=(tq�[n=tq]) + �q([n=tq]; [nt]=[n=tq]):When n ! 1, the �rst summand on the right-hand side tends to �t uniformlyin t 2 [0;+1).Choose T > 0 and let Q be so large that T � tQ � 1. If n is large enough, q(n) � Qand [nt]=[n=tq] � 1 whenever t � T . Since also [n=tq] � Nq, we conclude that the absolutevalue of the second term does not exceed 1=q(n) ! 0, provided t � T . Hence, settingvn = v[n=tq](q) if Nq � n < Nq+1we get P (M[nt] � vn)� �t �! 0uniformly in t 2 [0; T ], for every T > 0. In particular, P (Mn � vn) �! � and we mayapply Proposition 7.5 (i) in order to get B1(vn).The above proposition can be used to clarify the connections between our preferredCondition B1(vn) and conditions used in the literature (e.g. [LLR83]).First, it is mentioned in [Lea83], p. 293�, that the minimal property we need in limittheorems for maxima is \breaking":P (Mn � vn)� P (M[n=k] � vn)k �! 0;for each k = 2; 3; . . .. Hence in all proofs it is enough to assume B1(vn) instead of conditionslike D1(vn) | as far as we deal with maxima only. This remark allows us to discuss twoknown results using B1-type conditions, while originally they were proved under D1's.In analysis of both results we aim at proving (via Proposition 7.7), that a family ofmixing conditions can be replaced by a single condition of the form B1(vn), for some fvng.Suppose that fMng's suitably centered and normalized are convergent in law to somedistribution function H: P (Mn � anx+ bn) �! H(x)on some dense subset D � IR1. Further, let for each x 2 DH = D \ fx : 0 < H(x) < 1g,Condition B1(anx+ bn) is ful�lled. If H has no atom in its left end (i.e. H(�H) = 0, where�H = inffx : H(x) > 0g), then (7.17) is satis�ed and B1(anx+ bn) holds for all x 2 DH .The relation H(�H) = 0 can be derived directly, but we may use a result due to [Lea74]asserting that H must be max-stable (hence|continuous) whenever it is non-degenerate.The assumptions of the next proposition are motivated by Leadbetter's [Lea83] criterionfor the existence of the (ordinary) extremal index. Recall that the marginal distributionfunction of fXjg is regular|in the sense of (6.35)|if for each � > 0 one can �nd a sequenceun(� ) such that nP (X1 > un(� )) �! �: (7:18)Proposition 7.8 Suppose X1 has a regular distribution function. Let fun(� )g denotesa sequence satisfying (7.18).



94 CHAPTER 7. MIXING CONDITIONS(i) If for each � from some dense subset S � IR+ n f0g Condition B1(un(� )) holds,then BT (un(� )) is satis�ed for all � > 0 and T > 0.(ii) If, in addition, for some �0 > 0lim supn!1 P (Mn � un(�0)) < 1;then for each � > 0, Condition B1(un(� )) holds.Proof. Notice that by Lemma 7.2, lim infn!1 P (Mn � un(� )) � e�� > 0. Hence we canuse Proposition 7.4 for checking Condition BT (un(� )). Fix T > 0 and �0 > 0 and choose� 0; � 00 2 S in such a way that � 0T < �0 < � 00T :By de�nition (7.18) n(1� F (u[nT ](� 0))) �! � 0T ;so at least for n large enough, un(�0) � u[nT ](� 0). Similarly, we may assume that u[nT ](� 00) �un(�0). This impliesP (Mk � u[nT ](� 00)) � P (Mk � un(�0)) � P (Mk � u[nT ](� 0)); k 2 IN:Moreover, if k � [nT ],P (Mk � u[nT ](� 0)) � P (Mk � u[nT ](� 00))� [nT ]P (u[nT ](� 00) < X1 � u[nT ](� 0)) = � 00 � � 0 + o(1)Let tn 2 [0; T ]; n 2 IN . Choosing � 00 and � 0 as close as desired, we see that both P (M[ntn] �un(�0)) and P (M[nT ] � un(�0))(tn=T ) can be approximated by P (M[nT (tn=T )] � u[nT ](� 0)) andP (M[nT ] � u[nT ](� 0))(tn=T ), respectively. By B1(un(� 0)), the di�erence between the two lastexpressions tends to zero. So BT (un(�0)) holds.To prove (ii) observe that by the �rst part and by Proposition 7.5 it is enough to provethat lim supn!1 P (Mn � un(� )) < 1 for every � > 0. Let T > 0 be such that �0=T < � .Similarly as above we get un(� ) � u[nT ](�0) for n large enough, hencelim supn!1 P (Mn � un(� )) � lim supn!1 P (Mn � u[nT ](�0))� lim supn!1 P (Mn � un(�0))(1=T ) < 1:



Chapter 8Limiting Probabilities for Maxima8.1 The ProblemLet X0;X1;X2; . . . be a stationary sequence of random variables, and, as before, M0 = �1and for n � 1;Mn = max1�k�n Xj. Let fvng be a sequence of numbers.If Xj 's are i.i.d., then the convergenceP (Mn � vn)� exp(�nP (X0 > vn)) �! 0 as n!1 (8:1)holds. The above relation is no longer true if we drop the assumption of independence:there are simple examples of 1-dependent sequences not satisfying (8.1). On the otherhand, for m-dependent sequences a modi�cation of (8.1) is valid:P (Mn � vn) � exp(�nP (X0 > vn;Mm � vn)) �! 0: (8:2)This was proved by Newell [New64] under the additional assumptionsupn nP (X0 > vn) < +1:O'Brien [OBr87] has considered stationary sequences having \asymptotic independenceof maxima" and obtained the representationP (Mn � vn)� exp(�nP (X0 > vn;Mrn � vn)) �! 0; (8:3)where frng is a suitably chosen sequence of integers.Formulas like (8.3) are useful tools in structural problems, e.g. existence of phan-tom distribution functions or extremal indices (see [Jak91a],[OBr87]). They are useless,however, if rn tends to in�nity and we want to calculate the limit for P (Mn � vn): theexpression under exponent depends on increasing number of random variables Xj , henceit is of the same type as the approximated quantity P (Mn � vn). This inconveniencedisappears if we are able to approximate P (Mn � vn) with m possibly large, but �xed:limm!1 lim supn!1 jP (Mn � vn)� exp(�nP (X0 > vn;Mm � vn))j = 0: (8:4)95



96 CHAPTER 8. LIMITS FOR MAXIMASay that fXjg satis�es Condition C(vn), if the above relation holds.In the paper we study a version of C(vn), which allows us to approximate P (Mkn � vn)for every sequence kn � T � n:Condition C�T (vn)limm!1 lim supn!1 max1�k�T �n jP (Mk � vn)� exp(�kP (X0 > vn;Mm � vn))j = 0:By the above condition, if kn � T � n, thenP (Mkn � vn) = exp(�knP (X0 > vn;Mm � vn)) + �m;n; (8:5)where limm!1 lim supn!1 j�m;nj = 0. In particular, denoting� = limm!1 lim supn!1 knP (X0 > vn;Mm � vn);� = limm!1 lim infn!1 knP (X0 > vn;Mm � vn); (8:6)we get lim infn!1 P (Mkn � vn) = e��and lim supn!1 P (Mkn � vn) = e��:This leads to the most transparent (and immediate) consequence of C�T (vn):Theorem 8.1 Suppose C�T (vn) holds. Let kn be a sequence of integers, kn � T � n, andlet � and � be de�ned by (8.6).Then there exists � = limn!1 P (Mkn � vn) if and only if � = � =: �. In such a case,� = exp(��).Note once again, that only �nite-dimensional asymptotic properties of fXjg are in-volved in checking the equality � = �.Let jn and kn be non-negative integers, such that jn + kn � T � n; n 2 IN . If C�T (vn)holds, then by (8:5)P (Mjn+kn � vn) = exp(�(jn + kn)P (X0 > vn;Mm � vn)) + �0m;n= exp(�jnP (X0 > vn;Mm � vn)) � exp(�knP (X0 > vn;Mm � vn)) + �0m;n= (P (Mjn � vn) + �00m;n) � (P (Mkn � vn) + �000m;n) + �0m;n= P (Mjn � vn) � P (Mkn � vn) + �m;nwhere limm!1 lim supn!1 j�m;nj = 0, and the same relation holds for �0m;n; �00m;n and �000m;n.Hence C�T (vn) is of \mixing" type. In particular, C�T (vn) impliesCondition BT (vn).limm!1 maxj+k�T �n jP (Mj+k � vn)� P (Mj � vn)P (Mk � vn)j = 0: (8:7)



8.1. FINITE DIMENSIONAL APPROXIMATIONS 97This condition is close to mixing assumptions considered in the literature|a brief discus-sion of its relations to Leadbetter's Condition D(vn) (see [LLR83]) and O'Brien's [OBr87]Condition AIM(vn) can be found in the previous chapter.Mutual connections between C(vn), C�T (vn) and BT (vn) are examined in the next sec-tion.A collection of conditions, which are su�cient for C�T (vn) is given in Section 8.3.The last section of this chapter contains some illustrating the theory examples.This section is concluded with discussion of the existence of the extremal index due toLeadbetter [Lea83], when Condition CT (vn) holds. (see Section 6.5, p. 82 for de�nitions).For convenience, recall only thatfXng has the extremal index �; 0 � � � 1, i� (i) and (ii)below hold:(i) The distribution function F (x) = P (X0 � x) is regular in the sense of O'Brien, i.e.for each � > 0 there are numbers un(� ) such thatnP (X0 > un(� )) �! �: (8:8)(ii) For each � > 0, P (Mn � un(� )) �! e��� :Our result is a generalization of Theorem 1 [OBr74b].Theorem 8.2 Suppose the marginal distribution function F of X0 is regular in thesense of (8.8). De�ne � = limm!1 lim infx!F�� P (Mm � xjX0 > x);� = limm!1 lim supx!F�� P (Mm � xjX0 > x);where F� = supfx : F (x) < 1g.Let �0 > 0 and let fun(�0)g be numbers satisfying (8.8).If C(un(�0)) holds and BT (un(�0)) is satis�ed for each T > 0, then fXjg has the extremalindex � if and only if � = �. In such a case, � = � = �.Proof. Necessity. By C(un(�0)) and part (ii) of the de�nition of the extremal index,�� = limm!1 lim supn!1 nP (X0 >n (�0);Mm � un(�0))= � limm!1 lim supn!1 P (Mm � un(�0)jX0 > un(�0)):By Lemma 1, [OBr74b],lim supn!1 P (Mm � un(�0)jX0 > un(�0)) = lim supx!F�� P (Mm � xjX0 > x);i.e. � = �. We can check � = � similarly.



98 CHAPTER 8. LIMITS FOR MAXIMASufficiency. Assume that � = � = � > 0. By C(un(�0)) and Theorem 8.1P (Mn � un(�0)) �! e���0;where 0 < e���0 < 1. By Proposition 7.5, validity of Conditions BT (un(�0)) for each T > 0is equivalent to Condition B1(un(�0)):limn!1maxj;k jP (Mj+k � un(�0))� P (Mj � un(�0))P (Mk � un(�0))j = 0: (8:9)Hence all assumptions of our Theorem 6.21 are satis�ed and fXjg has the extremalindex �.In the case � = 0 we have no ready tools, but the situation is much simpler. First, letus remark that if the sequence fun(� )g is given for some � > 0, one can �nd such sequencesfor each � 0 > 0: it is enough to de�ne un(� 0) = u[n�=� 0](� ). We claim, that for sequencesde�ned this way limm!1 lim supn!1 nP (X0 > un(� 0);Mm � un(� 0)) = 0: (8:10)Indeed, this is true for � 0 = �0 by C(un(�0)) and for other � 0 > 0 by the de�nition of un(� 0).Eventually, the inclusionfMn > un(� 0)g �f max1�j�mXn+j > un(� 0)g [ n[k=1fXk > un(� 0); max1�k�mXk+j � un(� 0)gshows that (8.10) and P (X0 > un(� 0)) ! 0 imply P (Mn � un(� 0)) ! 1 for each � 0 > 0.Hence fXjg has the extremal index 0.Note that in the case � = 0 we do not use Condition BT (un(�0)).8.2 Around Condition C�T (vn)We have already checked that C�T (vn) implies BT (vn). Further, setting in (8.5) kn = 1 weget P (X0 � vn) = P (X1 � vn)= exp(�P (X0 > vn;Mm � vn)) + �m;n� exp(�P (X0 > vn)) + �m;n;where limm!1 lim supn!1 j�m;nj = 0. HenceP (X0 > vn) �! 0 as n!1: (8:11)By Proposition 7.1, BT (vn) and (8.11) are satis�ed if and only if a uniform version of (8.3)holds, i.e. there is a sequence rn of integers such thatP (Mrn � vn) �! 1 (8:12)



8.2. EQUIVALENT CONDITIONS 99and limn!1 max1�k�T �n jP (Mk � vn)� exp(�kP (X0 > vn;Mrn � vn))j = 0: (8:13)It follows, that if C�T (vn) holds, then (8.12) and (8.13) are ful�lled by some sequence frng.Can we say anything more on such sequence frng ? An informal answer is|yes, frng isincreasing slowly enough. The formal statement is given inProposition 8.3 Condition C�T (vn) holds if and only if (8.13) is ful�lled by everysequence frng of integers increasing to in�nity so slowly thatrnP (X0 > vn) �! 0 as n!1: (8:14)Proof. Condition (8.13) is equivalent toP (Mkn � vn) = exp(�knP (X0 > vn;Mrn � vn)) + o(1) (8:15)for every sequence kn � T � n. So let kn � T � n and assume C�T (vn). Let m" be such thatfor n � N" j�m";nj = jP (Mkn � vn)� exp(�knP (X0 > vn;Mm" � vn))j < ":If n � N" and rn � m", thenP (Mkn � vn) � exp(�knP (X0 > vn;Mrn � vn)) + ":Hence C�T (vn) impliesP (Mkn � vn) � exp(�knP (X0 > vn;Mrn � vn)) + o(1) (8:16)for every kn � T � n and every rn !1.To proceed further we need inequality (7.7), which we restate here inLemma 8.4 If BT (un) holds and frng satis�es (8.12), then for every sequence kn � T �nP (Mkn � un) � exp(�knP (X0 > un;Mrn � un)) + o(1): (8:17)By the above lemma, if0 = limn!1 rnP (X0 > vn) � limn!1 P (Mrn > vn);then the converse to (8.16) inequality holds, too, and (8.15) follows for all frng satisfying(8.14).If C�T (vn) does not hold, one can �nd a sequence frng increasing to in�nity as slowlyas desired (for instance: satisfying (8.14) ) and such that (8.13) fails.We have proved that C�T (vn) is stronger, than the uniform version of (8.3). The uniformversion of (8.2) is, in turn, stronger than C�T (vn).



100 CHAPTER 8. LIMITS FOR MAXIMAProposition 8.5 Fix m0 2 IN . Condition C�T (vn) is implied bylimn!1 max1�k�T �n jP (Mk � vn)� exp(�kP (X0 > vn;Mm0 � vn))j = 0: (8:18)Proof. By (8.18), for every kn � T � n and m � m0,P (Mkn � vn) = exp(�knP (X0 > vn;Mm0 � vn)) + o(1)� exp(�knP (X0 > vn;Mm � vn)) + o(1):The converse inequality is given by Lemma 8.4.Finally, we shall �nd additional assumptions which allow us to deduce from C(vn) itsuniform version C�T (vn).Proposition 8.6 Suppose thatlim infn!1 P (Mn � vn) > 0: (8:19)Then Condition C�T (vn) is satis�ed if and only if both C(vn) and BT (vn) hold.Proof. Only su�ciency has to be proved. By Proposition 7.4, under (8.19), ConditionBT (vn) is equivalent toP (Mkn � vn) = P (M[nT ] � vn)kn=[nT ] + o(1)for every kn � T � n. In particular,P (Mkn � vn) = P (Mn � vn)kn=n + o(1): (8:20)But C(vn) impliesP (Mn � vn)kn=n = (exp(�nP (X0 > vn;Mm � vn)) + �m;n)kn=n= exp(�knP (X0 > vn;Mm � vn)) + �0m;n;where limm!1 lim supn!1 j�m;nj = 0 and similarly for �0m;n. Hence C�T (vn) holds.Remark 8.7 Condition (8.19) can be veri�ed using Lemma (8.4). It is satis�ed if, forexample, P (X0 > vn) �! 0, BT (vn) holds andlimm!1 lim supn!1 nP (X0 > vn;Mm � vn) < +1: (8:21)



8.3. SUFFICIENT CONDITIONS 1018.3 Su�cient Conditions for C�T (vn)Consider again the representationP (Mkn � vn) = exp(�knP (X0 > vn;Mrn � vn)) + o(1) (8:22)for kn � T � n, valid when BT (vn) and P (X0 > vn) ! 0 hold. The expression underexponent is the average number of gaps of length at least rn between two subsequentexceedances of Xn's over vn. Heuristically, it depends on the way the exceedances aregrouping: longer clusters|longer gaps, small clusters|small gaps.1 Hence controlling thesize of clusters allows us to get the desired length of rn's. These remarks �nd their formalcounterpart inProposition 8.8 For Condition C�T (vn) to hold it is enough, that BT (vn) is satis�ed,P (X0 > vn) ! 0 andlimm!1 limk!1 lim supn!1 n [n=k]Xj=m+1P (X0 > vn;Xj > vn) = 0: (8:23)Lemma 8.9 Condition (8.23) impliessupn nP (X0 > vn;Mm0 � vn) � K < +1 (8:24)for some m0 2 IN .Proof. As usually, let Mk:l = maxk<j�lXj for k < l and Mk:l = �1 for k � l. We have[n=k]Xk=1 I(Xj > vn;Mk:k+m � vn)� I(M[n=k] > vn) + X1�i<j�[n=k]j�i>m I(Xi > vn;Xj > vn) :Hence nP (X0 > vn;Mm � vn)� (k + 1)0BBB@1 + X1�i<j�[n=k]j�i>m P (Xi > vn;Xj > vn)1CCCA� (k + 1) + (k + 1)[n=k]0@ [n=k]Xj=m+1P (X0 > vn;Xj > vn)1A� (k + 1) + 2n0@ [n=k]Xj=m+1P (X0 > vn;Xj > vn)1A1Notice, that by the ergodic theorem, the number of exceedances over vn among X1(!); X2(!);. . . ; Xn(!) is approximately nP (X0 > vn) and thus does not depend on the particular con�gurationof clusters.



102 CHAPTER 8. LIMITS FOR MAXIMAand by (8.23) the last expression is �nite for some k 2 IN and m 2 IN .Proof of Proposition 3.1. Let frng satis�es (8.22). By Lemma 8.4 we can anddo assume that rn !1 but still P (Mrn � vn) ! 1. By the latter and (8.22), rnP (X0 >vn;Mrn � vn) ! 0. Combining this with (8.24) we see that rn = o(n).Let m and k be such that for n � Nm;k, rn � [n=k] andn [n=k]Xj=m+1P (X0 > vn;Xj > vn) < ":Then 0 � exp(�knP (X0 > vn;Mrn � vn))� exp(�knP (X0 > vn;Mm � vn)= exp(�knP (X0 > vn;Mm � vn))� (exp(knP (X0 > vn;Mm � vn;Mm:rn > vn))� 1) (8.25)� exp(kn rnXj=m+1P (X0 > vn;Xj > vn))� 1 � eT �" � 1 = "0 :Hence for n large enoughexp(�knP (X0 > vn;Mm � vn)) � P (Mkn � vn) + o(1)� exp(�knP (X0 > vn;Mm � vn)) + "0 + o(1)and C�T (vn) follows.With almost identical proof we getCorollary 8.10 If Condition BT (vn) holds, P (X0 > vn) ! 0, and for some m0 � 0limk!1 lim supn!1 n [n=k]Xj=m0+1P (X0 > vn;Xj > vn) = 0; (8:26)then condition (8.18) is satis�ed.Notice, that in the case m0 = 0, (8.26) becomes the well-known Leadbetter's ConditionD0(vn), while (8.18) takes the formP (Mkn � vn)� exp(�knP (X0 > vn)) �! 0: (8:27)So our Corollary 8.10 contains Theorem 3.4.1 of [LLR83]. Note that the latter result isderived under stronger than BT (vn) Condition DT (vn). But the original proof can be easilyadapted to our assumptions|it is a typical situation as far as we deal with limit theoremsfor maxima only. This observation is due to Leadbetter [Lea83], p. 293 �.Conditions like (8.23) and (8.26) depend on properties of two-dimensional distributions,so they are easier in checking than C�T (vn) itself.



8.3. SUFFICIENT CONDITIONS 103Leadbetter [Lea74], using Berman's results, shows D0T (un(� )) for normal sequences withcovariances 
n = EXjXj+n satisfying 
n log n! 0 (here un(� ) is de�ned by (8.8)).Now suppose that X0;X1;X2; . . . are m-dependent, i.e. for each k 2 IN , �(X0; . . . ;Xj)and �(Xj+m+1;Xk+m+2; . . .) are independent. Ifsupn nP (X0 > vn) � K < +1;then n [n=k]Xj=m0+1P (X0 > vn;Xj > vn) == n [n=k]Xj=m0+1P (X0 > vn)2 � 1k (nP (X0 > vn))2 � K2k �! 0as k !1, hence (8.26) holds for m0 and, by Corollary 8.10, condition (8.18) is satis�ed.This provides the uniform version of Newell's result [New64].It is also possible to derive (8.23) introducing \two-dimensional" mixing coe�cients.Suppose, for example, that supn nP (X0 > vn) � K < +1 and for each u 2 IR1jP (X0 > u;Xj > u)� P (X0 > u)2j � �(j)P (X0 > u);where P1j=1 �(j) < +1. Then (8.23) holds:n [n=k]Xj=m+1P (X0 > vn;Xj > vn)� 0@n [n=k]Xj=m+1 �(j)P (X0 > vn)1A + 0@n [n=k]Xj=m+1 P (X0 > vn)21A� 0@K � +1Xj=m+1 �(j)1A+ K2k �! 0as k !1 and m!1.If fXng has very strong mixing properties, then C�T (vn) holds without extra rate ofmixing.Recall, that fXng is �-mixing (or: uniformly strongly mixing) i� as n!1�(n) = supm supfjP (BjA)� P (B)j : A 2 �(Xj : j � m); B 2 �(Xj : j � m+ n)g ! 0:Lemma 8.11 ( O'Brien [OBr74b], Lemma 3 )If fXng is �-mixing, then for integers p; q � 1,jP (max1�i�pXi�q � vn)� P (X1 � vn)pj � �(q):



104 CHAPTER 8. LIMITS FOR MAXIMACorollary 8.12 For �-mixing fXng, lim infn!1 P (Mn � vn) > 0 if and only ifsupn nP (X0 > vn) � K < +1:Proof. By Lemma 8.4, lim infn!1 P (Mn � vn) � e�K > 0. To get the converseimplication, observe that by Lemma 8.11P (Mn � vn) � P ( max1�i�[n=q]Xi�q � vn)� P (X0 � vn)[n=q] + �(q)= exp(�[n=q]P (X0 > vn)) + �(q) + o(1):If �(q) < lim infn!1 P (Mn � vn), thensupn nP (X0 > vn) � q �supn [n=q]P (X0 > vn) + 1� < +1:Proposition 8.13 If fXng is �-mixing andlim infn!1 P (Mn � vn) > 0; (8:28)then C�T (vn) holds.Proof. Inspecting the proof of Proposition 8.8|and, especially, the chain of inequalities(8.25)|we see, that it is enough to checklimm!1 lim supn!1 nP (X0 > vn;Mm � vn;Mm:rn > vn) = 0; (8:29)where rn satis�es (8.22) and rn !1.By �-mixing, condition (8.28) is equivalent to nP (X0 > vn) � K < +1 and we havenP (X0 > vn;Mm � vn;Mm:rn > vn)� nP (X0 > vn;Mm:rn > vn)� njP (X0 > vn;Mm:rn > vn)� P (X0 > vn)P (Mm:rn > vn)j+ nP (X0 > vn)P (Mm:rn > vn)� K(�(m) + P (Mrn > vn))�! K�(m) as n!1 by (8.12)�! 0 as m!1:The above proofs show that given sequence frng satisfying (8.22), we can check C�T (vn)by showing (8.29).



8.4. EXAMPLES 105One can prove, that under lim infn!1 P (Mn � vn) > 0, conditions (8.29) and C�T (vn)are equivalent ( note that via frng, Condition BT (vn) is implicitly involved by (8.29)).We prefer C�T (vn), since it contains all useful information that is necessary in proving limittheorems like our Theorems 8.1 and 8.2, while to (8.29) we can relate all remarks on formula(8.3): (8.29) is not based on asymptotic properties of �nite dimensional distribution andthus, is di�cult in direct checking.Condition (8.29) is an easy form of Condition C introduced in [OBr74b]. Hence in somesense, our Proposition 8.13 restates an observation due to O'Brien, [OBr74b, p. 58].8.4 Some examplesAll examples we are going to generate, are constructed the same way, with various param-eters only. As parameters we take� a number C2 (0; 1]:� a function h : [C;1) ! [0; 1] satisfying1 � h(x) � 1=x for x � C: (8:30)� a random variable Y taking values in [1=C;1).Given h and Y we de�ne a regular conditional distribution functionF (!; x) = 8><>: 0 if x < 1=C1 � h(Y (!)) if 1=C � x < Y (!)1 � 1=x if x � Y (!) (8:31)For each !, F (!; �) is a distribution function by property (8.30). Let X0;X1; . . . be anexchangeable sequence, which is conditionally independent over �(Y ) and such that theregular conditional distribution of Xj given �(Y ) equals to F (!; �).By conditional independence we can make explicit calculations, taking into accountthat P (Y � n) ! 1:P (M[nt] � n) = E((F (!; n))[nt])= (1� 1=n)[nt]P (Y � n)+ E((1� h(Y (!)))[nt]I(Y (!) > n))= (1� 1=n)[nt] + o(1)= e�t + o(1):Since both f(t) = e�t and the path t 7! P (M[nt] � n) are monotonic,P (M[nt] � n) ! e�t uniformly in t 2 [0;+1):In particular P (Mkn � n)� P (Mn � n)kn=n �! 0: (8:32)



106 CHAPTER 8. LIMITS FOR MAXIMAThis shows that C�T (vn = n) holds if and only iflimm!1 lim supn!1 je�1 � exp(�nP (X0 > n;Mm � n))j = 0;or, equivalently, limm!1 lim supn!1 jnP (X0 > n;Mm � n)� 1j = 0: (8:33)But nP (X0 > n;X1 � n;X2 � n; . . . ;Xm � n)= (1 � 1=n)mP (Y � n)+ nE(h(Y )(1� h(Y ))mI(Y > n))= Vm;n +Wm;n:Since for m �xed, limn!1 Vm;n = 1, (8.33) is equivalent tolimm!1 lim supn!1 Wm;n = 0: (8:34)But asymptotic properties of Wm;n essentially depend on h and the law of Y .Example 8.14 Set h(u) = 1. Then for m = 0W0;n = nP (Y > n)and this may have an arbitrary asymptotics (convergence to zero, to in�nity or to a �nitelimit, oscillations, . . . ), while for m = 1; W1;n = 0, i.e. condition (8.18) holds.Example 8.15 Let m > 0. Take � = 1 +m�1; � = (2m)�1 andh(u) = ( 1 if 1 � 21=�;1 � u�� if u � 21=�;P (Y � x) = K � Z x1 u�� du for x � 1:Then integration givesWm;n � K � n Z 1n u��m�� du = K 0 � n2��m��:Here limn!1Wm;n = 0, while limn!1Wm�1;n = K 0 > 0. Thus (8.18) holds for m0 = m,but not for m0 = m� 1.Example 8.16 Let h(u) = C; 0 < C < 1 and Y � C�1 a.s. ThenWm;n = C(1� C)mnP (Y > n):If nP (Y > n) ! K; 0 < K < +1, then C�T (vn = n) holds, but no m0 exists such that(8.18) is satis�ed.If limn!1 nP (Y > n) = +1, then C�T (vn = n) does not hold. Nevertheless, Wn;rn ! 0for some rn !1; rn = o(1), i.e. (8.22) is ful�lled.



Chapter 9Asymptotic (r-1) - dependentRepresentations for rth OrderStatistics9.1 Convergence of Order StatisticsLet X1;X2; . . . be a stationary sequence of random variables. Denote by M (q)k:l the qthlargest value of Xk+1;Xk+2; . . . ;Xl (if k � l or q > l� k, then by convention M (q)k:l = �1).For simplicity writeMn = M (1)0:n and M (q)n = M (q)0:n. It is well known, that for i.i.d. X1;X2; . . .convergence in distribution of suitably normalized partial maxima:P (Mn � vn(x)) �! G(x); x 2 IR1; (9:1)implies convergence of all order statistics: for each q � 2P (M (q)n � vn(x)) �! G(x)0@1 + q�1Xk=1 (� logG(x))kk! 1A ; x 2 IR1; as n! +1: (9:2)(see e.g. [Gal78] or [LLR83]).If we drop the assumption of independence, preserving only strong mixing property,convergence (9.2) may fail in two ways:|higher order statistics do not converge at all|they converge, but to di�erent limitsMori [Mor76] demonstrates the �rst possibility: he gives an example of 1-dependentsequence X1;X2; . . . satisfying (9.1) and such that M (2)n 's do not converge in distribution.Unexpectedly, convergence in law of Mn's and M (r)n 's for some r � 3 implies convergenceof all other M (q)n 's, 2 � q � r � 1. This was proved by Hsing [Hsi88, Theorem 3.3].Assuming that fM (q)n g converge weakly for each q 2 IN|what is almost the convergencein law of the corresponding point processes of exceedances|Dziubdziela [Dzi84] and Hsing,H�usler & Leadbetter [HHL88] describe possible limits in terms of parameters of certain107



108 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICScompound Poisson distributions. We prefer the description given by Hsing [Hsi88] (seealso Theorem 9.2 below): the limit for M (q)n is of the formG(x)0@1 + q�1Xk=1 (� logG(x))kk! � 
q;k1A ; (9:3)where 0 � 
q;k � 1; k = 1; 2; . . . ; q � 1, and G is the limit for maxima. However,complexity of formulas for 
q;k's quickly increases with q, what makes di�cult the analysisof asymptotic properties of higher order statistics. Therefore we suggest taking intoaccount simple approximating models in place of limiting distributions.9.2 Asymptotic representationsLet �1; �2; . . . ; �r � 0 be such that rXq=1 �q = 1; (9:4)and let G be a distribution function. For each 1 � q � r, let f eYq;jgj2IN be independent,identically distributed: eYq;j � G�q ; (9:5)and let sequences f eY1;jgj2IN ; f eY2;jgj2IN ; . . . ; f eYr;jgj2IN be mutually independent.De�ne new, this time (r � 1) - dependent sequence:fXj = eY1;j_ ( eY2;j _ eY2;j+1)_ ( eY3;j _ eY3;j+1 _ eY3;j+2) (9.6)..._ ( eYr;j _ eYr;j+1 _ . . . _ eYr;j+r�1):We will say, that order statistics M (1)n ;M (2)n ; . . . ;M (r)n of a stationary sequence X1;X2; . . .possess (or admit) asymptotic (G;�1; �2; . . . ; �r) - representation, if for each1 � q � r supx2IR1 jP (M (q)n � x)� P (fM (q)n � x)j �! 0 as n! +1; (9:7)where fM (q)n ; q = 1; 2; . . . ; r are order statistics of fX1; fX2; . . . de�ned by (9.6)The representation (G;�1; �2; . . . ; �n) is regular, if G is regular in the sense of O'Brien([OBr74a]), i.e. satis�es (6.35). Recall, that this regularity means for some (and then forall) 0 < � < 1 one can �nd a sequence vn = vn(�) of numbers satisfyingGn(vn) �! �; as n! +1: (9:8)Clearly, if r = 1, then (G; 1) - representation coincides with asymptotic independentrepresentation for maxima and G itself is a phantom distribution function (see Chapter 6).



9.2. ASYMPTOTIC REPRESENTATIONS 109We know when a (G; 1) - representation exists: Theorem 6.17 states, that fXjg admits aregular asymptotic independent representation for maxima if and only if there is a sequencefvng such that for some �; 0 < � < 1,P (Mn � vn) �! �; (9:9)and the following condition holds:Condition B1(vn):supk;l2IN jP (Mk+l � vn) � P (Mk � vn)P (Ml � vn)j ! 0 as n! +1: (9:10)We aim at extending the above result to the case r � 2. Let us introduceCondition B(r)1 (vn): for all p; q � 0; p + q � r � 1, as n! +1supk;l2IN jP (M (p+1)k � vn;M (q+1)k:k+l � vn)� P (M (p+1)k � vn)P (M (q+1)l � vn)j ! 0: (9:11)Observe that for each q 2 INEjI(M (q)k�jn � vn)� I(M (q)k � vn)j � jnP (X1 > vn)uniformly in k. So if fjng and fvng are such that jnP (X1 > vn) ! 0, then ConditionB (r)1 (vn) is equivalent tosupk;l�jn jP (M (p+1)k�jn � vn;M (q+1)k+jn :k+l � vn)� P (M (p+1)k�jn � vn)P (M (q+1)l�jn � vn)j �! 0 (9:12)as n!1, for all p; q; p+q � r�1. Now the blocks are separated and we can use \standard"mixing arguments for checking Condition B (r)1 (vn), e.g. strong mixing or slightly modi�edcondition �(vn) de�ned on p.99 [HHL88].It is intuitively clear (and can be proved rigorously following the line of the proof ofCorollary 6.18), that every sequence fXjg admitting a regular (G;�1; . . . ; �r) - represen-tation satis�es Condition B(r)1 (vn), provided G(vn) ! 1. For the converse we need moreinformation on properties of order statistics with respect to fvng:Theorem 9.1 Order statistics M (1)n ;M (2)n ; . . . ;M (r)n of stationary X1;X2; . . . ; admit aregular (G;�1; �2; . . . ; �r) - representation if and only if for some non-decreasing sequencefvng Condition B (r)1 (vn) holds and for each q; 1 � q � rP (M (q)n � vn) �! �q as n! +1; (9:13)where 0 < �1 < 1.Theorem 9.2 Suppose that M (1)n ;M (2)n ; . . . ;M (r)n admit a regular (G;�1; �2; . . . ; �r) -representation.



110 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICSThen for each 2 � q � r there are numbers 
q;1; 
q;2; . . . ; 
q;q�1 2 [0; 1] such that asn!1supx2IR1���P (M (k)n � x)� P (M (1)n � x)�1 + k�1Xj=1 (� log P (M (1)n � x))jj! � 
k;j���� �! 0: (9:14)More precisely 
q;k = Xj1;j2;...;jq�1�0k�Pq�1l=1 ljl�q�1Pq�1l=1 jl=k k!j1!j2! . . . jq�1!�1j1�2j2 � . . . � �q�1jq�1 : (9:15)Proofs of both theorems are deferred to the next section.We conclude this section with several comments.Remark 9.3 We do not know any stationary sequence satisfying Condition B (q)1 (vn)and not Condition B (r)1 (vn), with q < r.Remark 9.4 A (G;�1; �2; . . . ; �r) - representation may exist even if Mn;M (2)n ; . . . doesnot converge in distribution to a non-degenerate limit under any linear normalization: thetrivial example is provided by an i.i.d. sequence with regular marginal distribution functionG which does not belong to the domain of attraction of any max-stable distribution.Remark 9.5 Welsch [Wel72] described all possible two-dimensional limits for jointdistribution of suitably normalized and centered maxima and second maxima of stronglymixing stationary sequences. However, Welsch' representation is not easy in handlingand becomes very involved for higher order statistics. So again, limiting distributionsdo not seem to be the best tool for analysis of asymptotic properties of joint laws of(M (1)n ;M (2)n ; . . . ;M (r)n ). It would be much more interesting to have a simple approximatingmodel, similar to what we introduced above (for one-dimensional distributions only).Example 1 of [Mor76] gives some hope for the existence of (r�1) - dependent represen-tation in the following sense:supx1�x2�...�xr���P (M (1)n � x1;M (2)n � x2; . . . ;M (r)n � xr) (9.16)� P (fM (1)n � x1; fM (2)n � x2; . . . ; fM (r)n � xr)���! 0:Remark 9.6 It is not di�cult to identify numbers �1; �2; . . . ; �r considered above withnumbers �(1); �(2); . . . ; �(r) de�ned by Hsing in [Hsi88]. In particular, our formula (9.15)is a \condensed" form of formula de�ning ��l(i) in Theorem 3.3 of [Hsi88].Remark 9.7 In Theorem 9.1, convergence of all P (M (q)n � vn), q = 1; 2; . . . ; r, isnecessary, as the following example shows:



9.2. ASYMPTOTIC REPRESENTATIONS 111Example 9.8 Let fX1;jgj2IN ; fX2;jgj2IN ; fX3;jgj2IN be mutually independent sequen-ces of i.i.d. random variables with one-dimensional marginals given by distribution func-tions F;G and H, respectively. De�neXj = X1;j _ (X2;j _X2;j+1) _ (X3;j _X3;j+1 _X3;j+2) (9:17)Suppose numbers vn %1 are such that supn n(1�F (vn)) < +1, supn n(1�G(vn)) < +1and H(vn) % 1. Then it is easy to see thatP (Mn � vn) = exp��n(1� F (vn) + 1�G(vn) + 1�H(vn)�+ o(1) (9.18)P (M (2)n � vn) = P (Mn � vn)�1 + n(1 � F (vn))�+ o(1) (9.19)P (M (3)n � vn) = P (Mn � vn)�1 + n(1 � F (vn)) +  n2!(1� F (vn))2 (9.20)+ n(1 �G(vn))�+ o(1)We shall �nd F;G and H such, that fP (Mn � n)g and fP (M (3)n � n)g converge tosome limits di�erent from 0 and 1 while fP (M (2)n � n)g does not converge. By (9.18){(9.20) it is enough to �nd non-negative functions f(x); g(x) and h(x); x 2 IR+, such thatfor some D;E > 0 n Z 1n (f(u) + g(u) + h(u)) du �! D (9.21)n Z 1n (f(u) + g(u)) du+  n2!�Z 1n f(u) du�2 �! E (9.22)but n Z 1n f(u) du does not converge. (9:23)Set f(x) = C 1Xk=1 x�2I(22k � x < 22k+1):Then 22k R122k f(u) du = 2C=3 while 22k+1 R122k+1 f(u) du = C=3, hence (9.23) holds. Nowtake E > C + C2. Then Ex�2 > f(x)�1 + x R1x f(u) du�, andg(x) = Ex�2 � f(x)�1 + x Z 1x f(u) du�+ (1=2)�Z 1x f(u) du�2 > 0:Integration by parts gives (9.22). And (9.21) is satis�ed, if we seth(x) = Dx�2 � f(x)� g(x)with D > C + (1=2)C2 + E.



112 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICS9.3 Proofs9.3.1 Convergence under mixing conditionsUnder assumptions of Theorem 9.1, we shall identify limits for r �rst coe�cients of gener-ating functions of Nn = Pnj=1 I(Xj > vn).We know that for 0 � q � r � 1,P (Nn = q) = P (M (q+1)n � vn)� P (M (q)n � vn) �! �q+1 � �q;(where �0 = 0). But numbers �1; �2; . . . ; �r are not arbitrary, for Condition B (r)1 (vn) holds.Lemma 9.9 Condition B (r)1 (vn) is equivalent tomaxk;l ������P� kXj=1 I(Xj > vn) = p; k+lXj=k+1 I(Xj > vn) = q� (9.24)� P� kXj=1 I(Xj > vn) = p� � P� lXj=1 I(Xj > vn) = q������� �! 0as n!1, for every p; q � 0; p+ q � r � 1.Hence for 0 � q � r � 1P (Nn = q) = Xq1+q2=q P (N[n=2] = q1; Nn �N[n=2] = q2)= Xq1+q2=q P (N[n=2] = q1)P (Nn �N[n=2] = q2) + o(1)= Xq1+q2=q P (N[n=2] = q1)P (N[n=2] = q2) + o(1)and r�1Xq=0 sqP (Nn = q) = r�1Xq=0 Xq1+q2=q sq1P (N[n=2] = q1)sq2P (N[n=2] = q2) + o(1)= Lr 0@� 1Xq=0 sqP (N[n=2] = q)�21A + o(1);where for the series w(s) = P1j=0 ajsj, Lr(w(s)) is the polynomial obtained by taking onlyr �rst coe�cients: Lr(w(s)) = a0 + a1s + . . . + ar�1sr�1 (9:25)Similar reasoning shows that for each k 2 INr�1Xq=0 sqP (Nn = q) = Lr 0@� 1Xq=0 sqP (N[n=k] = q)�k1A+ o(1); (9:26)



9.3. PROOFS 113It follows that for every 0 � q � r � 1 and k 2 IN , fP (N[n=k] = q)gn2IN converges:limn!1 P (N[n=k] = q) = �q+1;k � �q;k;and that w(s) = Pr�1q=0(�q+1��q)sq is in�nitely divisible at the level r, i.e. for each k thereis a generating function wk(s) such thatLr(�wk(s)�k) = Lr(w(s)): (9:27)Lemma 9.10 If w(s) is in�nitely divisible at the level r and a0 > 0, then there arenumbers �1; �2; . . . ; �r � 0, Prq=1 �q = 1 (depending only on a0; a1; . . . ; ar�1), such thatLr(w(s)) = Lr�exp(� log a0 � rXq=1�q(sq � 1))�: (9:28)Proof. If a0 = 1, set �1 = �2 = . . . = �r�1 = 0; �r = 1. So let a0 < 1 and letwk(s) = ak;0 + ak;1s+ . . .. Clearly, a0 = akk;0;hence ak;0 % 1. We have also a1 = k � ak;1 � ak�1k;0and for 2 � q � r � 1aq = Xj0;j1;...;jq�0Pql=0 ljl=qPql=0 jl=k k!j0!j1! . . . jq!aj0k;0 � aj1k;1 � . . . � ajqk;q: (9:29)If k � q and Pql=1 ljl = q, then Pql=1 jl � k, and the above formula can be rewritten asaq = a0 Xj1;j2;...;jq�0Pql=1 ljl=q 1j1!j2! . . . jq! � qYl=1(k � ak;l)jl � (9.30)� a�(j1+...+jq)k;0 k!(k � (j1 + . . . + jq))!kj1+...+jqNotice that in each such expression there is a term of the form a0 � (k � ak;q)=ak;0 and allother summands depend on ak;m with m � q � 1. It follows that for each 1 � q � r � 1there exists �q = � limk!1 k � ak;q= log a0 � 0: (9:31)and r�1Xq=1�q = (� log a0)�1 limk!1 k r�1Xq=1 ak;q � (� log a0)�1k(1 � ak;0) ! 1:



114 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICSHence �r = 1 � r�1Xq=1 �q � 0:Further, going with k to in�nity in (9.30), we getaq = a0 Xj1;j2;...;jq�0Pql=1 ljl=q 1j1!j2! . . . jq! � qYl=1�ljl(� log a0)jl (9:32)for q = 0; 1; . . . ; r � 1, i.e. (9.28).By the above lemma and by (9.26)r�1Xq=0 sqP (Nn = q) = Lr 0@exp(� log �1 � rXq=1 �q(sq � 1))1A + o(1):for some �1; �2; . . . ; �r � 0, �1 + . . . + �r = 1. Again by (9.26), for each k 2 INr�1Xq=0 sqP (N[n=k] = q) = Lr 0@exp��1k log�1 � rXq=1�q(sq � 1)�1A+ o(1):Repeating arguments we get for all integers k � 1; l � 0r�1Xq=0 sqP (N[n(l=k)] = q) = Lr 0@exp�� lk log�1 � rXq=1�q(sq � 1)�1A+ o(1): (9:33)Fix q; 1 � q � r, and set in Lemma 6.8 Zn = M (q)n , g(x) = x. Consider functionsIR+ 3 t 7! fq;n(t) = P (M (q)[nt] � vn) (9:34)and let fq(t) equals to sum of q �rst coe�cients of the generating functionwt(s) = exp��t log�1 rXq=1 �q(sq � 1)�:Then (9.33) means that functions fq;n converge to fq on the dense set of rationals and ahalf of assumptions of Lemma 6.8 holds.9.3.2 Proof of Theorem 9.1Consider the (G;�1; �2; . . . ; �r) - representation de�ned by (9.6). De�ne alsofXq;j = eYq;j _ eYq;j+1 _ . . . _ eYq;j+q�1: (9:35)We will �nd the limit for the generating functions of fNn = Pnj=1 I(fXj > vn).



9.3. PROOFS 115Lemma 9.11 Let fvng be such that Gn(vn) ! �1; �1 > 0. Thenlimn!1Es eNn = exp�� log�1 � rXq=1�q(sq � 1)�: (9:36)Proof. First note that random variables fNn can be replaced by r independent components:E ������ nXj=1�I(fXj > vn) � rXq=1 I(fXq;j > vn)�������� n X1�p<q�r P (fXp;1 > vn)P (fXq;1 > vn)� X1�p<q�r pq�nP ( eYp;1 > vn)�P ( eYq;1 > vn)�! X1�p<q�r pq(��p log�1) � 0 = 0:Further, each of fNq;n = Pnj=1 I(fXq;j > vn) is asymptotically equivalent to q � fN (0)q;n =Pnj=1 q � I( eYq;j > vn):0 � n+q�1Xj=1 qI( eYq;j > vn)� nXj=1 I(fXq;j > vn)� q n+q�1Xj=n+1 I( eYq;j > vn) + q(q � 1) X1�j<k�nk�j�q�1 I( eYq;j > vn; eYq;k > vn)and, as n! +1EjfNq;n � q � fN (0)q;nj � q2P ( eYq;1 > vn) + q3�nP ( eYq;1 > vn)�P ( eYq;1 > vn) �! 0:Finally Es eNn = rYq=1Es eNq;n + o(1)= rYq=1E�sq�eN (0)q;n + o(1)= rYq=1�sq�1�G�q(vn)�+G�q (vn)�n + o(1)= rYq=10@1 + n�1�G�q (vn)��sq � 1�n 1An + o(1)�! rYq=1 e��q log�1(sq�1)



116 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICSDe�ne functions efq;n(t) = P (fM (q)[nt] � t); q = 1; 2; . . . ; r:ffXjg is an (r�1) - dependent sequence and so satis�es Condition B (1)1 (vn). Hence for efq;nwe can repeat all considerations we did for fq;n de�ned by (9.34). In particular, efq;n(t) con-verge on rationals to the same limit fq. Applying the \tilde" - part of Lemma 6.8 we see thatfM (1)n ; fM (2)n ; . . . ; fM (r)n form a regular asymptotic representation for M (1)n ;M (2)n ; . . . ;M (r)n .9.3.3 Proof of Theorem 9.2It is enough to prove (9.14) for the (G;�1; �2; . . . ; �r) - representation ffXjg.Fix 2 � q � r and setfn(t) = P (fM (q)[nt] � vn);efn(t) = P (M[nt] � vn)�1 + q�1Xk=1 (� logP (M[nt] � vn))kk! � 
q;k�:By Lemma 6.8 we have to prove that both fn and efn converge on rationals to the samelimit fq(t). It is easy to �nd limit for efn(t):�t1�1 + q�1Xk=1 (� log�t1)kk! 
q;k�: (9:37)We know also the limit for fn(t): by Lemma 9.11 it is the sum of q �rst coe�cients of thegenerating function gt(s) = exp(�t log�1(Prq=1 �qsq � 1)), i.e.fq(t) = �t1 q�1Xm=0 Xj1;...;jm�0Pml=1 ljl=m mYl=1 �ljljl! (� log�t1)jl= �t1 q�1Xk=0 (� log �t1)kk! � Xj1;j2;...;jq�1�0k�Pq�1l=1 ljl�q�1Pq�1l=1 jl=k k!j1!j2! . . . jq�1!�1j1�2j2 � . . . � �q�1jq�1= �t1 q�1Xk=0 (� log �t1)kk! 
q;k:Notice that 
q;k � 1, for the summands are elements of the multinomial expansion of(�1 + . . . + �r)k = 1.Corollary 9.12 If a regular (G;�1; . . . ; �r) - representation exists and fvng is such thatP (Mn � vn) ! �1, 0 < �1 < 1, then for each q, 2 � q � r, and T � 1limn!1P (M (q)T �n � vn) � �T1 �1 + q�1Xk=1 (�T log �1)kk! �: (9:38)



9.4. CONVERGENCE OF ALL ORDER STATISTICS 1179.4 Convergence of all order statisticsNow assume that for every q 2 INP (M (q)n � vn) �! �q as n! +1; (9:39)where 0 < �1 < 1, and that Condition B (r)1 (vn) holds for all r 2 IN (shortly: ConditionB (1)1 (vn) holds), i.e. for all p; q � 0, as n! +1supk;l2IN jP (M (p+1)k � vn;M (q+1)k:k+l � vn)� P (M (p+1)k � vn)P (M (q+1)l � vn)j ! 0: (9:40)By Theorem 9.2, for every q 2 IN , P (M (q)n � x) admits an asymptotic uniform repre-sentation in the formP (Mn � x)�1 + k�1Xj=1 (� log P (Mn � x))jj! � 
k;j�; (9:41)where 
q;k can be expressed as functions of �1; �2; . . . � 0 such that1Xq=1�q � 1: (9:42)(See (9.15) for explicit formulas for 
q;k).It is not di�cult to exclude the possibility P1q=1 �q < 1.Theorem 9.13 Suppose that conditions (9.39) and (9.40) hold. Then numbers 
q;k in(9.41) are built on the base of �1; �2; . . . � 0 such that1Xq=1�q = 1 (9:43)if and only if limq!1�q = 1: (9:44)Proof. Let Nn = Pnk=1 I(Xk > vn). By the well-known relationfM (q+1)n � vng = fNn � qg (9:45)we may interpret (9.44) as tightness of fNngn2IN . Hence (9.39) and (9.44) imply that Nnconverges in law to some integer-valued a.s. �nite random variable N . Clearly:EsN = 1Xq=0(�q+1 � �q)sq;



118 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICSwhere �0 = 0. So by Lemma 9.11EsN = limr!1 exp�� log�1�r�1Xq=1�qsq + (1� r�1Xq=1�q)sr � 1��: (9:46)Consider the L�evy measures�r(fqg) = �q; q = 1; 2; . . . ; r � 1; �r(frg) = 1� r�1Xq=1�qand �(fqg) = �q; q = 1; 2; . . . :By (9.46), P1q=1 �q = �(IN) = limr!1 �r(IN) = 1.Conversely, if P1q=1 �q = 1, then the limit on the right-hand-side of (9.46) is a generatingfunction. So Nn converges in distribution, hence is tight and by (9.45) condition (9.44)holds.The (r � 1) - dependent sequences considered in Section 2, satisfy assumptions of theabove theorem. Another example can be obtained by taking in (G;�1; �2; . . . ; �r) - repre-sentations formal limit over r:Example 9.14 Let eYj = eY1;j_ ( eY2;j _ eY2;j+1) (9.47)_ ( eY3;j _ eY3;j+1 _ eY3;j+2)...where, as in (9.6), f eY1;jgj2IN , f eY2;jgj2IN ; . . . are mutually independent and eYq;j � G�q with�q � 0.The problem is that eYj can be trivial, i.e. eYj = G� a.s. and that G may be not aphantom distribution function for eY1; eY2; . . ..Lemma 9.15(i) eYj < G� a.s. if and only if 1Xq=1 q�q <1: (9:48)(ii) G is a phantom distribution function for eY1; eY2; . . . i� (9.48) holds and P1q=1 �q = 1.Lemma 9.16 If P1q=1 q�q < +1, G is regular and fvng is such that Gn(vn) ! �1,0 < �1 < 1, then f eYjg satis�es both (9.39) and Condition B (1)1 (vn).



9.4. CONVERGENCE OF ALL ORDER STATISTICS 119Proof. To prove Condition B (1)1 (vn), take p; q � 1; p � q, say, and consider thedi�erence�p;q(k; l) = jP (fM (p)k � vn; fM (q)k:k+l � vn)� P (fM (p)k � vn)P (fM (q)l � vn)j:Let R0 2 IN be such that �R0 = PR0m=1 �m > 0. Let " > 0. Take Nq such that��R0Nq1 �1 + q�1Xk=1 (��R0Nq log�1)kk! � < ": (9:49)Now choose R � R0 so large that Nq 1Xr=R+1 < " (9:50)and consider sequences:eY 0j = eY1;j_ ( eY2;j _ eY2;j+1)..._ ( eYR;j _ eYR;j+1 _ . . . _ eYR;j+R�1)eY 00j = ( eYR+1;j _ eYR+1;j+1 _ . . . _ eYR+1;j+R)_ ( eYR+2;j _ eYR+2;j+1 _ . . . _ eYR+2;j+R _ eYR+2;j+R+1)...with order statistics fM 0n(q) and fM 00n (q), respectively.Notice the di�erence between eY 0j and fXj de�ned by (9.6): if we denote�R = RXm=1 �m;then eY 0j is the (G�R ; �1=�R; . . . ; �R=�R) - representation, for �R may be di�erent from 1.We haveffM (q)k:k+l � vng � ffM 0qk:k+l � vng � ffM (q)k:k+l � vng [ ffM 00k:k+l > vng; (9:51)henceEjI(fM 0(q)k:k+l � vn)� I(fM ((q))k:k+l � vn)j � min(P (fM 0l (q) � vn); P (fM 00l > vn)): (9:52)f eY 0j g being (R � 1) - dependent sequence, satis�es Condition B (1)1 (vn). In particular, byLemma 9.11 P (fM 0n � vn) �! �01; (9.53)P (fM 0n(q) � vn) �! �0q; (9.54)



120 CHAPTER 9. REPRESENTATIONS FOR ORDER STATISTICSwhere �01 = ��R1 . By Corollary 9.12, if l � Nq � n, thenP (fM (q)k:k+l � vn) � P (fM (q)Nq �n � vn)� P (fM 0(q)Nq�n � vn)� �01Nq�1 + q�1Xk=1 (�Nq log �01)kk! �+ o(1)� ��R0Nq1 �1 + q�1Xk=1 (��R0Nq log�1)kk! �+ o(1)< "+ o(1):Similarly, if k � Nq � n, then P (fM (p)k � vn) < "+ o(1):Consequently, by (9.52) �p;q(k; l) < 4" (9:55)for large n, provided k > Nq �n or l > Nq �n. So we can restrict our attention to k; l � Nq �n.In this case, (9.52) gives the estimation�p;q(k; l) � 4P (fM 00Nq �n > vn): (9:56)And using the inequality 1� (1� �)x � 2�x if 0 � � � 1=2;we obtain for large nP (fM 00Nq �n > vn) = 1 � P (fM 00Nq�n � vn)= 1 � 1Yr=R+1(G�r (vn))Nq�n+r�1= 1 � �1� (1�G(vn))�Nq�nP1r=R+1 �r+P1r=R+1(r�1)�r� 2�n(1�G(vn))� �Nq 1Xr=R+1�r + 2(1�G(vn)) 1Xr=R+1(r � 1)�r� 2"(� log �1 + "+ "):By (9.55) and (9.56), Condition B (1)1 (vn) holds for f eYjg.Condition (9.39) follows similarly: by (9.52)jP (fM (q)n � vn)� P (fM 0n(q) � vn)j � P (fM 00n > vn);while by (9.54) P (fM 0n(q) � vn) converges.



9.4. CONVERGENCE OF ALL ORDER STATISTICS 121It follows that at least for some stationary sequences, f eYjgj2IN provides a universalmodel for all order statistics. If for each q 2 INsupx2IR1 jP (M (q)n � x)� P (fM (q)n � x)j �! 0 as n! +1; (9:57)where fM (q)n 's are order statistics for f eYjg, then we say that fXjgj2IN admits an asymp-totic (G;�1; �2; . . .) - representation. The term \regular (G;�1; �2; . . .) - representation"means that G is regular, P1q=1 �q = 1 and P1q=1 q�q < +1.We are not able to give necessary and su�cient conditions for the existence of a reg-ular (G;�1; �2; . . .) - representation. However, we have found simple and natural su�cientconditions:Theorem 9.17 If for some non-decreasing sequence fvng of numbers, a stationarysequence fXjg satis�es (9.39), Condition B (1)1 (vn) andsupn2IN nP (X1 > vn) < +1; (9:58)then there exists a regular (G;�1; �2; . . .) - representation for all order statistics of fXjg.Proof. Let, as in the proof of Theorem 9.13, Nn = Pnk=1 I(Xk > vn). By (9.58), fNng isa tight sequence, hence (9.44) holds and by Theorem 9.13EsNn �! EsN = exp(� log �1( 1Xq=1 �qsq � 1));where P1q=1 �q = 1. Moreover, by Theorem 5.3 [Bil68],EN � lim infn!1 ENn � supn2IN nP (X1 > vn) < +1:This implies that P1q=1 q�q < +1 and using �1; �2; . . . we can construct a non-trivialsequence f eYjg. By Lemma 9.16, fNn = Pnk=1 I( eYj > vn) converges in distribution to N ,either. Now we can check (9.57) the same way as in Section 3 for the �nite case r < +1.Remark 9.18 When all order statistics converge in distribution, the caseP1q=1 q�q < +1 gives limits considered in [Dzi84], while P1q=1 �q = 1 corresponds tothe convergence of point processes treated in [HHL88]. However, we cannot �nd any se-quence fXjg with limits (for M (q)n 's) computed from �1; �2; . . . such that P1q=1 �q = 1 butP1q=1 q�q = +1. The theory would also be completed, if we could �nd such fXjg for thecase P1q=1 �q < 1.
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Appendix AStable distributionsA.1 De�nitionsA probability measure � on IR1 is said to be stable if for every b1 > 0 and b2 > 0 one can�nd b > 0 and a 2 IR1 such that b1X1 + b2X2 � bX + a; (A:1)where L(X1) = L(X2) = L(X) = �, and X1 and X2 are independent. Following Feller[Fel71], we say that � is strictly stable, if no additional centering is required:b1X1 + b2X2 � bX:In P. L�evy's monograph [L�ev54], stable, but not strictly stable distributions are calledquasistable, while the name stable is used for what we have de�ned as strictly stable.The following well-known fact (see [Bre68, p.199], [Zol83, p.25]) can be used as analternative de�nition.Proposition A.1(i) � is stable if and only if for each k 2 IN there are bk > 0 and ak 2 IR1 such thatX1 +X2 + . . . +Xk = bkX + ak; (A:2)where L(X1) = . . . = L(Xk) = L(X) = �, and X1;X2; . . . ;Xk are independent.Moreover, � is strictly stable, if ak = 0; k = 2; 3; . . . in (A.2).(ii) If (A.2) holds for each k = 2; 3; . . ., then there exists p 2 (0; 2] such thatbk = k1=p; k = 2; 3; . . . : (A:3)123



124 APPENDIX A. STABLE DISTRIBUTIONSThe number p 2 (0; 2] mentioned in the above proposition is called the exponent of �,and we say that � is p-stable or, respectively, strictly p-stable. In particular, if b1; b2 andb satisfy (A.1), then bp1 + bp2 = bp: (A:4)(A.2) implies that � is in�nitely divisible; its characteristic function is of the form�̂(t) = 8>>>>>>>>>>><>>>>>>>>>>>: exp (ita+ RIR1(eitx � 1) �(d x)) if 0 < p < 1,exp (ita+ RIR1(eitx � 1� itxI(jxj � 1)) �(d x))if p = 1,exp (ita+ RIR1(eitx � 1� itx) �(d x))if 1 < p < 2,exp (ita� (1=2)t2�2) if p = 2, (A:5)where a 2 IR1; �2 � 0 and � = �(p; c+; c�) is an absolutely continuous measure on IR1with density f�(x) = (c+I(x > 0) + c�I(x < 0))jxj�(1+p):If � is strictly stable, then using the notation introduced by [ArGi80, Chapter 2], wehave� if 0 < p < 1, then � = Pois (�(p; c+; c�)), i.e.�̂(t) = exp�ZIR1(eitx � 1) �(d x)� : (A:6)� if p = 1, then � = Pois (�(1; c; c)) � �a, i.e.�̂(t) = exp�ita+ ZIR1(eitx � 1) �(d x)� : (A:7)� if 1 < p < 2, then � = c1�Pois (�(p; c+; c�)) = c1�Pois (�(p; c+; c�))��(c+�c�)=(1�p),i.e. �̂(t) = exp�ZIR1(eitx � 1� itx) �(d x)� : (A:8)� if p = 2, then � = N(0; �2), i.e.̂�(t) = exp(�(1=2)t2�2): (A:9)In particular, if p 6= 1 and � is p-stable, then there exists a 2 IR1 such that � � ��a isstrictly p-stable.It is possible to calculate the above integrals explicitly (see [Zol83] for discussion ofvarious representations ). For our purposes, however, the L�evy-Khintchine representationis quite satisfactory, since it operates with quantities a; �2 and � admitting an interpretationin a much wider class than stable distributions only.



A.2. DOMAINS OF ATTRACTION 125A.2 Domains of attractionStable distributions coincide with the class of possible (weak) limits for suitably normalizedand centered sums of independent and identically distributed summands. Strictly stabledistributions are limits for normalized sums (without centering). More precisely, we haveTheorem A.2 Let fXjgj2IN be an i.i.d. sequence. If there exist constants Bn > 0 andAn 2 IR1 such that X1 +X2 + . . . +Xn �AnBn �!D �; (A:10)then � is stable. If X1 +X2 + . . . +XnBn �!D �; (A:11)then � is strictly stable.In both cases, if � is non-degenerated and p-stable, then Bn is a 1=p-regularly varyingsequence.Conversely, if � is stable (strictly stable), then one can �nd fXjgj2IN , fAngn2IN andfBngn2IN such that (A.10) ( (A.11) ) holds.If (A.10) is satis�ed for some fAng and fBng, we say that L(X1) is in the domain ofattraction of � ( L(X1) 2 D(�) ). Necessary and su�cient conditions for L(X1) to be inthe domain of attraction of a non-degenerated �, can be found in many textbooks andmonographs, starting with [GnKo54, Chapter VII]. We follow [Fel71, Chapter IX].Theorem A.3 Suppose that L(X1) is non-degenerated. Then(i) L(X1) 2 D(N(a; �2)) i� g(x) = EX21I(jX1j � x) (A:12)is slowly varying.(ii) L(X1) 2 D(�), where � is p-stable, 0 < p < 2, i�h(x) = P (jX1j > x) (A:13)is (�p)-regularly varying andP (X1 > x)P (jX1j > x) �! �; P (X1 < �x)P (jX1j > x) �! �: (A:14)(iii) Up to a constant factor, normalizing constants can be chosen to satisfynB2nEX21I(jX1j � Bn) �! 1: (A:15)



126 APPENDIX A. STABLE DISTRIBUTIONSResults due to Rogozin [Rog76] and Maller [Mal78] show that laws �a; a 6= 0, (strictly1-stable!) posses \domain of strict attraction", as well.Theorem A.4 Suppose P (jX1j > x) > 0) for every x > 0. Then one can �nd Bn !1such that X1 +X2 + . . . +XnBn �! P 1; (A:16)if and only if EX1I(jX1j � x) > 0 for x large enough andxP (jX1j � x)EX1I(jX1j � x) �! 0 as x!1: (A:17)The sequence Bn is then 1-regularly varying and satis�esBn � nEX1I(jX1j � Bn): (A:18)A.3 Convergence of sums of independent randomvariables to strictly stable lawsAll criteria on convergence to stable laws are based on the general limit theory for inde-pendent summands. We restate here a result of this type, being of central importance forthe whole paper.Theorem A.5 (An adaptation of [ArGi80, Theorem 4.7, p.61]) Let fZn;i; i; n 2 INgbe an array of random variables, which are independent and identically distributed in eachrow. Let � be a strictly p-stable law.In order that knXj=1Zn;j �!D �; (A:19)it is necessary and su�cient that:(i) knP (Zn;1 > x) �! c+=xpknP (Zn;1 < �x) �! c�=xp )8x > 0 (A:20)lim�!0 lim supn!1 knjEZn;1I(jZn;1j � �)j = 0; (A.21)lim�!0 lim supn!1 knEZ2n;1I(jZn;1j � �) = 0; (A.22)provided 0 < p < 1 and � = Pois (�(p; c+; c�)).



A.3. CONVERGENCE OF SUMS 127(ii) (A.20) with c+ = c� = c, (A.22) andknEZn;1I(jZn;1j � �) �! a; (A:23)provided p = 1 and � = Pois (�(1; c; c)) � �a.(iii) (A.20), (A.22) and knEZn;1I(jZn;1j � 1) �! (c+ � c�)=(1 � p); (A:24)provided 1 < p < 2 and � = c1 � Pois (�(p; c+; c�)) � �(c+�c�)=(1�p).(iv) knP (jZn;1j > ") �! 0; 8" > 0; (A.25)knEZn;iI(jZn;1j � 1) �! 0; (A.26)knEZ2n;1I(jZn;1j � 1) �! �2; (A.27)provided p = 2 and � = N(0; �2).All above sets of conditions are equivalent in the case � = �0 (strictly stable for each p!):Corollary A.6 knXj=1Zn;j �!P 0if and only if (A.25),(A.26) and (A.27) with �2 = 0 hold.
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Appendix BRegularly varying functionsB.1 De�nitions and basic propertiesA measurable positive function f , de�ned on some neighbourhood [xf ;1) of in�nity andsuch that for some �1 < � < +1f(�x)f(x) �! �� as x! +1;8� > 0; (B:1)is called regularly varying of index �.If � = 0, i.e. f(�x)f(x) �! 1 as x! +1;8� > 0; (B:2)then f is said to be slowly varying. Clearly, if f varies regularly with index � then it is ofthe form f(x) = x�`(x), where `(x) is slowly varying.It is well-known that (B.1) can be apparently relaxed:Theorem B.1 (see e.g. [Sen76, Theorem 1.3]) If f is measurable positive and de�nedon (xf ;+1) and if f(�x)f(x) �!  (�) as x! +1;8� 2 S; (B:3)where S � (0;+1) is a set of positive Lebesgue measure, then  (�) = �� for some �1 <� < +1 and f is �-regularly varying.If f is monotone, condition (B.3) can be considerably weakened:Theorem B.2 (see e.g. [Fel71, Lemma 3, VIII.8]) If f is positive and monotone onsome neighbourhood of in�nity, an=an+1 �! 1; xn �! 1 andanf(�xn) �!  (�) 2 (0;1); as n! +1; (B:4)for each � in some dense subset � of (0;1), then f varies regularly.129



130 APPENDIX B. REGULARLY VARYING FUNCTIONSThe next result is known as the Uniform Convergence Theorem:Theorem B.3 (see e.g. [BGT87, Theorem 1.5.2, p.22]) The convergence in (B.1) holdsuniformly for � in every compact subset of (0;1).Throughout the paper we deal with functions determined by a sequence fcng of positivenumbers: ffcng(x) = c[x]; x � 1; (B:5)where [x] is the integer part of x. If ffcng(x) is �-regularly varying, we say that fcng is aregularly varying sequence of index �.It can be shown (see [BoSe73], also [BGT87, Theorem 1.9.5, p.52]), that fcng is regularlyvarying i� c[�n]cn �!  (�) 2 (0;1); as n! +1;8� > 0: (B:6)Direct checking of (B.6) is, however, not easy and we prefer the followingLemma B.4 fcng varies �-regularly if and only ifck�ncn �! k�; as n! +1;8k 2 IN; (B:7)and for all sequences fkng; flng � IN , such that kn !1; ln=kn �! 0,cknckn+ln �! 1; as n! +1: (B:8)Proof. By (B.7) and (B.8), we have for p; q 2 INc[(p=q)�n]cn = c[p�(n=q)]cp�[n=q] � cp[n=q]c[n=q] � c[n=q]cq[n=q] � cq[n=q]cn�! 1 � p� � q�� � 1 as n! +1:Fix � > 0 and let pn=qn & � so slowly that still c[(pn=qn)�n]=cn ! ��. Since alsoc[�n]=c[(pn=qn)�n] ! 1by (B.8), we see that c[�n]cn = c[�n]c[(pn=qn)�n] � c[(pn=qn)�n]cn �! ��;i.e. (B.6) holds.Remark B.5 \Regular variation on integers", i.e. relation (B.7), is a weaker property,than regular variation \on positive reals": sequence cn = !(n) +plog log n, where !(n) isthe number of prime divisors of n, satis�es (B.7), but not cn=cn�1 ! 1 (see [GaSe73]).



B.2. EQUIVALENTS 131B.2 Smooth and monotone equivalentsWe say that functions f1 and f2 are asymptotically equivalent (f1 � f2), iff1(x)f2(x) �! 1 as x! +1:Theorem B.6 (see e.g. [BGT87, Theorem 1.3.3, p.14]) Let ` be slowly varying. Then` � `1, where `1 2 C1[a;1), and h1(x) := log `1(ex) has the propertyh(n)1 (x) �! 0; as x! +1; n = 1; 2; . . . : (B:9)Theorem B.7 (see e.g. [BGT87, Theorem 1.5.3, p.23]) If f is �-regularly varying,� 6= 0, then f � f1, where f1 is non-decreasing if � > 0, and non-increasing, if � < 0.Now, let � > 0 and let f be �-regularly varying on [xf ;1). Thenf (x) := inffy � xf ; f(y) > xg (B:10)is de�ned on [f(xf);1) and is monotone increasing to +1. Further,f(f (x)) � f (f(x)) � x as x! +1:f is an example of an \asymptotic inverse" of f .Theorem B.8 (see e.g. [BGT87, Theorem 1.5.12, p.28]) If f is regularly varying withindex � > 0, there exists 1=�-regularly varying g such thatf(g(x)) � g(f(x)) � x as x! +1: (B:11)Here g is determined uniquely to within asymptotic equivalence, and one version of g isf .Corollary B.9 Let a; b > 0 and let f(x) � xab(`(xb))a, where ` is slowly varying. Ifg is an asymptotic inverse of f , theng(x) � x 1ab �`#(x 1a )� 1b ; (B:12)where `# is the de Bruijn conjugate of `, i.e. the unique (up to asymptotic equivalence)slowly varying function satisfying`(x)`#(x`(x)) ! 1; `#(x)`(x`#) ! 1; as x! +1: (B:13)



132 APPENDIX B. REGULARLY VARYING FUNCTIONSIn most cases, explicit calculation of the de Bruijn conjugate (or the asymptotic inverse)is not an easy task. On the other hand, it is trivial, if f is monotone.Lemma B.10 Let f be positive and monotone on some neighbourhood of in�nity. LetfBngn2IN and fCngn2IN vary regularly with index � > 0 and 
 2 IR1, respectively. IfCnf(Bn) �! a 2 (0;1); (B:14)then f varies regularly with index � = �
=�.Proof. Suppose f is non-increasing (then 
 � 0). Fix � > 0 and let 0 < �0 < � <�00 < +1. we know, that for each � > 0,B[�(1=�) �n] � � �Bn;hence for n large enough,Cnf(B[(�00)1=� �Bn]) � Cnf(� �Bn) � Cnf(B[(�0)1=� �Bn]):Now, Cn=C[(�0)1=��Bn] ! ((�0)1=�)
 and the expression on the right approaches a � (�0)�
=�.Similarly, left-hand-side converges to a � (�00)�
=� and, consequently, the middle term tendsto a � (�)�
=�, for every � > 0. This implies that f varies regularly (see Theorem B.2),hence limx!1 f(�x)f(x) = limn!1 Cnf(�Bn)Cnf(Bn) = ��
=�:B.3 Karamata's TheoremTheorem B.11 (The Direct Half) (see Theorem 1.5.11, p.28, in [BGT87]) Letf varies regularly with index �, and let xf be such that f is locally bounded in [xf ;1). Thenfor any � � �(�+ 1) x�+1f(x)R xxf t�f(t) d t �! � + � + 1 as x! +1; (B:15)and for any � < �(�+ 1),x�+1f(x)R1x t�f(t) d t �! �(� + � + 1) as x! +1: (B:16)Condition (B.16) holds also if � = �(�+ 1) and R1xf t�(�+1)f(t) d t < +1.Theorem B.12 (The Converse Half) (see [BGT87, Theorem 1.6.1, p.30]) Letf be positive and locally integrable on [xf ;1).If for some � > �(�+ 1) condition (B.15) holds, then f varies regularly with index �.Similarly, (B.16) for some � < �(�+ 1) implies �-regular variation of f .



B.4. THE H-L-K THEOREM 133B.4 The Hardy-Littlewood-Karamata TheoremTheorem B.13 (see e.g. [BGT87, Theorem 1.7.1, p.37]) Let U : IR1 ! IR1 be a non-decreasing right-continuous function with U(x) = 0 for all x < 0. If ` varies slowly andc > 0; � � 0, the following are equivalentU(x) � cx�`(x)=�(1 + �) as x! +1; (B.17)Û(s) � cs��`(1s ) as s! 0 + : (B.18)where Û(s) = R[0;1) e�sx dU(x).Remark B.14 The following also holds: U(x) = o(x�`(x)) is equivalent to Û (s) =o(s��`(1=s)).Remark B.15 Implication (B.17)) (B.18) is usually called \Abelian theorem", whilethe converse one is \Tauberian". The next result is known as \Karamata's TauberianTheorem for power series"Corollary B.16 (see e.g. [BGT87, Corollary 1.7.3, p.40]) Suppose that an � 0 andthe power series A(s) = P1n=0 ansn converges for s 2 [0; 1).If c; � � 0, then nXk=0 ak � cn�`(n)=�(1 + �) as n! +1 (B:19)if and only if A(s) � c`( 11 � s)=(1� s)� as s% 1 � : (B:20)If c� > 0 and an is ultimately monotone, both (B.19) and (B.20) are equivalent toan � cn��1`(n)=�(�) as n! +1: (B:21)
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