
QUIVERS WITH RELATIONS ASSOCIATED WITH
CARTAN MATRICES

BASED ON THE TALK BY JAN SCHRÖER

The talk is based on joint results with Christof Geiss and Bernard
Leclerc.

1. Cartan matrices

An n×n matrix C with integer coefficients is called a symmetrizable
generalized Cartan matrix if

(1) cii = 2 for each i,
(2) cij ≤ 0 for all i and j with i 6= j,
(3) there exists a diagonal matrix D, called a symmetrizer of C,

with positive integer coefficients such that DC is symmetric.
Given a symmetrizable generalized Cartan matrix C by an orien-

tation we mean a set Ω ⊆ {1, . . . , n} × {1, . . . , n} such that Ω ∩
{(i, j), (j, i)} 6= ∅ if and only if cij < 0. If (i, j) ∈ Ω, then we as-
sume that we have an arrow i← j. We call the orientation Ω acyclic if
there are no oriented cycles in the quiver, which we obtain in this way.

Given a symmetrizable generalized Cartan matrix, a symmetrizer D,
and an orientation Ω, we define the bilinear form 〈−,−〉C,D,Ω by

〈x,y〉C,D,Ω :=
n∑

i=1

dixiyi +
∑

(j,i)∈Ω

dicijxiyj.

2. Species

Assume we are given a symmetrizable generalized Cartan matrix C,
a symmetrizer D, and an orientation Ω. Fix a field F and F -skew fields
Fi, i = 1, . . . , n, such that dimF Fi = di. Moreover, for each (i, j) ∈ Ω,
we fix an Fi-Fj-bimodule Fij with a central action of F , which is free of
rank |cij| as a left Fi-module and free of rank |cji| as a right Fj-module.
Next we put

S :=
n∏

i=1

Fi, B :=
⊕

(i,j)∈Ω

Fij,

and

A := TS(B) :=
⊕
s≥0

B⊗Ss.
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Note that an A-module M is given by a collection of Fi-vector spaces
Mi, i = 1, . . . , n, and Fi-linear maps Mij : Fij ⊗Fj

Mj →Mi, (i, j) ∈ Ω.

Theorem (Dlab/Ringel). (1) The algebra A is hereditary.
(2) The algebra A is of finite representation type if and only if C is

of Dynkin type.
Moreover, if this is the case, then there is a bijection between the

isomorphism classes of the indecomposable A-modules and the positive
roots of the Lie algebra g(C), which assigns to each indecomposable
A-module its dimension vector.

3. Alternative approach

Again let C be a symmetrizable generalized Cartan matrix, D a
symmetrizer, and Ω an orientation. Our aim in this section is to define
an algebra H = H(C,D,Ω). We first define its quiver Q = Q(C,Ω).
The set of vertices of Q is {1, . . . , n}. For each i = 1, . . . , n, we have
a loop εi ar i. Moreover, for each (i, j) ∈ Ω we have gij arrows j → i,
where gij is the greatest common divisor of |cij| and |cji|. The are two
types of relations, which we put on Q. First, for each i = 1, . . . , n,
εdii = 0. In addition, εfjii α = αε

fij
j , for each arrow α : j → i such that

didj 6= 1, where fji :=
|cji|
gij

and fij :=
|cij |
gij

. Note that if C is symmetric
and D is the identity matrix, then H = KQ0, where Q is the quiver
obtained from Q by removing loops. More generally, if C is symmetric
and D is m times the identity matrix, then H = KQ0 ⊗K K[x]/(xm).

4. Analogy

Let C be a symmetrizable generalized Cartan matrix, D a sym-
metrizer, Ω an orientation, and H = H(C,D,Ω). For each vertex i,
Hi := eiHei = K[εi]/(ε

di
i ). Next, if (i, j) ∈ Ω, then Hij := eiHej. This

is an Hi-Hj-bimodule, which is free of rank |cij| as a left Hi-module
and free of rank |cji| as a right Hj-module. An H-module M can be
viewed as a collection of Hi-modules Mi, i = 1, . . . , n, and Hi-linear
maps Mij : Hij ⊗Hj

Mj → Mi, (i, j) ∈ Ω. Using this description one
defines, for a sink i, a reflection functor

S+
i : modH(C,D,Ω)→ modH(C,D, σ+

i Ω).

This functor induces an equivalence between the category ofH-modules
M , such that Si is not a composition factor of topM , and the category
H(C,D, σ+

i Ω)-modules, such that Si is not a composition functor of
socM . Like in the classical setting we obtain in this way the Coxeter
functor C+ : modH → modH. We have the following.

Theorem (Geiss/Leclerc/Schröer). Up to twist the functor C+ is iso-
morphic to the functor DExt1

H(−, H).
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5. Representation theory of H

We start with the following.

Proposition. For an H-module M the following conditions are equiv-
alent:

(1) pdH M ≤ 1.
(2) pdH M <∞.
(3) idH M ≤ 1.
(4) idH M <∞.
(5) M is locally free, i.e. eiM is a free Hi-module, for each i.

We say that an H-module is τ -locally free if τ kHM is locally free, for
each k ∈ Z.

Theorem (Geiss/Leclerc/Schröer). There only finitely many isomor-
phism classes of indecomposable τ -locally free H-module if and only if
C is of Dynkin type. Moreover, if this is the case, then there is a bijec-
tion between the isomorphism classes of the indecomposable A-modules
and the positive roots of the Lie algebra g(C), which assigns to each
indecomposable A-module its rank vector.

Theorem (Geiss/Leclerc/Schröer). Let C be of wild type and C be a
connected component of the Auslander–Reiten quiver of H. If M ∈ C
is τ -locally free and neither preprojective nor preinjective, then C is of
type ZA∞ and all modules in C are τ -locally finite.

Is it not known if the positive roots of the Lie algebra g(C) coincide
with the ranks of the indecomposable τ -locally free modules.

6. Singularity category of H

An H-module M is called Gorenstein projective if it is a submodule
of a projective H-module or, equivalently, Ext1

H(M,H) = 0. We de-
note by GP(H) the subcategory of Gorenstein projective modules. It
is a Frobenius category and the stable category GP(H) is equivalent
to the singularity category Db(modH)/Kb(projH), due to results of
Buchweitz and Orlov.

Theorem (Ringel/Zhang). If C is symmetric and di = 2, for each i,
then

GP(H) ' Db(modKQ0)/[1].

7. Varieties of locally free modules

Let e be a dimension vector such that di | ei, for each i. We put
r := ( e1

r1
, . . . , en

rn
). By replf(H, r) we denote the open subset of rep(H, e)

consisting of locally free representations with rank vector r.
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Proposition. The variety of replf(H, r) is smooth and irreducible of
dimension dimGd − q(r), where

q(x) := 〈x,x〉C,D,Ω.

For each rank vector r, there exist uniquely determined rank vectors
r1, . . . , rk and dense open subset U ⊆ replf(H, r) such that, for each
M ∈ U , there exist indecomposable modules Mi with rank vector ri
such that M = M1 ⊕ · · · ⊕Mk.

Theorem (Geiss/Leclerc/Schröer). The canonical decomposition of r
does not depend on D.


