CLUSTER TILTED ALGEBRAS

BASED ON THE TALKS BY ASLAK BAKKE BUAN

1. Quiver mutations

Let C be an $n \times n$ -matrix with integer coefficients such that $C(i, j) \ge 0$ for all $i, j \in [1, n]$ and $C(i, j) \cdot C(j, i) = 0$ for all $i, j \in [1, n]$ (in particular, C(i, i) = 0 for all $i \in [1, n]$). Following [11] by a mutation of C at $k \in [1, n]$ we mean the $n \times n$ -matrix $\mu_k C$ defined by

$$\mu_k C(i,j) := \begin{cases} C(j,i) & \text{if } i = k \text{ or } j = k, \\ \max(0, C(i,j) - C(j,i) \\ + C(i,k) \cdot C(k,j) - C(j,k) \cdot C(k,i)) \\ & \text{otherwise,} \end{cases}$$
$$(i, j \in [1,n]).$$

One can easily check that $\mu_k C$ has the same properties as C, i.e. $\mu_k C(i,j) \ge 0$ for all $i, j \in [1,n]$ and $\mu_k C(i,j) \cdot \mu_k C(j,i) = 0$ for all $i, j \in [1,n]$. Moreover, $\mu_k^2 C = C$.

With a matrix C as above we can associate a quiver Q such that $Q_0 = [1, n]$ and

$$#\{\alpha \in Q_1 : s\alpha = i \text{ and } t\alpha = j\} = C(i,j)$$

for all $i, j \in [1, n]$. The quiver Q is uniquely determined by C up to an isomorphism fixing vertices. Moreover, Q has no loops and no oriented 2-cycles. If $k \in [1, n]$ and Q' is the quiver associated with $\mu_k C$, then we write $Q' = \mu_k Q$ and call Q' the mutation of Q at k. Observe that Q' is obtained from Q in the following way:

- (1) if i and j are vertices of Q, then we add an arrow from i to j for every path from i to j of length 2 going through k,
- (2) we reverse all arrows which start or terminate in k,
- (3) we remove oriented 2-cycles until no oriented 2-cycles are left.

For example, if Q is the quiver

Date: 26.10.2010, 27.10.2010, 28.10.2010.

then $\mu_2 Q$ equals

Observe that the mutation at k is the reflection at k provided k is either a sink or a source.

Let Q be an acyclic quiver and denote by H its path algebra (over a fixed algebraically closed field). For a sink k in Q we define the tilting module T by

$$T := H/P_k \amalg \tau^{-1} P_k.$$

Then $\operatorname{End}_H(T)^{\operatorname{op}}$ is (isomorphic to) the path algebra of the mutation of Q at k. Note however that we cannot expect such a result for general mutations. Indeed, if Q is the quiver

then $\mu_2 Q$ equals

hence there is no (iterated) tilted algebra whose Gabriel quiver equals $\mu_2 Q$. One of the aims of introducing cluster categories was to find a similar interpretation for arbitrary mutations.

2. Cluster categories and tilting

Let Q be an acyclic quiver, denote by H its path category and by \mathcal{D}_H the derived category of H. It is a triangulated Krull–Schmidt category with the suspension functor given by the shift [1] of complexes. Moreover, it has AR-triangles, thus in particular, we have the AR-translation τ . If X is an indecomposable object in \mathcal{D}_H , then there exists an indecomposable H-module M such that $X \simeq M[i]$ for some $i \in \mathbb{Z}$.

Let $F := \tau^{-1} \circ [1]$. We put $\mathcal{C} = \mathcal{C}_H := \mathcal{D}_H / F$, i.e. \mathcal{C}_H has the same objects as \mathcal{D}_H and

$$\operatorname{Hom}_{\mathcal{C}_H}(X,Y) := \coprod_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{D}_H}(X,F^iY)$$

for objects X and Y in \mathcal{C} . Then \mathcal{C} is again a triangulated Krull– Schmidt category such that the canonical functor $\mathcal{D}_H \to \mathcal{C}$ is a triangle functor [13]. Moreover, \mathcal{C} has AR-triangles and each indecomposable object in \mathcal{C} is isomorphic either to M for an indecomposable H-module M or to P[1] for an indecomposable projective H-module P.

 $\mathbf{2}$

If $T = \bigoplus_{i \in [1,n]} X_i$ for indecomposable objects $X_1, \ldots, X_n \in \mathcal{C}$, then we put $\delta(T) := n$. Moreover, if $X_i \not\simeq X_j$ for all $i, j \in [1,n], i \neq j$, then T is called basic. An object T in \mathcal{C} is called tilting if T is basic, $\operatorname{Ext}^1_{\mathcal{C}}(T,T) = 0$, and $\delta(T) = |Q_0|$.

Lemma ([5]).

- (1) If T is a tilting H-module, then T is a tilting object in C.
- (2) If T is a tilting object in C, then there exists a hereditary algebra H', a triangle equivalence $F : \mathcal{D}_{H'} \to \mathcal{D}_{H}$, and a tilting H'-module T', such that $T \simeq FT'$.

An object T of C is called almost tilting if T is basic, $\operatorname{Ext}^{1}_{C}(T, T) = 0$, and $\delta(T) = |Q_{0}| - 1$. If T is an almost tilting object in C, then M is called a complement of T, if $T \amalg M$ is a tilting object. Obviously, if M is a complement of an almost tilting object T, then M is indecomposable.

Proposition ([5]). Let T be an almost tilting object in C. Then there exist exactly two (up to isomorphism) complements of T. Moreover, if M and M^* are the complements of T, then there exist essentially unique triangles

$$M^* \xrightarrow{f} B \xrightarrow{g} M \to M^*[1]$$
 and $M \xrightarrow{f'} B' \xrightarrow{g'} M^* \to M[1]$

in C, such that f and f' are minimal left add T-approximations, while g and g' are minimal right add T-approximations.

For an algebra Λ we denote by Q_{Λ} its Gabriel quiver. Recall that there exists a bijection between the isomorphism classes of the indecomposable projective Λ -modules and the vertices of Q_{Λ} . In particular, if T is a tilting object in C, then there exists a bijection between the isomorphism classes of the indecomposable direct summands of T and the vertices of $Q_{\text{End}_{C}(T)}$.

Theorem (Buan/Marsh/Reiten [8]). Let M and M^* be the complements of an almost tilting module in C_H . Then

$$Q_{\mathrm{End}(T\amalg M^*)^{\mathrm{op}}} = \mu_k Q_{\mathrm{End}(T\amalg M)^{\mathrm{op}}},$$

where k is the vertex of $Q_{\text{End}(T \amalg M)^{\text{op}}}$ corresponding to [M].

By the tilting graph of \mathcal{C} we mean the graph whose vertices are the isomorphism classes of the tilting objects in \mathcal{C} and there is an edge [T'] - [T''] if and only if there exist an almost tilting object Tand indecomposable objects M and M^* such that $T' \simeq T \amalg M$ and $T'' \simeq T \amalg M^*$.

Proposition ([5]). *The tilting graph is connected.*

We say that quivers Q' and Q'' without loops and oriented 2-cycles are mutation equivalent if there exists a sequence k_1, \ldots, k_n of vertices of Q'' such that

$$Q' = \mu_{k_1} \cdots \mu_{k_n} Q''.$$

ASLAK BAKKE BUAN

By the mutation class of a quiver Q' without loops and oriented 2cycles we mean the set of the isomorphism classes of the quivers, which are mutation equivalent to Q'. For example, the mutation class of a Dynkin quiver of type \mathbb{D}_4 consists of the isomorphism classes of the Dynkin quivers of type \mathbb{D}_4 and the isomorphism classes of the following quivers

By a cluster tilted algebra of type H we mean every algebra of the form $\operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$, where T is a tilting object in \mathcal{C} .

Theorem ([8]). The mutation class of Q consists of the isomorphism classes of the Gabriel quivers of the cluster tilted algebras of type H.

Theorem (Buan/Reiten [9]). The mutation class of Q is finite if and only if $|Q_0| = 2$ or Q is Dynkin or Euclidean.

Proof. In order to prove that the mutation class of Q is finite if Q is Euclidean we use the following facts:

- every tilting module over an Euclidean quiver has a non-regular direct summand,
- if T is a preprojective module over an Euclidean quiver, then there are only finitely many isomorphism classes of the indecomposable modules X such that $\text{Ext}^1(T \amalg X, T \amalg X) = 0$,
- if T is a tilting object in \mathcal{C} , then $\operatorname{End}_{\mathcal{C}}(T) \simeq \operatorname{End}_{\mathcal{C}}(\tau T)$.

Recall that Q is an acyclic quiver in the above theorem. Note that

is a quiver, which is mutation equivalent neither to a Dynkin nor to a Euclidean quiver, but whose mutation class is finite – in fact, its mutation class consists of its isomorphism class alone. There is a generalization of the above theorem due to Felikson, Shapiro and Tumarkin [10] describing the quivers without loops and oriented 2-cycles having a finite mutation class.

A triangulated category \mathcal{T} is called 2-Calabi–Yau if

$$\operatorname{Ext}^{1}_{\mathcal{T}}(A,B) \simeq D\operatorname{Ext}^{1}_{\mathcal{T}}(B,A)$$

for all objects A and B in \mathcal{T} . The Auslander–Reiten formula implies that the cluster categories are examples of 2-Calabi–Yau categories. Other examples of 2-Calabi–Yau triangulated Hom-finite categories are the stable module categories for preprojective algebras studied by Geiss, Leclerc and Schröer [16], and the cluster categories for quivers with potentials introduced by Amiot [1] and Plamondon [17].

The following theorem describes the module category over a cluster tilted algebra.

Theorem (Buan/Marsh/Reiten [7]). If T is a tilting object in C, then the functor

$$\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \to \operatorname{mod} \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$$

is full and dense, and its kernel consists of the morphisms which factor through add T[1].

We have the following comparison of the module categories of two adjacent cluster tilted algebras.

Theorem (Buan/Marsh/Reiten [7]). Let M and M^* be the complements of an almost tilting object T in C. If

$$S_M := \operatorname{top} \operatorname{Hom}_{\mathcal{C}}(T \amalg M, M)$$

and

$$S_{M^*} := \operatorname{top} \operatorname{Hom}_{\mathcal{C}}(T \amalg M^*, M^*),$$

then we have an equivalence

 $\operatorname{mod} \operatorname{End}_{\mathcal{C}}(T \amalg M)^{\operatorname{op}} / \operatorname{add} S_M \simeq \operatorname{mod} \operatorname{End}_{\mathcal{C}}(T \amalg M^*)^{\operatorname{op}} / \operatorname{add} S_{M^*}.$

The next theorem presents basic homological properties of the cluster tilted algebras.

Theorem (Keller/Reiten [14]). If Γ is a cluster tilted algebra, then

$$\operatorname{id}_{\Gamma}\Gamma \leq 1$$

In particular,

gldim
$$\Gamma \in \{0, 1, \infty\}$$
.

Finally, we may describe the cluster tilted algebras in an alternative way using the following result.

Theorem (Assem/Brüstle/Schiffler [2]). If T is a tilting H-module, then

$$\operatorname{Ext}_{\mathcal{C}}(T)^{\operatorname{op}} \simeq \Lambda \ltimes \operatorname{Ext}^{2}_{\Lambda}(D\Lambda, \Lambda),$$

where $\Lambda := \operatorname{End}_H(T)^{\operatorname{op}}$.

ASLAK BAKKE BUAN

3. Quivers and relations for cluster tilted algebras

By a potential in a quiver Q we mean a linear combination of oriented cycles in Q. Given a quiver Q and a potential w we define the algebra $J_{Q,w}$ as the quotient of the path algebra of Q by the ideal generated by the relations $\frac{\partial w}{\partial \alpha}$, $\alpha \in Q_1$. For example, if Q is the quiver

and $w = \gamma \beta \alpha$, then $J_{Q,w}$ is the path algebra of Q modulo the ideal generated by the relations

 $\beta \alpha, \alpha \gamma, \beta \alpha.$

Algebras of the above form are called Jacobian algebras.

Theorem (Buan/Iyama/Reiten/Smith, Keller). If Γ and Γ' are cluster tilted algebras such that $Q_{\Gamma} = Q'_{\Gamma}$, then $\Gamma \simeq \Gamma'$. Moreover, every cluster tilted algebra is a Jacobian algebra.

Buan, Marsh and Reiten described how to find for a cluster tilted algebra Γ of finite representation type a potential w in Q_{Γ} such that $\Gamma \simeq J_{Q_{\Gamma},w}$. This result was generalized by Barot and Trepode to cluster tilted algebras Γ such that there are no double arrows in Q_{Γ} .

4. From triangulated categories to module categories VIA LOCALIZATIONS

Let \mathcal{C} be a triangulated Hom-finite Krull–Schmidt category with the suspension functor Σ . König and Zhu [15], and, independently, Iyama and Yoshino [12], proved, that if $\operatorname{Ext}^{1}_{\mathcal{C}}(T,T) = 0$ and

add
$$T = \{ X \in \mathcal{C} : \operatorname{Ext}^{1}_{\mathcal{C}}(T, X) = 0 \},\$$

then the functor

 $\mathbf{6}$

$$\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \to \operatorname{mod} \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$$

is full and dense, and its kernel consists of the morphisms which factor through add ΣT . Our aim is to study the functor

$$\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \to \operatorname{mod} \operatorname{End}_{\mathcal{C}}(T)^{\operatorname{op}}$$

for $T \in \mathcal{C}$ such that $\operatorname{Ext}^{1}_{\mathcal{C}}(T,T) = 0$.

Let \mathcal{X}_T be the class of the objects X in \mathcal{C} such that $\operatorname{Hom}_{\mathcal{C}}(T, X) = 0$. Let \mathcal{S} be the class of the maps $f : X \to Y$ such that g and h factor through \mathcal{X}_T , where

$$\Sigma^{-1}Z \xrightarrow{g} X \xrightarrow{f} Y \xrightarrow{h} Z$$

is a triangle.

Lemma ([4]). If f is a morphism in C, then $\operatorname{Hom}_{\mathcal{C}}(T, f)$ is an isomorphism if and only if $f \in S$.

Let $L_{\mathcal{S}}: \mathcal{C} \to \mathcal{C}_{\mathcal{S}}$ be the Gabriel–Zismas localization of \mathcal{C} with respect to \mathcal{S} . More precisely, the category $\mathcal{C}_{\mathcal{S}}$ has the same objects as \mathcal{C} . In order to define the maps in $\mathcal{C}_{\mathcal{S}}$ we first define the graph \mathcal{G} whose vertices are the objects of \mathcal{C} and the arrows are the maps in \mathcal{C} and the arrows $x_s: Y \to X$ for each map $s: X \to Y$ from \mathcal{S} . The maps from A to Bin $\mathcal{C}_{\mathcal{S}}$ are the equivalence classes of the paths from A to B in \mathcal{G} modulo the equivalence relation generated by the relations

$$x_s \circ s \sim \mathrm{id} \sim s \circ x_s,$$

where $s \in \mathcal{S}$, and

$$f \circ g \sim fg,$$

where f and g are composable maps in C. Finally, L_S is the canonical functor. Then $L_S(s)$ is an isomorphism for each map $s \in S$ and L_S is universal with respect to this property.

Theorem ([4]). There exists an equivalence $F : \mathcal{C}_{\mathcal{S}} \to \text{mod} \text{End}_{\mathcal{C}}(T)^{\text{op}}$ such that

$$\operatorname{Hom}_{\mathcal{C}}(T,-) = F \circ L_{\mathcal{S}}.$$

Observe that if

add
$$T = \{X \in \mathcal{C} : \operatorname{Ext}^{1}_{\mathcal{C}}(T, X) = 0\},\$$

then there is a natural equivalence $C/\Sigma T \simeq C_S$. Note that, in general, there are no left/right fractions for S in C.

References

- C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 6, 2525–2590.
- [2] I. Assem, T. Brüstle, and R. Schiffler, *Cluster-tilted algebras as trivial exten*sions, Bull. Lond. Math. Soc. 40 (2008), no. 1, 151–162.
- [3] A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, available at arXiv:0804.3813.
- [4] A. B. Buan and R. J. Marsh, From triangulated categories to module categories via localisation, available at arXiv:1010.0351.
- [5] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. **204** (2006), no. 2, 572–618.
- [6] A. B. Buan, R. J. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, J. Algebra 306 (2006), no. 2, 412–431.
- [7] _____, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332.
- [8] _____, Cluster mutation via quiver representations, Comment. Math. Helv.
 83 (2008), no. 1, 143–177.
- [9] A. B. Buan and I. Reiten, Acyclic quivers of finite mutation type, Int. Math. Res. Not. (2006), Art. ID 12804, 10 pp.
- [10] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, available at arXiv:0811.1703.

ASLAK BAKKE BUAN

- [11] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529.
- [12] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168.
- [13] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
- [14] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123–151.
- [15] S. Koenig and B. Zhu, From triangulated categories to abelian categories: cluster tilting in a general framework, Math. Z. 258 (2008), no. 1, 143–160.
- [16] B. Leclerc, *Cluster algebras and representation theory*, available at arXiv: 1009.4552.
- [17] P.-G. Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, available at arXiv:1004.0830.