
CONVOLUTION ALGEBRAS AND ENVELOPING
ALGEBRAS

BASED ON THE TALK BY JAN SCHRÖER

The talk is based on joint results with Christof Geiss and Bernard
Leclerc. Throughout the talk K denotes a field.

1. Introduction

It is well-known that the finite dimensional simple complex Lie al-
gebras correspond to the connected Cartan matrices. If C is a con-
nected Cartan matrix, then we denote the corresponding Lie algebra
by g(C). Moreover, the connected Cartan matrices are in bijection
with the Dynkin types. These are An, n ≥ 1, Dn, n ≥ 4, and E6, E7,
E8, if C is symmetric, and Bn, n ≥ 2, Cn, n ≥ 3, F4, and G2, if C is
not symmetric.

For a finite connected quiver Q without loops we define a symmetric
generalized Cartan matrix CQ = (cij)i,j∈Q0 by the formulas: cii := 2,
for i ∈ Q0, and cij is the number of arrows between i and j (in both
directions), for i, j ∈ Q0 with i 6= j. Then we have the following.

Theorem 1 (Gabriel, 1970). The path algebra KQ is representation
finite if and only if CQ is of (symmetric) Dynkin type. Moreover, if
this is the case, then the dimension vectors of the indecomposable KQ-
modules coincide with the positive roots of g(C).

Note that the finite dimensional path algebras of quivers form a
subclass of the class of hereditary finite dimensional K-algebras. Using
species and modulated graphs, Dlab and Ringel proved in 1971 an
analogue of Theorem 1 covering all Dynkin types. However, there are
restrictions of K in their theorem. For example, one cannot take as K
the field of complex numbers, if C is non-symmetric.

If C a n × n connected Cartan matrix, then the algebra g(C) de-
composes g(C) = n(C) ⊕ h(C) ⊕ n−(C). If U(n(C)) is the enveloping
algebra, then

U(n(C)) ' C〈e1, . . . , en〉/〈(ad ei)
1−cij(ej) : i 6= j〉,

where (adx)(y) := [x, y] := xy−yx. The above relations are called the
Serre relations. We have the following.

Theorem 2 (Ringel, 1990). If Q is a Dynkin quiver and C := CQ,
then the enveloping algebra U(n(C)) is isomorphic to the convolution
algebra M(CQ, {1S1 , . . . , 1Sn}).
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We have the following generalization.

Theorem 3 (Geiss/Leclerc/Schröer, 2015). If C is a connected Car-
tan matrix, then the enveloping algebra U(n(C)) is isomorphic to the
convolution algebra M(CQ/I, {1E1 , . . . , 1En}) for some bound quiver
(Q, I).

We note that if C is non-symmetric, then Q has loops and I 6= 0.

2. Convolution algebras

Let Q be a finite connected quiver and I an admissible ideal in
CQ. For each vertex i of Q we denote by Si the corresponding (1-
dimensional) simple A-module, where A := CQ/I. For a dimension
vector d we denote by rep(A,d) the variety of A-modules with dimen-
sion vector d. The group Gd :=

∏
i∈Q0

GLdi(C) acts on rep(A,d) in
such a way, that the orbits correspond to the isomorphism classes of
A-modules with dimension vector d.

A map f : rep(A,d) → C is called constructible if Im f is finite,
f−1(m) is constructible, for eachm ∈ C, and f is constant onGd-orbits.
By F(A)d we denote the set of constructible maps rep(A,d) → C.
This is a C-vector space with natural addition. We put F(A) :=⊕

d∈NQ0 F(A)d. Examples of constructible functions are 1d, for a di-
mension vector d, and 1M , for a representation M , where

1d(N) :=

{
1 if dimN = d,

0 else,
and 1M(N) :=

{
1 if N 'M,

0 else.

We define the convolution product in F(A) by the formula:

(f ∗ g)(M) :=
∑
m∈C

mχ({U ⊆M : f(U)g(M/U) = m}).

The following proposition should be attributed to many authors, in-
cluding Ringel/Schofield (1990) and Joyce (2007).

Proposition 4. The convolution product ∗ gives F(A) a structure of
NQ0-graded C-algebra, called the convolution algebras.

If we fix a subset Sd ⊆ F(A)d for each dimension vector d, then we
denote byM(A,S) the subalgebra of F(A) generated by the elements
which belong to S :=

⋃
d∈NQ0 Sd. We present some examples of this

construction.

Theorem 5 (Schofield, 1990). If Q is a quiver without oriented cycles,
then

U(n(CQ)) 'M(A, {1S1 , . . . , 1Sn}),
where n(CQ) is the positive part of the Kac–Moody Lie algebra g(CQ)
associated with CQ and A := CQ.

Similarly, we have the following.
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Theorem 6 (Lusztig). If Q is a quiver without oriented cycles, then

U(n(CQ)) 'M(A, {1S1 , . . . , 1Sn}),
where A := Π(Q) is the preprojective algebra associated with Q.

Let z : K0(A) → C be a stability condition for an algebra A. For a
dimension vector d, we define 1z,d ∈ F(A) by

1z,d(N) :=

{
1 if N is semistable and dimM = d,

0 else.

Theorem 7 (Reineke, 2003). For each stability condition z we have

M(A, {1d : d ∈ NQ0}) =M(A, {1z,d : d ∈ NQ0}).

We discuss now a question, where M(A,S) is isomorphic to the
enveloping algebra U(L) for some Lie algebra L. We define a map

i : F(A)⊗C F(A)→ F(A× A)

by i(f ⊗ g)(X, Y ) := f(X)g(Y ).

Lemma 1. i is an injective algebra homomorphism.

Next we define c : F(A)→ F(A×A) by (c(f))(X, Y ) := f(X ⊕ Y ).

Lemma 2. c is an algebra homomorphism.

Now letM :=M(A,S) for a set S. We say that the Hopf condition
is satisfied for M if c(M) ⊆ i(M⊗M). One verfies that the Hopf
conditions is satisfied in the following cases:

(1) A = CQ, for a quiver Q without oriented cycles, and S = {1Si
:

i ∈ Q0};
(2) A = Π(Q), for a quiver Q without oriented cycles, and S =
{1Si

: i ∈ Q0};
(3) S = {1d : d ∈ NQ0};
(4) S = {1P,d : d ∈ NQ0}, where

1P,d(N) :=

{
1 if pdimN <∞ and dimN = d,

0 else.

Note that the first three cases correspond to Theorems 5–7.
The following theorem follows from a work of Ringel/Schofield (1990)

and general Hopf theory. Recall that if H is a Hopf algebra with co-
multiplication c, then by P(H) we denote the set of primitive elements
in H, which consists of all h ∈ H such that c(h) = h⊗ 1 + 1⊗ h. Then
P(H) is a Lie algebra.

Theorem 8. Assume that the Hopf condition is satisfied. Then
(1) M is a cocommutative Hopf algebra with comultiplication in-

duced by c, and
(2) M' U(P(M)).
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Lemma 3. An element f ∈ M(A,S) is primitive if and only if the
only A-modules M such that f(M) 6= 0 are indecomposable ones.

An element g of a Hopf algebra H with comultiplication c is called
grouplike if c(g) = g ⊗ g.

Lemma 4. The identify of M is the only grouplike element of M.

3. About Theorem 3

We describe now the objects appearing in Theorem 3. For each
non-symmetric Dynkin type we define a bound quiver (Q, I). More
precisely, for type Bn, the quiver has the form

1

ε1

��
2

ε2

��α1oo · · ·α2oo n− 1

εn−1

��αn−2oo n
αn−1oo

and the relations are

ε2i = 0, i = 1, . . . , n− 1, εiαi = αiεi+1, i = 1, . . . , n− 2.

Next, for type Cn, the quiver has the form

1

ε1

��
2

α1oo · · ·α2oo n
αn−1oo

and the relation is
ε21 = 0.

For type F4, the quiver has the form

1

ε1

��
2

ε2

��α1oo 3
α2oo 4

α3oo

and the relations are

ε21 = 0, ε22 = 0, ε1α1 = α1ε2.

Finally, for type G2, the quiver has the form

1

ε1

��
2

α1oo

and the relation is
ε31 = 0.

Finally, for a vertex i of Q, Ei denote the indecomposable A-module
supported at i of maximal dimension, where A := KQ/I. In addition
to Theorem 3, one also shows

M(A, {1Ei
: i ∈ Q0}) 'M(A, {1P,d : d ∈ NQ0}).


