ALGEBRAS, MODULES AND CATEGORIES
 ASSOCIATED WITH ELEMENTS IN COXETER GROUPS

BASED ON THE TALKS BY IDUN REITEN

Throughout the talk k is an algebraically closed field and Q is a quiver without oriented cycles. Moreover, we put $n:=\left|Q_{0}\right|$.

1. Coxeter groups

We define a group C, called the Coxeter group associated with Q, in the following way: C has generators $s_{i}, i \in Q_{0}$, which are subject to the following relations:

- $s_{i}^{2}=1$ for each $i \in Q_{0}$,
- $s_{i} s_{j}=s_{j} s_{i}$ for all $i, j \in Q_{0}$ such that there is no arrow between i and j in Q,
- $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ for all $i, j \in Q_{0}$ such that there is exactly one arrow between i and j in Q.
For example, if Q is the following quiver

then C consists of the following elements

$$
1, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}
$$

and is isomorphic to S_{3}. In general, if Q is of type \mathbb{A}_{n}, then C is isomorphic to S_{n+1}. It is known that C is finite if and only if Q is a Dynkin quiver.
For a sequence $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, we define an element $w(\omega)$ of C by

$$
w(\omega):=s_{i_{1}} \cdots s_{i_{l}} .
$$

If $w \in C$, then we define the length $\ell(w)$ of w by

$$
\ell(w):=\min \left\{l \in \mathbb{N} \text { : there exists } \omega \in Q_{0}^{l} \text { such that } w(\omega)=w\right\} .
$$

If Q is a Dynkin quiver, then there exists a unique element of maximal length in C. A sequence $\omega \in Q_{0}^{l}, l \in \mathbb{N}$, is said to be reduced if $l=\ell(w(\omega))$.

Let $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}$ and $\omega^{\prime}=\left(j_{1}, \ldots, j_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$. If there exists $p \in[1, l-1]$ such that there is no arrow between i_{p} and i_{p+1}, $i_{p}=j_{p+1}, j_{p}=i_{p+1}$, and $i_{q}=j_{q}$ for all $q \in[1, l], q \neq p, p+1$ (i.e., ω^{\prime} is obtained from ω by replacing $\left(i_{p}, i_{p+1}\right)$ by $\left.\left(i_{p+1}, i_{p}\right)\right)$, then $w(\omega)=$
$w\left(\omega^{\prime}\right)$. Similarly, if there exists $p \in[1, l-2]$ such that there is exactly one arrow between i_{p} and $i_{p+1}, i_{p}=j_{p+1}=i_{p+2}, j_{p}=i_{p+1}=j_{p+2}$, and $i_{q}=j_{q}$ for all $q \in[1, l], q \neq p, p+1, p+2$, then $w(\omega)=w\left(\omega^{\prime}\right)$. One can show, that if both ω and ω^{\prime} are reduced and $w(\omega)=w\left(\omega^{\prime}\right)$, then ω^{\prime} can be obtained from ω by a sequence of the above operations.

By an admissible ordering of the vertices of Q we mean a bijection $\sigma:[1, n] \rightarrow Q_{0}$ such that there is no arrow from $\sigma(i)$ to $\sigma(j)$ if $i, j \in$ $[1, n]$ and $i<j$. By the Coxeter element we mean $\omega(\sigma(1), \ldots, \sigma(n))$, where σ is an admissible ordering of the vertices of Q. One can show that this definition does not depend on the choice of σ.

2. Algebras associated with elements in Coxeter groups

Let \bar{Q} be the double quiver of Q, i.e. $\bar{Q}_{0}:=Q_{0}$ and for each arrow $a: x \rightarrow y$ in Q we have two arrows $a: x \rightarrow y$ and $a^{*}: y \rightarrow x$ in \bar{Q}. By Λ we denote the preprojective algebra associated with Q, i.e.

$$
\Lambda:=k \bar{Q} /\left\langle\sum_{a \in Q_{1}} a^{*} a-a a^{*}\right\rangle
$$

For example, if Q is the quiver

then \bar{Q} is the following quiver
and

$$
\Lambda=k \bar{Q} /\left\langle a^{*} a, b^{*} b-a a^{*}, b b^{*}\right\rangle
$$

In particular, the indecomposable projective Λ-modules can be visualized as follows:

1	2		3
2	1	3	2
3			1

One shows that Λ is finite dimensional if and only if Q is a Dynkin quiver.

If $i \in Q_{0}$, then we define an ideal I_{i} of Λ by

$$
I_{i}:=\Lambda\left(1-e_{i}\right) \Lambda .
$$

Next, if $w=w\left(i_{1}, \ldots, i_{l}\right)$ for reduced $\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, then we define an ideal I_{w} of Λ by

$$
I_{w}:=I_{i_{1}} \cdots I_{i_{l}} .
$$

One can show that I_{w} does not depend on the choice of $\left(i_{1}, \ldots, i_{l}\right)$. Finally, for $w \in C$ we define an algebra Λ_{w} by

$$
\Lambda_{w}:=\Lambda / I_{w} .
$$

It is known that Λ_{w} is finite dimensional for each $w \in C$. Moreover, if Q is Dynkin and w is the element of the longest length in C, then $\Lambda_{w} \simeq \Lambda$.

There exists a combinatorial rule for describing the indecomposable projective modules in the algebras of the above form, which we illustrate by the following example. Let Q be the quiver

and $w=s_{1} s_{2} s_{3} s_{1} s_{2}$. Then $P_{1}:=\Lambda e_{1}$ can be visualized by the following infinite diagram

$$
\begin{array}{lllllllll}
& & & 1 & & & & \\
& & & 2 & & 3 & & & \\
& & 3 & & 1 & & 2 & & \\
\ldots & 1 & & 2 & & 3 & & 1 & \\
\ldots & \ldots & & \ldots & \ldots & & \ldots
\end{array}
$$

Now, for

$$
P_{1} / I_{2} P_{1}, P_{1} / I_{1} I_{2} P_{1}, P_{1} / I_{3} I_{1} I_{2}, P_{1} / I_{2} I_{3} I_{1} I_{2} P_{1}
$$

and

$$
\Lambda_{w} e_{1}=P_{1} / I_{1} I_{2} I_{3} I_{1} I_{2} P_{1}
$$

we get the diagrams

and

respectively. Similarly, $\Lambda_{w} e_{2}$ and $\Lambda_{w} e_{3}$ can be visualized by the diagrams

respectively.

3. Cluster tilting objects

Throughout this section we fix $w \in C$.
It is known that $\operatorname{id}_{\Lambda_{w}} \Lambda_{w} \leq 1$, i.e., Λ_{w} is Gorenstein of dimension at most 1. Consequently, if $\operatorname{Sub} \Lambda_{w}$ is the full subcategory of the category of Λ_{w}-modules formed by the submodules of projective Λ_{w}-modules, then $\operatorname{Sub} \Lambda_{w}$ is a Frobenius category, i.e., Sub Λ_{w} has enough projectives and injectives and in $\operatorname{Sub} \Lambda_{w}$ the projectives and the injectives coincide. We may form its stable category $\underline{\operatorname{Sub}} \Lambda_{w}$, which is a Homfinite triangulated category. Moreover, $\operatorname{Sub} \Lambda_{w}$ is 2 -Calabi-Yau, i.e., for all $X, Y \in \underline{\text { Sub }} \Lambda_{w}$ we have isomorphisms

$$
\operatorname{DExt}_{\underline{\operatorname{Sub} \Lambda_{w}}}^{1}(X, Y) \simeq \operatorname{Ext}_{\underline{\underline{\text { sub}} \Lambda_{w}}}^{1}(Y, X),
$$

which are natural both in X and Y, where $\mathrm{D}:=\operatorname{Hom}_{k}(-, k)$. One may show that if Q is not of type \mathbb{A}_{n} and $w=c^{2}$, where c is the Coxeter element in C, then $\underline{\operatorname{Sub}} \Lambda_{w}$ is equivalent to the cluster category associated with Q.

Now we fix a reduced sequence $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, such that $w=w(\omega)$. We define a Λ_{w}-module M_{ω} by

$$
M_{\omega}:=\bigoplus_{j \in[1, l]} M_{\omega}^{j},
$$

where

$$
M_{\omega}^{j}:=P_{i_{j}} /\left(I_{i_{1}} \cdots I_{i_{j}} P_{i_{j}}\right) \quad(j \in[1, l])
$$

and

$$
P_{i}:=\Lambda e_{i} \quad\left(i \in Q_{0}\right) .
$$

Then M_{ω} is a cluster tilting object in $\underline{\operatorname{Sub}} \Lambda_{w}$, i.e. $\operatorname{Ext}_{\operatorname{Sub~}_{\Lambda_{w}}}^{1}\left(M_{\omega}, M_{\omega}\right)=$ 0 and if $\operatorname{Ext}_{\underline{\underline{\text { sub }} \Lambda_{w}}}^{1}\left(M_{\omega}, X\right)=0$ for some $X \in \underline{\operatorname{Sub}} \Lambda_{w}$, then $X \in \operatorname{add} M_{\omega}$. For example, if Q is the quiver

$w=s_{1} s_{2} s_{3} s_{1} s_{2}$ and $\omega=(1,2,3,1,2)$, then M_{ω}^{1} and M_{ω}^{2} can be visualized by the diagrams

$$
1 \quad \text { and } \quad \begin{aligned}
& 2 \\
& 1
\end{aligned}
$$

while $M_{\omega}^{3}=\Lambda_{w} e_{1}, M_{\omega}^{4}=\Lambda_{w} e_{2}$ and $M_{\omega}^{5}=\Lambda_{w} e_{3}$.
Now we describe $\operatorname{End}_{\underline{\text { Sub }} \Lambda_{w}}\left(M_{\omega}\right)$. We need a function $\psi:[1, l] \rightarrow$ $[1, l+1]$ defined by

$$
\psi(j):=\min \left\{p \in[j+1, l]: i_{p}=i_{j}\right\} \quad(j \in[1, l])
$$

where $\min \varnothing:=l+1$, i.e. $\psi(j)$ is the number of the next occurrence of i_{j} in ω (or $\psi(j):=l+1$ if there is no more i_{j} in ω). Now we define a quiver Δ^{\prime}. First, we put $\Delta_{0}^{\prime}=[1, l]$. Next, for each $j \in[1, l]$ and
$a \in Q_{1}$ such that $s a=i_{j}$ and $\left\{p \in[j+1, \psi(j)-1]: i_{p}=t a\right\} \neq \varnothing$ we have an arrow

$$
a_{j}: j \rightarrow \max \left\{p \in[j+1, \psi(j)-1]: i_{p}=t a\right\}
$$

in Δ^{\prime} (here for an arrow a we denote by $s a$ and $t a$ its starting and terminating vertices, respectively). Similarly, for each $j \in[1, l]$ and each $a \in Q_{1}$ such that $t a=i_{j}$ and $\left\{p \in[j+1, \psi(j)-1]: i_{p}=s a\right\} \neq \varnothing$ we have an arrow

$$
a_{j}^{*}: j \rightarrow \max \left\{p \in[j+1, \psi(j)-1]: i_{p}=s a\right\}
$$

in Δ^{\prime}. Finally, for each $j \in[1, l]$ such that $\psi(j) \neq l+1$ we have an arrow $\alpha_{j}: \psi(j) \rightarrow j$ in Δ^{\prime}. We put

$$
\Delta:=\Delta^{\prime} \backslash\{j \in[1, l]: \psi(j)=l+1\} .
$$

Now let \mathcal{A} be the set of the pairs (j, a) such that $j \in[1, l], a \in Q_{1}$ and $a_{j}, a_{t a_{j}}^{*} \in \Delta_{1}$ (in particular, this means that they are defined). Then there exists $m_{j, a} \in \mathbb{N}_{+}$such that $t a_{t a_{j}}^{*}=\psi^{m_{j, a}}(j)$, and we put

$$
c(j, a):=\alpha_{j} \cdots \alpha_{\psi^{m_{j, a}-1}(j)} a_{t a_{j}}^{*} a_{j} .
$$

We define \mathcal{A}^{*} and $c^{*}(j, a)$ for all $(j, a) \in \mathcal{A}^{*}$, dually. Finally we put

$$
W=\sum_{(j, a) \in \mathcal{A}} c(j, a)-\sum_{(j, a) \in \mathcal{A}^{*}} c^{*}(j, a) .
$$

Then $\operatorname{End}_{\underline{\operatorname{Sub}} \Lambda_{w}}\left(M_{\omega}\right)$ is isomorphic to the Jacobian algebra associated with (Δ, W).

For example, if Q is the quiver

$w=s_{1} s_{2} s_{3} s_{1} s_{2} s_{1} s_{3} s_{2}$ and $\omega=(1,2,3,1,2,1,3,2)$, then Δ^{\prime} is the following quiver

Δ is the following quiver

and

$$
W=\alpha_{2} a_{4}^{*} a_{2}-\alpha_{1} a_{2} a_{1}^{*}-\alpha_{2} b_{3} b_{2}^{*} .
$$

Consequently, $\operatorname{End}_{\underline{\operatorname{Sub}} \Lambda_{w}}\left(M_{\omega}\right)$ is isomorphic to the path algebra of Δ bound by the relations

$$
a_{2} a_{1}^{*}, \alpha_{1} a_{2}, \alpha_{2} a_{4}^{*}-a_{1}^{*} \alpha_{1}, a_{2} \alpha_{2}, a_{4}^{*} a_{2}-b_{3} b_{2}^{*}, b_{2}^{*} \alpha_{2}, \alpha_{2} b_{3} .
$$

4. Layers associated with elements in Coxeter groups

Similarly as in the previous section we fix $w \in C$ and a reduced sequence $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, such that $w=w(\omega)$. Let $\psi:[1, l] \rightarrow[1, l+1]$ be the function defined in the previous section. If $j \in[1, l]$ and there is no $i \in[1, l]$ such that $j=\psi(i)$, then we put $L_{\omega}^{j}:=M_{\omega}^{j}$. Otherwise, there is unique $i \in[1, l]$ such that $j=\psi(i)$ and we put $L_{\omega}^{j}:=\operatorname{Ker} f$, where $f: M_{\omega}^{j} \rightarrow M_{\omega}^{i}$ is a homomorphism, which induces an isomorphism of the tops. We call the above modules the layers of M_{ω}.

For example, if Q is the quiver

$w=s_{1} s_{2} s_{3} s_{1} s_{3}$ and $\omega=(1,2,3,1,3)$, then $L_{\omega}^{1}, L_{\omega}^{2}, L_{\omega}^{3}, L_{\omega}^{4}$ and L_{ω}^{5} can be visualized by the diagrams

respectively. Similarly, if $w=s_{1} s_{2} s_{3} s_{2} s_{1} s_{3}$ and $\omega=(1,2,3,2,1,3)$, then $L_{\omega}^{1}, L_{\omega}^{2}, L_{\omega}^{3}, L_{\omega}^{4}, L_{\omega}^{5}$ and L_{ω}^{6} can be visualized by the diagrams

respectively. Observe that in the former example the layers are $k Q$ modules, while in the latter one L_{ω}^{5} and L_{ω}^{6} are not.
Theorem. Let w and ω be as above. Then

$$
\operatorname{End}_{\Lambda_{w}}\left(L_{\omega}^{j}\right) \simeq k \quad \text { and } \quad \operatorname{Ext}_{\Lambda_{w}}\left(L_{\omega}^{j}, L_{\omega}^{j}\right)=0
$$

for all $j \in[1, l]$. Moreover, for each $j \in[1, l]$ there exists a unique indecomposable $k Q$-module $L_{\omega}^{\prime j}$ such that $\operatorname{dim} L_{\omega}^{j}=\operatorname{dim} L_{\omega}^{\prime j}$.

For example, in the latter example $L_{\omega}^{\prime 5}$ is given by the diagram

Observe that $\operatorname{Ext}_{k Q}^{1}\left(L_{\omega}^{\prime 5}, L_{\omega}^{\prime 5}\right) \neq 0$.

5. Connection with tilting theory

Throughout this section we fix an admissible ordering $\sigma:[1, n] \rightarrow Q_{0}$ and put $\gamma=(\sigma(1), \ldots, \sigma(n))$. Note that $w(\gamma)$ is the Coxeter element. We say that a reduced sequence $\omega \in Q_{0}^{l}, l \in \mathbb{N}$, is sortable if $\omega=$ $\left(\gamma^{(0)}, \ldots, \gamma^{(r)}\right)$, where $\gamma^{(0)}$ is a subsequence of γ and $\gamma^{(i)}$ is a subsequence of $\gamma^{(i-1)}$ for each $i \in[1, r]$. For example, if Q is the quiver

and σ is the identity map, then $(1,2,3,1,3)$ is sortable (with $\gamma^{(0)}=$ $(1,2,3)$ and $\gamma^{(1)}=(1,3)$), while $(1,2,3,2,1,3)$ is not. In general, if ω is sortable, then L_{ω}^{j} is a $k Q$-module for each $j \in[1, l]$. Observe that if ω and ω^{\prime} are sortable and $w(\omega)=w\left(\omega^{\prime}\right)$, then $\omega=\omega^{\prime}$. Consequently, we may speak about sortable elements in C instead of sortable sequences. Reading showed that there if Q is a Dynkin quiver, there there is a bijection between sortable elements in C and the clusters.

Now we fix a sortable sequence $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, such that $l \geq n$ and $i_{j}=\gamma(j)$ for each $j \in[1, n]$ (we call such sortable sequences admissible). This means that $L_{\omega}^{j}=(k Q) e_{j}$ for each $j \in$ $[1, n]$. We define the subsets $I_{n}, \ldots, I_{t} \subseteq[1, l]$ together with bijections $\sigma_{j}:[1, n] \rightarrow I_{j}, j \in[n, t]$, by the following rules:
(1) $I_{n}:=[1, n]$ and σ_{n} is the identity map,
(2) if $j>n$, then

$$
I_{j}:=I_{j-1} \backslash\left\{\sigma_{j-1}\left(i_{j}\right)\right\} \cup\{j\}
$$

and

$$
\sigma_{j}(i):=\left\{\begin{array}{ll}
\sigma_{j-1}(i) & i \neq i_{j} \\
j & i=i_{j}
\end{array} \quad(i \in[1, n]) .\right.
$$

Finally, we put

$$
T_{\omega}^{j}:=\bigoplus_{i \in[1, n]} L_{\omega}^{\sigma_{j}(i)} \quad(j \in[n, t])
$$

and $T_{\omega}=T_{\omega}^{t}$. For example, if Q is the quiver

σ is the identity map and $\omega=(1,2,3,1,3)$, then

$$
T_{\omega}^{3}=L_{\omega}^{1} \oplus L_{\omega}^{2} \oplus L_{\omega}^{3}, \quad T_{\omega}^{4}=L_{\omega}^{4} \oplus L_{\omega}^{2} \oplus L_{\omega}^{3}
$$

and

$$
T_{\omega}^{5}=L_{\omega}^{4} \oplus L_{\omega}^{2} \oplus L_{\omega}^{5} .
$$

Theorem. Let $\omega=\left(i_{1}, \ldots, i_{l}\right) \in Q_{0}^{l}, l \in \mathbb{N}$, be an admissible sortable sequence. Then we have the following:
(1) For each $j \in[n+1, t]$ there exists an exact sequence of the form

$$
0 \rightarrow L_{\omega}^{\sigma_{j-1}\left(i_{j}\right)} \xrightarrow{f_{j}} L_{j}^{\prime} \rightarrow L_{\omega}^{j} \rightarrow 0,
$$

such that f is a minimal left $\operatorname{add}\left(\bigoplus_{i \in I_{j} \backslash\{j\}} L_{\omega}^{i}\right)$-approximation.
(2) T_{ω} is a tilting $k Q$-module and $L_{\omega}^{1}, \ldots, L_{\omega}^{t}$ are representatives of the indecomposable modules in $\operatorname{Sub} T_{\omega}$.
Recall that $\operatorname{Sub} T$ is a torsion free class for a tilting module T. Thus the following can be seen as a converse of the second part of the above theorem.

Theorem. Let \mathcal{F} be a torsion free class in $\bmod k Q$ of finite representation type containing $k Q$. Then there exists a unique admissible sortable sequence ω such that $\mathcal{F}=\operatorname{Sub} T_{\omega}$.

References

[1] C. Amiot, O. Iyama, I. Reiten, and G. Todorov, Preprojective algebras and csortable words, available at arXiv:1002.4131.
[2] A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-CalabiYau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 10351079.
[3] A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, Amer. J. Math., in press, available at arXiv:0804.3813.

