HOCHSCHILD COHOMOLOGY AND HOMOLOGY OF ALGEBRAS

BASED ON THE TALKS BY PETTER ANDREAS BERGH

Throughout the talk k is a field and Λ is an indecomposable k-algebra.

1. Classical definitions

We first present definition of Hochschild cohomology groups from his classical paper [12].

Let B be a bimodule over Λ . We denote by \mathbb{H}^B the sequence

$$0 \xrightarrow{\partial^{-1}} \operatorname{Hom}_{k}(\Lambda^{\otimes 0}, B) \xrightarrow{\partial^{0}} \operatorname{Hom}_{k}(\Lambda^{\otimes 1}, B) \xrightarrow{\partial^{1}} \operatorname{Hom}_{k}(\Lambda^{\otimes 2}, B) \to \cdots,$$

where $\Lambda^{\otimes n} := \underbrace{\Lambda \otimes_{k} \cdots \otimes_{k} \Lambda}_{n \text{ times}}$ for $n \in \mathbb{N}$ (in particular, $\Lambda^{0} := k$) and

$$(\partial^n f)(\lambda_1 \otimes \cdots \otimes \lambda_{n+1}) := \lambda_1 \cdot f(\lambda_2 \otimes \cdots \otimes \lambda_{n+1}) \\ + \sum_{i \in [1,n]} (-1)^i \cdot f(\lambda_1 \otimes \cdots \otimes \lambda_{i-1} \otimes \lambda_i \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_{n+1}) \\ + (-1)^{n+1} f(\lambda_1 \otimes \cdots \otimes \lambda_n) \cdot \lambda_{n+1}$$

for $n \in \mathbb{N}$, $f \in \operatorname{Hom}_k(\Lambda^{\otimes n}, B)$ and $\lambda_1, \ldots, \lambda_{n+1} \in \Lambda$. Note that we have the canonical isomorphism $\operatorname{Hom}_k(\Lambda^{\otimes 0}, B) \simeq B$ sending $f \in \operatorname{Hom}_k(\Lambda^{\otimes 0}, B)$ to f(1), and under this isomorphism ∂^0 is given by

$$(\partial^0 b)(\lambda) = \lambda \cdot b - b \cdot \lambda$$

for each $b \in B$ and $\lambda \in \Lambda$. One checks that \mathbb{H}^B is a complex, i.e., $\partial^n \circ \partial^{n-1} = 0$ for each $n \in \mathbb{N}$ (it will also follow from our considerations in Section 2) and for $n \in \mathbb{N}$ we define the *n*-th Hochschild cohomology group of Λ with coefficients in *B* by the formula

$$\operatorname{HH}^{n}(\Lambda, B) := \operatorname{Ker} \partial^{n} / \operatorname{Im} \partial^{n-1}.$$

We have the following homological version of the above definition (we note, however, that it was not defined by Hochschild). Let \mathbb{H}_B be the sequence

$$\cdots \to B \otimes_k \Lambda^{\otimes 2} \xrightarrow{\partial_2} B \otimes_k \Lambda^{\otimes 1} \xrightarrow{\partial_1} B \otimes_k \Lambda^{\otimes 0} \xrightarrow{\partial_0} 0,$$

Date: 18.12.2010, 19.12.2010 and 20.12.2010.

where

$$\partial_n (b \otimes \lambda_1 \otimes \cdots \otimes \lambda_n) := b \cdot \lambda_1 \otimes \lambda_2 \otimes \cdots \otimes \lambda_n \\ + \sum_{i \in [1, n-1]} (-1)^i \cdot b \otimes \lambda_1 \otimes \lambda_{i-1} \otimes \lambda_i \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_n \\ + (-1)^n \cdot \lambda_n \cdot b \otimes \lambda_1 \otimes \cdots \otimes \lambda_{n-1}$$

for $n \in \mathbb{N}$, $b \in B$ and $\lambda_1, \ldots, \lambda_n \in \Lambda$. Again \mathbb{H}_B is a complex, i.e., $\partial_n \circ \partial_{n+1} = 0$ for each $n \in \mathbb{N}$, and for $n \in \mathbb{N}$ we define the *n*-th Hochschild homology group of Λ with coefficients in *B* by the formula

 $\operatorname{HH}_n(\Lambda, B) := \operatorname{Ker} \partial_n / \operatorname{Im} \partial_{n+1}.$

Observe that

$$\operatorname{HH}^{0}(\Lambda, B) = \{ b \in B : \lambda \cdot b = b \cdot \lambda \text{ for each } \lambda \in \Lambda \}$$

Consequently, $\operatorname{HH}^0(\Lambda, \Lambda)$ is just the center $Z(\Lambda)$ of Λ . In particular, $\operatorname{HH}^0(\Lambda, \Lambda) = \Lambda$ if and only if Λ is commutative. On the other hand,

$$\mathrm{HH}_0(\Lambda, B) = B / \{ \lambda \cdot b - b \cdot \lambda : \lambda \in \Lambda, \ b \in B \},$$

hence again $HH_0(\Lambda, \Lambda) = \Lambda$ if and only if Λ is commutative.

By a $k\text{-derivation of }\Lambda$ on B we mean every $k\text{-linear map }d:\Lambda\to B$ such

$$d(\lambda_1 \cdot \lambda_2) = d(\lambda_1) \cdot \lambda_2 + \lambda_1 \cdot d(\lambda_2)$$

for all $\lambda_1, \lambda_2 \in \Lambda$. A derivation d is called inner, if there exists $b \in B$ such that

$$d(\lambda) = \lambda \cdot b - b \cdot \lambda$$

for each $\lambda \in \Lambda$. One checks that every map of the above form is a derivation. We denote by $\text{Der}_k(\Lambda, B)$ and $\text{Der}_k^*(\Lambda, B)$ the space of the k-derivations and the inner k-derivations, respectively. Then

Ker
$$\partial^1 = \operatorname{Der}_k(\Lambda, B)$$
 and Im $\partial^0 = \operatorname{Der}_k^*(\Lambda, B)$,

thus

$$\operatorname{HH}^{1}(\Lambda, B) = \operatorname{Der}_{k}(\Lambda, B) / \operatorname{Der}_{k}^{*}(\Lambda, B).$$

As an example we calculate $\operatorname{HH}^1(k[X], k[X])$. We immediately get that $\operatorname{Der}^*_k(k[X], k[X]) = 0$, since k[X] is commutative. On the other, for each $f \in k[X]$ we define a derivation $d_f : k[X] \to k[X]$ by the formula $d_f(g) := g' \cdot f$ for $g \in k[X]$. If we define $\Psi : k[X] \to$ $\operatorname{Der}_k(k[X], k[X])$ by $\Psi(f) := d_f$ for $f \in k[X]$, then one easily checks that Ψ is an isomorphism. In other words, $\operatorname{HH}^1(k[X], k[X]) = k[X]$.

Now consider the quiver

$$Q: \ \mathbf{\bullet} \xrightarrow{\alpha} \mathbf{\bullet} \xrightarrow{\beta} \mathbf{\bullet}_3$$

and fix $d \in \text{Der}_k(kQ, kQ)$. Using the equality $d(e_2) = e_2 \cdot d(e_2) + d(e_2) \cdot e_2$ we get that there exists $a' \in k$ such that $d(e_2) = a' \cdot \alpha$. Analogously, we get that $d(e_3) = a'' \cdot \beta$ for some $a'' \in k$. Moreover, the equality

 $\mathbf{2}$

 $1 = e_1 + e_2 + e_3$ implies that $d(e_1) = -(a' \cdot \alpha + a'' \cdot \beta)$. Next, using the equalities

$$d(e_2) \cdot \alpha + e_2 \cdot d(\alpha) = d(\alpha) = d(\alpha) \cdot e_1 + \alpha \cdot d(e_1),$$

we get that there exists $b' \in k$ such that $d(\alpha) = b' \cdot \alpha$. Similarly, $d(\beta) = b'' \cdot \beta$ for some $b'' \in k$. Thus, if

$$x := a' \cdot \alpha + a'' \cdot \beta - b' \cdot e_2 - b'' \cdot e_3,$$

then $d(y) = y \cdot x - x \cdot y$ for each $y \in kQ$, hence $\operatorname{HH}^1(kQ, kQ) = 0$. This result is not surprising, since we have the following.

Theorem (Happel [11]). Let k be algebraically closed and Q a finite quiver without oriented cycles. Then $HH^1(kQ, kQ) = 0$ if and only if Q is a tree.

We remark, that if Q has an oriented cycle, then one can easily construct a derivation of kQ on kQ, which is not inner.

2. Modern Approach

Consider the sequence

$$\mathbb{S}: \dots \to \Lambda^{\otimes 4} \xrightarrow{d_2} \Lambda^{\otimes 3} \xrightarrow{d_1} \Lambda^{\otimes 2} \xrightarrow{d_0} \Lambda^{\otimes 1} \xrightarrow{d_{-1}} 0,$$

where

$$d_n(\lambda_0 \otimes \cdots \otimes \lambda_{n+1}) \\ := \sum_{i \in [0,n]} (-1)^i \cdot \lambda_0 \otimes \cdots \otimes \lambda_{i-1} \otimes \lambda_i \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_{n+1}$$

for $n \in \mathbb{N}$ and $\lambda_0, \ldots, \lambda_{n+1} \in \Lambda$. It is a sequence of Λ - Λ -bimodules, if for $n \in \mathbb{N}_+$ and $\lambda, \lambda', \lambda_1, \ldots, \lambda_n \in \Lambda$ we put

$$\lambda \cdot (\lambda_1 \otimes \cdots \otimes \lambda_n) \cdot \lambda' := \lambda \cdot \lambda_1 \otimes \lambda_2 \cdots \otimes \lambda_{n-1} \otimes \lambda_n \cdot \lambda'.$$

For $n \in \mathbb{N}$ we define $s_n : \Lambda^{\otimes (n+1)} \to \Lambda^{\otimes (n+2)}$ by the formula $s_n(x) := 1 \otimes x$ for $x \in \Lambda^{\otimes (n+1)}$. Moreover, we denote by s_{-1} the zero map $\Lambda \to 0$. One verifies directly that

$$d_n \circ s_n + s_{n-1} \circ d_{n-1} = \mathrm{Id}$$

for each $n \in \mathbb{N}$. As a first consequence we obtain the following.

Lemma 2.1. \mathbb{S} is a complex.

Proof. It is obvious that $d_{-1} \circ d_0 = 0$. If $n \in \mathbb{N}$, then

$$d_n \circ d_{n+1} \circ s_{n+1} = d_n - d_n \circ s_n \circ d_n = d_n - d_n + s_{n-1} \circ d_{n-1} \circ d_n.$$

By induction, $d_{n-1} \circ d_n = 0$, hence $d_n \circ d_{n+1} \circ s_{n+1} = 0$. Since both d_n and d_{n+1} are homomorphisms of left Λ -modules, we get

$$(d_n \circ d_{n+1})(\lambda \otimes x) = \lambda \cdot (d_n \circ d_{n+1})(1 \otimes x) = \lambda \cdot (d_n \circ d_{n+1} \circ s_{n+1})(x) = 0$$

for all $\lambda \in \Lambda$ and $x \in \Lambda^{\otimes (n+1)}$, hence the claim follows. \Box

Lemma 2.2. S is exact.

Proof. We already know that $\operatorname{Im} d_n \subseteq \operatorname{Ker} d_{n-1}$ for each $n \in \mathbb{N}$. On the other hand, if $n \in \mathbb{N}$ and $x \in \operatorname{Ker} d_{n-1}$, then $x = (d_n \circ s_n)(x) \in \operatorname{Im} d_n$.

Proposition 2.3. S is a projective resolution of Λ as a Λ - Λ -bimodule.

Proof. It is enough to observe that $\Lambda^{\otimes (n+2)}$ is a projective Λ - Λ -bimodule for each $n \in \mathbb{N}$.

Theorem 2.4. If B is a Λ - Λ -bimodule, then

 $\operatorname{HH}^{n}(\Lambda, B) \simeq \operatorname{Ext}^{n}_{\Lambda-\Lambda}(\Lambda, B) \quad and \quad \operatorname{HH}_{n}(\Lambda, B) \simeq \operatorname{Tor}^{\Lambda-\Lambda}_{n}(\Lambda, B)$ for each $n \in \mathbb{N}$.

Proof. Let S' be the sequence

 $\mathbb{S}':\cdots\to\Lambda^{\otimes 4}\xrightarrow{d_2}\Lambda^{\otimes 3}\xrightarrow{d_1}\Lambda^{\otimes 2}\to 0.$

One easily checks that $\operatorname{Hom}_{\Lambda-\Lambda}(\mathbb{S}', B)$ is isomorphic to \mathbb{H}^B and $B \otimes_{\Lambda-\Lambda} \mathbb{S}'$ is isomorphic to \mathbb{H}_B , hence the claim follows.

Now we apply the above theorem in order to calculate the Hochschild (co)homology groups for $\Lambda := k[X]/(X^a), a \in \mathbb{N}_+$. Let \mathbb{P} be the following sequence

$$\cdots \to \Lambda \otimes_k \Lambda \xrightarrow{\cdot v} \Lambda \otimes_k \Lambda \xrightarrow{\cdot w} \Lambda \otimes_k \Lambda \xrightarrow{\cdot v} \Lambda \otimes_k \Lambda \xrightarrow{\mu} \Lambda \to 0,$$

where $v := X \otimes 1 - 1 \otimes X$, $w := \sum_{i \in [0, a-1]} X^i \otimes X^{a-1-i}$ and $\mu(\lambda_1 \otimes \lambda_2) := \lambda_1 \cdot \lambda_2$ for $\lambda_1, \lambda_2 \in \Lambda$. One checks that \mathbb{P} is an exact sequence, hence \mathbb{P} is a projective resolution of Λ as a Λ - Λ -bimodule. If \mathbb{P}' is the sequence

$$\cdots \to \Lambda \otimes_k \Lambda \xrightarrow{\cdot v} \Lambda \otimes_k \Lambda \xrightarrow{\cdot w} \Lambda \otimes_k \Lambda \xrightarrow{\cdot v} \Lambda \otimes_k \Lambda \to 0,$$

then $\Lambda \otimes_{\Lambda-\Lambda} \mathbb{P}'$ and $\operatorname{Hom}_{\Lambda-\Lambda}(\mathbb{P}', \Lambda)$ equal

$$\cdots \to \Lambda \xrightarrow{0} \Lambda \xrightarrow{\cdot a \cdot X^{a-1}} \Lambda \xrightarrow{0} \Lambda \to 0$$

and

$$0 \to \Lambda \xrightarrow{0} \Lambda \xrightarrow{\cdot a \cdot X^{a-1}} \Lambda \xrightarrow{0} \Lambda \to \cdots,$$

respectively. Consequently,

$$\operatorname{HH}_{n}(\Lambda,\Lambda) = \begin{cases} \Lambda & n = 0, \\ \Lambda/(a \cdot X^{a-1}) & n \in 2 \cdot \mathbb{N}_{+} - 1, \\ \operatorname{Ann}_{\Lambda}(a \cdot X^{a-1}) & n \in 2 \cdot \mathbb{N}_{+}, \end{cases}$$

and

$$\operatorname{HH}^{n}(\Lambda,\Lambda) = \begin{cases} \Lambda & n = 0, \\ \operatorname{Ann}_{\Lambda}(a \cdot X^{a-1}) & n \in 2 \cdot \mathbb{N}_{+} - 1, \\ \Lambda/(a \cdot X^{a-1}) & n \in 2 \cdot \mathbb{N}_{+}, \end{cases}$$

for each $n \in \mathbb{N}$. In particular, $\operatorname{HH}^{n}(\Lambda, \Lambda) \neq 0 \neq \operatorname{HH}_{n}(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$ provided $a \geq 2$. More generally, Holm proved [13] that

$$\operatorname{HH}_{n}(\Lambda,\Lambda) = \begin{cases} \Lambda & n = 0, \\ \Lambda/(f') & n \in 2 \cdot \mathbb{N}_{+} - 1, \\ \operatorname{Ann}_{\Lambda}(f') & n \in 2 \cdot \mathbb{N}_{+}, \end{cases}$$

and

$$\operatorname{HH}^{n}(\Lambda,\Lambda) = \begin{cases} \Lambda & n = 0, \\ \operatorname{Ann}_{\Lambda}(f') & n \in 2 \cdot \mathbb{N}_{+} - 1, \\ \Lambda/(f') & n \in 2 \cdot \mathbb{N}_{+}, \end{cases}$$

for each $n \in \mathbb{N}$, provided $\Lambda = k[X]/(f)$ for $f \in k[X]$.

3. VANISHING

Lemma 3.1. Let

$$\eta: 0 \to P_{n+2} \xrightarrow{d_{n+1}} P_{n+1} \xrightarrow{d_n} P_n \to \cdots \xrightarrow{d_0} P_0 \to 0$$

be an exact sequence of Λ - Λ -bimodules, such that P_0, \ldots, P_n are projective as right Λ -modules. If M is a left Λ -module, then the sequence $\eta \otimes_{\Lambda} M$ is exact.

Proof. We prove by induction on l the following two claims:

- (1) Im d_l is a projective right Λ -module for each $l \in [0, n]$,
- (2) the sequence $0 \to \operatorname{Im} d_l \to P_l \to \operatorname{Im} d_{l-1} \to 0$ splits as a sequence of right Λ -modules for each $l \in [1, n+1]$.

The second claim will imply that the sequence

 $0 \to \operatorname{Im} d_l \otimes_{\Lambda} M \to P_l \otimes_{\Lambda} M \to \operatorname{Im} d_{l-1} \otimes_{\Lambda} M \to 0,$

is exact for each $l \in [1, n+1]$, which immediately implies that $\eta \otimes_{\Lambda} M$ is exact.

Now $\operatorname{Im} d_0 = P_0$ is a projective right Λ -module by assumption, thus assume l > 0. By induction $\operatorname{Im} d_{l-1}$ is a projective Λ -module, hence the sequence $0 \to \operatorname{Im} d_l \to P_l \to \operatorname{Im} d_{l-1} \to 0$ splits as a sequence of right Λ -modules. Moreover, if l < n + 1, then P_l is a projective right Λ -module by assumption, hence $\operatorname{Im} d_l$ is a projective right Λ -module as well. \Box

Theorem 3.2. If \mathbb{P} is a projective resolution of Λ as a Λ - Λ -bimodule, then $\mathbb{P} \otimes_{\Lambda} M$ is a projective resolution of M for each left Λ -module M.

Proof. Note that $\mathbb{P} \otimes_{\Lambda} M$ is a sequence of projective left Λ -modules. Moreover, the above lemma implies that $\mathbb{P} \otimes_{\Lambda} M$ is an exact sequence.

Corollary 3.3. lgldim $\Lambda \leq \text{pdim}_{\Lambda-\Lambda} \Lambda$ and rgldim $\Lambda \leq \text{pdim}_{\Lambda-\Lambda} \Lambda$. In particular, if Λ is left and right Noetherian (for example, dim_k $\Lambda < \infty$), then

$$\operatorname{gldim} \Lambda \leq \operatorname{pdim}_{\Lambda - \Lambda} \Lambda$$

Theorem 3.4. If k is algebraically closed and $\dim_k \Lambda < \infty$, then gldim $\Lambda = \operatorname{pdim}_{\Lambda-\Lambda} \Lambda$.

Proof. Let

$$\mathbb{P}: \dots \to P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} \Lambda \to 0$$

be a minimal projective resolution of Λ as a Λ - Λ -bimodule (existence of such resolution follows since dim_k $\Lambda < \infty$). The minimality assumption implies that

$$\operatorname{Im} d_n \subseteq \operatorname{rad} \Lambda \cdot P_{n-1} + P_{n-1} \cdot \operatorname{rad} \Lambda$$

for each $n \in \mathbb{N}_+$ (here we use the assumption that k is algebraically closed). If S is a simple left Λ -module, then

$$\operatorname{Im}(d_n \otimes_{\Lambda} S) \subseteq \operatorname{rad} \Lambda \cdot P_{n-1} \otimes_{\Lambda} S + P_{n-1} \cdot \operatorname{rad} \Lambda \otimes_{\Lambda} S \subseteq \operatorname{rad} \Lambda \cdot (P_{n-1} \otimes_{\Lambda} S)$$

for each $n \in \mathbb{N}_+$ (we use that rad $\Lambda \cdot S = 0$), hence $\mathbb{P} \otimes_{\Lambda} S$ is a minimal projective resolution of S. Moreover, if P is a projective Λ - Λ -bimodule and $P \otimes_{\Lambda} S = 0$ for each simple left Λ -module S, then we prove by induction that $P \otimes_{\Lambda} M = 0$ for each left Λ -module M, hence P = 0. Consequently,

gldim
$$\Lambda = \sup\{n \in \mathbb{N} : P_n \otimes S \neq 0 \text{ for each simple left } \Lambda \text{-module } S\}$$

= $\sup\{n \in \mathbb{N} : P_n \neq 0\} = \operatorname{pdim}_{\Lambda - \Lambda} \Lambda,$

 \square

hence the claim follows.

Corollary 3.5. If k is algebraically closed and $\dim_k \Lambda < \infty$, then $\operatorname{HH}^n(\Lambda, B) = 0 = \operatorname{HH}_n(\Lambda, B)$ for each Λ - Λ -bimodule B and $n > \operatorname{gldim} \Lambda$.

Inspired by the above result Happel [11] asked a question, if the condition $\operatorname{HH}^n(\Lambda, \Lambda) = 0$ for $n \gg 0$ implies that $\operatorname{gldim} \Lambda < \infty$. Avramov and Iyengar [1] showed that this is the case if Λ is commutative. On the other hand, Buchweitz, Green, Madsen and Solberg [8] gave a counterexample for a general version. Namely, if $q \in k$ is not a root of unity and

$$\Lambda := k \langle X, Y \rangle / (X^2, X \cdot Y - q \cdot Y \cdot X, Y^2),$$

then $\operatorname{HH}^n(\Lambda, \Lambda) = 0$ for each $n \geq 3$, while $\operatorname{gldim} \Lambda = \infty$. However, the following conjecture is still open.

Conjecture. If dim_k $\Lambda < \infty$ and HH_n(Λ, Λ) = 0 for each $n \gg 0$, then gldim $\Lambda < \infty$.

 $\mathbf{6}$

7

The above conjecture has been verified if Λ is either commutative [2] or monomial [10]. Moreover, under the assumption char k = 0 Bergh and Madsen [5] proved this conjecture in the case when Λ is either Koszul or graded with $\Lambda_0 = k$. Finally, Bergh, Madsen and Han [4] verified the conjecture provided there exists arrows $\alpha_1, \ldots, \alpha_t$ in the Gabriel quiver of Λ such that $s\alpha_i = t\alpha_{i-1}$ and $\alpha_i\alpha_{i-1} = 0$ for each $i \in [1, t]$, where $\alpha_0 := \alpha_t$.

We present the proof of the conjecture for quantum complete intersections due to Bergh and Madsen [6].

First observe that if $f : \Lambda \to \Gamma$ is a homomorphism of k-algebras, then we have the induced map $f^{\otimes n} : \Lambda^{\otimes n} \to \Gamma^{\otimes n}$ for each $n \in \mathbb{N}_+$, which induces the map $\operatorname{HH}_n(f) : \operatorname{HH}_n(\Lambda, \Lambda) \to \operatorname{HH}_n(\Gamma, \Gamma)$ for each $n \in \mathbb{N}$. In other words, we obtain functors HH_n , $n \in \mathbb{N}$, from the category of k-algebras to the category of vector spaces.

Theorem 3.6. If

$$\Lambda := k \langle X_1, \dots, X_c \rangle / (X_i^{a_i}, X_i \cdot X_j - q_{i,j} \cdot X_j \cdot X_i)$$

for $c \in \mathbb{N}_+$, $a_1, \ldots, a_c \geq 2$, and $q_{i,j} \in k^{\times}$, i < j, then $HH_n(\Lambda, \Lambda) \neq 0$ for each $n \in \mathbb{N}$.

Proof. For each $i \in [1, c]$ we have algebra homomorphisms

$$\iota_c: k[X]/(X^{a_c}) \to \Lambda$$
 and $\pi_c: \Lambda \to k[X]/(X^{a_c})$

such that $\pi_c \circ \iota_c = \text{Id.}$ This implies that $\text{HH}_n(k[X]/(X^{a_i}), k[X]/(X^{a_i}))$ is a direct summand of $\text{HH}_n(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$ and $i \in [1, c]$. Since $\text{HH}_n(k[X]/(X^a), k[X]/(X^a)) \neq 0$ for each $n \in \mathbb{N}$ and $a \geq 2$, the claim follows. \Box

4. The Hochschild Cohomology ring

Throughout this section we assume that $\dim_k \Lambda < \infty$. Since $\operatorname{HH}^n(\Lambda) = \operatorname{Ext}^n_{\Lambda-\Lambda}(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$, we get a graded ring

$$\mathrm{HH}^*(\Lambda,\Lambda) := \bigoplus_{n \in \mathbb{N}} \mathrm{HH}^n(\Lambda,\Lambda)$$

with the multiplication given by the Yoneda product.

Theorem 4.1 (Yoneda [16]). Let Λ , Σ and Γ be k-algebras, A and B Λ - Σ -bimodules, and C and D Σ - Γ -bimodules. If A, B, C and D are flat as Σ -modules, then

$$(\eta \otimes_{\Sigma} D) \circ (A \otimes_{\Sigma} \theta) = (-1)^{mn} \cdot (B \otimes_{\Sigma} \theta) \circ (\eta \otimes_{\Sigma} C)$$

for all $\eta \in \operatorname{Ext}_{\Lambda-\Sigma}^m(A, B)$ and $\theta \in \operatorname{Ext}_{\Sigma-\Gamma}^n(C, D)$.

Corollary 4.2. $HH^*(\Lambda, \Lambda)$ is graded commutative.

Observe that $\eta^2 = -\eta^2$ for each $\eta \in \operatorname{HH}^n(\Lambda, \Lambda)$ such that n is odd. In particular, $\eta^2 = 0$ if char $k \neq 2$. Moreover, $\operatorname{HH}^{2*}(\Lambda, \Lambda) := \bigoplus_{n \in \mathbb{N}} \operatorname{HH}^{2n}(\Lambda, \Lambda)$ is commutative and $\operatorname{HH}^*(\Lambda, \Lambda)$ is commutative if char k = 2. Finally, if \mathcal{N} is the ideal in $\operatorname{HH}^*(\Lambda, \Lambda)$ generated by the homogeneous nilpotent elements, then $\operatorname{HH}^*(\Lambda, \Lambda)/\mathcal{N}$ is commutative.

Theorem 4.3 (Green/Snashall/Solberg [9]). Assume that k is algebraically closed. If there exists $n \in \mathbb{N}_+$ such that $\Omega^n_{\Lambda-\Lambda}(\Lambda) \simeq \Lambda$, then

$$\operatorname{HH}^*/\mathcal{N} \simeq k[X]$$

and $|X| = \min\{n \in \mathbb{N}_+ : \Omega^n_{\Lambda - \Lambda}(\Lambda) \simeq \Lambda\}.$

We remark that for the above theorem the assumption that Λ is indecomposable is important. Holm [13] showed that

$$\mathrm{HH}^*(\Lambda,\Lambda) = k[X,Y,Z]/(X^a, a \cdot X^{a-1} \cdot Z, Y \cdot X^{a-1}, Y^2)$$

with |X| = 0, |Y| = 1 and |Z| = 2, if $\Lambda := k[X]/(X^a)$ for $a \ge 2$. In particular, $\operatorname{HH}^*/\mathcal{N} \simeq k[Z]$ in this case.

5. Support varieties

Let $\eta \in HH^n(\Lambda, \Lambda) = Ext^n_{\Lambda-\Lambda}(\Lambda, \Lambda)$. Then η can be represented by an exact sequence

$$0 \to \Lambda \to K \to P_{n-2} \to \dots \to P_0 \to \Lambda \to 0,$$

such that P_0, \ldots, P_{n-2} are projective Λ - Λ -bimodules. Indeed, if $f_\eta \in \text{Hom}_{\Lambda-\Lambda}(\Omega^n_{\Lambda-\Lambda}(\Lambda), \Lambda)$ corresponds to η , then we can take as a representative the pushout of the sequence

$$0 \to \Omega^n_{\Lambda - \Lambda}(\Lambda) \to P_{n-1} \to \dots \to P_0 \to \Lambda \to 0$$

by f_{η} , where

$$\mathbb{P}: \dots \to P_2 \to P_1 \to P_0 \to \Lambda \to 0$$

is a minimal projective resolution of Λ . Using Lemma 3.1 we know that $\eta \otimes_{\Lambda} M$ is an exact sequence of left Λ -modules, i.e., $\eta \otimes_{\Lambda} M \in$ $\text{Ext}^{n}_{\Lambda}(M, M)$. Since $\mathbb{P} \otimes_{\Lambda} M$ is a projective resolution of M by Theorem 3.2, we get that $\eta \otimes_{\Lambda} M$ corresponds to $f_{\eta} \otimes_{\Lambda} M$. In this way we define a function Φ_{M} : HH^{*}(Λ, Λ) \to Ext^{*}_{Λ}(M, M), which is a homomorphism of graded algebras.

Now let M and N be left Λ -module. We define left and right actions of $\operatorname{HH}^*(\Lambda, \Lambda)$ on $\operatorname{Ext}^*_{\Lambda}(M, N)$ by the formulas: $\eta \cdot \theta := \Phi_N(\eta) \circ \theta$ and $\theta \cdot \eta := \theta \circ \Phi_M(\eta)$ for $\eta \in \operatorname{HH}^n(\Lambda, \Lambda)$ and $\theta \in \operatorname{Ext}^m_{\Lambda}(M, N)$. Theorem 4.1 implies the following.

Theorem 5.1. If $\eta \in HH^n(\Lambda, \Lambda)$ and $\theta \in Ext^m_{\Lambda}(M, N)$, then $\eta \cdot \theta = (-1)^{mn} \cdot \theta \cdot \eta.$

For a graded algebra Γ we denote by $Z_{\rm gr}(\Gamma)$ the graded center of Γ , i.e., the subring of Γ generated by the homogeneous elements γ such that $\gamma \cdot \gamma' = (-1)^{|\gamma| \cdot |\gamma'|} \cdot \gamma' \cdot \gamma$ for each homogeneous element γ' of Γ .

Corollary 5.2. For each left Λ -module M the image of Φ_M is contained in $Z_{gr}(\text{Ext}^*_{\Lambda}(M, M))$.

Let $H := \operatorname{HH}^{2*}(\Lambda, \Lambda)$. Then H is commutative. Moreover, if Mand N are left Λ -modules, then $\eta \cdot \theta = \theta \cdot \eta$ for each $\eta \in H$ and $\theta \in \operatorname{Ext}^*_{\Lambda}(M, N)$. We denote by $V_H(M, N)$ the set of the maximal ideals in H which contain $\operatorname{Ann}_H \operatorname{Ext}^*_{\Lambda}(M, N)$.

Lemma 5.3. If M is a left Λ -module, then

$$V_H(M, \Lambda / \operatorname{rad} \Lambda) = V_H(M, M) = V_H(\Lambda / \operatorname{rad} \Lambda, M).$$

We put $V_H(M) := V_H(M, M)$ and call it the support variety of M. Since we assume that Λ is indecomposable, $\operatorname{HH}^0(\Lambda) = Z(\Lambda)$ is a local algebra and

$$\mathfrak{m}_{\mathrm{gr}} := \mathrm{rad}\, Z(\Lambda) \oplus \bigoplus_{n \in \mathbb{N}^+} \mathrm{HH}^{2n}(\Lambda, \Lambda)$$

is the unique graded maximal ideal of H. Consequently, $\mathfrak{m}_{gr} \in V_H(M)$ for each nonzero left Λ -module M.

Theorem 5.4.

- (1) If either $\operatorname{Ext}_{\Lambda}^{n}(M, M) = 0$ for all $n \gg 0$ or $\operatorname{pdim}_{\Lambda} M < \infty$ or $\operatorname{idim}_{\Lambda} M < \infty$, then $V_{H}(M) \subseteq \{\mathfrak{m}_{\operatorname{gr}}\}.$
- (2) If M and N are left Λ -modules, then $V_H(M \oplus N) = V_H(M) \cup V_H(N)$.
- (3) If $0 \to M_1 \to M_2 \to M_3 \to 0$ is an exact sequence of left Λ -modules, then $V_H(M_i) \subseteq \bigcup_{i \in [1,3] \setminus \{i\}} V_H(M_j)$ for each $i \in [1,3]$.
- (4) If $\operatorname{pdim}_{\Lambda} M = \infty$, then $V_H(\Omega^n(M)) = V_H(M)$ for each $n \in \mathbb{N}$.
- (5) If Λ is selfinjective, then $V_H(M) = V_H(\tau M)$.
- (6) If Λ is selfinjective and M and N belong to the same component of the stable Auslander-Reiten quiver of Λ , then $V_H(M) = V_H(N)$.

Let

$$\dots \to Q_2 \to Q_1 \to Q_0 \to M \to 0$$

be a minimal projective resolution of a left Λ -module M. We define the complexity $\operatorname{cx} M$ of M by

 $\operatorname{cx} M := \inf\{t \in \mathbb{N} : \text{there exists a real number } a \text{ such that}$

$$\dim_k Q_n \le a \cdot n^{t-1} \text{ for each } n \in \mathbb{N}_+ \}.$$

One easily checks that $\operatorname{cx} M = 0$ if and only if $\operatorname{pdim}_{\Lambda} M < \infty$. Similarly, $\operatorname{cx} M \leq 1$ if and only if the sequence $(\dim_k Q_n)$ is bounded. In particular, $\operatorname{cx} M = 1$ if M is nonzero and periodic, i.e., there exists $n \in \mathbb{N}_+$ such that $M \simeq \Omega^n_{\Lambda}(M)$. Moreover, if $0 \to M_1 \to M_2 \to M_3 \to 0$ is an exact sequence of left Λ -modules, then $\operatorname{cx} M_i \leq \max\{\operatorname{cx} M_j : j \in [1,3] \setminus \{i\}\}$ for each $i \in [1,3]$. In particular, $\operatorname{cx} M \leq \operatorname{cx}(\Lambda/\operatorname{rad} \Lambda)$. Obviously, $\operatorname{cx} M = \operatorname{cx} \Omega^n(M)$ for each $n \in \mathbb{N}$. Finally, we observe that

Theorem 3.2 implies that $\operatorname{cx} M$ is bounded by the complexity of Λ as a Λ - Λ -bimodule.

We say that Λ satisfies the FG condition if H is Noetherian and $\operatorname{Ext}_{\Lambda}^*(\Lambda/\operatorname{rad}\Lambda, \Lambda/\operatorname{rad}\Lambda)$ is a finitely generated H-module. By induction we show that if Λ satisfies the FG condition, then $\operatorname{Ext}_{\Lambda}^*(M, N)$ is a finitely generated H-module for all left Λ -modules M and N.

Theorem 5.5. Assume that Λ satisfies the FG condition. Then the following hold.

- (1) Λ is Gorenstein.
- (2) $\operatorname{cx} M = \dim_k V_H(M) < \infty$ for each nonzero left Λ -module M.
- (3) $V_H(M) \subseteq \{\mathfrak{m}_{\mathrm{gr}}\}$ if and only if $\operatorname{pdim}_{\Lambda} M < \infty$.
- (4) dim $V_H(M) = 1$ if and only if $\operatorname{cx} M = 1$ and if and only if pdim $M = \infty$ and M is eventually periodic.
- (5) For each homogenous ideal \mathfrak{a} of H there exists a left Λ -module M such that $V_H(M)$ is the set of the maximal ideals \mathfrak{m} of H such that $\mathfrak{a} \subseteq \mathfrak{m}$.
- (6) If Λ is selfinjective and $V_H(M) = V_1 \cup V_2$ for closed homogeneous sets V_1 and V_2 such that $V_1 \cap V_2 = \{\mathfrak{m}_{gr}\}$ and $V_1 \neq \{\mathfrak{m}_{gr}\} \neq V_2$, then there exist left Λ -modules M_1 and M_2 such that $M = M_1 \oplus M_2$.
- (7) If Λ is selfinjecitve and there exists a left Λ -module M such that $\operatorname{cx} M \geq 3$, then Λ is wild.
- (8) Λ satisfies the Auslander condition, i.e., for each left Λ -module M there exists $n \in \mathbb{N}$ such that if $\operatorname{Ext}_{\Lambda}^{i}(M, N) = 0$ for $i \gg 0$, then $\operatorname{Ext}_{\Lambda}^{i}(M, N) = 0$ for each $i \geq n$.

Bergh and Oppermann [7] proved that if

$$\Lambda := k \langle X_1, \dots, X_c \rangle / (X_i^{a_i}, X_i \cdot X_j - q_{i,j} \cdot X_j \cdot X_i)$$

for $c \in \mathbb{N}_+$, $a_1, \ldots, a_c \geq 2$, and $q_{i,j} \in k^{\times}$, i < j, then Λ satisfies the FG condition if and only if $q_{i,j}$ is a root of unity for all i and j. Now let

$$\Lambda := k \langle X, Y \rangle / (X^2, X \cdot Y - q \cdot Y \cdot X, Y^2),$$

where $q \in k^{\times}$ is not a root of unity. Note that we have an exact sequence

$$\cdots \to \Lambda \xrightarrow{\cdot (X-q^3 \cdot Y)} \Lambda \xrightarrow{\cdot (X+q^2 \cdot Y)} \Lambda \xrightarrow{\cdot (X-q \cdot Y)} \Lambda \xrightarrow{\cdot (X-q \cdot Y)} \Lambda \xrightarrow{\cdot (X+Y)} \Lambda/(X+Y) \to 0,$$

which implies that $\Lambda/(X+Y)$ has complexity 1 and is not (eventually) periodic. Moreover, let M_t be the cokernel of the multiplication by $X + (-q)^t \cdot Y$. Then

$$\dim_k \operatorname{Ext}^i_{\Lambda}(M, M_t) = \begin{cases} 1 & i = 0, t, t+1, \\ 0 & \text{otherwise,} \end{cases}$$

for each $t \in \mathbb{N}_+$, hence Λ does not satisfy the Auslander condition.

6. Representation dimension

By the representation dimension repdim Λ of Λ we mean

repdim $\Lambda := \{ \text{gldim End}_{\Lambda}(M) : M \text{ is a left } \Lambda \text{-module} \}$

which is both a generator and cogenerator.

It is known that repdim $\Lambda = 0$ is 0 if Λ is semi-simple. Next, repdim $\Lambda = 2$ if Λ is of finite representation type, but not semi-simple. Finally, repdim $\Lambda \geq 3$ if Λ is of infinite representation type. Iyama [14] proved that repdim $\Lambda < \infty$. Moreover, repdim Λ is not greater than the Loewy length of Λ , if Λ is selfinjective. On the other hand, Rouquier [15] proved that

repdim
$$\Lambda \ge \dim(\mathcal{D}^b(\Lambda)/\mathcal{D}^{\mathrm{perf}}(\Lambda)) + 2.$$

Now let Λ be a Gorenstein algebra and denote by MCM(Λ) the category of the maximal Cohen–Macaulay modules, where a left Λ -module M is called maximal Cohen–Macaulay if $\operatorname{Ext}_{\Lambda}^{n}(M, \Lambda) = 0$ for each $n \in \mathbb{N}_{+}$. Then MCM(Λ) is a Frobenius category, hence its stable category <u>MCM</u>(Λ) is a triangulated category. Moreover, <u>MCM</u>(Λ) is equivalent with $\mathcal{D}^{b}(\Lambda)/\mathcal{D}^{\operatorname{perf}}(\Lambda)$.

Theorem 6.1 (Bergh/Iyeangar/Krause/Oppermann [3]). If Λ satisfies the FG condition, then

$$\dim \underline{\mathrm{MCM}}(\Lambda) \ge \operatorname{cx}(\Lambda/\operatorname{rad}\Lambda) - 1.$$

In particular, repdim $\Lambda \ge cx(\Lambda / rad \Lambda) + 1$.

Theorem 6.2. If k is algebraically closed and Λ satisfies the FG condition, then

repdim
$$\Lambda \geq \text{Kdim HH}^*(\Lambda, \Lambda)$$
.

If

$$\Lambda := k \langle X_1, \dots, X_c \rangle / (X_i^2, X_i \cdot X_j - q_{i,j} \cdot X_j \cdot X_i)$$

for $c \in \mathbb{N}_+$ and roots of unity $q_{i,j} \in k^{\times}$, i < j, then $cx(\Lambda/ \operatorname{rad} \Lambda) = c$. On the other hand, the Loewy length of Λ equals c + 1, hence

repdim
$$\Lambda = c + 1$$
,

which generalizes the original example of Rouquier, who studied the case of the exterior algebras, i.e., $q_{i,j} = -1$ for all i < j.

References

- L. L. Avramov and S. Iyengar, Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett. 12 (2005), no. 5-6, 789–804.
- [2] L. L. Avramov and M. Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Res. Notices 1 (1992), 17–25.
- [3] P. A. Bergh, S. B. Iyengar, H. Krause, and S. Oppermann, *Dimensions of triangulated categories via Koszul objects*, Math. Z. 265 (2010), no. 4, 849–864.

- [4] P. A. Bergh, Y. Han, and D. Madsen, *Hochschild homology and truncated cycles*, Proc. Amer. Math. Soc., to appear.
- [5] P. A. Bergh and D. Madsen, Hochschild homology and global dimension, Bull. Lond. Math. Soc. 41 (2009), no. 3, 473–482.
- [6] _____, Hochschild homology and split pairs, Bull. Sci. Math. 134 (2010), no. 7, 665–676.
- [7] P. A. Bergh and S. Oppermann, Cohomology of twisted tensor products, J. Algebra 320 (2008), no. 8, 3327–3338.
- [8] R.-O. Buchweitz, E. L. Green, D. Madsen, and Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005), no. 5-6, 805–816.
- [9] E.L. Green, N. Snashall, and Ø. Solberg, The Hochschild cohomology ring of a selfinjective algebra of finite representation type, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3387–3393.
- [10] Y. Han, *Hochschild (co)homology dimension*, J. London Math. Soc. (2) **73** (2006), no. 3, 657–668.
- [11] D. Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (M.-P. Malliavin, ed.), Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 108– 126.
- [12] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58–67.
- [13] T. Holm, Hochschild cohomology rings of algebras k[X]/(f), Beiträge Algebra Geom. 41 (2000), no. 1, 291–301.
- [14] O. Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011–1014.
- [15] R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357–367.
- [16] N. Yoneda, Note on products in Ext, Proc. Amer. Math. Soc. 9 (1958), no. 6, 873–875.