
CLUSTER TILTED ALGEBRAS

BASED ON THE TALKS BY ASLAK BAKKE BUAN

1. Quiver mutations

Let C be an n×n-matrix with integer coefficients such that C(i, j) ≥
0 for all i, j ∈ [1, n] and C(i, j) · C(j, i) = 0 for all i, j ∈ [1, n] (in
particular, C(i, i) = 0 for all i ∈ [1, n]). Following [11] by a mutation
of C at k ∈ [1, n] we mean the n× n-matrix µkC defined by

µkC(i, j) :=


C(j, i) if i = k or j = k,

max(0, C(i, j)− C(j, i)

+ C(i, k) · C(k, j)− C(j, k) · C(k, i))

otherwise,

(i, j ∈ [1, n]).

One can easily check that µkC has the same properties as C, i.e.
µkC(i, j) ≥ 0 for all i, j ∈ [1, n] and µkC(i, j) · µkC(j, i) = 0 for all
i, j ∈ [1, n]. Moreover, µ2

kC = C.
With a matrix C as above we can associate a quiver Q such that

Q0 = [1, n] and

#{α ∈ Q1 : sα = i and tα = j} = C(i, j)

for all i, j ∈ [1, n]. The quiver Q is uniquely determined by C up to an
isomorphism fixing vertices. Moreover, Q has no loops and no oriented
2-cycles. If k ∈ [1, n] and Q′ is the quiver associated with µkC, then
we write Q′ = µkQ and call Q′ the mutation of Q at k. Observe that
Q′ is obtained from Q in the following way:

(1) if i and j are vertices of Q, then we add an arrow from i to j
for every path from i to j of length 2 going through k,

(2) we reverse all arrows which start or terminate in k,
(3) we remove oriented 2-cycles until no oriented 2-cycles are left.

For example, if Q is the quiver

•1 //
AA•2 //// •3 // •4

��
,
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then µ2Q equals

•1
AA AA
AA•2oo

��
•3oooo •4oo .

Observe that the mutation at k is the reflection at k provided k is either
a sink or a source.

Let Q be an acyclic quiver and denote by H its path algebra (over a
fixed algebraically closed field). For a sink k in Q we define the tilting
module T by

T := H/Pk q τ−1Pk.

Then EndH(T )op is (isomorphic to) the path algebra of the mutation of
Q at k. Note however that we cannot expect such a result for general
mutations. Indeed, if Q is the quiver

•1 // •2 // •3 ,
then µ2Q equals

•1 AA•2oo •3oo ,

hence there is no (iterated) tilted algebra whose Gabriel quiver equals
µ2Q. One of the aims of introducing cluster categories was to find a
similar interpretation for arbitrary mutations.

2. Cluster categories and tilting

Let Q be an acyclic quiver, denote by H its path category and by
DH the derived category of H. It is a triangulated Krull–Schmidt
category with the suspension functor given by the shift [1] of complexes.
Moreover, it has AR-triangles, thus in particular, we have the AR-
translation τ . If X is an indecomposable object in DH , then there
exists an indecomposable H-module M such that X ' M [i] for some
i ∈ Z.

Let F := τ−1 ◦ [1]. We put C = CH := DH/F , i.e. CH has the same
objects as DH and

HomCH (X, Y ) :=
∐
i∈Z

HomDH
(X,F iY )

for objects X and Y in C. Then C is again a triangulated Krull–
Schmidt category such that the canonical functor DH → C is a triangle
functor [13]. Moreover, C has AR-triangles and each indecomposable
object in C is isomorphic either to M for an indecomposable H-module
M or to P [1] for an indecomposable projective H-module P .
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If T =
⊕

i∈[1,n] Xi for indecomposable objects X1, . . . , Xn ∈ C, then
we put δ(T ) := n. Moreover, if Xi 6' Xj for all i, j ∈ [1, n], i 6= j,
then T is called basic. An object T in C is called tilting if T is basic,
Ext1

C(T, T ) = 0, and δ(T ) = |Q0|.
Lemma ([5]).

(1) If T is a tilting H-module, then T is a tilting object in C.
(2) If T is a tilting object in C, then there exists a hereditary algebra

H ′, a triangle equivalence F : DH′ → DH , and a tilting H ′-
module T ′, such that T ' FT ′.

An object T of C is called almost tilting if T is basic, Ext1
C(T, T ) = 0,

and δ(T ) = |Q0| − 1. If T is an almost tilting object in C, then M is
called a complement of T , if TqM is a tilting object. Obviously, if M is
a complement of an almost tilting object T , then M is indecomposable.

Proposition ([5]). Let T be an almost tilting object in C. Then there
exist exactly two (up to isomorphism) complements of T . Moreover,
if M and M∗ are the complements of T , then there exist essentially
unique triangles

M∗ f−→ B
g−→M →M∗[1] and M

f ′−→ B′
g′−→M∗ →M [1]

in C, such that f and f ′ are minimal left addT -approximations, while
g and g′ are minimal right addT -approximations.

For an algebra Λ we denote by QΛ its Gabriel quiver. Recall that
there exists a bijection between the isomorphism classes of the inde-
composable projective Λ-modules and the vertices of QΛ. In particular,
if T is a tilting object in C, then there exists a bijection between the
isomorphism classes of the indecomposable direct summands of T and
the vertices of QEndC(T ).

Theorem (Buan/Marsh/Reiten [8]). Let M and M∗ be the comple-
ments of an almost tilting module in CH . Then

QEnd(TqM∗)op = µkQEnd(TqM)op ,

where k is the vertex of QEnd(TqM)op corresponding to [M ].

By the tilting graph of C we mean the graph whose vertices are
the isomorphism classes of the tilting objects in C and there is an
edge [T ′] − [T ′′] if and only if there exist an almost tilting object T
and indecomposable objects M and M∗ such that T ′ ' T qM and
T ′′ ' T qM∗.

Proposition ([5]). The tilting graph is connected.

We say that quivers Q′ and Q′′ without loops and oriented 2-cycles
are mutation equivalent if there exists a sequence k1, . . . , kn of vertices
of Q′′ such that

Q′ = µk1 · · ·µknQ′′.
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By the mutation class of a quiver Q′ without loops and oriented 2-
cycles we mean the set of the isomorphism classes of the quivers, which
are mutation equivalent to Q′. For example, the mutation class of
a Dynkin quiver of type D4 consists of the isomorphism classes of the
Dynkin quivers of type D4 and the isomorphism classes of the following
quivers

•

��•

??

��

oo

•

@@ and

•

��
•

��

^^

•

@@ .

By a cluster tilted algebra of type H we mean every algebra of the
form EndC(T )op, where T is a tilting object in C.

Theorem ([8]). The mutation class of Q consists of the isomorphism
classes of the Gabriel quivers of the cluster tilted algebras of type H.

Theorem (Buan/Reiten [9]). The mutation class of Q is finite if and
only if |Q0| = 2 or Q is Dynkin or Euclidean.

Proof. In order to prove that the mutation class of Q is finite if Q is
Euclidean we use the following facts:

• every tilting module over an Euclidean quiver has a non-regular
direct summand,
• if T is a preprojective module over an Euclidean quiver, then

there are only finitely many isomorphism classes of the inde-
composable modules X such that Ext1(T qX,T qX) = 0,
• if T is a tilting object in C, then EndC(T ) ' EndC(τT ). �

Recall that Q is an acyclic quiver in the above theorem. Note that

•

����

•oo oo

•

?? ??

is a quiver, which is mutation equivalent neither to a Dynkin nor to a
Euclidean quiver, but whose mutation class is finite – in fact, its muta-
tion class consists of its isomorphism class alone. There is a generaliza-
tion of the above theorem due to Felikson, Shapiro and Tumarkin [10]
describing the quivers without loops and oriented 2-cycles having a
finite mutation class.

A triangulated category T is called 2-Calabi–Yau if

Ext1
T (A,B) ' DExt1

T (B,A)

for all objects A and B in T . The Auslander–Reiten formula implies
that the cluster categories are examples of 2-Calabi–Yau categories.
Other examples of 2-Calabi–Yau triangulated Hom-finite categories
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are the stable module categories for preprojective algebras studied by
Geiss, Leclerc and Schröer [16], and the cluster categories for quivers
with potentials introduced by Amiot [1] and Plamondon [17].

The following theorem describes the module category over a cluster
tilted algebra.

Theorem (Buan/Marsh/Reiten [7]). If T is a tilting object in C, then
the functor

HomC(T,−) : C → mod EndC(T )op

is full and dense, and its kernel consists of the morphisms which factor
through addT [1].

We have the following comparison of the module categories of two
adjacent cluster tilted algebras.

Theorem (Buan/Marsh/Reiten [7]). Let M and M∗ be the comple-
ments of an almost tilting object T in C. If

SM := top HomC(T qM,M)

and

SM∗ := top HomC(T qM∗,M∗),

then we have an equivalence

mod EndC(T qM)op/ addSM ' mod EndC(T qM∗)op/ addSM∗ .

The next theorem presents basic homological properties of the cluster
tilted algebras.

Theorem (Keller/Reiten [14]). If Γ is a cluster tilted algebra, then

idΓ Γ ≤ 1.

In particular,

gldim Γ ∈ {0, 1,∞}.

Finally, we may describe the cluster tilted algebras in an alternative
way using the following result.

Theorem (Assem/Brüstle/Schiffler [2]). If T is a tilting H-module,
then

ExtC(T )op ' Λ n Ext2
Λ(DΛ,Λ),

where Λ := EndH(T )op.
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3. Quivers and relations for cluster tilted algebras

By a potential in a quiver Q we mean a linear combination of oriented
cycles in Q. Given a quiver Q and a potential w we define the algebra
JQ,w as the quotient of the path algebra of Q by the ideal generated by
the relations ∂w

∂α
, α ∈ Q1. For example, if Q is the quiver

• α // •

β��
•

γ

__

and w = γβα, then JQ,w is the path algebra of Q modulo the ideal
generated by the relations

βα, αγ, βα.

Algebras of the above form are called Jacobian algebras.

Theorem (Buan/Iyama/Reiten/Smith, Keller). If Γ and Γ′ are cluster
tilted algebras such that QΓ = Q′Γ, then Γ ' Γ′. Moreover, every cluster
tilted algebra is a Jacobian algebra.

Buan, Marsh and Reiten described how to find for a cluster tilted
algebra Γ of finite representation type a potential w in QΓ such that
Γ ' JQΓ,w. This result was generalized by Barot and Trepode to cluster
tilted algebras Γ such that there are no double arrows in QΓ.

4. From triangulated categories to module categories
via localizations

Let C be a triangulated Hom-finite Krull–Schmidt category with the
suspension functor Σ. König and Zhu [15], and, independently, Iyama
and Yoshino [12], proved, that if Ext1

C(T, T ) = 0 and

addT = {X ∈ C : Ext1
C(T,X) = 0},

then the functor

HomC(T,−) : C → mod EndC(T )op

is full and dense, and its kernel consists of the morphisms which factor
through add ΣT . Our aim is to study the functor

HomC(T,−) : C → mod EndC(T )op

for T ∈ C such that Ext1
C(T, T ) = 0.

Let XT be the class of the objects X in C such that HomC(T,X) = 0.
Let S be the class of the maps f : X → Y such that g and h factor
through XT , where

Σ−1Z
g−→ X

f−→ Y
h−→ Z

is a triangle.
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Lemma ([4]). If f is a morphism in C, then HomC(T, f) is an isomor-
phism if and only if f ∈ S.

Let LS : C → CS be the Gabriel–Zismas localization of C with respect
to S. More precisely, the category CS has the same objects as C. In
order to define the maps in CS we first define the graph G whose vertices
are the objects of C and the arrows are the maps in C and the arrows
xs : Y → X for each map s : X → Y from S. The maps from A to B
in CS are the equivalence classes of the paths from A to B in G modulo
the equivalence relation generated by the relations

xs ◦ s ∼ id ∼ s ◦ xs,
where s ∈ S, and

f ◦ g ∼ fg,

where f and g are composable maps in C. Finally, LS is the canonical
functor. Then LS(s) is an isomorphism for each map s ∈ S and LS is
universal with respect to this property.

Theorem ([4]). There exists an equivalence F : CS → mod EndC(T )op

such that
HomC(T,−) = F ◦ LS .

Observe that if

addT = {X ∈ C : Ext1
C(T,X) = 0},

then there is a natural equivalence C/ΣT ' CS . Note that, in general,
there are no left/right fractions for S in C.
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