CLUSTER TILTED ALGEBRAS

BASED ON THE TALKS BY ASLAK BAKKE BUAN

1. Quiver mutations

Let C be an $n \times n$-matrix with integer coefficients such that $C(i, j) \geq$ 0 for all $i, j \in[1, n]$ and $C(i, j) \cdot C(j, i)=0$ for all $i, j \in[1, n]$ (in particular, $C(i, i)=0$ for all $i \in[1, n])$. Following [11] by a mutation of C at $k \in[1, n]$ we mean the $n \times n$-matrix $\mu_{k} C$ defined by

$$
\mu_{k} C(i, j):=\left\{\begin{array}{cc}
C(j, i) & \text { if } i=k \text { or } j=k \\
\max (0, C(i, j)-C(j, i) & \\
+C(i, k) \cdot C(k, j)-C(j, k) \cdot C(k, i)) \\
& \text { otherwise }
\end{array}\right.
$$

$$
(i, j \in[1, n])
$$

One can easily check that $\mu_{k} C$ has the same properties as C, i.e. $\mu_{k} C(i, j) \geq 0$ for all $i, j \in[1, n]$ and $\mu_{k} C(i, j) \cdot \mu_{k} C(j, i)=0$ for all $i, j \in[1, n]$. Moreover, $\mu_{k}^{2} C=C$.

With a matrix C as above we can associate a quiver Q such that $Q_{0}=[1, n]$ and

$$
\#\left\{\alpha \in Q_{1}: s \alpha=i \text { and } t \alpha=j\right\}=C(i, j)
$$

for all $i, j \in[1, n]$. The quiver Q is uniquely determined by C up to an isomorphism fixing vertices. Moreover, Q has no loops and no oriented 2 -cycles. If $k \in[1, n]$ and Q^{\prime} is the quiver associated with $\mu_{k} C$, then we write $Q^{\prime}=\mu_{k} Q$ and call Q^{\prime} the mutation of Q at k. Observe that Q^{\prime} is obtained from Q in the following way:
(1) if i and j are vertices of Q, then we add an arrow from i to j for every path from i to j of length 2 going through k,
(2) we reverse all arrows which start or terminate in k,
(3) we remove oriented 2 -cycles until no oriented 2 -cycles are left. For example, if Q is the quiver

then $\mu_{2} Q$ equals

Observe that the mutation at k is the reflection at k provided k is either a sink or a source.

Let Q be an acyclic quiver and denote by H its path algebra (over a fixed algebraically closed field). For a $\operatorname{sink} k$ in Q we define the tilting module T by

$$
T:=H / P_{k} \amalg \tau^{-1} P_{k} .
$$

Then $\operatorname{End}_{H}(T)^{\text {op }}$ is (isomorphic to) the path algebra of the mutation of Q at k. Note however that we cannot expect such a result for general mutations. Indeed, if Q is the quiver

then $\mu_{2} Q$ equals

hence there is no (iterated) tilted algebra whose Gabriel quiver equals $\mu_{2} Q$. One of the aims of introducing cluster categories was to find a similar interpretation for arbitrary mutations.

2. Cluster categories and tilting

Let Q be an acyclic quiver, denote by H its path category and by \mathcal{D}_{H} the derived category of H. It is a triangulated Krull-Schmidt category with the suspension functor given by the shift [1] of complexes. Moreover, it has AR-triangles, thus in particular, we have the ARtranslation τ. If X is an indecomposable object in \mathcal{D}_{H}, then there exists an indecomposable H-module M such that $X \simeq M[i]$ for some $i \in \mathbb{Z}$.

Let $F:=\tau^{-1} \circ[1]$. We put $\mathcal{C}=\mathcal{C}_{H}:=\mathcal{D}_{H} / F$, i.e. \mathcal{C}_{H} has the same objects as \mathcal{D}_{H} and

$$
\operatorname{Hom}_{\mathcal{C}_{H}}(X, Y):=\coprod_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{D}_{H}}\left(X, F^{i} Y\right)
$$

for objects X and Y in \mathcal{C}. Then \mathcal{C} is again a triangulated KrullSchmidt category such that the canonical functor $\mathcal{D}_{H} \rightarrow \mathcal{C}$ is a triangle functor [13]. Moreover, \mathcal{C} has AR-triangles and each indecomposable object in \mathcal{C} is isomorphic either to M for an indecomposable H-module M or to $P[1]$ for an indecomposable projective H-module P.

If $T=\bigoplus_{i \in[1, n]} X_{i}$ for indecomposable objects $X_{1}, \ldots, X_{n} \in \mathcal{C}$, then we put $\delta(T):=n$. Moreover, if $X_{i} \not \nsim X_{j}$ for all $i, j \in[1, n], i \neq j$, then T is called basic. An object T in \mathcal{C} is called tilting if T is basic, $\operatorname{Ext}_{\mathcal{C}}^{1}(T, T)=0$, and $\delta(T)=\left|Q_{0}\right|$.
Lemma ([5]).
(1) If T is a tilting H-module, then T is a tilting object in \mathcal{C}.
(2) If T is a tilting object in \mathcal{C}, then there exists a hereditary algebra H^{\prime}, a triangle equivalence $F: \mathcal{D}_{H^{\prime}} \rightarrow \mathcal{D}_{H}$, and a tilting H^{\prime} module T^{\prime}, such that $T \simeq F T^{\prime}$.

An object T of \mathcal{C} is called almost tilting if T is basic, $\operatorname{Ext}_{\mathcal{C}}^{1}(T, T)=0$, and $\delta(T)=\left|Q_{0}\right|-1$. If T is an almost tilting object in \mathcal{C}, then M is called a complement of T, if $T \amalg M$ is a tilting object. Obviously, if M is a complement of an almost tilting object T, then M is indecomposable.

Proposition ([5]). Let T be an almost tilting object in \mathcal{C}. Then there exist exactly two (up to isomorphism) complements of T. Moreover, if M and M^{*} are the complements of T, then there exist essentially unique triangles

$$
M^{*} \xrightarrow{f} B \xrightarrow{g} M \rightarrow M^{*}[1] \quad \text { and } \quad M \xrightarrow{f^{\prime}} B^{\prime} \xrightarrow{g^{\prime}} M^{*} \rightarrow M[1]
$$

in \mathcal{C}, such that f and f^{\prime} are minimal left add T-approximations, while g and g^{\prime} are minimal right add T-approximations.

For an algebra Λ we denote by Q_{Λ} its Gabriel quiver. Recall that there exists a bijection between the isomorphism classes of the indecomposable projective Λ-modules and the vertices of Q_{Λ}. In particular, if T is a tilting object in \mathcal{C}, then there exists a bijection between the isomorphism classes of the indecomposable direct summands of T and the vertices of $Q_{\operatorname{End}_{\mathcal{C}}(T)}$.
Theorem (Buan/Marsh/Reiten [8]). Let M and M^{*} be the complements of an almost tilting module in \mathcal{C}_{H}. Then

$$
Q_{\operatorname{End}\left(T \amalg M^{*}\right)^{\mathrm{op}}}=\mu_{k} Q_{\operatorname{End}(T \amalg M)^{\mathrm{op}}},
$$

where k is the vertex of $Q_{\operatorname{End}(T \amalg M)^{\text {op }}}$ corresponding to $[M]$.
By the tilting graph of \mathcal{C} we mean the graph whose vertices are the isomorphism classes of the tilting objects in \mathcal{C} and there is an edge $\left[T^{\prime}\right]-\left[T^{\prime \prime}\right]$ if and only if there exist an almost tilting object T and indecomposable objects M and M^{*} such that $T^{\prime} \simeq T \amalg M$ and $T^{\prime \prime} \simeq T \amalg M^{*}$.
Proposition ([5]). The tilting graph is connected.
We say that quivers Q^{\prime} and $Q^{\prime \prime}$ without loops and oriented 2-cycles are mutation equivalent if there exists a sequence k_{1}, \ldots, k_{n} of vertices of $Q^{\prime \prime}$ such that

$$
Q^{\prime}=\mu_{k_{1}} \cdots \mu_{k_{n}} Q^{\prime \prime} .
$$

By the mutation class of a quiver Q^{\prime} without loops and oriented 2cycles we mean the set of the isomorphism classes of the quivers, which are mutation equivalent to Q^{\prime}. For example, the mutation class of a Dynkin quiver of type \mathbb{D}_{4} consists of the isomorphism classes of the Dynkin quivers of type \mathbb{D}_{4} and the isomorphism classes of the following quivers

and

By a cluster tilted algebra of type H we mean every algebra of the form $\operatorname{End}_{\mathcal{C}}(T)^{\mathrm{op}}$, where T is a tilting object in \mathcal{C}.

Theorem ([8]). The mutation class of Q consists of the isomorphism classes of the Gabriel quivers of the cluster tilted algebras of type H.

Theorem (Buan/Reiten [9]). The mutation class of Q is finite if and only if $\left|Q_{0}\right|=2$ or Q is Dynkin or Euclidean.

Proof. In order to prove that the mutation class of Q is finite if Q is Euclidean we use the following facts:

- every tilting module over an Euclidean quiver has a non-regular direct summand,
- if T is a preprojective module over an Euclidean quiver, then there are only finitely many isomorphism classes of the indecomposable modules X such that $\operatorname{Ext}^{1}(T \amalg X, T \amalg X)=0$,

Recall that Q is an acyclic quiver in the above theorem. Note that

is a quiver, which is mutation equivalent neither to a Dynkin nor to a Euclidean quiver, but whose mutation class is finite - in fact, its mutation class consists of its isomorphism class alone. There is a generalization of the above theorem due to Felikson, Shapiro and Tumarkin [10] describing the quivers without loops and oriented 2-cycles having a finite mutation class.

A triangulated category \mathcal{T} is called 2-Calabi-Yau if

$$
\operatorname{Ext}_{\mathcal{T}}^{1}(A, B) \simeq D \operatorname{Ext}_{\mathcal{T}}^{1}(B, A)
$$

for all objects A and B in \mathcal{T}. The Auslander-Reiten formula implies that the cluster categories are examples of 2-Calabi-Yau categories. Other examples of 2-Calabi-Yau triangulated Hom-finite categories
are the stable module categories for preprojective algebras studied by Geiss, Leclerc and Schröer [16], and the cluster categories for quivers with potentials introduced by Amiot [1] and Plamondon [17].

The following theorem describes the module category over a cluster tilted algebra.

Theorem (Buan/Marsh/Reiten [7]). If T is a tilting object in \mathcal{C}, then the functor

$$
\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \rightarrow \bmod \operatorname{End}_{\mathcal{C}}(T)^{\mathrm{op}}
$$

is full and dense, and its kernel consists of the morphisms which factor through add $T[1]$.

We have the following comparison of the module categories of two adjacent cluster tilted algebras.

Theorem (Buan/Marsh/Reiten [7]). Let M and M^{*} be the complements of an almost tilting object T in \mathcal{C}. If

$$
S_{M}:=\operatorname{top} \operatorname{Hom}_{\mathcal{C}}(T \amalg M, M)
$$

and

$$
S_{M^{*}}:=\operatorname{top} \operatorname{Hom}_{\mathcal{C}}\left(T \amalg M^{*}, M^{*}\right),
$$

then we have an equivalence

The next theorem presents basic homological properties of the cluster tilted algebras.

Theorem (Keller/Reiten [14]). If Γ is a cluster tilted algebra, then

$$
\operatorname{id}_{\Gamma} \Gamma \leq 1
$$

In particular,

$$
\operatorname{gldim} \Gamma \in\{0,1, \infty\}
$$

Finally, we may describe the cluster tilted algebras in an alternative way using the following result.

Theorem (Assem/Brüstle/Schiffler [2]). If T is a tilting H-module, then

$$
\operatorname{Ext}_{\mathcal{C}}(T)^{\mathrm{op}} \simeq \Lambda \ltimes \operatorname{Ext}_{\Lambda}^{2}(D \Lambda, \Lambda)
$$

where $\Lambda:=\operatorname{End}_{H}(T)^{\mathrm{op}}$.

3. Quivers and relations for cluster tilted algebras

By a potential in a quiver Q we mean a linear combination of oriented cycles in Q. Given a quiver Q and a potential w we define the algebra $J_{Q, w}$ as the quotient of the path algebra of Q by the ideal generated by the relations $\frac{\partial w}{\partial \alpha}, \alpha \in Q_{1}$. For example, if Q is the quiver

and $w=\gamma \beta \alpha$, then $J_{Q, w}$ is the path algebra of Q modulo the ideal generated by the relations

$$
\beta \alpha, \alpha \gamma, \beta \alpha
$$

Algebras of the above form are called Jacobian algebras.
Theorem (Buan/Iyama/Reiten/Smith, Keller). If Γ and Γ^{\prime} are cluster tilted algebras such that $Q_{\Gamma}=Q_{\Gamma}^{\prime}$, then $\Gamma \simeq \Gamma^{\prime}$. Moreover, every cluster tilted algebra is a Jacobian algebra.

Buan, Marsh and Reiten described how to find for a cluster tilted algebra Γ of finite representation type a potential w in Q_{Γ} such that $\Gamma \simeq J_{Q_{\Gamma}, w}$. This result was generalized by Barot and Trepode to cluster tilted algebras Γ such that there are no double arrows in Q_{Γ}.

4. FROM TRIANGULATED CATEGORIES TO MODULE CATEGORIES VIA LOCALIZATIONS

Let \mathcal{C} be a triangulated Hom-finite Krull-Schmidt category with the suspension functor Σ. König and Zhu [15], and, independently, Iyama and Yoshino [12], proved, that if $\operatorname{Ext}_{\mathcal{C}}^{1}(T, T)=0$ and

$$
\operatorname{add} T=\left\{X \in \mathcal{C}: \operatorname{Ext}_{\mathcal{C}}^{1}(T, X)=0\right\}
$$

then the functor

$$
\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \rightarrow \bmod \operatorname{End}_{\mathcal{C}}(T)^{\mathrm{op}}
$$

is full and dense, and its kernel consists of the morphisms which factor through add ΣT. Our aim is to study the functor

$$
\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \rightarrow \bmod \operatorname{End}_{\mathcal{C}}(T)^{\mathrm{op}}
$$

for $T \in \mathcal{C}$ such that $\operatorname{Ext}_{\mathcal{C}}^{1}(T, T)=0$.
Let \mathcal{X}_{T} be the class of the objects X in \mathcal{C} such that $\operatorname{Hom}_{\mathcal{C}}(T, X)=0$. Let \mathcal{S} be the class of the maps $f: X \rightarrow Y$ such that g and h factor through \mathcal{X}_{T}, where

$$
\Sigma^{-1} Z \xrightarrow{g} X \xrightarrow{f} Y \xrightarrow{h} Z
$$

is a triangle.

Lemma ([4]). If f is a morphism in \mathcal{C}, then $\operatorname{Hom}_{\mathcal{C}}(T, f)$ is an isomorphism if and only if $f \in \mathcal{S}$.

Let $L_{\mathcal{S}}: \mathcal{C} \rightarrow \mathcal{C}_{\mathcal{S}}$ be the Gabriel-Zismas localization of \mathcal{C} with respect to \mathcal{S}. More precisely, the category $\mathcal{C}_{\mathcal{S}}$ has the same objects as \mathcal{C}. In order to define the maps in $\mathcal{C}_{\mathcal{S}}$ we first define the graph \mathcal{G} whose vertices are the objects of \mathcal{C} and the arrows are the maps in \mathcal{C} and the arrows $x_{s}: Y \rightarrow X$ for each map $s: X \rightarrow Y$ from \mathcal{S}. The maps from A to B in $\mathcal{C}_{\mathcal{S}}$ are the equivalence classes of the paths from A to B in \mathcal{G} modulo the equivalence relation generated by the relations

$$
x_{s} \circ s \sim \mathrm{id} \sim s \circ x_{s}
$$

where $s \in \mathcal{S}$, and

$$
f \circ g \sim f g
$$

where f and g are composable maps in \mathcal{C}. Finally, $L_{\mathcal{S}}$ is the canonical functor. Then $L_{\mathcal{S}}(s)$ is an isomorphism for each map $s \in \mathcal{S}$ and $L_{\mathcal{S}}$ is universal with respect to this property.
Theorem ([4]). There exists an equivalence $F: \mathcal{C}_{\mathcal{S}} \rightarrow \bmod _{\operatorname{End}}^{\mathcal{C}}(T){ }^{\mathrm{op}}$ such that

$$
\operatorname{Hom}_{\mathcal{C}}(T,-)=F \circ L_{\mathcal{S}} .
$$

Observe that if

$$
\operatorname{add} T=\left\{X \in \mathcal{C}: \operatorname{Ext}_{\mathcal{C}}^{1}(T, X)=0\right\}
$$

then there is a natural equivalence $\mathcal{C} / \Sigma T \simeq \mathcal{C}_{\mathcal{S}}$. Note that, in general, there are no left/right fractions for \mathcal{S} in \mathcal{C}.

References

[1] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525-2590.
[2] I. Assem, T. Brüstle, and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151-162.
[3] A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, available at arXiv:0804.3813.
[4] A. B. Buan and R. J. Marsh, From triangulated categories to module categories via localisation, available at arXiv:1010.0351.
[5] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.
[6] A. B. Buan, R. J. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, J. Algebra 306 (2006), no. 2, 412-431.
[7]_, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.
[8] , Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), no. 1, 143-177.
[9] A. B. Buan and I. Reiten, Acyclic quivers of finite mutation type, Int. Math. Res. Not. (2006), Art. ID 12804, 10 pp.
[10] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, available at arXiv:0811.1703.
[11] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.
[12] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid CohenMacaulay modules, Invent. Math. 172 (2008), no. 1, 117-168.
[13] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581.
[14] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably CalabiYau, Adv. Math. 211 (2007), no. 1, 123-151.
[15] S. Koenig and B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z. 258 (2008), no. 1, 143-160.
[16] B. Leclerc, Cluster algebras and representation theory, available at arXiv: 1009.4552.
[17] P.-G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, available at arXiv:1004.0830.

