## HOCHSCHILD COHOMOLOGY AND HOMOLOGY OF ALGEBRAS

## BASED ON THE TALKS BY PETTER ANDREAS BERGH

Throughout the talk $k$ is a field and $\Lambda$ is an indecomposable $k$ algebra.

## 1. Classical definitions

We first present definition of Hochschild cohomology groups from his classical paper [12].

Let $B$ be a bimodule over $\Lambda$. We denote by $\mathbb{H}^{B}$ the sequence

$$
0 \xrightarrow{\partial^{-1}} \operatorname{Hom}_{k}\left(\Lambda^{\otimes 0}, B\right) \xrightarrow{\partial^{0}} \operatorname{Hom}_{k}\left(\Lambda^{\otimes 1}, B\right) \xrightarrow{\partial^{1}} \operatorname{Hom}_{k}\left(\Lambda^{\otimes 2}, B\right) \rightarrow \cdots,
$$ where $\Lambda^{\otimes n}:=\underbrace{\Lambda \otimes_{k} \cdots \otimes_{k} \Lambda}_{n \text { times }}$ for $n \in \mathbb{N}$ (in particular, $\Lambda^{0}:=k$ ) and

$$
\begin{aligned}
& \left(\partial^{n} f\right)\left(\lambda_{1} \otimes \cdots \otimes \lambda_{n+1}\right):=\lambda_{1} \cdot f\left(\lambda_{2} \otimes \cdots \otimes \lambda_{n+1}\right) \\
& \quad+\sum_{i \in[1, n]}(-1)^{i} \cdot f\left(\lambda_{1} \otimes \cdots \otimes \lambda_{i-1} \otimes \lambda_{i} \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_{n+1}\right)
\end{aligned}
$$

$$
+(-1)^{n+1} f\left(\lambda_{1} \otimes \cdots \otimes \lambda_{n}\right) \cdot \lambda_{n+1}
$$

for $n \in \mathbb{N}, f \in \operatorname{Hom}_{k}\left(\Lambda^{\otimes n}, B\right)$ and $\lambda_{1}, \ldots, \lambda_{n+1} \in \Lambda$. Note that we have the canonical isomorphism $\operatorname{Hom}_{k}\left(\Lambda^{\otimes 0}, B\right) \simeq B$ sending $f \in$ $\operatorname{Hom}_{k}\left(\Lambda^{\otimes 0}, B\right)$ to $f(1)$, and under this isomorphism $\partial^{0}$ is given by

$$
\left(\partial^{0} b\right)(\lambda)=\lambda \cdot b-b \cdot \lambda
$$

for each $b \in B$ and $\lambda \in \Lambda$. One checks that $\mathbb{H}^{B}$ is a complex, i.e., $\partial^{n} \circ \partial^{n-1}=0$ for each $n \in \mathbb{N}$ (it will also follow from our considerations in Section 2) and for $n \in \mathbb{N}$ we define the $n$-th Hochschild cohomology group of $\Lambda$ with coefficients in $B$ by the formula

$$
\operatorname{HH}^{n}(\Lambda, B):=\operatorname{Ker} \partial^{n} / \operatorname{Im} \partial^{n-1} .
$$

We have the following homological version of the above definition (we note, however, that it was not defined by Hochschild). Let $\mathbb{H}_{B}$ be the sequence

$$
\cdots \rightarrow B \otimes_{k} \Lambda^{\otimes 2} \xrightarrow{\partial_{2}} B \otimes_{k} \Lambda^{\otimes 1} \xrightarrow{\partial_{1}} B \otimes_{k} \Lambda^{\otimes 0} \xrightarrow{\partial_{0}} 0,
$$

where

$$
\begin{aligned}
& \partial_{n}\left(b \otimes \lambda_{1} \otimes \cdots \otimes \lambda_{n}\right):=b \cdot \lambda_{1} \otimes \lambda_{2} \otimes \cdots \otimes \lambda_{n} \\
& +\sum_{i \in[1, n-1]}(-1)^{i} \cdot b \otimes \lambda_{1} \otimes \lambda_{i-1} \otimes \lambda_{i} \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_{n} \\
& \\
& \quad+(-1)^{n} \cdot \lambda_{n} \cdot b \otimes \lambda_{1} \otimes \cdots \otimes \lambda_{n-1}
\end{aligned}
$$

for $n \in \mathbb{N}, b \in B$ and $\lambda_{1}, \ldots, \lambda_{n} \in \Lambda$. Again $\mathbb{H}_{B}$ is a complex, i.e., $\partial_{n} \circ \partial_{n+1}=0$ for each $n \in \mathbb{N}$, and for $n \in \mathbb{N}$ we define the $n$-th Hochschild homology group of $\Lambda$ with coefficients in $B$ by the formula

$$
\operatorname{HH}_{n}(\Lambda, B):=\operatorname{Ker} \partial_{n} / \operatorname{Im} \partial_{n+1} .
$$

Observe that

$$
\operatorname{HH}^{0}(\Lambda, B)=\{b \in B: \lambda \cdot b=b \cdot \lambda \text { for each } \lambda \in \Lambda\} .
$$

Consequently, $\operatorname{HH}^{0}(\Lambda, \Lambda)$ is just the center $Z(\Lambda)$ of $\Lambda$. In particular, $\operatorname{HH}^{0}(\Lambda, \Lambda)=\Lambda$ if and only if $\Lambda$ is commutative. On the other hand,

$$
\operatorname{HH}_{0}(\Lambda, B)=B /\{\lambda \cdot b-b \cdot \lambda: \lambda \in \Lambda, b \in B\}
$$

hence again $\operatorname{HH}_{0}(\Lambda, \Lambda)=\Lambda$ if and only if $\Lambda$ is commutative.
By a $k$-derivation of $\Lambda$ on $B$ we mean every $k$-linear map $d: \Lambda \rightarrow B$ such

$$
d\left(\lambda_{1} \cdot \lambda_{2}\right)=d\left(\lambda_{1}\right) \cdot \lambda_{2}+\lambda_{1} \cdot d\left(\lambda_{2}\right)
$$

for all $\lambda_{1}, \lambda_{2} \in \Lambda$. A derivation $d$ is called inner, if there exists $b \in B$ such that

$$
d(\lambda)=\lambda \cdot b-b \cdot \lambda
$$

for each $\lambda \in \Lambda$. One checks that every map of the above form is a derivation. We denote by $\operatorname{Der}_{k}(\Lambda, B)$ and $\operatorname{Der}_{k}^{*}(\Lambda, B)$ the space of the $k$-derivations and the inner $k$-derivations, respectively. Then

$$
\operatorname{Ker} \partial^{1}=\operatorname{Der}_{k}(\Lambda, B) \quad \text { and } \quad \operatorname{Im} \partial^{0}=\operatorname{Der}_{k}^{*}(\Lambda, B)
$$

thus

$$
\operatorname{HH}^{1}(\Lambda, B)=\operatorname{Der}_{k}(\Lambda, B) / \operatorname{Der}_{k}^{*}(\Lambda, B)
$$

As an example we calculate $\operatorname{HH}^{1}(k[X], k[X])$. We immediately get that $\operatorname{Der}_{k}^{*}(k[X], k[X])=0$, since $k[X]$ is commutative. On the other, for each $f \in k[X]$ we define a derivation $d_{f}: k[X] \rightarrow k[X]$ by the formula $d_{f}(g):=g^{\prime} \cdot f$ for $g \in k[X]$. If we define $\Psi: k[X] \rightarrow$ $\operatorname{Der}_{k}(k[X], k[X])$ by $\Psi(f):=d_{f}$ for $f \in k[X]$, then one easily checks that $\Psi$ is an isomorphism. In other words, $\operatorname{HH}^{1}(k[X], k[X])=k[X]$.

Now consider the quiver

and fix $d \in \operatorname{Der}_{k}(k Q, k Q)$. Using the equality $d\left(e_{2}\right)=e_{2} \cdot d\left(e_{2}\right)+d\left(e_{2}\right) \cdot e_{2}$ we get that there exists $a^{\prime} \in k$ such that $d\left(e_{2}\right)=a^{\prime} \cdot \alpha$. Analogously, we get that $d\left(e_{3}\right)=a^{\prime \prime} \cdot \beta$ for some $a^{\prime \prime} \in k$. Moreover, the equality
$1=e_{1}+e_{2}+e_{3}$ implies that $d\left(e_{1}\right)=-\left(a^{\prime} \cdot \alpha+a^{\prime \prime} \cdot \beta\right)$. Next, using the equalities

$$
d\left(e_{2}\right) \cdot \alpha+e_{2} \cdot d(\alpha)=d(\alpha)=d(\alpha) \cdot e_{1}+\alpha \cdot d\left(e_{1}\right)
$$

we get that there exists $b^{\prime} \in k$ such that $d(\alpha)=b^{\prime} \cdot \alpha$. Similarly, $d(\beta)=b^{\prime \prime} \cdot \beta$ for some $b^{\prime \prime} \in k$. Thus, if

$$
x:=a^{\prime} \cdot \alpha+a^{\prime \prime} \cdot \beta-b^{\prime} \cdot e_{2}-b^{\prime \prime} \cdot e_{3},
$$

then $d(y)=y \cdot x-x \cdot y$ for each $y \in k Q$, hence $\operatorname{HH}^{1}(k Q, k Q)=0$. This result is not surprising, since we have the following.

Theorem (Happel [11]). Let $k$ be algebraically closed and $Q$ a finite quiver without oriented cycles. Then $\operatorname{HH}^{1}(k Q, k Q)=0$ if and only if $Q$ is a tree.

We remark, that if $Q$ has an oriented cycle, then one can easily construct a derivation of $k Q$ on $k Q$, which is not inner.

## 2. Modern approach

Consider the sequence

$$
\mathbb{S}: \cdots \rightarrow \Lambda^{\otimes 4} \xrightarrow{d_{2}} \Lambda^{\otimes 3} \xrightarrow{d_{1}} \Lambda^{\otimes 2} \xrightarrow{d_{0}} \Lambda^{\otimes 1} \xrightarrow{d_{-1}} 0,
$$

where

$$
\begin{aligned}
& d_{n}\left(\lambda_{0} \otimes \cdots \otimes \lambda_{n+1}\right) \\
& \quad:=\sum_{i \in[0, n]}(-1)^{i} \cdot \lambda_{0} \otimes \cdots \otimes \lambda_{i-1} \otimes \lambda_{i} \cdot \lambda_{i+1} \otimes \lambda_{i+2} \otimes \cdots \otimes \lambda_{n+1}
\end{aligned}
$$

for $n \in \mathbb{N}$ and $\lambda_{0}, \ldots, \lambda_{n+1} \in \Lambda$. It is a sequence of $\Lambda$ - $\Lambda$-bimodules, if for $n \in \mathbb{N}_{+}$and $\lambda, \lambda^{\prime}, \lambda_{1}, \ldots, \lambda_{n} \in \Lambda$ we put

$$
\lambda \cdot\left(\lambda_{1} \otimes \cdots \otimes \lambda_{n}\right) \cdot \lambda^{\prime}:=\lambda \cdot \lambda_{1} \otimes \lambda_{2} \cdots \otimes \lambda_{n-1} \otimes \lambda_{n} \cdot \lambda^{\prime}
$$

For $n \in \mathbb{N}$ we define $s_{n}: \Lambda^{\otimes(n+1)} \rightarrow \Lambda^{\otimes(n+2)}$ by the formula $s_{n}(x):=$ $1 \otimes x$ for $x \in \Lambda^{\otimes(n+1)}$. Moreover, we denote by $s_{-1}$ the zero map $\Lambda \rightarrow 0$. One verifies directly that

$$
d_{n} \circ s_{n}+s_{n-1} \circ d_{n-1}=\mathrm{Id}
$$

for each $n \in \mathbb{N}$. As a first consequence we obtain the following.
Lemma 2.1. $\mathbb{S}$ is a complex.
Proof. It is obvious that $d_{-1} \circ d_{0}=0$. If $n \in \mathbb{N}$, then

$$
d_{n} \circ d_{n+1} \circ s_{n+1}=d_{n}-d_{n} \circ s_{n} \circ d_{n}=d_{n}-d_{n}+s_{n-1} \circ d_{n-1} \circ d_{n} .
$$

By induction, $d_{n-1} \circ d_{n}=0$, hence $d_{n} \circ d_{n+1} \circ s_{n+1}=0$. Since both $d_{n}$ and $d_{n+1}$ are homomorphisms of left $\Lambda$-modules, we get

$$
\left(d_{n} \circ d_{n+1}\right)(\lambda \otimes x)=\lambda \cdot\left(d_{n} \circ d_{n+1}\right)(1 \otimes x)=\lambda \cdot\left(d_{n} \circ d_{n+1} \circ s_{n+1}\right)(x)=0
$$

for all $\lambda \in \Lambda$ and $x \in \Lambda^{\otimes(n+1)}$, hence the claim follows.

Lemma 2.2. $\mathbb{S}$ is exact.
Proof. We already know that $\operatorname{Im} d_{n} \subseteq \operatorname{Ker} d_{n-1}$ for each $n \in \mathbb{N}$. On the other hand, if $n \in \mathbb{N}$ and $x \in \operatorname{Ker} d_{n-1}$, then $x=\left(d_{n} \circ s_{n}\right)(x) \in$ $\operatorname{Im} d_{n}$.
Proposition 2.3. $\mathbb{S}$ is a projective resolution of $\Lambda$ as a $\Lambda$ - $\Lambda$-bimodule.
Proof. It is enough to observe that $\Lambda^{\otimes(n+2)}$ is a projective $\Lambda$ - $\Lambda$-bimodule for each $n \in \mathbb{N}$.

Theorem 2.4. If $B$ is a $\Lambda$ - $\Lambda$-bimodule, then

$$
\operatorname{HH}^{n}(\Lambda, B) \simeq \operatorname{Ext}_{\Lambda-\Lambda}^{n}(\Lambda, B) \quad \text { and } \quad \operatorname{HH}_{n}(\Lambda, B) \simeq \operatorname{Tor}_{n}^{\Lambda-\Lambda}(\Lambda, B)
$$

for each $n \in \mathbb{N}$.
Proof. Let $\mathbb{S}^{\prime}$ be the sequence

$$
\mathbb{S}^{\prime}: \cdots \rightarrow \Lambda^{\otimes 4} \xrightarrow{d_{2}} \Lambda^{\otimes 3} \xrightarrow{d_{1}} \Lambda^{\otimes 2} \rightarrow 0 .
$$

One easily checks that $\operatorname{Hom}_{\Lambda-\Lambda}\left(\mathbb{S}^{\prime}, B\right)$ is isomorphic to $\mathbb{H}^{B}$ and $B \otimes_{\Lambda-\Lambda}$ $\mathbb{S}^{\prime}$ is isomorphic to $\mathbb{H}_{B}$, hence the claim follows.

Now we apply the above theorem in order to calculate the Hochschild (co)homology groups for $\Lambda:=k[X] /\left(X^{a}\right), a \in \mathbb{N}_{+}$. Let $\mathbb{P}$ be the following sequence

$$
\cdots \rightarrow \Lambda \otimes_{k} \Lambda \xrightarrow{\cdot v} \Lambda \otimes_{k} \Lambda \xrightarrow{w} \Lambda \otimes_{k} \Lambda \xrightarrow{\cdot v} \Lambda \otimes_{k} \Lambda \xrightarrow{\mu} \Lambda \rightarrow 0
$$

where $v:=X \otimes 1-1 \otimes X, w:=\sum_{i \in[0, a-1]} X^{i} \otimes X^{a-1-i}$ and $\mu\left(\lambda_{1} \otimes \lambda_{2}\right):=$ $\lambda_{1} \cdot \lambda_{2}$ for $\lambda_{1}, \lambda_{2} \in \Lambda$. One checks that $\mathbb{P}$ is an exact sequence, hence $\mathbb{P}$ is a projective resolution of $\Lambda$ as a $\Lambda$ - $\Lambda$-bimodule. If $\mathbb{P}^{\prime}$ is the sequence

$$
\cdots \rightarrow \Lambda \otimes_{k} \Lambda \xrightarrow{v} \Lambda \otimes_{k} \Lambda \xrightarrow{w} \Lambda \otimes_{k} \Lambda \xrightarrow{v} \Lambda \otimes_{k} \Lambda \rightarrow 0
$$

then $\Lambda \otimes_{\Lambda-\Lambda} \mathbb{P}^{\prime}$ and $\operatorname{Hom}_{\Lambda-\Lambda}\left(\mathbb{P}^{\prime}, \Lambda\right)$ equal

$$
\cdots \rightarrow \Lambda \xrightarrow{0} \Lambda \xrightarrow{-a \cdot X^{a-1}} \Lambda \xrightarrow{0} \Lambda \rightarrow 0
$$

and

$$
0 \rightarrow \Lambda \xrightarrow{0} \Lambda \xrightarrow{\cdot a \cdot X^{a-1}} \Lambda \xrightarrow{0} \Lambda \rightarrow \cdots,
$$

respectively. Consequently,

$$
\operatorname{HH}_{n}(\Lambda, \Lambda)= \begin{cases}\Lambda & n=0 \\ \Lambda /\left(a \cdot X^{a-1}\right) & n \in 2 \cdot \mathbb{N}_{+}-1 \\ \operatorname{Ann}_{\Lambda}\left(a \cdot X^{a-1}\right) & n \in 2 \cdot \mathbb{N}_{+}\end{cases}
$$

and

$$
\operatorname{HH}^{n}(\Lambda, \Lambda)= \begin{cases}\Lambda & n=0 \\ \operatorname{Ann}_{\Lambda}\left(a \cdot X^{a-1}\right) & n \in 2 \cdot \mathbb{N}_{+}-1 \\ \Lambda /\left(a \cdot X^{a-1}\right) & n \in 2 \cdot \mathbb{N}_{+}\end{cases}
$$

for each $n \in \mathbb{N}$. In particular, $\operatorname{HH}^{n}(\Lambda, \Lambda) \neq 0 \neq \operatorname{HH}_{n}(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$ provided $a \geq 2$. More generally, Holm proved [13] that

$$
\operatorname{HH}_{n}(\Lambda, \Lambda)= \begin{cases}\Lambda & n=0 \\ \Lambda /\left(f^{\prime}\right) & n \in 2 \cdot \mathbb{N}_{+}-1 \\ \operatorname{Ann}_{\Lambda}\left(f^{\prime}\right) & n \in 2 \cdot \mathbb{N}_{+}\end{cases}
$$

and

$$
\operatorname{HH}^{n}(\Lambda, \Lambda)= \begin{cases}\Lambda & n=0 \\ \operatorname{Ann}_{\Lambda}\left(f^{\prime}\right) & n \in 2 \cdot \mathbb{N}_{+}-1 \\ \Lambda /\left(f^{\prime}\right) & n \in 2 \cdot \mathbb{N}_{+}\end{cases}
$$

for each $n \in \mathbb{N}$, provided $\Lambda=k[X] /(f)$ for $f \in k[X]$.

## 3. Vanishing

Lemma 3.1. Let

$$
\eta: 0 \rightarrow P_{n+2} \xrightarrow{d_{n+1}} P_{n+1} \xrightarrow{d_{n}} P_{n} \rightarrow \cdots \xrightarrow{d_{0}} P_{0} \rightarrow 0
$$

be an exact sequence of $\Lambda$ - $\Lambda$-bimodules, such that $P_{0}, \ldots, P_{n}$ are projective as right $\Lambda$-modules. If $M$ is a left $\Lambda$-module, then the sequence $\eta \otimes_{\Lambda} M$ is exact.

Proof. We prove by induction on $l$ the following two claims:
(1) $\operatorname{Im} d_{l}$ is a projective right $\Lambda$-module for each $l \in[0, n]$,
(2) the sequence $0 \rightarrow \operatorname{Im} d_{l} \rightarrow P_{l} \rightarrow \operatorname{Im} d_{l-1} \rightarrow 0$ splits as a sequence of right $\Lambda$-modules for each $l \in[1, n+1]$.
The second claim will imply that the sequence

$$
0 \rightarrow \operatorname{Im} d_{l} \otimes_{\Lambda} M \rightarrow P_{l} \otimes_{\Lambda} M \rightarrow \operatorname{Im} d_{l-1} \otimes_{\Lambda} M \rightarrow 0
$$

is exact for each $l \in[1, n+1]$, which immediately implies that $\eta \otimes_{\Lambda} M$ is exact.

Now $\operatorname{Im} d_{0}=P_{0}$ is a projective right $\Lambda$-module by assumption, thus assume $l>0$. By induction $\operatorname{Im} d_{l-1}$ is a projective $\Lambda$-module, hence the sequence $0 \rightarrow \operatorname{Im} d_{l} \rightarrow P_{l} \rightarrow \operatorname{Im} d_{l-1} \rightarrow 0$ splits as a sequence of right $\Lambda$-modules. Moreover, if $l<n+1$, then $P_{l}$ is a projective right $\Lambda$-module by assumption, hence $\operatorname{Im} d_{l}$ is a projective right $\Lambda$-module as well.

Theorem 3.2. If $\mathbb{P}$ is a projective resolution of $\Lambda$ as a $\Lambda$ - $\Lambda$-bimodule, then $\mathbb{P} \otimes_{\Lambda} M$ is a projective resolution of $M$ for each left $\Lambda$-module $M$.

Proof. Note that $\mathbb{P} \otimes_{\Lambda} M$ is a sequence of projective left $\Lambda$-modules. Moreover, the above lemma implies that $\mathbb{P} \otimes_{\Lambda} M$ is an exact sequence.

Corollary 3.3. $\operatorname{lgldim} \Lambda \leq \operatorname{pdim}_{\Lambda-\Lambda} \Lambda$ and $\operatorname{rgldim} \Lambda \leq \operatorname{pdim}_{\Lambda-\Lambda} \Lambda$. In particular, if $\Lambda$ is left and right Noetherian (for example, $\operatorname{dim}_{k} \Lambda<\infty$ ), then

$$
\operatorname{gldim} \Lambda \leq \operatorname{pdim}_{\Lambda-\Lambda} \Lambda
$$

Theorem 3.4. If $k$ is algebraically closed and $\operatorname{dim}_{k} \Lambda<\infty$, then $\operatorname{gldim} \Lambda=\operatorname{pdim}_{\Lambda-\Lambda} \Lambda$.

Proof. Let

$$
\mathbb{P}: \cdots \rightarrow P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} \Lambda \rightarrow 0
$$

be a minimal projective resolution of $\Lambda$ as a $\Lambda$ - $\Lambda$-bimodule (existence of such resolution follows since $\operatorname{dim}_{k} \Lambda<\infty$ ). The minimality assumption implies that

$$
\operatorname{Im} d_{n} \subseteq \operatorname{rad} \Lambda \cdot P_{n-1}+P_{n-1} \cdot \operatorname{rad} \Lambda
$$

for each $n \in \mathbb{N}_{+}$(here we use the assumption that $k$ is algebraically closed). If $S$ is a simple left $\Lambda$-module, then
$\operatorname{Im}\left(d_{n} \otimes_{\Lambda} S\right) \subseteq \operatorname{rad} \Lambda \cdot P_{n-1} \otimes_{\Lambda} S+P_{n-1} \cdot \operatorname{rad} \Lambda \otimes_{\Lambda} S \subseteq \operatorname{rad} \Lambda \cdot\left(P_{n-1} \otimes_{\Lambda} S\right)$
for each $n \in \mathbb{N}_{+}$(we use that $\operatorname{rad} \Lambda \cdot S=0$ ), hence $\mathbb{P} \otimes_{\Lambda} S$ is a minimal projective resolution of $S$. Moreover, if $P$ is a projective $\Lambda$ - $\Lambda$-bimodule and $P \otimes_{\Lambda} S=0$ for each simple left $\Lambda$-module $S$, then we prove by induction that $P \otimes_{\Lambda} M=0$ for each left $\Lambda$-module $M$, hence $P=0$. Consequently,

$$
\begin{aligned}
\operatorname{gldim} \Lambda & =\sup \left\{n \in \mathbb{N}: P_{n} \otimes S \neq 0 \text { for each simple left } \Lambda \text {-module } S\right\} \\
& =\sup \left\{n \in \mathbb{N}: P_{n} \neq 0\right\}=\operatorname{pdim}_{\Lambda-\Lambda} \Lambda
\end{aligned}
$$

hence the claim follows.
Corollary 3.5. If $k$ is algebraically closed and $\operatorname{dim}_{k} \Lambda<\infty$, then $\mathrm{HH}^{n}(\Lambda, B)=0=\mathrm{HH}_{n}(\Lambda, B)$ for each $\Lambda$ - $\Lambda$-bimodule $B$ and $n>$ gldim $\Lambda$.

Inspired by the above result Happel [11] asked a question, if the condition $\operatorname{HH}^{n}(\Lambda, \Lambda)=0$ for $n \gg 0$ implies that $\operatorname{gldim} \Lambda<\infty$. Avramov and Iyengar [1] showed that this is the case if $\Lambda$ is commutative. On the other hand, Buchweitz, Green, Madsen and Solberg [8] gave a counterexample for a general version. Namely, if $q \in k$ is not a root of unity and

$$
\Lambda:=k\langle X, Y\rangle /\left(X^{2}, X \cdot Y-q \cdot Y \cdot X, Y^{2}\right)
$$

then $\operatorname{HH}^{n}(\Lambda, \Lambda)=0$ for each $n \geq 3$, while gldim $\Lambda=\infty$. However, the following conjecture is still open.

Conjecture. If $\operatorname{dim}_{k} \Lambda<\infty$ and $\operatorname{HH}_{n}(\Lambda, \Lambda)=0$ for each $n \gg 0$, then gldim $\Lambda<\infty$.

The above conjecture has been verified if $\Lambda$ is either commutative [2] or monomial [10]. Moreover, under the assumption char $k=0$ Bergh and Madsen [5] proved this conjecture in the case when $\Lambda$ is either Koszul or graded with $\Lambda_{0}=k$. Finally, Bergh, Madsen and Han [4] verified the conjecture provided there exists arrows $\alpha_{1}, \ldots, \alpha_{t}$ in the Gabriel quiver of $\Lambda$ such that $s \alpha_{i}=t \alpha_{i-1}$ and $\alpha_{i} \alpha_{i-1}=0$ for each $i \in[1, t]$, where $\alpha_{0}:=\alpha_{t}$.

We present the proof of the conjecture for quantum complete intersections due to Bergh and Madsen [6].

First observe that if $f: \Lambda \rightarrow \Gamma$ is a homomorphism of $k$-algebras, then we have the induced map $f^{\otimes n}: \Lambda^{\otimes n} \rightarrow \Gamma^{\otimes n}$ for each $n \in \mathbb{N}_{+}$, which induces the map $\mathrm{HH}_{n}(f): \operatorname{HH}_{n}(\Lambda, \Lambda) \rightarrow \operatorname{HH}_{n}(\Gamma, \Gamma)$ for each $n \in \mathbb{N}$. In other words, we obtain functors $\mathrm{HH}_{n}, n \in \mathbb{N}$, from the category of $k$-algebras to the category of vector spaces.

Theorem 3.6. If

$$
\Lambda:=k\left\langle X_{1}, \ldots, X_{c}\right\rangle /\left(X_{i}^{a_{i}}, X_{i} \cdot X_{j}-q_{i, j} \cdot X_{j} \cdot X_{i}\right)
$$

for $c \in \mathbb{N}_{+}, a_{1}, \ldots, a_{c} \geq 2$, and $q_{i, j} \in k^{\times}, i<j$, then $\operatorname{HH}_{n}(\Lambda, \Lambda) \neq 0$ for each $n \in \mathbb{N}$.

Proof. For each $i \in[1, c]$ we have algebra homomorphisms

$$
\iota_{c}: k[X] /\left(X^{a_{c}}\right) \rightarrow \Lambda \quad \text { and } \quad \pi_{c}: \Lambda \rightarrow k[X] /\left(X^{a_{c}}\right)
$$

such that $\pi_{c} \circ \iota_{c}=\mathrm{Id}$. This implies that $\mathrm{HH}_{n}\left(k[X] /\left(X^{a_{i}}\right), k[X] /\left(X^{a_{i}}\right)\right)$ is a direct summand of $\operatorname{HH}_{n}(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$ and $i \in[1, c]$. Since $\operatorname{HH}_{n}\left(k[X] /\left(X^{a}\right), k[X] /\left(X^{a}\right)\right) \neq 0$ for each $n \in \mathbb{N}$ and $a \geq 2$, the claim follows.

## 4. The Hochschild cohomology ring

Throughout this section we assume that $\operatorname{dim}_{k} \Lambda<\infty$.
Since $\operatorname{HH}^{n}(\Lambda)=\operatorname{Ext}_{\Lambda-\Lambda}^{n}(\Lambda, \Lambda)$ for each $n \in \mathbb{N}$, we get a graded ring

$$
\operatorname{HH}^{*}(\Lambda, \Lambda):=\bigoplus_{n \in \mathbb{N}} \operatorname{HH}^{n}(\Lambda, \Lambda)
$$

with the multiplication given by the Yoneda product.
Theorem 4.1 (Yoneda [16]). Let $\Lambda, \Sigma$ and $\Gamma$ be $k$-algebras, $A$ and $B$ $\Lambda$ - $\Sigma$-bimodules, and $C$ and $D \Sigma$ - $\Gamma$-bimodules. If $A, B, C$ and $D$ are flat as $\Sigma$-modules, then

$$
\left(\eta \otimes_{\Sigma} D\right) \circ\left(A \otimes_{\Sigma} \theta\right)=(-1)^{m n} \cdot\left(B \otimes_{\Sigma} \theta\right) \circ\left(\eta \otimes_{\Sigma} C\right)
$$

for all $\eta \in \operatorname{Ext}_{\Lambda-\Sigma}^{m}(A, B)$ and $\theta \in \operatorname{Ext}_{\Sigma-\Gamma}^{n}(C, D)$.
Corollary 4.2. $\operatorname{HH}^{*}(\Lambda, \Lambda)$ is graded commutative.

Observe that $\eta^{2}=-\eta^{2}$ for each $\eta \in \operatorname{HH}^{n}(\Lambda, \Lambda)$ such that $n$ is odd. In particular, $\eta^{2}=0$ if char $k \neq 2$. Moreover, $\operatorname{HH}^{2 *}(\Lambda, \Lambda):=$ $\bigoplus_{n \in \mathbb{N}} \operatorname{HH}^{2 n}(\Lambda, \Lambda)$ is commutative and $\operatorname{HH}^{*}(\Lambda, \Lambda)$ is commutative if char $k=2$. Finally, if $\mathcal{N}$ is the ideal in $\operatorname{HH}^{*}(\Lambda, \Lambda)$ generated by the homogeneous nilpotent elements, then $\operatorname{HH}^{*}(\Lambda, \Lambda) / \mathcal{N}$ is commutative.
Theorem 4.3 (Green/Snashall/Solberg [9]). Assume that $k$ is algebraically closed. If there exists $n \in \mathbb{N}_{+}$such that $\Omega_{\Lambda-\Lambda}^{n}(\Lambda) \simeq \Lambda$, then

$$
\mathrm{HH}^{*} / \mathcal{N} \simeq k[X]
$$

and $|X|=\min \left\{n \in \mathbb{N}_{+}: \Omega_{\Lambda-\Lambda}^{n}(\Lambda) \simeq \Lambda\right\}$.
We remark that for the above theorem the assumption that $\Lambda$ is indecomposable is important. Holm [13] showed that

$$
\mathrm{HH}^{*}(\Lambda, \Lambda)=k[X, Y, Z] /\left(X^{a}, a \cdot X^{a-1} \cdot Z, Y \cdot X^{a-1}, Y^{2}\right)
$$

with $|X|=0,|Y|=1$ and $|Z|=2$, if $\Lambda:=k[X] /\left(X^{a}\right)$ for $a \geq 2$. In particular, $\mathrm{HH}^{*} / \mathcal{N} \simeq k[Z]$ in this case.

## 5. Support varieties

Let $\eta \in \operatorname{HH}^{n}(\Lambda, \Lambda)=\operatorname{Ext}_{\Lambda-\Lambda}^{n}(\Lambda, \Lambda)$. Then $\eta$ can be represented by an exact sequence

$$
0 \rightarrow \Lambda \rightarrow K \rightarrow P_{n-2} \rightarrow \cdots \rightarrow P_{0} \rightarrow \Lambda \rightarrow 0
$$

such that $P_{0}, \ldots, P_{n-2}$ are projective $\Lambda$ - $\Lambda$-bimodules. Indeed, if $f_{\eta} \in$ $\operatorname{Hom}_{\Lambda-\Lambda}\left(\Omega_{\Lambda-\Lambda}^{n}(\Lambda), \Lambda\right)$ corresponds to $\eta$, then we can take as a representative the pushout of the sequence

$$
0 \rightarrow \Omega_{\Lambda-\Lambda}^{n}(\Lambda) \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow \Lambda \rightarrow 0
$$

by $f_{\eta}$, where

$$
\mathbb{P}: \cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow \Lambda \rightarrow 0
$$

is a minimal projective resolution of $\Lambda$. Using Lemma 3.1 we know that $\eta \otimes_{\Lambda} M$ is an exact sequence of left $\Lambda$-modules, i.e., $\eta \otimes_{\Lambda} M \in$ $\operatorname{Ext}_{\Lambda}^{n}(M, M)$. Since $\mathbb{P} \otimes_{\Lambda} M$ is a projective resolution of $M$ by Theorem 3.2, we get that $\eta \otimes_{\Lambda} M$ corresponds to $f_{\eta} \otimes_{\Lambda} M$. In this way we define a function $\Phi_{M}: \operatorname{HH}^{*}(\Lambda, \Lambda) \rightarrow \operatorname{Ext}_{\Lambda}^{*}(M, M)$, which is a homomorphism of graded algebras.

Now let $M$ and $N$ be left $\Lambda$-module. We define left and right actions of $\mathrm{HH}^{*}(\Lambda, \Lambda)$ on $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ by the formulas: $\eta \cdot \theta:=\Phi_{N}(\eta) \circ \theta$ and $\theta \cdot \eta:=\theta \circ \Phi_{M}(\eta)$ for $\eta \in \operatorname{HH}^{n}(\Lambda, \Lambda)$ and $\theta \in \operatorname{Ext}_{\Lambda}^{m}(M, N)$. Theorem 4.1 implies the following.
Theorem 5.1. If $\eta \in \operatorname{HH}^{n}(\Lambda, \Lambda)$ and $\theta \in \operatorname{Ext}_{\Lambda}^{m}(M, N)$, then

$$
\eta \cdot \theta=(-1)^{m n} \cdot \theta \cdot \eta
$$

For a graded algebra $\Gamma$ we denote by $Z_{\mathrm{gr}}(\Gamma)$ the graded center of $\Gamma$, i.e., the subring of $\Gamma$ generated by the homogeneous elements $\gamma$ such that $\gamma \cdot \gamma^{\prime}=(-1)^{|\gamma| \cdot\left|\gamma^{\prime}\right|} \cdot \gamma^{\prime} \cdot \gamma$ for each homogeneous element $\gamma^{\prime}$ of $\Gamma$.

Corollary 5.2. For each left $\Lambda$-module $M$ the image of $\Phi_{M}$ is contained in $Z_{\mathrm{gr}}\left(\operatorname{Ext}_{\Lambda}^{*}(M, M)\right)$.

Let $H:=\operatorname{HH}^{2 *}(\Lambda, \Lambda)$. Then $H$ is commutative. Moreover, if $M$ and $N$ are left $\Lambda$-modules, then $\eta \cdot \theta=\theta \cdot \eta$ for each $\eta \in H$ and $\theta \in \operatorname{Ext}_{\Lambda}^{*}(M, N)$. We denote by $V_{H}(M, N)$ the set of the maximal ideals in $H$ which contain $\operatorname{Ann}_{H} \operatorname{Ext}_{\Lambda}^{*}(M, N)$.

Lemma 5.3. If $M$ is a left $\Lambda$-module, then

$$
V_{H}(M, \Lambda / \operatorname{rad} \Lambda)=V_{H}(M, M)=V_{H}(\Lambda / \operatorname{rad} \Lambda, M)
$$

We put $V_{H}(M):=V_{H}(M, M)$ and call it the support variety of $M$. Since we assume that $\Lambda$ is indecomposable, $\operatorname{HH}^{0}(\Lambda)=Z(\Lambda)$ is a local algebra and

$$
\mathfrak{m}_{\mathrm{gr}}:=\operatorname{rad} Z(\Lambda) \oplus \bigoplus_{n \in \mathbb{N}^{+}} \operatorname{HH}^{2 n}(\Lambda, \Lambda)
$$

is the unique graded maximal ideal of $H$. Consequently, $\mathfrak{m}_{\mathrm{gr}} \in V_{H}(M)$ for each nonzero left $\Lambda$-module $M$.

## Theorem 5.4.

(1) If either $\operatorname{Ext}_{\Lambda}^{n}(M, M)=0$ for all $n \gg 0$ or $\operatorname{pdim}_{\Lambda} M<\infty$ or $\operatorname{idim}_{\Lambda} M<\infty$, then $V_{H}(M) \subseteq\left\{\mathfrak{m}_{\mathrm{gr}}\right\}$.
(2) If $M$ and $N$ are left $\Lambda$-modules, then $V_{H}(M \oplus N)=V_{H}(M) \cup$ $V_{H}(N)$.
(3) If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is an exact sequence of left $\Lambda$ modules, then $V_{H}\left(M_{i}\right) \subseteq \bigcup_{j \in[1,3] \backslash\{i\}} V_{H}\left(M_{j}\right)$ for each $i \in[1,3]$.
(4) If $\operatorname{pdim}_{\Lambda} M=\infty$, then $V_{H}\left(\Omega^{n}(M)\right)=V_{H}(M)$ for each $n \in \mathbb{N}$.
(5) If $\Lambda$ is selfinjective, then $V_{H}(M)=V_{H}(\tau M)$.
(6) If $\Lambda$ is selfinjective and $M$ and $N$ belong to the same component of the stable Auslander-Reiten quiver of $\Lambda$, then $V_{H}(M)=$ $V_{H}(N)$.
Let

$$
\cdots \rightarrow Q_{2} \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow M \rightarrow 0
$$

be a minimal projective resolution of a left $\Lambda$-module $M$. We define the complexity cx $M$ of $M$ by
$\operatorname{cx} M:=\inf \{t \in \mathbb{N}$ : there exists a real number $a$ such that

$$
\left.\operatorname{dim}_{k} Q_{n} \leq a \cdot n^{t-1} \text { for each } n \in \mathbb{N}_{+}\right\}
$$

One easily checks that cx $M=0$ if and only if $\operatorname{pdim}_{\Lambda} M<\infty$. Similarly, cx $M \leq 1$ if and only if the sequence $\left(\operatorname{dim}_{k} Q_{n}\right)$ is bounded. In particular, cx $M=1$ if $M$ is nonzero and periodic, i.e., there exists $n \in \mathbb{N}_{+}$such that $M \simeq \Omega_{\Lambda}^{n}(M)$. Moreover, if $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow$ 0 is an exact sequence of left $\Lambda$-modules, then $\mathrm{cx} M_{i} \leq \max \left\{\operatorname{cx} M_{j}\right.$ : $j \in[1,3] \backslash\{i\}\}$ for each $i \in[1,3]$. In particular, $\operatorname{cx} M \leq \operatorname{cx}(\Lambda / \operatorname{rad} \Lambda)$. Obviously, cx $M=\mathrm{cx} \Omega^{n}(M)$ for each $n \in \mathbb{N}$. Finally, we observe that

Theorem 3.2 implies that cx $M$ is bounded by the complexity of $\Lambda$ as a $\Lambda$ - $\Lambda$-bimodule.

We say that $\Lambda$ satisfies the FG condition if $H$ is Noetherian and $\operatorname{Ext}_{\Lambda}^{*}(\Lambda / \operatorname{rad} \Lambda, \Lambda / \operatorname{rad} \Lambda)$ is a finitely generated $H$-module. By induction we show that if $\Lambda$ satisfies the FG condition, then $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ is a finitely generated $H$-module for all left $\Lambda$-modules $M$ and $N$.

Theorem 5.5. Assume that $\Lambda$ satisfies the $F G$ condition. Then the following hold.
(1) $\Lambda$ is Gorenstein.
(2) $\mathrm{cx} M=\operatorname{dim}_{k} V_{H}(M)<\infty$ for each nonzero left $\Lambda$-module $M$.
(3) $V_{H}(M) \subseteq\left\{\mathfrak{m}_{\mathrm{gr}}\right\}$ if and only if $\operatorname{pdim}_{\Lambda} M<\infty$.
(4) $\operatorname{dim} V_{H}(M)=1$ if and only if $\operatorname{cx} M=1$ and if and only if $\operatorname{pdim} M=\infty$ and $M$ is eventually periodic.
(5) For each homogenous ideal $\mathfrak{a}$ of $H$ there exists a left $\Lambda$-module $M$ such that $V_{H}(M)$ is the set of the maximal ideals $\mathfrak{m}$ of $H$ such that $\mathfrak{a} \subseteq \mathfrak{m}$.
(6) If $\Lambda$ is selfinjective and $V_{H}(M)=V_{1} \cup V_{2}$ for closed homogeneous sets $V_{1}$ and $V_{2}$ such that $V_{1} \cap V_{2}=\left\{\mathfrak{m}_{\mathrm{gr}}\right\}$ and $V_{1} \neq\left\{\mathfrak{m}_{\mathrm{gr}}\right\} \neq V_{2}$, then there exist left $\Lambda$-modules $M_{1}$ and $M_{2}$ such that $M=M_{1} \oplus$ $M_{2}$.
(7) If $\Lambda$ is selfinjecitve and there exists a left $\Lambda$-module $M$ such that cx $M \geq 3$, then $\Lambda$ is wild.
(8) $\Lambda$ satisfies the Auslander condition, i.e., for each left $\Lambda$-module $M$ there exists $n \in \mathbb{N}$ such that if $\operatorname{Ext}_{\Lambda}^{i}(M, N)=0$ for $i \gg 0$, then $\operatorname{Ext}_{\Lambda}^{i}(M, N)=0$ for each $i \geq n$.

Bergh and Oppermann [7] proved that if

$$
\Lambda:=k\left\langle X_{1}, \ldots, X_{c}\right\rangle /\left(X_{i}^{a_{i}}, X_{i} \cdot X_{j}-q_{i, j} \cdot X_{j} \cdot X_{i}\right)
$$

for $c \in \mathbb{N}_{+}, a_{1}, \ldots, a_{c} \geq 2$, and $q_{i, j} \in k^{\times}, i<j$, then $\Lambda$ satisfies the FG condition if and only if $q_{i, j}$ is a root of unity for all $i$ and $j$. Now let

$$
\Lambda:=k\langle X, Y\rangle /\left(X^{2}, X \cdot Y-q \cdot Y \cdot X, Y^{2}\right)
$$

where $q \in k^{\times}$is not a root of unity. Note that we have an exact sequence

$$
\cdots \rightarrow \Lambda \xrightarrow{\cdot\left(X-q^{3} \cdot Y\right)} \Lambda \xrightarrow{\cdot\left(X+q^{2} \cdot Y\right)} \Lambda \xrightarrow{\cdot(X-q \cdot Y)} \Lambda \xrightarrow{\cdot(X+Y)} \Lambda /(X+Y) \rightarrow 0,
$$

which implies that $\Lambda /(X+Y)$ has complexity 1 and is not (eventually) periodic. Moreover, let $M_{t}$ be the cokernel of the multiplication by $X+(-q)^{t} \cdot Y$. Then

$$
\operatorname{dim}_{k} \operatorname{Ext}_{\Lambda}^{i}\left(M, M_{t}\right)= \begin{cases}1 & i=0, t, t+1 \\ 0 & \text { otherwise }\end{cases}
$$

for each $t \in \mathbb{N}_{+}$, hence $\Lambda$ does not satisfy the Auslander condition.

## 6. Representation dimension

By the representation dimension repdim $\Lambda$ of $\Lambda$ we mean
$\operatorname{repdim} \Lambda:=\left\{\operatorname{gldim}_{\operatorname{End}}^{\Lambda}(M): M\right.$ is a left $\Lambda$-module
which is both a generator and cogenerator $\}$.
It is known that repdim $\Lambda=0$ is 0 if $\Lambda$ is semi-simple. Next, $\operatorname{repdim} \Lambda=$ 2 if $\Lambda$ is of finite representation type, but not semi-simple. Finally, repdim $\Lambda \geq 3$ if $\Lambda$ is of infinite representation type. Iyama [14] proved that repdim $\Lambda<\infty$. Moreover, repdim $\Lambda$ is not greater then the Loewy length of $\Lambda$, if $\Lambda$ is selfinjective. On the other hand, Rouquier [15] proved that

$$
\operatorname{repdim} \Lambda \geq \operatorname{dim}\left(\mathcal{D}^{b}(\Lambda) / \mathcal{D}^{\text {perf }}(\Lambda)\right)+2
$$

Now let $\Lambda$ be a Gorenstein algebra and denote by $\operatorname{MCM}(\Lambda)$ the category of the maximal Cohen-Macaulay modules, where a left $\Lambda$ module $M$ is called maximal Cohen-Macaulay if $\operatorname{Ext}_{\Lambda}^{n}(M, \Lambda)=0$ for each $n \in \mathbb{N}_{+}$. Then $\operatorname{MCM}(\Lambda)$ is a Frobenius category, hence its stable category $\underline{\operatorname{MCM}}(\Lambda)$ is a triangulated category. Moreover, $\underline{\mathrm{MCM}}(\Lambda)$ is equivalent with $\mathcal{D}^{b}(\Lambda) / \mathcal{D}^{\text {perf }}(\Lambda)$.
Theorem 6.1 (Bergh/Iyeangar/Krause/Oppermann [3]). If $\Lambda$ satisfies the $F G$ condition, then

$$
\operatorname{dim} \underline{\operatorname{MCM}}(\Lambda) \geq \operatorname{cx}(\Lambda / \operatorname{rad} \Lambda)-1
$$

In particular, $\operatorname{repdim} \Lambda \geq \operatorname{cx}(\Lambda / \operatorname{rad} \Lambda)+1$.
Theorem 6.2. If $k$ is algebraically closed and $\Lambda$ satisfies the $F G$ condition, then

$$
\operatorname{repdim} \Lambda \geq \operatorname{Kdim}_{\operatorname{HH}}(\Lambda, \Lambda)
$$

If

$$
\Lambda:=k\left\langle X_{1}, \ldots, X_{c}\right\rangle /\left(X_{i}^{2}, X_{i} \cdot X_{j}-q_{i, j} \cdot X_{j} \cdot X_{i}\right)
$$

for $c \in \mathbb{N}_{+}$and roots of unity $q_{i, j} \in k^{\times}, i<j$, then $\operatorname{cx}(\Lambda / \operatorname{rad} \Lambda)=c$. On the other hand, the Loewy length of $\Lambda$ equals $c+1$, hence

$$
\operatorname{repdim} \Lambda=c+1
$$

which generalizes the original example of Rouquier, who studied the case of the exterior algebras, i.e., $q_{i, j}=-1$ for all $i<j$.

## References

[1] L. L. Avramov and S. Iyengar, Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett. 12 (2005), no. 5-6, 789-804.
[2] L. L. Avramov and M. Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Res. Notices 1 (1992), 17-25.
[3] P. A. Bergh, S. B. Iyengar, H. Krause, and S. Oppermann, Dimensions of triangulated categories via Koszul objects, Math. Z. 265 (2010), no. 4, 849864.
[4] P. A. Bergh, Y. Han, and D. Madsen, Hochschild homology and truncated cycles, Proc. Amer. Math. Soc., to appear.
[5] P. A. Bergh and D. Madsen, Hochschild homology and global dimension, Bull. Lond. Math. Soc. 41 (2009), no. 3, 473-482.
[6] , Hochschild homology and split pairs, Bull. Sci. Math. 134 (2010), no. 7, 665-676.
[7] P. A. Bergh and S. Oppermann, Cohomology of twisted tensor products, J. Algebra 320 (2008), no. 8, 3327-3338.
[8] R.-O. Buchweitz, E. L. Green, D. Madsen, and Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005), no. 5-6, 805-816.
[9] E.L. Green, N. Snashall, and $\emptyset$. Solberg, The Hochschild cohomology ring of a selfinjective algebra of finite representation type, Proc. Amer. Math. Soc. 131 (2003), no. 11, 3387-3393.
[10] Y. Han, Hochschild (co)homology dimension, J. London Math. Soc. (2) 73 (2006), no. 3, 657-668.
[11] D. Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (M.-P. Malliavin, ed.), Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 108126.
[12] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58-67.
[13] T. Holm, Hochschild cohomology rings of algebras $k[X] /(f)$, Beiträge Algebra Geom. 41 (2000), no. 1, 291-301.
[14] O. Iyama, Finiteness of representation dimension, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1011-1014.
[15] R. Rouquier, Representation dimension of exterior algebras, Invent. Math. 165 (2006), no. 2, 357-367.
[16] N. Yoneda, Note on products in Ext, Proc. Amer. Math. Soc. 9 (1958), no. 6, 873-875.

