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ON LIMIT THEOREMS FOR SUMS OF DEPENDENT HILBERT
SPACE VAIUED RANDOM VARIABLES

by

Adam Jakubowski

Nicolaus Copernicus University, Torud

1. Introduction

Let {Xnk}’ k=12...,k; n=12,..., be an array of random
variables defined on a common probebility space (R,% P). If {Xnk}

are row-wise independent, then there exists a quite satisfactory
kn

theory of the weak convergence of sums Sg =;E:j Xnk' One of the most
k=1

reasonable trends in the analogous theory for dependent random varia-

bles is initisted by papers of Brown [2] and Dvoretzky [4], [5].

This new successful approach (see [3], [6] for generalizations
of [2], [5]) cen be described very briefly: To obtain limit theorems
for dependent random variables one has to replace usual expectations
in classical theorems for independent random variables by conditional
expectations with respect to a suitably chosen family of ¢-subfields
of F and the convergence of numbers by the convergence in probabili-
ty. This procedure cen be observed most explicitly in Theorem C
(Section 3) - the Hilbert space version of the Brown®s Theorem.

The present paper contains generalizations of theorems of such
form for the case when X x are random variables taking values inreel
separasble Hilbert space. Their proofs are new even in the Zfinite

dimensional case and are based on the technics of the regular condi-
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tional distributions. Such an approach gives possibility for the use
of the Varsdhan’s theory for weak convergence of convolutions in Hil-
bert space (see [8], also [7], Chapter VI).

Basic Theorems A and B, which can be treated as modified accom-
panying laws, are contained in Section 2. In particular, Theorem A
is a sufficient tool for quick proofs in the finite dimensional case.
In Section %3 it is shown, how to obtain from Theorem B the required
results: the Brown’s Theorem (Theorem C) and the Hilbert  space
generslizstion of theorem of K¥opotowski (Theorem D). More detailed

proofs of Theorems B 2nd D will be published elsewhere.

2. Main Theorems

Let H be a real separable Hilbert space with the inner product
(,+) and let %H be the g-field of Borel subsets of H,All H- valued
random variables considered in this paper are defined on fixed pro-
bability space (82, F, P), Let {xnk}, k=1,2,...,k30 = 1,2,...,, be
an array of random variables and.{};k}, k=0,1,.k; n=1,2,..., be

an array of row-wise increasing &-subfields of 37(i.e..$£k C _Fh o+
y

for n fixed and k = O.1,...,kn-1). The array {Xnk} ig said to e
adapted to {Jﬁnk} if every X, is P, - measurable.

For {Xnk} adapted to {}-n.k} we cen define an array {(unk} of
regular random measures by choosing for every(n,k) a regular version
of the conditional distribution of Xk given ?ﬁ k=1* In other words,

*
for every n,k

Upg @ By 2—[0,1]

1s a function such that for every w€ S w \ (-,w) is a probebility
measure on.%h and for every A 6'@H‘unk(A") is a wversion of

P(Yiﬂce A l In,k—1) (hence fn'k_rmeasurable). For some properties
of the regular conditional distribution sand <for the proof of its

existence see [ 1], Chapter 4.
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In the sequel we will deal with the arrays {Xnk}adapted to {F )
and the reguler random measures K, defined above andthe definitions
will not be repeated in the theorems.

Now we can formulete Theorem A, which is sufficient for applice-

tions in the finite dimensional case.

Theorem A, Iet i be a distribution on '@H with the non-vanishing

characteristic functional:
VyeHd aly) := J L0 4 (ax) # o,
If for almost all we & , the convolutions
Up @) 2= (@) ()., :“nkn(°"°)
are weakly convergent to ,u(.un:y a.8.) then the characteristic

k
functionals of sn = EI Xnk are pointwise convergent to M
k=1

VweH = ei(y'sn)—ﬂa(y).

A
P roo f: Denoting ﬁnk(y,w) : = a0 (-,0) (y) we have

k

n
VyeH [ gy —4ay as.
k=1

For fixed yeH the set

k
Ay ={w; ]_I l/’l‘nj(y.w) | >%|ﬁ(y)|}
=
- 1(y,X,4)
is fn'k_1-measurable (since M (y,+) = E(e v *aj I'Tn,j-1 )). More-

©0
over An,k+1 (o Ank and P(U ﬂ Ankn)z 1.
m=1 n>mn

Putting
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X
n

* _ *._ *

Lt =1, X, sn.-ank,
nk =1

we obtain S, - S;—-— 0; hence E e n—»(}(y) if and only if
i(y.S;) A
Ee — w(y). But ss a regular version of the conditional di-

*
stribution of Xnk glven an,k-1 we can choose

I &y() + 1 ()
Agk o) Ankr“nk

so that

kh *
i(y, ) ~
-,k—[ lE(e 7+ o I Foa-1] > 3 |#@)] a.s.

Hence the following computetion

k
103,87 | 1= 1(y, %) -1
B, t=Ee [T = 1$n,k_1) =1
k=1
is true.
By the estimation
1(y,8)) iy,s)) _ 2 <
lee 7R _hgy|=lre TR - 4 Hy<
kn *)
- i(y,X -1
SE| @t o | T me lﬁ'n,k_1) l
k=1
n *
i(y,X. )
and the fact, that .I—]- E(e ’“nk ‘ﬁn k—T)-’(&\ (y) a.s. the proof is

k=1
completed,

The next theorem gives the conditions for the weak convergence

in the infinite dimensional case.
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Theorem B. If &4 is an infinitely divisible distribution (for the
definition and some properties see [7]), then the following condi-
tions

Bl. u, = tun1*(“n2*‘”*“nk=>(“ 8.8,

n
B2, Ve>0 max Hke ( Izxll>e)=0 a.s.
1$k<kn

imply the weesk convergence of distributions PSn of sums Sn to (u:Psn
= .

We give only a sketch of the proof.

Since w is infinitely divisible its characteristic functional is
non-vanishing, So B1 together with Theorem A imply E el(y’sn)wg}(y)
for every ye€ H. By Iemma 240, Chapter VI,[7] it is sufficient %o
prove that {?S“} form a conditionally compact set of measures.

To accomplish it, let us define:

o = a(@ 1= f X (ane = B I([Xy < DIF,  paese,
lxis1]
enk‘= ,Unk*(-ank).
kn kn
/'{n : = e(Z 6nk>*(Z ank)’
k=1 k=1

where e(F) is defined for s finite measure F by the formula

)
e(P) : = e-F(H) Z F*n/n!.
n=0

Under condition B2 by the accompanying laws (Corollary 6.1.
Chapter VI [7]) condition B1 1is equivalent to B1, A, =>u a.s.

We have introduced ’ln because for such measures we have good
criteris of compactness (see[7]., paragraph 5, Chapter VI).

Now let us define
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Bt = Xy = 8y

Ut = 2l 2 1<) - BT | < t)lfn,k_ﬂ,
Vet = Sl 2 ] > %),

o © = 8 ¥ B TS | <0 | Fy o q)

where t >0 is a fixed real mumber such that M( || x=t) =0 (M is
the measure in the ILevy’s representation of M, see Section 3of this
paper).

Due to the equality

kn kn kn kn
Sy = Xnk‘ZUnk*Z Vax * 2, Yk ®
k=1 k=1 k=1 k=1
= Un + Vn + Wn

the conditionsl compactness of {PS } lfollows from the conditional

n

compactness of +the sets (P , JP , 1P . For each of the men-
Un Vn Wn

tioned sets we use the criteria of compactness given by Bii:In the
proof of the conditional compactness of {PV }we use the <following
n

lemms:

Lemma, Let {Fn} be a sequence of finite regular random measures
on J’éXX.SB ywhere X is e complete separable metric space.If for almost
every we & the family {Fn(-,w); ne N} is uniformly tight, then for
every d > 0 there exists a set Ag with the properties

() Pag) >1 -6,

(b) the set of measures {Fn(', w); nelN, we Ad‘} is uniformly
tight.

Remark 1., If {Fn} is e.s. conditionally compact, then the set Ag
can be chosen in such a way, that {Fn(-,w),- neN, we Aé\} is condi-

tionally compact.
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The sbove lemma cen be proved analogously as the well known

Egorov’s Theorem,

3., Consequences

In this section we will give two applications of Theorem B.

First let us remind the Ievy's representation of infinitely
divisible lews. As in the real case, an infinitely divisible laww
hes a unique representation & = 1l(a, §, M) given by the fomula

aty) = exp[i(a,y) -15 (sy,y) + J (ei(y’X)-1 - %)M(d}t)],

where acH, S is an S-operator (i.e. positive and hermitian withthe

o0
finite trace tr S = Z (Sei, ei)) and M is a ¢&- finite measure on
=1

'%H' which is finite outside every neighbourhood of 0 and has the fol-

lowing properties M({0}) = 0, | IxI? M(dx)< +e0. IF M=0, then

[axn< 1]
M= G(a, S) is called the Gaussian distribution with mean a and

covarience operator S.
We need also the notion of martingale difference array (MDA). An
array {Xnk} is called MDA with respect to {fnk} if {Xnk}is adapted

2
to {fnk}’ E || Xy "<+ oo and B(X, | &y 4) = O

Theorem C, Let {Xnk} be MDA with respect to{fnk} and G(0,8) be
the Gesussian distribution.
If the following conditions hold:

c1. Zk B Xel® | Fp goq) 2= tT S,
p
c2. Zk E(“Xnk"zl("Xnk“ >¢&) I }-n,k-1) ——0 for every € >0,

630 21y B((Kygerey) (Kygoey) | Fp o y) — (Sey,e4) for some

orthonormal basis {el} in H and 1, € N, then Pg =>3(0, 8).
n

adjakubo@mat.umk.pl
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k

n
(Here and in the sequel we use the convention ZkEZ Y.
k=1

Remark 2. For the stronger conditions see [9]. Theorem 2.

Remerk %, For discussion of the equivalence of the Condition C2

to the Lindeberg Condition see [2]:

(1e) Zk B[] T Xy >6) o0, €0

Proof: Let us choose and fix reguler version Mo of the con-
ditional distributions of X, given fn,k—-f
Now we can rewrite conditions C1 - C3 in the equivalent form:

c1’. ij [x)? & g (@x) —=tz S,

ce’. ij ||x||2 M e (4x) —= 0 for positive rationals g,
[ixn>0]

03 D2y § (re)(me)) a (@0 — (Sey,0,) for 1,3¢N.

Since we hsve only countable number of conditions, by the diago-

nelizgtion procedure from every subsequence {Sn }of {Sn}we can cinose
k

a further subsequence {S

n }, for which the convergence in probabi-

1
lity 1in conditions C1 - C3%’/ is replaced by the a.s. convergence.

Hence there exists a set of probability one §' such that for we R'the
convolutions

(*,0 : = W
nk 1

(- ) *‘unk ’ (s,0) % ...
1 1

1
are weakly convergent to G(0,S) by the Central Limit Theorem. There-
fore by Theorem B (the condition B2 is implied by c2’) the distribu-

tions of Snk weakly converge to G(0,S).
1
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Suppose that Pg => 6(0,S). Then we can choose a subsequence
n

{Psnk} , eny subsequence of which is not weakly convergent to G(0,S),

But we have already shown that this is impossible.
Using the seme method the following generalization of Theorem

4.2 [12] of A. Ktropotowski can be proved:

Theorem D, If = 1(a,S,M) is an infinitely divisible distribu-
tion, then the following conditionsimply the weak convergence of di-
stributions Psn to u:

i, 2oy wg () TEu)

n-+oo
for every A € B_ guch that X $ 0 and M(3A) =

D2, there exists a.s. finite real random variable C(w) such that

1
P(trT >C)m0

P
D3. sup Z (T;lei,ei) T 0
" 1N

for some orthonormal basis {el} in H,

Da. (1€ og.e) g (Sep,e) + [ (xey) (xe M(ax)
[nxige]

for the mentioned basis {el}, i,j € ¥ and every £ >0 with
M(|xf=¢€)=0

(s i (ax)) =2
D5. J w X —_—
k nk n —=oo
T+ ]x - a2 wk
D6. max g (lxll >€) ——= 0
1<kek, | OF n--oo

for every & >0,
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where &, is defined by a,: = ‘sﬂ;ﬁ<1] M o (dx) and for every >0
{T; = T;(aﬁ} is a set of random S-operators defined by the formulas

i 2
(TnY.y) HERS ij (y.X - ank) ‘unk<dx)
[1x-a,,l<t]
Remark 4. Conditions D1 - D6 can be translated into the lan-

guage of conditional expectations.
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