HOCHSCHILD COHOMOLOGY AND HOMOLOGY OF
ALGEBRAS

BASED ON THE TALKS BY PETTER ANDREAS BERGH

Throughout the talk k is a field and A is an indecomposable k-
algebra.

1. CLASSICAL DEFINITIONS

We first present definition of Hochschild cohomology groups from his
classical paper [12].

Let B be a bimodule over A. We denote by H? the sequence

0 5 Homy (A%, B) %5 Homy,(A®!, B) 25 Homy(A®% B) — -+ |

where A®" := A ®;, - -- @ A for n € N (in particular, A° := k) and
—————

n times
@M ® - @ A1) = A - f(A @ - @ A\yp1)
+ Z (_1>i'f()\1®"'®)\i—l®>\i')\i+1®>\i+2®"'®)\n+1)

i€[1,n]
+ (=DM @ @A) - A
for n € N, f € Homp(A®" B) and Ay,...,A\ns1 € A. Note that

we have the canonical isomorphism Homy(A®Y, B) ~ B sending f €
Homy,(A®°, B) to f(1), and under this isomorphism d° is given by

(O°B)(A) = A-b—b- A

for each b € B and A € A. One checks that H? is a complex, i.e.,
0" 00" ! = 0 for each n € N (it will also follow from our considerations
in Section 2) and for n € N we define the n-th Hochschild cohomology
group of A with coefficients in B by the formula

HH"(A, B) := Ker 0" /Im 0" .

We have the following homological version of the above definition
(we note, however, that it was not defined by Hochschild). Let Hp be
the sequence

o By A% B B, A 2 By A% B 0,
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where
O(b@M R @N,) =b- M RXN® QA
+ Z (1) b@M RN 1 @O\ A1 N2 @ -+ @\,
]

i€[ln—1
+ (=" N bR ® @ Ay
form e N, b e B and A\j,...,\, € A. Again Hpg is a complex, i.e.,

Op 0 Opr1 = 0 for each n € N, and for n € N we define the n-th
Hochschild homology group of A with coefficients in B by the formula

HH, (A, B) := Kerd,,/Im 0,,;.
Observe that
HH’(A,B) ={b€ B:X-b="b-\ for each A\ € A}.

Consequently, HH°(A, A) is just the center Z(A) of A. In particular,
HH°(A, A) = A if and only if A is commutative. On the other hand,

HHo(A, B) = B/{\-b—b-A: A€ A, be B},

hence again HHy(A, A) = A if and only if A is commutative.

By a k-derivation of A on B we mean every k-linear map d : A — B
such

d()\l . )\2) - d()\l) . )\2 + )\1 : d()\g)
for all A\, Ao € A. A derivation d is called inner, if there exists b € B
such that
dA)=X-b—=0b-\

for each A\ € A. One checks that every map of the above form is a
derivation. We denote by Dery(A, B) and Derj (A, B) the space of the
k-derivations and the inner k-derivations, respectively. Then

Ker 9" = Dery(A, B) and Im 8° = Der(A, B),

thus
HH' (A, B) = Dery(A, B)/ Derj(A, B).

As an example we calculate HH'(k[X], k[X]). We immediately get
that Dery (k[ X], k[X]) = 0, since k[X] is commutative. On the other,
for each f € k[X] we define a derivation dy : k[X] — k[X] by the
formula ds(g) == ¢ - f for g € k[X]. If we define ¥V : k[X] —
Dery (k[ X], k[X]) by W(f) := df for f € k[X], then one easily checks
that W is an isomorphism. In other words, HH'(k[X], k[X]) = k[X].

Now consider the quiver

a B
Q: e<~<—e0o——0
2 1 3

and fix d € Dery(kQ, kQ). Using the equality d(es) = eg-d(eg)+d(e2)-€2
we get that there exists @’ € k such that d(ep) = o’ - @. Analogously,
we get that d(e3) = a” - § for some a” € k. Moreover, the equality
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1 = ey + e3 + e implies that d(e;) = —(a’ - o +a” - §). Next, using the
equalities
d(es) -a+es-dla)=da) =d(a)- e +a-de),

we get that there exists b € k such that d(a) = b - . Similarly,
d(p) =b"- p for some 0" € k. Thus, if

zi=ad -a+ad -B-V-e =1 ez,

then d(y) = y-x —x -y for each y € kQ, hence HH' (kQ, kQ) = 0. This
result is not surprising, since we have the following.

Theorem (Happel [11]). Let k be algebraically closed and Q a finite
quiver without oriented cycles. Then HH'(kQ, kQ) = 0 if and only if
Q is a tree.

We remark, that if () has an oriented cycle, then one can easily
construct a derivation of kQ) on k@), which is not inner.

2. MODERN APPROACH
Consider the sequence
S:ooe > A B p83 Iy pe2 Dy pe1 T, g
where
dy(Mo ® - @ Apg1)
= Z (1) X @ - @XN1 @ N A1 @ A2 ® -+ @ Ay
1€[0,n]

for n € Nand Ag,..., A1 € A. Tt is a sequence of A-A-bimodules, if
forn € Ny and A\, M, Ay, ..., A\, € A we put

AM®@@X) N =A@ @A 1 @A, - N,

For n € N we define s, : A2 — A®+2) by the formula s, (7) =
1®x for x € A®+Y Moreover, we denote by s_; the zero map A — 0.
One verifies directly that

dp 0 Sy + Sp_10d,_1 =1d
for each n € N. As a first consequence we obtain the following.
Lemma 2.1. S is a complex.
Proof. Tt is obvious that d_; ody = 0. If n € N, then
dpodyi10801=d,—d,os,0d, =d, —d,+ S,_10d,_10d,.

By induction, d,,_, o d,, = 0, hence d,, o d, 1 o s,.1 = 0. Since both d,
and d, ., are homomorphisms of left A-modules, we get

(dn o dn+1)()\ (24 .ZU) =\ (dn O dn+1)(1 (024 :L’) =\ (dn o dn+1 O Sn_;,_l)(l’) =0
for all A € A and z € A®™*D | hence the claim follows. d
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Lemma 2.2. S is exact.

Proof. We already know that Imd, C Kerd,_; for each n € N. On
the other hand, if n € N and = € Kerd,,_1, then x = (d, 0 s,)(2z) €
Imd,,. O

Proposition 2.3. S is a projective resolution of A as a A-A-bimodule.

Proof. Tt is enough to observe that A®("*2) is a projective A-A-bimodule
for each n € N. O

Theorem 2.4. If B is a A-A-bimodule, then

HH"(A, B) ~ Ext} ,(A,B)  and  HH,(A, B) ~ Tor® (A, B)
for each n € N.

Proof. Let S’ be the sequence

SRR C Ny LN L )
One easily checks that Homy 4 (S, B) is isomorphic to HP and B®,_,
S’ is isomorphic to Hpg, hence the claim follows. Il

Now we apply the above theorem in order to calculate the Hochschild
(co)homology groups for A := k[X]/(X%), a € N,. Let P be the
following sequence

---—>A®kA1>A®kAﬂ>A®kAl>A®kAi>A—>O,

where v := X®@1-1®X, w =3, XX = and u(A ®@N\;) :=
A1 - A for A1, Ay € A. One checks that P is an exact sequence, hence P
is a projective resolution of A as a A-A-bimodule. If P’ is the sequence

then A ®5_, P’ and Hompy_5 (', A) equal

S AL AT A S A
and

0 ASAZX L ANS Ao
respectively. Consequently,
A n =20,
HH,(A,A) =< Af(a- Xo71) ne2 Ny —1,
Annp(a- X)) ne2 N,
and
A n =0,
HH"(A,A) =< Annp(a- X1 ne2- Ny —1,
A/(a- XY ne2 Ny,
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for each n € N. In particular, HH"(A, A) # 0 # HH,,(A, A) for each
n € N provided a > 2. More generally, Holm proved [13] that

A n =0,
HH,((AA) = {A/(f)  ne2 N -1,
Annp(f) ne2-Ny,

and

A n =20,
HH"(A,A) = < Anny (f) ne2-Ny —1,
A/(f/> neZ'NJﬂ

for each n € N, provided A = k[X]/(f) for f € k[X].

3. VANISHING

Lemma 3.1. Let
dn+1 dn d()
n:0— Pro— Py —>By— - — P —0

be an exact sequence of A-A-bimodules, such that Py, ..., P, are pro-
jective as right A-modules. If M is a left A-module, then the sequence
1N ®@a M is ezact.

Proof. We prove by induction on [ the following two claims:

(1) Imd, is a projective right A-module for each [ € [0, n],
(2) the sequence 0 — Imd;, — P, — Imd;_; — 0 splits as a se-
quence of right A-modules for each | € [1,n + 1].

The second claim will imply that the sequence
0—=Imd @ M — P,y M — Imd;_1 ®y M — 0,

is exact for each [ € [1,n + 1], which immediately implies that n ®, M
is exact.

Now Imdy = P, is a projective right A-module by assumption, thus
assume [ > 0. By induction Imd;_; is a projective A-module, hence
the sequence 0 — Imd; — P, — Imd;_; — 0 splits as a sequence of
right A-modules. Moreover, if [ < n + 1, then P, is a projective right
A-module by assumption, hence Im d; is a projective right A-module as
well. O

Theorem 3.2. If P is a projective resolution of A as a A-A-bimodule,
then P®y M is a projective resolution of M for each left A-module M.

Proof. Note that P ®, M is a sequence of projective left A-modules.
Moreover, the above lemma implies that P ®, M is an exact sequence.
O
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Corollary 3.3. Igldim A < pdim,_, A and rgldim A < pdim,_, A. In
particular, if A is left and right Noetherian (for example, dimy A < 00),
then

gldim A < pdim,_, A.

Theorem 3.4. If k is algebraically closed and dimp A < oo, then
gldim A = pdim,_, A.

Proof. Let
P:ooo P2 p % py % A0

be a minimal projective resolution of A as a A-A-bimodule (existence of
such resolution follows since dimy A < 00). The minimality assumption
implies that

Imd, CradA-P,_; + P,_; -rad A

for each n € N, (here we use the assumption that k is algebraically
closed). If S is a simple left A-module, then

Im(d,®,S) CradA-P, 1®@,S+ P, 1-tad A®, S Crad A-(FP,_1®,5)

for each n € N (we use that rad A-S = 0), hence P®, S is a minimal
projective resolution of S. Moreover, if P is a projective A-A-bimodule
and P ®, S = 0 for each simple left A-module S, then we prove by
induction that P ®, M = 0 for each left A-module M, hence P = 0.
Consequently,

gldim A = sup{n € N: P, ® S # 0 for each simple left A-module S}
=sup{n € N: P, # 0} = pdim,_, A,

hence the claim follows. O

Corollary 3.5. If k is algebraically closed and dimy A < oo, then
HH"(A,B) = 0 = HH,(A, B) for each A-A-bimodule B and n >
gldim A.

Inspired by the above result Happel [11] asked a question, if the con-
dition HH"(A, A) = 0 for n > 0 implies that gldim A < co. Avramov
and Iyengar [1] showed that this is the case if A is commutative. On the
other hand, Buchweitz, Green, Madsen and Solberg [8] gave a coun-
terexample for a general version. Namely, if ¢ € k is not a root of unity
and

AN=kX,Y)/ (X)X Y —q-YV-X,Y?),
then HH"(A, A) = 0 for each n > 3, while gldim A = co. However, the

following conjecture is still open.

Conjecture. If dimy A < oo and HH, (A, A) =0 for each n > 0, then
gldim A < oo.
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The above conjecture has been verified if A is either commutative [2]
or monomial [10]. Moreover, under the assumption char k = 0 Bergh
and Madsen [5] proved this conjecture in the case when A is either
Koszul or graded with Ay = k. Finally, Bergh, Madsen and Han [4]
verified the conjecture provided there exists arrows aq, ..., a; in the
Gabriel quiver of A such that sa; = ta;_; and a;a;_1 = 0 for each
i € [1,t], where o := .

We present the proof of the conjecture for quantum complete inter-
sections due to Bergh and Madsen [6].

First observe that if f : A — I' is a homomorphism of k-algebras,
then we have the induced map f®" : A®" — T'®" for each n € N,
which induces the map HH,(f) : HH,(A,A) — HH,(I',T") for each
n € N. In other words, we obtain functors HH,,, n € N, from the
category of k-algebras to the category of vector spaces.

Theorem 3.6. If
A= k’(Xl,. .. ,XC>/(X;LZ,XZ : Xj — i X] . Xz)

forc e Ny, ay,...,a. > 2, and ¢;; € k*, i < j, then HH,(A,A) # 0
for each n € N.

Proof. For each i € [1, | we have algebra homomorphisms
le s K[X]/(X%) = A and 7w : A — k[X]/(X%)

such that 7.0, = Id. This implies that HH,,(k[X]/(X*), k[X]/(X*))
is a direct summand of HH,,(A, A) for each n € N and i € [1,¢|. Since
HH,, (k[X]/(X®), k[X]/(X*)) # 0 for each n € N and a > 2, the claim
follows. 4

4. THE HOCHSCHILD COHOMOLOGY RING

Throughout this section we assume that dimy A < oco.
Since HH"(A) = Ext}y _, (A, A) for each n € N, we get a graded ring
HH*(A, A) := @ HH"(A, A)
neN

with the multiplication given by the Yoneda product.

Theorem 4.1 (Yoneda [16]). Let A, ¥ and ' be k-algebras, A and B
A-Y-bimodules, and C' and D 3-I'-bimodules. If A, B, C' and D are
flat as X-modules, then

(n®sz D)o (A®sl) = (1) (B®x0)o(n®s C)
for allm € Ext}' «(A, B) and 0 € Exty_(C, D).
Corollary 4.2. HH*(A, A) is graded commutative.
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Observe that n* = —n? for each n € HH"(A,A) such that n is
odd. In particular, n?> = 0 if chark # 2. Moreover, HH* (A, A) :=
@D, oy HH*"(A, A) is commutative and HH*(A, A) is commutative if
chark = 2. Finally, if N is the ideal in HH*(A, A) generated by the
homogeneous nilpotent elements, then HH*(A, A)/N is commutative.

Theorem 4.3 (Green/Snashall/Solberg [9]). Assume that k is alge-
braically closed. If there exists n € Ny such that Q3_,(A) ~ A, then
HH" /N ~ k[X]
and | X| = min{n € N, : Q% _,(A) ~ A}.
We remark that for the above theorem the assumption that A is
indecomposable is important. Holm [13] showed that
HH*(A,A) = k[X,Y, Z]/(X% a- X" Z)Y - X1 Y?)

with | X| =0, |Y|=1and |Z] = 2, if A := k[X]/(X?) for a > 2. In
particular, HH* /N =~ k[Z] in this case.

5. SUPPORT VARIETIES

Let n € HH"(A,A) = Ext}_,(A,A). Then n can be represented by
an exact sequence

O=A=>K—>PFP, o— - —=F—=>A=0,

such that F, ..., P,_o are projective A-A-bimodules. Indeed, if f, €
Homyp A (Q% _,(A),A) corresponds to 7, then we can take as a repre-
sentative the pushout of the sequence

0=y \(A) > P,y — =P —A—0

by f,, where
P:-..>P P —-F—-A—=>0

is a minimal projective resolution of A. Using Lemma 3.1 we know
that n @, M is an exact sequence of left A-modules, i.e., n @y M €
Ext} (M, M). Since P ®, M is a projective resolution of M by Theo-
rem 3.2, we get that 7 ®, M corresponds to f, @ M. In this way we
define a function ®,, : HH*(A,A) — Ext} (M, M), which is a homo-
morphism of graded algebras.

Now let M and N be left A-module. We define left and right actions
of HH*(A, A) on Ext} (M, N) by the formulas: 1 -6 := ®x(n) o 6 and
0-n:= 00y (n) forn e HH"(A,A) and 6 € Ext|'(M, N). Theorem 4.1
implies the following.

Theorem 5.1. Ifn € HH"(A,A) and 0 € Ext}' (M, N), then
n-0= (=10,
For a graded algebra I we denote by Z,,(I") the graded center of I',

i.e., the subring of I' generated by the homogeneous elements v such
that v -4 = (=1)"M1. 4/ ~ for each homogeneous element 7/ of I".
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Corollary 5.2. For each left A-module M the image of @, is contained
in Zg(Ext}y (M, M)).

Let H := HH**(A,A). Then H is commutative. Moreover, if M
and N are left A-modules, then -0 = 0 -n for each n € H and
0 € Exti(M,N). We denote by Vy(M,N) the set of the maximal
ideals in H which contain Anng Ext} (M, N).

Lemma 5.3. If M is a left A-module, then
Vi (M, A/rad A) = Vg (M, M) = Vy(A/rad A, M).

We put Vi (M) := Vy(M, M) and call it the support variety of M.
Since we assume that A is indecomposable, HH(A) = Z(A) is a local
algebra and

my, :=rad Z(A) ® @ HH™(A, A)
neN+t
is the unique graded maximal ideal of H. Consequently, mg, € Vi (M)
for each nonzero left A-module M.

Theorem 5.4.

(1) If either Exty (M, M) = 0 for alln > 0 or pdimy M < oo or
idimy M < oo, then V(M) C {mg,}.

(2) If M and N are left A-modules, then V(M & N) = V(M) U
Vi (N).

(3) If 0 — M; — My — M3 — 0 is an ezxact sequence of left A-
modules, then Vi (M;) C Ujcp gy Vi (M;) for each i € [1,3].

(4) If pdimy M = oo, then Vg(Q"(M)) = Vg(M) for each n € N.

(5) If A is selfinjective, then V(M) = Vy(TM).

(6) If A is selfinjective and M and N belong to the same compo-
nent of the stable Auslander—Reiten quiver of A, then V(M) =
Vi (N).

Let
= Q== Qo —>M—0

be a minimal projective resolution of a left A-module M. We define
the complexity cx M of M by

cx M := inf{t € N : there exists a real number a such that
dimy, Q,, < a-n'"! for each n € N}

One easily checks that cx M = 0 if and only if pdim, M < oco. Simi-
larly, ex M < 1 if and only if the sequence (dimy, @,,) is bounded. In
particular, cx M = 1 if M is nonzero and periodic, i.e., there exists
n € Ny such that M ~ QR (M). Moreover, if 0 — M; — My — Mz —
0 is an exact sequence of left A-modules, then cx M; < max{cx M, :
Jj € [1,3]\ {i}} for each i € [1,3]. In particular, cx M < cx(A/rad A).
Obviously, cx M = c¢x Q"(M) for each n € N. Finally, we observe that
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Theorem 3.2 implies that cx M is bounded by the complexity of A as
a A-A-bimodule.

We say that A satisfies the FG condition if H is Noetherian and
Exty (A/rad A, A/rad A) is a finitely generated H-module. By induc-
tion we show that if A satisfies the FG condition, then Ext} (M, N) is
a finitely generated H-module for all left A-modules M and N.

Theorem 5.5. Assume that A satisfies the FG condition. Then the
following hold.

(1) A is Gorenstein.

(2) ex M = dimy V(M) < oo for each nonzero left A-module M.

(3) Vu(M) C {mgr} if and only if pdim, M < oc.

(4) dim Vg (M) = 1 if and only if cx M = 1 and if and only if
pdim M = oo and M is eventually periodic.

(5) For each homogenous ideal a of H there exists a left A-module
M such that Vi (M) is the set of the mazimal ideals m of H
such that a C m.

(6) If A is selfinjective and Vi (M) = VUV, for closed homogeneous
sets Vi and Vs such that Vi N'Vy = {mg} and Vi # {mg} # V5,
then there exist left A-modules My and My such that M = M, @
MQ.

(7) If A is selfinjecitve and there exists a left A-module M such that
cx M > 3, then A is wild.

(8) A satisfies the Auslander condition, i.e., for each left A-module
M there exists n € N such that if Exti (M, N) = 0 fori >0,
then Ext) (M, N) =0 for each i > n.

Bergh and Oppermann [7] proved that if
AN=kXy,. .., X))/ (X" X X5 —qij- X; - Xp)
force Ny, a1,...,a. > 2, and ¢;; € k*, 7 < j, then A satisfies the FG
condition if and only if ¢; ; is a root of unity for all < and j. Now let
A=kX,Y)/ (X)X Y —q-Y-X,Y?),
where ¢ € k™ is not a root of unity. Note that we have an exact

sequence

A BN R (X)L (XHY)

> A A »A/(X+Y) =0,
which implies that A/(X +Y") has complexity 1 and is not (eventually)
periodic. Moreover, let M; be the cokernel of the multiplication by
X + (—¢)"- Y. Then

1 i=0,t,t+1,

dimy, Eth\(M> M) = {0 otherwise

for each ¢t € N, hence A does not satisfy the Auslander condition.
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6. REPRESENTATION DIMENSION

By the representation dimension repdim A of A we mean

repdim A := {gldim End, (M) : M is a left A-module
which is both a generator and cogenerator}.

It is known that repdim A = 0is 0 if A is semi-simple. Next, repdim A =
2 if A is of finite representation type, but not semi-simple. Finally,
repdim A > 3 if A is of infinite representation type. Iyama [14] proved
that repdim A < co. Moreover, repdim A is not greater then the Loewy
length of A, if A is selfinjective. On the other hand, Rouquier [15]
proved that

repdim A > dim(D°(A)/DP(A)) + 2.

Now let A be a Gorenstein algebra and denote by MCM(A) the
category of the maximal Cohen—Macaulay modules, where a left A-
module M is called maximal Cohen-Macaulay if Ext} (M, A) = 0 for
each n € N.. Then MCM(A) is a Frobenius category, hence its stable

category MCM(A) is a triangulated category. Moreover, MCM(A) is
equivalent with D?(A)/DPeri(A).

Theorem 6.1 (Bergh/Iyeangar/Krause/Oppermann [3]). If A satisfies
the FG condition, then

dim MCM(A) > ex(A/rad A) — 1.
In particular, repdim A > cx(A/rad A) + 1.

Theorem 6.2. If k is algebraically closed and A satisfies the FG con-
dition, then
repdim A > Kdim HH*(A, A).

If
A= k(X ... 7XC>/(Xi2>Xi X =gy X Xi)
for ¢ € N; and roots of unity ¢;; € k*, i < j, then cx(A/radA) = c.
On the other hand, the Loewy length of A equals ¢ + 1, hence

repdimA =c+1,

which generalizes the original example of Rouquier, who studied the
case of the exterior algebras, i.c., ¢;; = —1 for all i < j.
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