
HOCHSCHILD COHOMOLOGY AND HOMOLOGY OF
ALGEBRAS

BASED ON THE TALKS BY PETTER ANDREAS BERGH

Throughout the talk k is a field and Λ is an indecomposable k-
algebra.

1. Classical definitions

We first present definition of Hochschild cohomology groups from his
classical paper [12].

Let B be a bimodule over Λ. We denote by HB the sequence

0
∂−1

−−→ Homk(Λ
⊗0, B)

∂0−→ Homk(Λ
⊗1, B)

∂1−→ Homk(Λ
⊗2, B)→ · · · ,

where Λ⊗n := Λ⊗k · · · ⊗k Λ︸ ︷︷ ︸
n times

for n ∈ N (in particular, Λ0 := k) and

(∂nf)(λ1 ⊗ · · · ⊗ λn+1) := λ1 · f(λ2 ⊗ · · · ⊗ λn+1)

+
∑
i∈[1,n]

(−1)i · f(λ1 ⊗ · · · ⊗ λi−1 ⊗ λi · λi+1 ⊗ λi+2 ⊗ · · · ⊗ λn+1)

+ (−1)n+1f(λ1 ⊗ · · · ⊗ λn) · λn+1

for n ∈ N, f ∈ Homk(Λ
⊗n, B) and λ1, . . . , λn+1 ∈ Λ. Note that

we have the canonical isomorphism Homk(Λ
⊗0, B) ' B sending f ∈

Homk(Λ
⊗0, B) to f(1), and under this isomorphism ∂0 is given by

(∂0b)(λ) = λ · b− b · λ

for each b ∈ B and λ ∈ Λ. One checks that HB is a complex, i.e.,
∂n ◦∂n−1 = 0 for each n ∈ N (it will also follow from our considerations
in Section 2) and for n ∈ N we define the n-th Hochschild cohomology
group of Λ with coefficients in B by the formula

HHn(Λ, B) := Ker ∂n/ Im ∂n−1.

We have the following homological version of the above definition
(we note, however, that it was not defined by Hochschild). Let HB be
the sequence

· · · → B ⊗k Λ⊗2 ∂2−→ B ⊗k Λ⊗1 ∂1−→ B ⊗k Λ⊗0 ∂0−→ 0,
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where

∂n(b⊗ λ1 ⊗ · · · ⊗ λn) := b · λ1 ⊗ λ2 ⊗ · · · ⊗ λn
+

∑
i∈[1,n−1]

(−1)i · b⊗ λ1 ⊗ λi−1 ⊗ λi · λi+1 ⊗ λi+2 ⊗ · · · ⊗ λn

+ (−1)n · λn · b⊗ λ1 ⊗ · · · ⊗ λn−1

for n ∈ N, b ∈ B and λ1, . . . , λn ∈ Λ. Again HB is a complex, i.e.,
∂n ◦ ∂n+1 = 0 for each n ∈ N, and for n ∈ N we define the n-th
Hochschild homology group of Λ with coefficients in B by the formula

HHn(Λ, B) := Ker ∂n/ Im ∂n+1.

Observe that

HH0(Λ, B) = {b ∈ B : λ · b = b · λ for each λ ∈ Λ}.
Consequently, HH0(Λ,Λ) is just the center Z(Λ) of Λ. In particular,
HH0(Λ,Λ) = Λ if and only if Λ is commutative. On the other hand,

HH0(Λ, B) = B/{λ · b− b · λ : λ ∈ Λ, b ∈ B},
hence again HH0(Λ,Λ) = Λ if and only if Λ is commutative.

By a k-derivation of Λ on B we mean every k-linear map d : Λ→ B
such

d(λ1 · λ2) = d(λ1) · λ2 + λ1 · d(λ2)

for all λ1, λ2 ∈ Λ. A derivation d is called inner, if there exists b ∈ B
such that

d(λ) = λ · b− b · λ
for each λ ∈ Λ. One checks that every map of the above form is a
derivation. We denote by Derk(Λ, B) and Der∗k(Λ, B) the space of the
k-derivations and the inner k-derivations, respectively. Then

Ker ∂1 = Derk(Λ, B) and Im ∂0 = Der∗k(Λ, B),

thus
HH1(Λ, B) = Derk(Λ, B)/Der∗k(Λ, B).

As an example we calculate HH1(k[X], k[X]). We immediately get
that Der∗k(k[X], k[X]) = 0, since k[X] is commutative. On the other,
for each f ∈ k[X] we define a derivation df : k[X] → k[X] by the
formula df (g) := g′ · f for g ∈ k[X]. If we define Ψ : k[X] →
Derk(k[X], k[X]) by Ψ(f) := df for f ∈ k[X], then one easily checks
that Ψ is an isomorphism. In other words, HH1(k[X], k[X]) = k[X].

Now consider the quiver

Q : •
2

•
1

αoo β // •
3

and fix d ∈ Derk(kQ, kQ). Using the equality d(e2) = e2·d(e2)+d(e2)·e2

we get that there exists a′ ∈ k such that d(e2) = a′ · α. Analogously,
we get that d(e3) = a′′ · β for some a′′ ∈ k. Moreover, the equality
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1 = e1 + e2 + e3 implies that d(e1) = −(a′ · α+ a′′ · β). Next, using the
equalities

d(e2) · α + e2 · d(α) = d(α) = d(α) · e1 + α · d(e1),

we get that there exists b′ ∈ k such that d(α) = b′ · α. Similarly,
d(β) = b′′ · β for some b′′ ∈ k. Thus, if

x := a′ · α + a′′ · β − b′ · e2 − b′′ · e3,

then d(y) = y ·x−x · y for each y ∈ kQ, hence HH1(kQ, kQ) = 0. This
result is not surprising, since we have the following.

Theorem (Happel [11]). Let k be algebraically closed and Q a finite
quiver without oriented cycles. Then HH1(kQ, kQ) = 0 if and only if
Q is a tree.

We remark, that if Q has an oriented cycle, then one can easily
construct a derivation of kQ on kQ, which is not inner.

2. Modern approach

Consider the sequence

S : · · · → Λ⊗4 d2−→ Λ⊗3 d1−→ Λ⊗2 d0−→ Λ⊗1 d−1−−→ 0,

where

dn(λ0 ⊗ · · · ⊗ λn+1)

:=
∑
i∈[0,n]

(−1)i · λ0 ⊗ · · · ⊗ λi−1 ⊗ λi · λi+1 ⊗ λi+2 ⊗ · · · ⊗ λn+1

for n ∈ N and λ0, . . . , λn+1 ∈ Λ. It is a sequence of Λ-Λ-bimodules, if
for n ∈ N+ and λ, λ′, λ1, . . . , λn ∈ Λ we put

λ · (λ1 ⊗ · · · ⊗ λn) · λ′ := λ · λ1 ⊗ λ2 · · · ⊗ λn−1 ⊗ λn · λ′.
For n ∈ N we define sn : Λ⊗(n+1) → Λ⊗(n+2) by the formula sn(x) :=
1⊗x for x ∈ Λ⊗(n+1). Moreover, we denote by s−1 the zero map Λ→ 0.
One verifies directly that

dn ◦ sn + sn−1 ◦ dn−1 = Id

for each n ∈ N. As a first consequence we obtain the following.

Lemma 2.1. S is a complex.

Proof. It is obvious that d−1 ◦ d0 = 0. If n ∈ N, then

dn ◦ dn+1 ◦ sn+1 = dn − dn ◦ sn ◦ dn = dn − dn + sn−1 ◦ dn−1 ◦ dn.
By induction, dn−1 ◦ dn = 0, hence dn ◦ dn+1 ◦ sn+1 = 0. Since both dn
and dn+1 are homomorphisms of left Λ-modules, we get

(dn ◦ dn+1)(λ⊗x) = λ · (dn ◦ dn+1)(1⊗x) = λ · (dn ◦ dn+1 ◦ sn+1)(x) = 0

for all λ ∈ Λ and x ∈ Λ⊗(n+1), hence the claim follows. �
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Lemma 2.2. S is exact.

Proof. We already know that Im dn ⊆ Ker dn−1 for each n ∈ N. On
the other hand, if n ∈ N and x ∈ Ker dn−1, then x = (dn ◦ sn)(x) ∈
Im dn. �

Proposition 2.3. S is a projective resolution of Λ as a Λ-Λ-bimodule.

Proof. It is enough to observe that Λ⊗(n+2) is a projective Λ-Λ-bimodule
for each n ∈ N. �

Theorem 2.4. If B is a Λ-Λ-bimodule, then

HHn(Λ, B) ' ExtnΛ−Λ(Λ, B) and HHn(Λ, B) ' TorΛ−Λ
n (Λ, B)

for each n ∈ N.

Proof. Let S′ be the sequence

S′ : · · · → Λ⊗4 d2−→ Λ⊗3 d1−→ Λ⊗2 → 0.

One easily checks that HomΛ−Λ(S′, B) is isomorphic to HB and B⊗Λ−Λ

S′ is isomorphic to HB, hence the claim follows. �

Now we apply the above theorem in order to calculate the Hochschild
(co)homology groups for Λ := k[X]/(Xa), a ∈ N+. Let P be the
following sequence

· · · → Λ⊗k Λ
·v−→ Λ⊗k Λ

·w−→ Λ⊗k Λ
·v−→ Λ⊗k Λ

µ−→ Λ→ 0,

where v := X⊗1−1⊗X, w :=
∑

i∈[0,a−1]X
i⊗Xa−1−i and µ(λ1⊗λ2) :=

λ1 · λ2 for λ1, λ2 ∈ Λ. One checks that P is an exact sequence, hence P
is a projective resolution of Λ as a Λ-Λ-bimodule. If P′ is the sequence

· · · → Λ⊗k Λ
·v−→ Λ⊗k Λ

·w−→ Λ⊗k Λ
·v−→ Λ⊗k Λ→ 0,

then Λ⊗Λ−Λ P′ and HomΛ−Λ(P′,Λ) equal

· · · → Λ
0−→ Λ

·a·Xa−1

−−−−→ Λ
0−→ Λ→ 0

and

0→ Λ
0−→ Λ

·a·Xa−1

−−−−→ Λ
0−→ Λ→ · · · ,

respectively. Consequently,

HHn(Λ,Λ) =


Λ n = 0,

Λ/(a ·Xa−1) n ∈ 2 · N+ − 1,

AnnΛ(a ·Xa−1) n ∈ 2 · N+,

and

HHn(Λ,Λ) =


Λ n = 0,

AnnΛ(a ·Xa−1) n ∈ 2 · N+ − 1,

Λ/(a ·Xa−1) n ∈ 2 · N+,
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for each n ∈ N. In particular, HHn(Λ,Λ) 6= 0 6= HHn(Λ,Λ) for each
n ∈ N provided a ≥ 2. More generally, Holm proved [13] that

HHn(Λ,Λ) =


Λ n = 0,

Λ/(f ′) n ∈ 2 · N+ − 1,

AnnΛ(f ′) n ∈ 2 · N+,

and

HHn(Λ,Λ) =


Λ n = 0,

AnnΛ(f ′) n ∈ 2 · N+ − 1,

Λ/(f ′) n ∈ 2 · N+,

for each n ∈ N, provided Λ = k[X]/(f) for f ∈ k[X].

3. Vanishing

Lemma 3.1. Let

η : 0→ Pn+2
dn+1−−−→ Pn+1

dn−→ Pn → · · ·
d0−→ P0 → 0

be an exact sequence of Λ-Λ-bimodules, such that P0, . . . , Pn are pro-
jective as right Λ-modules. If M is a left Λ-module, then the sequence
η ⊗Λ M is exact.

Proof. We prove by induction on l the following two claims:

(1) Im dl is a projective right Λ-module for each l ∈ [0, n],
(2) the sequence 0 → Im dl → Pl → Im dl−1 → 0 splits as a se-

quence of right Λ-modules for each l ∈ [1, n+ 1].

The second claim will imply that the sequence

0→ Im dl ⊗Λ M → Pl ⊗Λ M → Im dl−1 ⊗Λ M → 0,

is exact for each l ∈ [1, n+ 1], which immediately implies that η⊗Λ M
is exact.

Now Im d0 = P0 is a projective right Λ-module by assumption, thus
assume l > 0. By induction Im dl−1 is a projective Λ-module, hence
the sequence 0 → Im dl → Pl → Im dl−1 → 0 splits as a sequence of
right Λ-modules. Moreover, if l < n + 1, then Pl is a projective right
Λ-module by assumption, hence Im dl is a projective right Λ-module as
well. �

Theorem 3.2. If P is a projective resolution of Λ as a Λ-Λ-bimodule,
then P⊗ΛM is a projective resolution of M for each left Λ-module M .

Proof. Note that P ⊗Λ M is a sequence of projective left Λ-modules.
Moreover, the above lemma implies that P⊗Λ M is an exact sequence.

�
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Corollary 3.3. lgldim Λ ≤ pdimΛ−Λ Λ and rgldim Λ ≤ pdimΛ−Λ Λ. In
particular, if Λ is left and right Noetherian (for example, dimk Λ <∞),
then

gldim Λ ≤ pdimΛ−Λ Λ.

Theorem 3.4. If k is algebraically closed and dimk Λ < ∞, then
gldim Λ = pdimΛ−Λ Λ.

Proof. Let

P : · · · → P2
d2−→ P1

d1−→ P0
d0−→ Λ→ 0

be a minimal projective resolution of Λ as a Λ-Λ-bimodule (existence of
such resolution follows since dimk Λ <∞). The minimality assumption
implies that

Im dn ⊆ rad Λ · Pn−1 + Pn−1 · rad Λ

for each n ∈ N+ (here we use the assumption that k is algebraically
closed). If S is a simple left Λ-module, then

Im(dn⊗ΛS) ⊆ rad Λ ·Pn−1⊗ΛS+Pn−1 ·rad Λ⊗ΛS ⊆ rad Λ ·(Pn−1⊗ΛS)

for each n ∈ N+ (we use that rad Λ ·S = 0), hence P⊗Λ S is a minimal
projective resolution of S. Moreover, if P is a projective Λ-Λ-bimodule
and P ⊗Λ S = 0 for each simple left Λ-module S, then we prove by
induction that P ⊗Λ M = 0 for each left Λ-module M , hence P = 0.
Consequently,

gldim Λ = sup{n ∈ N : Pn ⊗ S 6= 0 for each simple left Λ-module S}
= sup{n ∈ N : Pn 6= 0} = pdimΛ−Λ Λ,

hence the claim follows. �

Corollary 3.5. If k is algebraically closed and dimk Λ < ∞, then
HHn(Λ, B) = 0 = HHn(Λ, B) for each Λ-Λ-bimodule B and n >
gldim Λ.

Inspired by the above result Happel [11] asked a question, if the con-
dition HHn(Λ,Λ) = 0 for n � 0 implies that gldim Λ < ∞. Avramov
and Iyengar [1] showed that this is the case if Λ is commutative. On the
other hand, Buchweitz, Green, Madsen and Solberg [8] gave a coun-
terexample for a general version. Namely, if q ∈ k is not a root of unity
and

Λ := k〈X, Y 〉/(X2, X · Y − q · Y ·X, Y 2),

then HHn(Λ,Λ) = 0 for each n ≥ 3, while gldim Λ =∞. However, the
following conjecture is still open.

Conjecture. If dimk Λ <∞ and HHn(Λ,Λ) = 0 for each n� 0, then
gldim Λ <∞.
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The above conjecture has been verified if Λ is either commutative [2]
or monomial [10]. Moreover, under the assumption char k = 0 Bergh
and Madsen [5] proved this conjecture in the case when Λ is either
Koszul or graded with Λ0 = k. Finally, Bergh, Madsen and Han [4]
verified the conjecture provided there exists arrows α1, . . . , αt in the
Gabriel quiver of Λ such that sαi = tαi−1 and αiαi−1 = 0 for each
i ∈ [1, t], where α0 := αt.

We present the proof of the conjecture for quantum complete inter-
sections due to Bergh and Madsen [6].

First observe that if f : Λ → Γ is a homomorphism of k-algebras,
then we have the induced map f⊗n : Λ⊗n → Γ⊗n for each n ∈ N+,
which induces the map HHn(f) : HHn(Λ,Λ) → HHn(Γ,Γ) for each
n ∈ N. In other words, we obtain functors HHn, n ∈ N, from the
category of k-algebras to the category of vector spaces.

Theorem 3.6. If

Λ := k〈X1, . . . , Xc〉/(Xai
i , Xi ·Xj − qi,j ·Xj ·Xi)

for c ∈ N+, a1, . . . , ac ≥ 2, and qi,j ∈ k×, i < j, then HHn(Λ,Λ) 6= 0
for each n ∈ N.

Proof. For each i ∈ [1, c] we have algebra homomorphisms

ιc : k[X]/(Xac)→ Λ and πc : Λ→ k[X]/(Xac)

such that πc ◦ ιc = Id. This implies that HHn(k[X]/(Xai), k[X]/(Xai))
is a direct summand of HHn(Λ,Λ) for each n ∈ N and i ∈ [1, c]. Since
HHn(k[X]/(Xa), k[X]/(Xa)) 6= 0 for each n ∈ N and a ≥ 2, the claim
follows. �

4. The Hochschild cohomology ring

Throughout this section we assume that dimk Λ <∞.
Since HHn(Λ) = ExtnΛ−Λ(Λ,Λ) for each n ∈ N, we get a graded ring

HH∗(Λ,Λ) :=
⊕
n∈N

HHn(Λ,Λ)

with the multiplication given by the Yoneda product.

Theorem 4.1 (Yoneda [16]). Let Λ, Σ and Γ be k-algebras, A and B
Λ-Σ-bimodules, and C and D Σ-Γ-bimodules. If A, B, C and D are
flat as Σ-modules, then

(η ⊗Σ D) ◦ (A⊗Σ θ) = (−1)mn · (B ⊗Σ θ) ◦ (η ⊗Σ C)

for all η ∈ ExtmΛ−Σ(A,B) and θ ∈ ExtnΣ−Γ(C,D).

Corollary 4.2. HH∗(Λ,Λ) is graded commutative.
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Observe that η2 = −η2 for each η ∈ HHn(Λ,Λ) such that n is
odd. In particular, η2 = 0 if char k 6= 2. Moreover, HH2∗(Λ,Λ) :=⊕

n∈N HH2n(Λ,Λ) is commutative and HH∗(Λ,Λ) is commutative if
char k = 2. Finally, if N is the ideal in HH∗(Λ,Λ) generated by the
homogeneous nilpotent elements, then HH∗(Λ,Λ)/N is commutative.

Theorem 4.3 (Green/Snashall/Solberg [9]). Assume that k is alge-
braically closed. If there exists n ∈ N+ such that Ωn

Λ−Λ(Λ) ' Λ, then

HH∗ /N ' k[X]

and |X| = min{n ∈ N+ : Ωn
Λ−Λ(Λ) ' Λ}.

We remark that for the above theorem the assumption that Λ is
indecomposable is important. Holm [13] showed that

HH∗(Λ,Λ) = k[X, Y, Z]/(Xa, a ·Xa−1 · Z, Y ·Xa−1, Y 2)

with |X| = 0, |Y | = 1 and |Z| = 2, if Λ := k[X]/(Xa) for a ≥ 2. In
particular, HH∗ /N ' k[Z] in this case.

5. Support varieties

Let η ∈ HHn(Λ,Λ) = ExtnΛ−Λ(Λ,Λ). Then η can be represented by
an exact sequence

0→ Λ→ K → Pn−2 → · · · → P0 → Λ→ 0,

such that P0, . . . , Pn−2 are projective Λ-Λ-bimodules. Indeed, if fη ∈
HomΛ−Λ(Ωn

Λ−Λ(Λ),Λ) corresponds to η, then we can take as a repre-
sentative the pushout of the sequence

0→ Ωn
Λ−Λ(Λ)→ Pn−1 → · · · → P0 → Λ→ 0

by fη, where
P : · · · → P2 → P1 → P0 → Λ→ 0

is a minimal projective resolution of Λ. Using Lemma 3.1 we know
that η ⊗Λ M is an exact sequence of left Λ-modules, i.e., η ⊗Λ M ∈
ExtnΛ(M,M). Since P ⊗Λ M is a projective resolution of M by Theo-
rem 3.2, we get that η ⊗Λ M corresponds to fη ⊗Λ M . In this way we
define a function ΦM : HH∗(Λ,Λ) → Ext∗Λ(M,M), which is a homo-
morphism of graded algebras.

Now let M and N be left Λ-module. We define left and right actions
of HH∗(Λ,Λ) on Ext∗Λ(M,N) by the formulas: η · θ := ΦN(η) ◦ θ and
θ ·η := θ◦ΦM(η) for η ∈ HHn(Λ,Λ) and θ ∈ ExtmΛ (M,N). Theorem 4.1
implies the following.

Theorem 5.1. If η ∈ HHn(Λ,Λ) and θ ∈ ExtmΛ (M,N), then

η · θ = (−1)mn · θ · η.

For a graded algebra Γ we denote by Zgr(Γ) the graded center of Γ,
i.e., the subring of Γ generated by the homogeneous elements γ such
that γ · γ′ = (−1)|γ|·|γ

′| · γ′ · γ for each homogeneous element γ′ of Γ.
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Corollary 5.2. For each left Λ-module M the image of ΦM is contained
in Zgr(Ext∗Λ(M,M)).

Let H := HH2∗(Λ,Λ). Then H is commutative. Moreover, if M
and N are left Λ-modules, then η · θ = θ · η for each η ∈ H and
θ ∈ Ext∗Λ(M,N). We denote by VH(M,N) the set of the maximal
ideals in H which contain AnnH Ext∗Λ(M,N).

Lemma 5.3. If M is a left Λ-module, then

VH(M,Λ/ rad Λ) = VH(M,M) = VH(Λ/ rad Λ,M).

We put VH(M) := VH(M,M) and call it the support variety of M .
Since we assume that Λ is indecomposable, HH0(Λ) = Z(Λ) is a local
algebra and

mgr := radZ(Λ)⊕
⊕
n∈N+

HH2n(Λ,Λ)

is the unique graded maximal ideal of H. Consequently, mgr ∈ VH(M)
for each nonzero left Λ-module M .

Theorem 5.4.
(1) If either ExtnΛ(M,M) = 0 for all n � 0 or pdimΛM < ∞ or

idimΛM <∞, then VH(M) ⊆ {mgr}.
(2) If M and N are left Λ-modules, then VH(M ⊕ N) = VH(M) ∪

VH(N).
(3) If 0 → M1 → M2 → M3 → 0 is an exact sequence of left Λ-

modules, then VH(Mi) ⊆
⋃
j∈[1,3]\{i} VH(Mj) for each i ∈ [1, 3].

(4) If pdimΛM =∞, then VH(Ωn(M)) = VH(M) for each n ∈ N.
(5) If Λ is selfinjective, then VH(M) = VH(τM).
(6) If Λ is selfinjective and M and N belong to the same compo-

nent of the stable Auslander–Reiten quiver of Λ, then VH(M) =
VH(N).

Let
· · · → Q2 → Q1 → Q0 →M → 0

be a minimal projective resolution of a left Λ-module M . We define
the complexity cxM of M by

cxM := inf{t ∈ N : there exists a real number a such that

dimkQn ≤ a · nt−1 for each n ∈ N+}.
One easily checks that cxM = 0 if and only if pdimΛM < ∞. Simi-
larly, cxM ≤ 1 if and only if the sequence (dimkQn) is bounded. In
particular, cxM = 1 if M is nonzero and periodic, i.e., there exists
n ∈ N+ such that M ' Ωn

Λ(M). Moreover, if 0→ M1 → M2 → M3 →
0 is an exact sequence of left Λ-modules, then cxMi ≤ max{cxMj :
j ∈ [1, 3] \ {i}} for each i ∈ [1, 3]. In particular, cxM ≤ cx(Λ/ rad Λ).
Obviously, cxM = cx Ωn(M) for each n ∈ N. Finally, we observe that
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Theorem 3.2 implies that cxM is bounded by the complexity of Λ as
a Λ-Λ-bimodule.

We say that Λ satisfies the FG condition if H is Noetherian and
Ext∗Λ(Λ/ rad Λ,Λ/ rad Λ) is a finitely generated H-module. By induc-
tion we show that if Λ satisfies the FG condition, then Ext∗Λ(M,N) is
a finitely generated H-module for all left Λ-modules M and N .

Theorem 5.5. Assume that Λ satisfies the FG condition. Then the
following hold.

(1) Λ is Gorenstein.
(2) cxM = dimk VH(M) <∞ for each nonzero left Λ-module M .
(3) VH(M) ⊆ {mgr} if and only if pdimΛM <∞.
(4) dimVH(M) = 1 if and only if cxM = 1 and if and only if

pdimM =∞ and M is eventually periodic.
(5) For each homogenous ideal a of H there exists a left Λ-module

M such that VH(M) is the set of the maximal ideals m of H
such that a ⊆ m.

(6) If Λ is selfinjective and VH(M) = V1∪V2 for closed homogeneous
sets V1 and V2 such that V1 ∩ V2 = {mgr} and V1 6= {mgr} 6= V2,
then there exist left Λ-modules M1 and M2 such that M = M1⊕
M2.

(7) If Λ is selfinjecitve and there exists a left Λ-module M such that
cxM ≥ 3, then Λ is wild.

(8) Λ satisfies the Auslander condition, i.e., for each left Λ-module
M there exists n ∈ N such that if ExtiΛ(M,N) = 0 for i � 0,
then ExtiΛ(M,N) = 0 for each i ≥ n.

Bergh and Oppermann [7] proved that if

Λ := k〈X1, . . . , Xc〉/(Xai
i , Xi ·Xj − qi,j ·Xj ·Xi)

for c ∈ N+, a1, . . . , ac ≥ 2, and qi,j ∈ k×, i < j, then Λ satisfies the FG
condition if and only if qi,j is a root of unity for all i and j. Now let

Λ := k〈X, Y 〉/(X2, X · Y − q · Y ·X, Y 2),

where q ∈ k× is not a root of unity. Note that we have an exact
sequence

· · · → Λ
·(X−q3·Y )−−−−−−→ Λ

·(X+q2·Y )−−−−−−→ Λ
·(X−q·Y )−−−−−→ Λ

·(X+Y )−−−−→ Λ/(X + Y )→ 0,

which implies that Λ/(X+Y ) has complexity 1 and is not (eventually)
periodic. Moreover, let Mt be the cokernel of the multiplication by
X + (−q)t · Y . Then

dimk ExtiΛ(M,Mt) =

{
1 i = 0, t, t+ 1,

0 otherwise,

for each t ∈ N+, hence Λ does not satisfy the Auslander condition.
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6. Representation dimension

By the representation dimension repdim Λ of Λ we mean

repdim Λ := {gldim EndΛ(M) : M is a left Λ-module

which is both a generator and cogenerator}.
It is known that repdim Λ = 0 is 0 if Λ is semi-simple. Next, repdim Λ =
2 if Λ is of finite representation type, but not semi-simple. Finally,
repdim Λ ≥ 3 if Λ is of infinite representation type. Iyama [14] proved
that repdim Λ <∞. Moreover, repdim Λ is not greater then the Loewy
length of Λ, if Λ is selfinjective. On the other hand, Rouquier [15]
proved that

repdim Λ ≥ dim(Db(Λ)/Dperf(Λ)) + 2.

Now let Λ be a Gorenstein algebra and denote by MCM(Λ) the
category of the maximal Cohen–Macaulay modules, where a left Λ-
module M is called maximal Cohen–Macaulay if ExtnΛ(M,Λ) = 0 for
each n ∈ N+. Then MCM(Λ) is a Frobenius category, hence its stable
category MCM(Λ) is a triangulated category. Moreover, MCM(Λ) is
equivalent with Db(Λ)/Dperf(Λ).

Theorem 6.1 (Bergh/Iyeangar/Krause/Oppermann [3]). If Λ satisfies
the FG condition, then

dim MCM(Λ) ≥ cx(Λ/ rad Λ)− 1.

In particular, repdim Λ ≥ cx(Λ/ rad Λ) + 1.

Theorem 6.2. If k is algebraically closed and Λ satisfies the FG con-
dition, then

repdim Λ ≥ Kdim HH∗(Λ,Λ).

If
Λ := k〈X1, . . . , Xc〉/(X2

i , Xi ·Xj − qi,j ·Xj ·Xi)

for c ∈ N+ and roots of unity qi,j ∈ k×, i < j, then cx(Λ/ rad Λ) = c.
On the other hand, the Loewy length of Λ equals c+ 1, hence

repdim Λ = c+ 1,

which generalizes the original example of Rouquier, who studied the
case of the exterior algebras, i.e., qi,j = −1 for all i < j.

References

[1] L. L. Avramov and S. Iyengar, Gaps in Hochschild cohomology imply smooth-
ness for commutative algebras, Math. Res. Lett. 12 (2005), no. 5-6, 789–804.
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