ALGEBRAS, MODULES AND CATEGORIES ASSOCIATED WITH ELEMENTS IN COXETER GROUPS

BASED ON THE TALKS BY IDUN REITEN

Throughout the talk k is an algebraically closed field and Q is a quiver without oriented cycles. Moreover, we put $n := |Q_0|$.

1. Coxeter groups

We define a group C, called the Coxeter group associated with Q, in the following way: C has generators s_i , $i \in Q_0$, which are subject to the following relations:

- $s_i^2 = 1$ for each $i \in Q_0$,
- $s_i s_j = s_j s_i$ for all $i, j \in Q_0$ such that there is no arrow between i and j in Q,
- $s_i s_j s_i = s_j s_i s_j$ for all $i, j \in Q_0$ such that there is exactly one arrow between i and j in Q.

For example, if Q is the following quiver

$$\bullet_1 \longleftarrow \bullet_2$$
,

then C consists of the following elements

 $1, s_1, s_2, s_1 s_2, s_2 s_1, s_1 s_2 s_1 = s_2 s_1 s_2$

and is isomorphic to S_3 . In general, if Q is of type \mathbb{A}_n , then C is isomorphic to S_{n+1} . It is known that C is finite if and only if Q is a Dynkin quiver.

For a sequence $\omega = (i_1, \ldots, i_l) \in Q_0^l, \ l \in \mathbb{N}$, we define an element $w(\omega)$ of C by

$$w(\omega) := s_{i_1} \cdots s_{i_l}.$$

If $w \in C$, then we define the length $\ell(w)$ of w by

 $\ell(w) := \min\{l \in \mathbb{N} : \text{there exists } \omega \in Q_0^l \text{ such that } w(\omega) = w\}.$

If Q is a Dynkin quiver, then there exists a unique element of maximal length in C. A sequence $\omega \in Q_0^l$, $l \in \mathbb{N}$, is said to be reduced if $l = \ell(w(\omega))$.

Let $\omega = (i_1, \ldots, i_l) \in Q_0^l$ and $\omega' = (j_1, \ldots, j_l) \in Q_0^l$, $l \in \mathbb{N}$. If there exists $p \in [1, l-1]$ such that there is no arrow between i_p and i_{p+1} , $i_p = j_{p+1}$, $j_p = i_{p+1}$, and $i_q = j_q$ for all $q \in [1, l]$, $q \neq p, p+1$ (i.e., ω' is obtained from ω by replacing (i_p, i_{p+1}) by (i_{p+1}, i_p)), then $w(\omega) =$

Date: 10.12.2010 and 16.12.2010.

IDUN REITEN

 $w(\omega')$. Similarly, if there exists $p \in [1, l-2]$ such that there is exactly one arrow between i_p and i_{p+1} , $i_p = j_{p+1} = i_{p+2}$, $j_p = i_{p+1} = j_{p+2}$, and $i_q = j_q$ for all $q \in [1, l]$, $q \neq p, p + 1, p + 2$, then $w(\omega) = w(\omega')$. One can show, that if both ω and ω' are reduced and $w(\omega) = w(\omega')$, then ω' can be obtained from ω by a sequence of the above operations.

By an admissible ordering of the vertices of Q we mean a bijection $\sigma : [1, n] \to Q_0$ such that there is no arrow from $\sigma(i)$ to $\sigma(j)$ if $i, j \in [1, n]$ and i < j. By the Coxeter element we mean $\omega(\sigma(1), \ldots, \sigma(n))$, where σ is an admissible ordering of the vertices of Q. One can show that this definition does not depend on the choice of σ .

2. Algebras associated with elements in Coxeter groups

Let \overline{Q} be the double quiver of Q, i.e. $\overline{Q}_0 := Q_0$ and for each arrow $a: x \to y$ in Q we have two arrows $a: x \to y$ and $a^*: y \to x$ in \overline{Q} . By Λ we denote the preprojective algebra associated with Q, i.e.

$$\Lambda := k\overline{Q} / \Big\langle \sum_{a \in Q_1} a^* a - a a^* \Big\rangle.$$

For example, if Q is the quiver

$$\bullet_1 \stackrel{a}{\longleftarrow} \bullet_2 \stackrel{b}{\longleftarrow} \bullet_3 ,$$

then \overline{Q} is the following quiver

and

$$\Lambda = k \overline{Q} / \langle a^* a, b^* b - a a^*, b b^* \rangle$$

In particular, the indecomposable projective Λ -modules can be visualized as follows:

L		2			
2	,	1	3	,	2
3		2			1

One shows that Λ is finite dimensional if and only if Q is a Dynkin quiver.

If $i \in Q_0$, then we define an ideal I_i of Λ by

$$I_i := \Lambda (1 - e_i) \Lambda.$$

Next, if $w = w(i_1, \ldots, i_l)$ for reduced $(i_1, \ldots, i_l) \in Q_0^l$, $l \in \mathbb{N}$, then we define an ideal I_w of Λ by

$$I_w := I_{i_1} \cdots I_{i_l}.$$

One can show that I_w does not depend on the choice of (i_1, \ldots, i_l) . Finally, for $w \in C$ we define an algebra Λ_w by

$$\Lambda_w := \Lambda / I_w.$$

It is known that Λ_w is finite dimensional for each $w \in C$. Moreover, if Q is Dynkin and w is the element of the longest length in C, then $\Lambda_w \simeq \Lambda$.

There exists a combinatorial rule for describing the indecomposable projective modules in the algebras of the above form, which we illustrate by the following example. Let Q be the quiver

and $w = s_1 s_2 s_3 s_1 s_2$. Then $P_1 := \Lambda e_1$ can be visualized by the following infinite diagram

Now, for

$$P_1/I_2P_1, P_1/I_1I_2P_1, P_1/I_3I_1I_2, P_1/I_2I_3I_1I_2P_1$$

and

$$\Lambda_w e_1 = P_1 / I_1 I_2 I_3 I_1 I_2 P_1$$

we get the diagrams

$$\varnothing$$
 , 1 , 1 , 1 , 1 , 2 3 , 2 3 , 2

and

$$egin{array}{cccc} 1 & & & \\ 2 & 3 & & \\ & 1 & 2 & & \\ & & & 1 & \end{array}$$

,

respectively. Similarly, $\Lambda_w e_2$ and $\Lambda_w e_3$ can be visualized by the diagrams

respectively.

1

IDUN REITEN

3. Cluster tilting objects

Throughout this section we fix $w \in C$.

It is known that $\operatorname{id}_{\Lambda_w} \Lambda_w \leq 1$, i.e., Λ_w is Gorenstein of dimension at most 1. Consequently, if $\operatorname{Sub} \Lambda_w$ is the full subcategory of the category of Λ_w -modules formed by the submodules of projective Λ_w -modules, then $\operatorname{Sub} \Lambda_w$ is a Frobenius category, i.e., $\operatorname{Sub} \Lambda_w$ has enough projectives and injectives and in $\operatorname{Sub} \Lambda_w$ the projectives and the injectives coincide. We may form its stable category $\operatorname{Sub} \Lambda_w$, which is a Homfinite triangulated category. Moreover, $\operatorname{Sub} \Lambda_w$ is 2-Calabi–Yau, i.e., for all $X, Y \in \operatorname{Sub} \Lambda_w$ we have isomorphisms

$$\mathrm{D}\operatorname{Ext}^{1}_{\underline{\operatorname{Sub}}\Lambda_{w}}(X,Y) \simeq \operatorname{Ext}^{1}_{\underline{\operatorname{Sub}}\Lambda_{w}}(Y,X),$$

which are natural both in X and Y, where $D := \text{Hom}_k(-,k)$. One may show that if Q is not of type \mathbb{A}_n and $w = c^2$, where c is the Coxeter element in C, then $\underline{\text{Sub}} \Lambda_w$ is equivalent to the cluster category associated with Q.

Now we fix a reduced sequence $\omega = (i_1, \ldots, i_l) \in Q_0^l, l \in \mathbb{N}$, such that $w = w(\omega)$. We define a Λ_w -module M_ω by

$$M_{\omega} := \bigoplus_{j \in [1,l]} M_{\omega}^j,$$

where

$$M_{\omega}^{j} := P_{i_{j}} / (I_{i_{1}} \cdots I_{i_{j}} P_{i_{j}}) \qquad (j \in [1, l])$$

and

$$P_i := \Lambda e_i \qquad (i \in Q_0).$$

Then M_{ω} is a cluster tilting object in $\underline{\operatorname{Sub}} \Lambda_w$, i.e. $\operatorname{Ext}^1_{\underline{\operatorname{Sub}} \Lambda_w}(M_{\omega}, M_{\omega}) = 0$ and if $\operatorname{Ext}^1_{\underline{\operatorname{Sub}} \Lambda_w}(M_{\omega}, X) = 0$ for some $X \in \underline{\operatorname{Sub}} \Lambda_w$, then $X \in \operatorname{add} M_{\omega}$. For example, if Q is the quiver

$$\bullet_1 \stackrel{\bullet}{\longleftarrow} \bullet_2 \stackrel{\bullet}{\longleftarrow} \bullet_3,$$

 $w = s_1 s_2 s_3 s_1 s_2$ and $\omega = (1, 2, 3, 1, 2)$, then M^1_{ω} and M^2_{ω} can be visualized by the diagrams

$$1 \quad \text{and} \quad \frac{2}{1}$$

while $M^3_{\omega} = \Lambda_w e_1$, $M^4_{\omega} = \Lambda_w e_2$ and $M^5_{\omega} = \Lambda_w e_3$.

Now we describe $\operatorname{End}_{\underline{\operatorname{Sub}}\Lambda_w}(M_\omega)$. We need a function $\psi : [1, l] \to [1, l+1]$ defined by

$$\psi(j) := \min\{p \in [j+1, l] : i_p = i_j\} \qquad (j \in [1, l]),$$

where min $\emptyset := l + 1$, i.e. $\psi(j)$ is the number of the next occurrence of i_j in ω (or $\psi(j) := l + 1$ if there is no more i_j in ω). Now we define a quiver Δ' . First, we put $\Delta'_0 = [1, l]$. Next, for each $j \in [1, l]$ and

5

 $a \in Q_1$ such that $sa = i_j$ and $\{p \in [j+1, \psi(j) - 1] : i_p = ta\} \neq \emptyset$ we have an arrow

$$a_j: j \to \max\{p \in [j+1, \psi(j) - 1]: i_p = ta\}$$

in Δ' (here for an arrow *a* we denote by *sa* and *ta* its starting and terminating vertices, respectively). Similarly, for each $j \in [1, l]$ and each $a \in Q_1$ such that $ta = i_j$ and $\{p \in [j+1, \psi(j) - 1] : i_p = sa\} \neq \emptyset$ we have an arrow

$$a_j^*: j \to \max\{p \in [j+1, \psi(j) - 1] : i_p = sa\}$$

in Δ' . Finally, for each $j \in [1, l]$ such that $\psi(j) \neq l + 1$ we have an arrow $\alpha_j : \psi(j) \to j$ in Δ' . We put

$$\Delta := \Delta' \setminus \{ j \in [1, l] : \psi(j) = l + 1 \}.$$

Now let \mathcal{A} be the set of the pairs (j, a) such that $j \in [1, l]$, $a \in Q_1$ and $a_j, a_{ta_j}^* \in \Delta_1$ (in particular, this means that they are defined). Then there exists $m_{j,a} \in \mathbb{N}_+$ such that $ta_{ta_j}^* = \psi^{m_{j,a}}(j)$, and we put

$$c(j,a) := \alpha_j \cdots \alpha_{\psi^{m_{j,a}-1}(j)} a_{ta_j}^* a_j.$$

We define \mathcal{A}^* and $c^*(j, a)$ for all $(j, a) \in \mathcal{A}^*$, dually. Finally we put

$$W = \sum_{(j,a)\in\mathcal{A}} c(j,a) - \sum_{(j,a)\in\mathcal{A}^*} c^*(j,a).$$

Then $\operatorname{End}_{\operatorname{Sub}\Lambda_w}(M_{\omega})$ is isomorphic to the Jacobian algebra associated with (Δ, W) .

For example, if Q is the quiver

$$\begin{array}{c} c \\ \bullet \\ 1 \\ \hline a \\ a \\ 2 \\ \hline b \\ 3 \\ \end{array},$$

 $w = s_1 s_2 s_3 s_1 s_2 s_1 s_3 s_2$ and $\omega = (1, 2, 3, 1, 2, 1, 3, 2)$, then Δ' is the following quiver

 Δ is the following quiver

and

$$W = \alpha_2 a_4^* a_2 - \alpha_1 a_2 a_1^* - \alpha_2 b_3 b_2^*.$$

Consequently, $\operatorname{End}_{\operatorname{Sub}\Lambda_w}(M_\omega)$ is isomorphic to the path algebra of Δ bound by the relations

$$a_2a_1^*, \ \alpha_1a_2, \ \alpha_2a_4^*-a_1^*\alpha_1, \ a_2\alpha_2, \ a_4^*a_2-b_3b_2^*, \ b_2^*\alpha_2, \ \alpha_2b_3.$$

4. Layers associated with elements in Coxeter groups

Similarly as in the previous section we fix $w \in C$ and a reduced sequence $\omega = (i_1, \ldots, i_l) \in Q_0^l$, $l \in \mathbb{N}$, such that $w = w(\omega)$. Let $\psi : [1, l] \to [1, l+1]$ be the function defined in the previous section. If $j \in [1, l]$ and there is no $i \in [1, l]$ such that $j = \psi(i)$, then we put $L_{\omega}^j := M_{\omega}^j$. Otherwise, there is unique $i \in [1, l]$ such that $j = \psi(i)$ and we put $L_{\omega}^j := \text{Ker } f$, where $f : M_{\omega}^j \to M_{\omega}^i$ is a homomorphism, which induces an isomorphism of the tops. We call the above modules the layers of M_{ω} .

For example, if Q is the quiver

$$\mathbf{e}_1 \stackrel{\checkmark}{\longleftarrow} \mathbf{e}_2 \stackrel{\checkmark}{\longleftarrow} \mathbf{e}_3$$

 $w = s_1 s_2 s_3 s_1 s_3$ and $\omega = (1, 2, 3, 1, 3)$, then L^1_{ω} , L^2_{ω} , L^3_{ω} , L^4_{ω} and L^5_{ω} can be visualized by the diagrams

respectively. Similarly, if $w = s_1 s_2 s_3 s_2 s_1 s_3$ and $\omega = (1, 2, 3, 2, 1, 3)$, then L^1_{ω} , L^2_{ω} , L^3_{ω} , L^4_{ω} , L^5_{ω} and L^6_{ω} can be visualized by the diagrams

6

7

respectively. Observe that in the former example the layers are kQ-modules, while in the latter one L^5_{ω} and L^6_{ω} are not.

Theorem. Let w and ω be as above. Then

 $\operatorname{End}_{\Lambda_w}(L^j_{\omega}) \simeq k \qquad and \qquad \operatorname{Ext}_{\Lambda_w}(L^j_{\omega}, L^j_{\omega}) = 0$

for all $j \in [1, l]$. Moreover, for each $j \in [1, l]$ there exists a unique indecomposable kQ-module L'^{j}_{ω} such that $\dim L^{j}_{\omega} = \dim L'^{j}_{\omega}$.

For example, in the latter example $L_{\omega}^{\prime 5}$ is given by the diagram

Observe that $\operatorname{Ext}_{kO}^{1}(L_{\omega}^{\prime 5}, L_{\omega}^{\prime 5}) \neq 0.$

5. Connection with tilting theory

Throughout this section we fix an admissible ordering $\sigma : [1, n] \to Q_0$ and put $\gamma = (\sigma(1), \ldots, \sigma(n))$. Note that $w(\gamma)$ is the Coxeter element. We say that a reduced sequence $\omega \in Q_0^l$, $l \in \mathbb{N}$, is sortable if $\omega = (\gamma^{(0)}, \ldots, \gamma^{(r)})$, where $\gamma^{(0)}$ is a subsequence of γ and $\gamma^{(i)}$ is a subsequence of $\gamma^{(i-1)}$ for each $i \in [1, r]$. For example, if Q is the quiver

and σ is the identity map, then (1, 2, 3, 1, 3) is sortable (with $\gamma^{(0)} = (1, 2, 3)$ and $\gamma^{(1)} = (1, 3)$), while (1, 2, 3, 2, 1, 3) is not. In general, if ω is sortable, then L^j_{ω} is a kQ-module for each $j \in [1, l]$. Observe that if ω and ω' are sortable and $w(\omega) = w(\omega')$, then $\omega = \omega'$. Consequently, we may speak about sortable elements in C instead of sortable sequences. Reading showed that there if Q is a Dynkin quiver, there there is a bijection between sortable elements in C and the clusters.

Now we fix a sortable sequence $\omega = (i_1, \ldots, i_l) \in Q_0^l, l \in \mathbb{N}$, such that $l \geq n$ and $i_j = \gamma(j)$ for each $j \in [1, n]$ (we call such sortable sequences admissible). This means that $L_{\omega}^j = (kQ)e_j$ for each $j \in [1, n]$. We define the subsets $I_n, \ldots, I_t \subseteq [1, l]$ together with bijections $\sigma_j : [1, n] \to I_j, j \in [n, t]$, by the following rules:

(1) $I_n := [1, n]$ and σ_n is the identity map,

(2) if j > n, then

$$I_j := I_{j-1} \setminus \{\sigma_{j-1}(i_j)\} \cup \{j\}$$

and

$$\sigma_j(i) := \begin{cases} \sigma_{j-1}(i) & i \neq i_j \\ j & i = i_j \end{cases} \quad (i \in [1, n]).$$

Finally, we put

$$T_{\omega}^{j} := \bigoplus_{i \in [1,n]} L_{\omega}^{\sigma_{j}(i)} \qquad (j \in [n,t])$$

and $T_{\omega} = T_{\omega}^t$. For example, if Q is the quiver

$$\bullet_1 \stackrel{2}{\longleftarrow} \bullet_2 \stackrel{\sim}{\longleftarrow} \bullet_3 ,$$

 σ is the identity map and $\omega = (1, 2, 3, 1, 3)$, then

$$T^3_{\omega} = L^1_{\omega} \oplus L^2_{\omega} \oplus L^3_{\omega}, \qquad T^4_{\omega} = L^4_{\omega} \oplus L^2_{\omega} \oplus L^3_{\omega}$$

and

$$T^5_{\omega} = L^4_{\omega} \oplus L^2_{\omega} \oplus L^5_{\omega}.$$

Theorem. Let $\omega = (i_1, \ldots, i_l) \in Q_0^l$, $l \in \mathbb{N}$, be an admissible sortable sequence. Then we have the following:

(1) For each $j \in [n+1, t]$ there exists an exact sequence of the form

$$0 \to L^{\sigma_{j-1}(i_j)}_{\omega} \xrightarrow{f_j} L'_j \to L^j_{\omega} \to 0,$$

such that f is a minimal left $\operatorname{add}(\bigoplus_{i \in I_j \setminus \{j\}} L^i_{\omega})$ -approximation. (2) T_{ω} is a tilting kQ-module and $L^1_{\omega}, \ldots, L^t_{\omega}$ are representatives of the indecomposable modules in $\operatorname{Sub} T_{\omega}$.

Recall that $\operatorname{Sub} T$ is a torsion free class for a tilting module T. Thus the following can be seen as a converse of the second part of the above theorem.

Theorem. Let \mathcal{F} be a torsion free class in mod kQ of finite representation type containing kQ. Then there exists a unique admissible sortable sequence ω such that $\mathcal{F} = \operatorname{Sub} T_{\omega}$.

References

- [1] C. Amiot, O. Iyama, I. Reiten, and G. Todorov, Preprojective algebras and csortable words, available at arXiv:1002.4131.
- [2] A. B. Buan, O. Ivama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035-1079.
- [3] A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, Amer. J. Math., in press, available at arXiv:0804.3813.

8