THE BATALIN-VILKOVISKY STRUCTURE OVER THE HOCHSCHILD COHOMOLOGY RING OF A SYMMETRIC ALGEBRA

BASED ON THE TALK BY GUODONG ZHOU

The presentation is bases on a joint work with Jue Le. Throughout the presentation k is a field and all algebras are finite dimensional ones.

1. Inroduction

Throughout this section A is an algebra. For $n \in \mathbb{N}$ we put

$$C_n(A) := A^{\otimes (n+1)}.$$

Next, for $n \in \mathbb{N}_+$ we define $d: C_n(A) \to C_{n-1}(A)$ by

$$d(a_0 \otimes \cdots \otimes a_n) := \sum_{i \in [0, n-1]} (-1)^i \cdot a_0 \otimes \cdots \otimes a_{i-1} \otimes a_i a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_n$$
$$+ (-1)^n \cdot a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} \qquad (a_0, \dots, a_n \in A).$$

Finally, for $n \in \mathbb{N}$ we define the *n*-th Hochschild homology group $\mathrm{HH}_n(A)$ by

$$HH_n(A) := H_n(C_*(A)).$$

One shows that $\mathrm{HH}_n(A) = \mathrm{Tor}_n^{A^e}(A,A)$ for each $n \in \mathbb{N}$. We have the Connes B-operator $B: C_n(A) \to C_{n+1}(A)$ $(n \in \mathbb{N})$ defined by

$$B(a_0 \otimes \cdots \otimes a_n) := \sum_{i \in [0,n]} (-1)^{i \cdot n} \cdot 1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_1 \otimes \cdots \otimes a_{i-1}$$
$$- \sum_{i \in [0,n]} (-1)^{(i-1) \cdot n} \cdot a_{i-1} \otimes 1 \otimes a_i \otimes \cdots \otimes a_n \otimes a_1 \otimes \cdots \otimes a_{i-2}$$
$$(a_0, \dots, a_n \in A),$$

which induces the map $B: \mathrm{HH}_n(A) \to \mathrm{HH}_{n+1}(A)$ $(n \in \mathbb{N})$ such that $B^2 = 0$.

Analogously, for $n \in \mathbb{N}$ we put

$$C^n(A) := \operatorname{Hom}_k(A^{\otimes n}, A),$$

Date: 23.07.2010.

and for $n \in \mathbb{N}_+$ we define $d: C^n(A) \to C^{n+1}(A)$ by

$$(df)(a_0 \otimes \cdots \otimes a_n) := a_0 \cdot f(a_1 \otimes \cdots \otimes a_n)$$

$$+ \sum_{i \in [0, n-1]} (-1)^{i+1} \cdot f(a_0 \otimes \cdots \otimes a_{i-1} \otimes a_i \cdot a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_n)$$

$$+ (-1)^{n+1} \cdot f(a_0 \otimes \cdots \otimes a_{n-1}) \cdot a_n$$

$$(f \in C^n(A), a_0, \dots, a_n \in A).$$

If $n \in \mathbb{N}$, then by the *n*-the Hochschild cohomology group $\mathrm{HH}^n(A)$ of A we mean $H^n(C^*(A))$. One shows that $\mathrm{HH}^n(A) = \mathrm{Ext}_{A^e}^n(A,A)$ for each $n \in \mathbb{N}$. If $n,m \in \mathbb{N}$, then the following operation $C^n(A) \times C^m(A) \to C^{n+m}(A)$,

$$(f,g) \mapsto (a_1 \otimes \cdots \otimes a_{n+m} \mapsto f(a_1 \otimes \cdots \otimes a_n) \cdot g(a_{n+1} \otimes \cdots \otimes a_{n+m}))$$

 $(f \in C^n(A), g \in C^m(A), a_1, \ldots, a_{n+m} \in A),$

induces the cup product

$$\cup: \mathrm{HH}^n(A) \times \mathrm{HH}^m(A) \to \mathrm{HH}^{n+m}(A).$$

We also have the Gerstenhaber bracket

$$[-,-]: \mathrm{HH}^n(A) \times \mathrm{HH}^m(A) \to \mathrm{HH}^{n+m-1}(A).$$

Theorem (Gerstenhaber). $HH^*(A)$ together with \cup and [-,-] is a Gerstenhaber algebra, i.e.

(1) $HH^*(A)$ together with \cup is a graded commutative algebra, i.e.

$$f \cup g = (-1)^{|f| \cdot |g|} \cdot g \cup f$$

for all $f, g \in HH^*(A)$,

(2) $HH^*(A)$ together with [-,-] is a graded Lie algebra of degree -1, i.e.

$$[f,g] = (-1)^{(|f|-1)\cdot(|g|-1)}\cdot [g,f]$$

for all $f, g \in HH^*(A)$, and

$$\begin{split} (-1)^{(|f|-1)\cdot(|h|-1)}\cdot [[f,g],h] + (-1)^{(|g|-1)\cdot(|f|-1)}\cdot [[g,h],f] \\ + (-1)^{(|h|-1)\cdot(|g|-1)}\cdot [[h,f],g] = 0 \end{split}$$

for all $f, g, h \in HH^*(A)$,

(3) and the Poison rule is satisfied, i.e.

$$[f \cup g, h] = [f, h] \cup g + (-1)^{|f| \cdot (|h| - 1)} \cdot f \cup [g, h]$$

for all $f, g, h \in HH^*(A)$.

2. The Hochschild cohomology for a symmetric algebra

Recall that an algebra A is called symmetric if and only if the A^e -modules A and DA are isomorphic, and if and only if there exists a symmetric bilinear nondegenerate form $\langle -, - \rangle : A \times A \to k$ which is associative (i.e. $\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle$ for all $a, b, c \in A$). If A is a symmetric algebra, then $\operatorname{HH}^n(A) \simeq D(\operatorname{HH}^n(A))$ for each $n \in \mathbb{N}$, and via this isomorphism the Connes B-operator induces the map $\Delta : \operatorname{HH}^n(A) \to \operatorname{HH}^{n-1}(A)$ $(n \in \mathbb{N})$.

Theorem (Tadler). If A is a symmetric algebra, then $HH^*(A)$ together with \cup , [-,-], and Δ , is a Batalin-Vilkovisky algebra (shortly, BV-algebra), i.e.

- (1) $HH^*(A)$ together with \cup and [-,-] is a Gerstenhaber algebra,
- (2) $\Delta^2 = 0$,
- (3) and

$$[f,g] = -(-1)^{(|f|-1)\cdot|g|} \cdot (\Delta(f \cup g) - \Delta f \cup g - (-1)^{|f|} \cdot f \cup \Delta g)$$

for all $f,g \in \mathrm{HH}^*(A)$.

3. Operations on symmetric algebras

Let A and A' be symmetric algebras via forms

$$\langle -, - \rangle : A \times A \to k$$
 and $\langle -, - \rangle' : A' \times A' \to k$,

respectively. Then $A \otimes A'$ is a symmetric algebra via the form

$$(a \otimes a', b \otimes b') \mapsto \langle a, b \rangle \cdot \langle a', b' \rangle' \qquad (a, b \in A, a', b' \in A').$$

Moreover, there exists an isomorphism

$$\mathrm{HH}^*(A\otimes A')\to \mathrm{HH}^*(A)\otimes \mathrm{HH}^*(A')$$

of BV-algebras, where for BV-algebras H^* and L^* we define $H^* \otimes L^*$ in the following way. First, we put

$$(H^* \otimes L^*)^n := \bigoplus_{s \in [0,n]} H^s \otimes L^{n-s} \qquad (n \in \mathbb{N}).$$

Next, we define

$$(f \otimes f') \cup (g \otimes g') := (-1)^{|f'| \cdot |g|} (f \cup g) \otimes (f' \cup g')$$
$$(f, g \in H^*, f', g' \in L^*),$$

and

$$[f \otimes f', g \otimes g'] := (-1)^{(|f|+|f'|-1)\cdot|g'|} \cdot [f, g] \otimes (f' \cup g')$$

+ $(-1)^{|f|\cdot(|g|+|g'|-1)} (f \cup g) \cdot [f', g'] \qquad (f, g \in H^*, f', g' \in L^*).$

Finally, we put

$$\Delta(f \otimes f') := \Delta f \otimes f' + (-1)^{|f|} \cdot f \otimes \Delta f' \qquad (f \in H^*, \ f' \in L^*).$$

This is an open question, if there exists an isomorphism

$$\mathrm{HH}^*(A\otimes A')\to \mathrm{HH}^*(A)\otimes \mathrm{HH}^*(A')$$

of Gerstenhaber algebras for arbitrary algebras A and A'. Again, let A and A' be symmetric algebras via forms

$$\langle -, - \rangle : A \times A \to k$$
 and $\langle -, - \rangle' : A' \times A' \to k$,

respectively. Then $A \times A'$ is a symmetric algebra via the form

$$((a, a'), (b, b')) \mapsto \langle a, b \rangle + \langle a', b' \rangle' \qquad (a, b \in A, a', b' \in A').$$

and there is an isomorphism

$$\mathrm{HH}^*(A\times A')\to \mathrm{HH}^*(A)\times \mathrm{HH}^*(A')$$

of BV-algebras.

Finally, let k' be a field extensions of k. If A is a symmetric algebra via a form $\langle -, - \rangle \to k$, then $A \otimes k'$ is a symmetric algebra via the form

$$(a \otimes \lambda, b \otimes \mu) \mapsto \langle a, b \rangle \otimes (\lambda \cdot \mu) \qquad (a, b \in A, \ \lambda, \mu \in k),$$

and there is an isomorphism

$$\mathrm{HH}^*(A\otimes k')\to\mathrm{HH}^*(A)\otimes k'$$

of BV-algebras.

4. Example

Let $A := k[X]/X^n$ for some $n \in \mathbb{N}_+$. Due to results of Holm, Suárez-Álvarez, and Yang,

$$\mathrm{HH}^*(A) = \begin{cases} k[x,y,z]/(x^n,y^2) \\ p \mid n \text{ and either } p \neq 2 \text{ or } 4 \mid n, \\ k[x,y,z]/(x^n,y^2-x^{n-2}\cdot z) \\ p \mid n, \, p=2, \, \mathrm{and} \, 4 \nmid n, \\ k[x,y,z]/(x^n,x^{n-1}\cdot z,y\cdot x^{n-1},y^2) \quad p \nmid n, \end{cases}$$

where $|x|=0, \ |y|=1, \ \text{and} \ |z|=2.$ Moreover, if $r\in [0,n-1]$ and $t\in \mathbb{N}, \ \text{then} \ \Delta(x^r\cdot z^t)=0$ and

$$\Delta(x^r \cdot y \cdot z^t) = \begin{cases} ((t+1) - n \cdot (r+1)) \cdot x^r \cdot z^t & p \nmid n, \\ r \cdot x^{r-1} \cdot z^t & p \mid n. \end{cases}$$