SHORT CHAINS AND SHORT CYCLES OF MODULES

BASED ON THE TALK BY ALICJA JAWORSKA

Throughout the talk A is an artin algebra over a commutative artin ring R.

1. Short chains and short cycles of modules

We say that an indecomposable A-module M lies on a short cycle if there exists an indecomposable A-module N such that

$$
\operatorname{rad}_{A}(M, N) \neq 0 \neq \operatorname{rad}_{A}(N, M)
$$

For an A-module M we denote by $[M]$ its image in the Grothendieck group of A. The aim of this section is to prove the following theorem.

Theorem 1.1 (Reiten/Skowroński/Smalø). Let M and N be indecomposable A-modules such $[M]=[N]$. If M does not lie on a short cycle, then $M \simeq N$.

We will need the following classical lemma. For A-modules M and N we denote by $[M, N]$ the length of the R-module $\operatorname{Hom}_{A}(M, N)$.

Lemma 1.2 (Auslander/Reiten). Let X and Z be A-modules.
(1) If $P_{1} \rightarrow P_{0} \rightarrow X \rightarrow 0$ is a minimal projective presentation of X, then

$$
[X, Z]-[Z, \tau X]=\left[P_{0}, Z\right]-\left[P_{1}, Z\right] .
$$

(2) If $0 \rightarrow X \rightarrow I_{0} \rightarrow I_{1}$ is a minimal injective presentation of X, then

$$
[Z, X]-\left[\tau^{-} X, Z\right]=\left[Z, I_{0}\right]-\left[Z, I_{1}\right]
$$

As an immediate consequence we obtain the following.
Corollary 1.3. Let M and N be A-modules. If $[M]=[N]$, then

$$
[X, M]-[M, \tau X]=[X, N]-[N, \tau X]
$$

and

$$
[M, X]-\left[\tau^{-} X, M\right]=[N, X]-\left[\tau^{-} X, N\right]
$$

for each A-module X.

We say that an indecomposable A-module M is the middle of a short chain if there exists an indecomposable A-module X such that

$$
\operatorname{Hom}_{A}(X, M) \neq 0 \neq \operatorname{Hom}_{A}(M, \tau X) .
$$

The following fact plays a crucial role in the proof of Theorem 1.1.
Proposition 1.4. If M is an indecomposable A-module, then M lies on a short cycle if and only if M is the middle of a short chain.

Proof. Part I. Assume that M is the middle of a short chain, and fix an indecomposable A-module X and non-zero homomorphisms $f: X \rightarrow$ M and $g: M \rightarrow \tau X$. Let

$$
0 \rightarrow \tau X \xrightarrow{\alpha} E \xrightarrow{\beta} X \rightarrow 0
$$

be an almost split sequence. Since α is a monomorphism, there exists an indecomposable direct summand E^{\prime} of E such that $\pi \circ \alpha \circ g \neq 0$, where $\pi: E \rightarrow E^{\prime}$ is the canonical injection. Let $\iota: E^{\prime} \rightarrow E$ be the canonical injection.

If $\beta \circ \iota$ is an epimorphism, then $f \circ \beta \circ \iota \neq 0$. Consequently,

$$
\operatorname{rad}_{A}\left(M, E^{\prime}\right) \neq 0 \neq \operatorname{rad}_{A}\left(E^{\prime}, M\right)
$$

in this case.
Now assume that $\beta \circ \iota$ is a monomorphism. Then

$$
h:=\beta \circ \iota \circ \pi \circ \alpha \circ g \neq 0 .
$$

In particular, $\operatorname{rad}_{A}(M, X) \neq 0$. If f is not an isomorphism, then we immediately have $\operatorname{rad}_{A}(X, M) \neq 0$ and the claim follows. If f is an isomorphism, then $f \circ h \circ f \neq 0$, hence again $\operatorname{rad}_{A}(X, M) \neq 0$.

For the converse implication we need the following lemma.
Lemma 1.5 (Happel/Ringel). Let X, Y and Z be indecomposable A modules. If there exist non-zero homomorphisms $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ such that $g \circ f=0$, then there exists an indecomposable A-module W such that

$$
\operatorname{Hom}_{A}(X, \tau W) \neq 0 \neq \operatorname{Hom}_{A}(W, Z) .
$$

Proof. Let $C:=$ Coker f and $p: Y \rightarrow C$ be the canonical projection. There exists a homomorphism $g^{\prime}: C \rightarrow Z$ such that $g=g^{\prime} \circ p$. Moreover, $g^{\prime} \neq 0$, hence there exists an indecomposable direct summand W of C such that $g^{\prime} \circ \iota \neq 0$, where $\iota: W \rightarrow C$ is the canonical inclusion. Note that $\pi \circ p$ does not split, where $\pi: C \rightarrow W$ is the canonical projection, since Y is indecomposable. In particular, W is not projective. We show that $\operatorname{Hom}_{A}(X, \tau W) \neq 0$.

Let

$$
0 \rightarrow \tau W \xrightarrow{\alpha} E \xrightarrow{\beta} W \rightarrow 0
$$

be an almost split sequence. Since $\pi \circ p$ does not split, there exists a homomorphism $h: Y \rightarrow E$ such that $\beta \circ h=\pi \circ p$. Next, h induces a
homomorphism $h^{\prime}: X \rightarrow \tau W$ such that $\alpha \circ h^{\prime}=h \circ f$. We show that $h^{\prime} \neq 0$. Indeed, if $h^{\prime}=0$, then $h \circ f=0$. Consequently, there exists $\gamma: C \rightarrow E$ such that $h=\gamma \circ p$. Note that

$$
\pi \circ p=\beta \circ h=\beta \circ \gamma \circ p,
$$

hence $\pi=\beta \circ \gamma$. Consequently,

$$
\mathrm{Id}_{W}=\pi \circ \iota=\beta \circ \gamma \circ \iota,
$$

where $\iota: W \rightarrow C$ be the canonical inclusion. This leads to a contradiction, since β is not a split epimorphism.

Proof of Proposition 1.4. Part II. Assume that M lies on a short cycle, and fix an indecomposable A-module N and non-zero radical homomorphisms $f: M \rightarrow N$ and $g: N \rightarrow M$. If $g \circ f=0$, then Lemma 1.5 implies that there exists an indecomposable A-module W such that

$$
\operatorname{Hom}_{A}(M, \tau W) \neq 0 \neq \operatorname{Hom}_{A}(W, M)
$$

On the other hand, if $g \circ f \neq 0$, then there exists $t \in \mathbb{N}_{+}$such that $(g \circ f)^{t} \neq 0$ and $(g \circ f)^{t+1}=0$. Then the claim follows from an application of Lemma 1.5 for the morphisms $(g \circ f)^{t}$ and $g \circ f$.
Proof of Theorem 1.1. Corollary 1.3 implies that

$$
[M, M]-[M, \tau M]=[M, N]-[N, \tau M] .
$$

Proposition 1.4 implies that M is not the middle of short chain, hence in particular $[M, \tau M]=0$. Consequently, $[M, N] \neq 0$. Dually $[N, M] \neq 0$. Since M does not lie on a short cycle, $\operatorname{rad}_{A}(M, N)=0$ or $\operatorname{rad}_{A}(N, M)=$ 0 . This implies that M and N are isomorphic.

