
RELATIVE HOMOLOGICAL ALGEBRA AND
GORENSTEIN ALGEBRAS

BASED ON THE TALKS BY ØVIND SOLBERG

Throughout this presentation we assume that all considered algebras
are Artin algebras and all considered modules are finitely generated
ones.

1. Motivation

In this section we present results which serve as a motivation for our
studies. More precisely, relative homological algebra is a common setup
explaining connections between Λ and Γ in the situations described
below.

Auslander correspondence. Let Γ be an algebra and

0 → Γ → I0 → I1 → I2 → · · ·
be the minimal injective resolution of Γ in mod Γ. If l ∈ N, then
we write dom. dim Γ ≥ l if I i is injective for each i ∈ [0, l − 1] and
call dom. dim Γ the dominant dimension of Γ. We say that Γ is an
Auslander algebra if

dom. dim Γ ≥ 2 ≥ gl. dim Γ.

Auslander has proved that there is a bijection between the Morita
equivalence classes of the representation finite algebras and the Morita
equivalence classes of the Auslander algebras. This bijection is induced
by the assignment

Λ 7→ EndΛ(M),

where, for a representation finite algebra Λ, M is an additive generator
of mod Λ. It is known that if Λ is a representation finite algebra, M is
an additive generator of mod Λ, and Γ := EndΛ(M), then FM induces
a duality between mod Λ and proj Γ, where for a module M over an
algebra Λ we put FM := HomΛ(−, M).

Cotilting. A module T over an algebra Λ is called cotilting provided
Exti

Λ(T, T ) = 0 for each i ∈ N+, idΛ T < ∞, and there exists an exact
sequence of the form

0 → Tn → Tn−1 → · · · → T1 → T0 → D(Λ) → 0

such that Ti ∈ add T for each i ∈ [0, n]. If T is a cotilting module
over an algebra Λ and Γ := EndΛ(T ), then FT (Λ) is a cotilting module
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over Γ and FT induces a duality between ⊥T and ⊥FT (Λ). Here, for a
subcategory X of the category of modules over an algebra Λ we put

⊥X := {M ∈ mod Λ : Exti
Λ(M,X ) = 0 for all i ∈ N+}

and

X⊥ := {M ∈ mod Λ : Exti
Λ(X , M) = 0 for all i ∈ N+}.

Moreover, if M ∈ mod Λ then ⊥M := ⊥(add M).

Auslander generator. Let Λ be an algebra. A Λ-module M is called
a generator-cogenerator of mod Λ, if Λ ⊕ D(Λ) ∈ add M . By the rep-
resentation dimension rep. dim Λ of Λ we mean

min{gl. dim EndΛ(M) : M is a generator-cogenerator of mod Λ}.
Iyama has proved that rep. dim Λ < ∞. A generator-cogenerator M of
mod Λ is said to be an Auslander generator if

rep. dim Λ = gl. dim EndΛ(M).

It is known that if M is an Auslander generator of mod Λ, then FM

induces a duality between mod Λ and FM(mod Λ).

2. Subfunctors of Ext1
Λ(−,−)

Throughout this section Λ is an algebra.
For all A, C ∈ mod Λ fix a subset F (C, A) of Ext1

Λ(C, A). We say
that an exact sequence

δ : 0 → A → B → C → 0

is F -exact if [δ] ∈ F (C, A). The collection of the F -exact sequences
determines a subfunctor of Ext1

Λ(−,−) if and only if it is closed under
pullbacks and pushouts. If, in addition, this collection is closed under
Baer sums, then F (C, A) is a subgroup of Ext1

Λ(C, A) for all A, C ∈
mod Λ.

A subfunctor F of Ext1
Λ(−,−) is called additive if F (C, A) is a sub-

group of Ext1
Λ(C, A) and the functors F (C,−) and F (−, A) are additive

for all A, C ∈ mod Λ.

Lemma 2.1. Let F be a subfunctor of Ext1
Λ(−,−). Then F is additive

if and only if the collection of the F -exact sequences is closed under
direct sums.

It follows from the above lemma that if we fix a subset F (C, A) of
Ext1

Λ(C, A) for all A, C ∈ mod Λ, then the collection of the F -exact
sequences determines an additive subfunctor of Ext1

Λ(−,−) if and only
if this collection is closed under pullbacks, pushouts and direct sums.
Moreover, if F is an additive subfunctor of Ext1

Λ(−,−), δ and δ′ are
exact sequences, then δ and δ′ are F -exact if and only if δ⊕δ′ is F -exact.

For the rest of the section F is an additive subfunctor of Ext1
Λ(−,−).
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By an F -epimorphism (F -monomorphism) we mean every epimor-
phism f : B → C (monomorphism g : A → B, respectively) such that
the sequence

0 → Ker f → B
f−→ C → 0

(0 → A
g−→ B → Coker g → 0, respectively)

is F -exact. A Λ-module P is called F -projective (F -injective) provided
HomΛ(P, f) (HomΛ(g, I), respectively) is an epimorphism for each F -
epimorphism f (F -monomorphism g, respectively). By P(F ) (I(F ))
we denote the full subcategory of mod Λ consisting of the F -projective
(F -injective, respectively) modules. We say that F has enough projec-
tives (injectives) if for each C ∈ mod Λ (A ∈ mod Λ, respectively) there
exists an F -epimorphism f : P → C (F -monomorphism g : A → I,
respectively) such that P ∈ P(F ) (I ∈ I(F ), respectively).

Proposition 2.2. If

0 → A → B → C → 0

is an F -exact sequence and M ∈ mod Λ, then the sequences

0 → HomΛ(C, M) → HomΛ(B, M) → HomΛ(A, M) → F (C, M)

and

0 → HomΛ(M, A) → HomΛ(M, B) → HomΛ(M, A) → F (M, A)

are exact for each M ∈ mod Λ.

Corollary 2.3.

(a) Let P ∈ mod Λ. Then P ∈ P(F ) if and only if F (P, A) = 0 for
each A ∈ mod Λ.

(b) Let I ∈ mod Λ. Then I ∈ I(F ) if and only if F (C, I) = 0 for
each C ∈ mod Λ.

Given an exact sequence

δ : 0 → A → B → C → 0

one defines the defect functors δ∗ and δ∗ such that the sequences

0 → HomΛ(−, A) → HomΛ(−, B) → HomΛ(−, C) → δ∗ → 0

and

0 → HomΛ(C,−) → HomΛ(B,−) → HomΛ(A,−) → δ∗ → 0

are exact. Auslander has showed that the functors D ◦δ∗ and δ∗ ◦D Tr
are isomorphic. Using this fact one shows the following.

Lemma 2.4. We have

I(F ) = inj Λ ∨D Tr(P(F )) and P(F ) = proj Λ ∨ Tr D(I(F )).
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Lemma 2.5.

(a) Assume that F has enough projectives. If δ is an exact sequence,
then δ is F -exact if and only if δ∗(P ) = 0 for each P ∈ P(F ).

(b) Assume that F has enough injectives. If δ is an exact sequence,
then δ is F -exact if and only if δ∗(I) = 0 for each I ∈ I(F ).

For an additive subcategory X of mod Λ and A, C ∈ mod Λ we put

FX (C, A) := {η ∈ Ext1
Λ(C, A) : HomΛ(X, η) is exact for each X ∈ X}

and

FX (C, A) := {η ∈ Ext1
Λ(C, A) : HomΛ(η, X) is exact for each X ∈ X}.

Observe that Fproj A = Ext1
Λ(−,−) = F inj Λ, while Fmod Λ = 0 = Fmod Λ.

Proposition 2.6. Let X be an additive subcategory of mod Λ. Then
FX and FX are additive subfunctors of Ext1

Λ(−,−), and FX = FDTr(X )

and FX = FTrD(X ).

Approximations (precovers/preenvelopes). Let X be an additive
subcategory of mod Λ. By a right X -approximation of C ∈ mod Λ (left
X -approximation of A ∈ mod Λ) we mean every f ∈ HomΛ(X, C)
(g ∈ HomΛ(A, X), respectively) such that X ∈ X and HomΛ(X ′, f)
(HomΛ(g,X ′), respectively) is an epimorphism for each X ′ ∈ mod Λ.
A right X -approximation f ∈ HomΛ(X, C) of C ∈ mod Λ (left X -
approximation g ∈ HomΛ(A, X) of A ∈ mod Λ) is called minimal if
every h ∈ EndΛ(X) such that f ◦ h = f (h ◦ g = g, respectively) is
an isomorphism. We say that X is contravariantly (covariantly) finite
if every C ∈ mod Λ (A ∈ mod Λ) has a right (left, respectively) X -
approximation. Finally, if X is both contravariantly and covariantly
finite, then we say that X is functorially finite. Examples of functorially
finite subcategories of mod Λ are add M , Fac M and Sub M for M ∈
mod Λ.

Theorem 2.7.

(a) F has enough projectives if and only if P(F ) is contravariantly
finite and F = FP(F ).

(b) F has enough injectives if and only if I(F ) is covariantly finite
and F = F I(F ).

For M ∈ mod Λ we put

FM := Fadd M and FM := F add M .

Let M ∈ mod Λ. Then

P(FM) = add(Λ⊕M) and I(FM) = add(D(Λ)⊕M).

Obviously,

FM = FΛ⊕M and FM := FD(Λ)⊕M .
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Moreover,

FM = FDTr(M) and FM = FTrD(M).

In particular, both FM and FM have enough projectives and injectives.

3. Relative homology

Throughout this section we assume that Λ is an algebra and F is an
additive subfunctor of Ext1

Λ(−,−) with enough projectives and injec-
tives.

A long exact sequence

· · · → Mn+1
dn+1−−−→ Mn

dn−→ Mn−1 → · · ·

is said to be F -exact if the sequence

0 → Ker dn → Mn → Im dn → 0

is F -exact for each n ∈ Z. Since F has enough projectives, for each
C ∈ mod Λ there exists an F -projective resolution, i.e. an F -exact
sequence of the form

· · · → P2 → P1 → P0 → C → 0

such that Pi ∈ P(F ) for each i ∈ N. Similarly, since F has enough
injectives, for each A ∈ mod Λ there exists an F -injective resolution,
i.e. an F -exact sequence of the form

0 → A → I0 → I1 → I2 → · · ·

such that I i ∈ I(F ) for each i ∈ N. If i ∈ N, A, C ∈ mod Λ, and

· · · → P2 → P1 → P0 → C → 0

is an F -projective resolution of C, then we denote by Exti
F (C, A) the

i-th homology of the complex

0 → HomΛ(P0, A) → HomΛ(P1, A) → HomΛ(P2, A) → · · · .

One shows that this definition does not depend on the choice of a
projective resolution of C and Exti

F (C, A) is isomorphic to the i-th
homology of the complex

0 → HomΛ(C, I0) → HomΛ(C, I1) → HomΛ(C, I2) → · · · ,

where

0 → A → I0 → I1 → I2 → · · ·
is an F -injective resolution of A. One easily checks that

Ext0
F (C, A) = HomΛ(C, A) and Ext1

F (C, A) = F (C, A).

Moreover, if

0 → A → B → C → 0
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is an F -exact sequence, then for each X ∈ mod Λ we have long exact
sequences

0 → HomΛ(X, A) → HomΛ(X, B) → HomΛ(X, C) →
F (X, A) → F (X, B) → F (X, C) →

Ext2
F (X, A) → Ext2

F (X, B) → Ext2
F (X, C) → · · ·

and

0 → HomΛ(C, X) → HomΛ(B, X) → HomΛ(A, X) →
F (C, X) → F (B, X) → F (A, X) →
Ext2

F (C, X) → Ext2
F (B, X) → Ext2

F (A, X) → · · · .

By the F -projective dimension pdF C of C ∈ mod Λ we mean the
minimal n ∈ N such that there exists an F -projective resolution of C
of the form

0 → Pn → Pn−1 → · · · → P1 → P0 → C → 0,

where by definition min ∅ := ∞. One shows that if n ∈ N, then
pdF C ≤ n if and only if Extn+1

F (C,−) = 0. Dually, by the F -injective
dimension idF A of A ∈ mod Λ we mean the minimal n ∈ N such that
there exists an F -injective resolution of A of the form

0 → A → I0 → I1 → · · · → In−1 → In → 0.

Again, if n ∈ N, then idF A ≤ n if and only if Extn+1
F (−, A) = 0.

Finally, we put

gl. dimF Λ := sup{pdF C : C ∈ mod Λ}.

Obviously,

gl. dimF Λ = sup{idF A : A ∈ mod Λ}.
For A, C ∈ mod Λ let P(F )(A, C) be the subspace of HomΛ(A, C)

consisting of the homomorphisms which factor through a module from
P(F ), and

HomP(F )(C, A) := HomΛ(C, A)/P(F )(C, A).

Proposition 3.1. If A, C ∈ mod Λ, then we have a functorial isomor-
phism

Ext1
F (C, D Tr(A)) ' D(HomP(F )(A, C)).

4. Relative cotilting modules

Throughout this section we assume that Λ is an algebra and F is an
additive subfunctor of Ext1

Λ(−,−) with enough projectives and injec-
tives.
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A Λ-module T is called F -cotilting if Exti
F (T, T ) = 0 for each i ∈ N+,

idF T < ∞, and for each I ∈ I(F ) there exists an F -exact sequence of
the form

0 → Tn → Tn−1 → · · · → T1 → T0 → I → 0

such that Ti ∈ add T for each i ∈ [0, n]. Obviously, if F = Ext1
Λ(−,−)

and T ∈ mod Λ, then T is F -cotilting if and only if T is cotilting. For
an F -cotilting Λ-module T we put

⊥
F T := {X ∈ mod Λ : Exti

Λ(X,T ) = 0 for each i ∈ N+},
and denote by FXT the full subcategory of mod Λ consisting of X ∈ ⊥

F T
such that there exists an F -exact sequence of the form

0 → X
f0

−→ T 0 f1

−→ T 1 f2

−→ T2 → · · ·
such that T i ∈ add T and Im f i ∈ ⊥

F T for each i ∈ N.

Proposition 4.1. Let T be an F -cotilting Λ-module. Then FXT is
closed under F -extensions and kernels of F -epimorphisms.

An additive subcategory X of mod Λ is called F -resolving if P(F ) ⊆
X , and X is closed under F -extensions and kernels of F -epimorphisms.
For an F -resolving subcategory X of mod Λ we define the relative X -
resolution dimension X -res. dimF (mod Λ) of mod Λ to be the minimal
n ∈ N such that for each C ∈ mod Λ there exists an F -exact sequence
of the form

0 → Xn → Xn−1 → · · · → X1 → X0 → C → 0

such that Xi ∈ X for each i ∈ [0, n]. If F = Ext1
Λ(−,−), then

an additive subcategory X of mod Λ is F -resolving if and only if X
is resolving, and X -res. dimF (mod Λ) is the X -resolution dimension
X -res. dim(mod Λ) of mod Λ.

Theorem 4.2. If T is an F -cotilting module, then FXT = ⊥
F T , FXT is

an F -resolving contravariantly finite subcategory of mod Λ, and

FXT -res. dimF (mod Λ) < ∞.

Proof. We first show that FXT = ⊥
F T . Obviously FXT ⊆ ⊥

F T , thus it
remains to prove that ⊥

F T ⊆ FXT . In order to do this we show that for
each C ∈ ⊥

F T there exists an F -exact sequence of the form

0 → C → T0 → K → 0

such that T0 ∈ add T and K ∈ ⊥
F T .

Let C ∈ ⊥
F T . Since F has enough injectives, there exists an F -exact

sequence of the form

0 → C → I → C0 → 0

such that I ∈ I(F ). Next, there exists an F -exact sequence of the form

0 → Tn
dn−→ Tn−1 → · · · → T1

d1−→ T0
d0−→ I → 0
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such that Ti ∈ add T for each i ∈ [0, n]. If L := Ker d0, then

Ext1
F (C, L) ' Extn

F (C, T n) = 0.

Consequently, if

0 // L // E //

��

C //

��

0

0 // L // T0
// I // 0

is the pullback diagram, then the upper sequence splits. Thus there
exists an exact sequence δ of the form

0 → C
g−→ T0 → K → 0,

where without loss of generality we may assume that g is a left add T -
approximation. Observe that we have the pullback diagram

0 // C // T0
//

��

K //

��

0

0 // C // I // C0
// 0

,

hence δ is F -exact. Next,

Ext1
F (K, T ) ' Ext1

F (T0, T ) = 0,

since HomΛ(g, T ) is an epimorphism. Finally,

Extn+1
F (K, T ) ' Extn

F (C, T ) = 0

for each n ∈ N+, thus K ∈ ⊥
F T , and this finishes the proof of the

equality FXT = ⊥
F T .

Now observe that P(F ) ⊆ ⊥
F T = FXT , hence FXT is an F -resolving

subcategory of mod Λ due to the previous proposition.
Next we show that

FXT -res. dimT (mod Λ) ≤ n,

where n := idF T . Indeed, if C ∈ mod Λ, then there exists an F -exact
sequence of the form

· · · → X2
d2−→ X1

d1−→ X0
d0−→ C → 0

such that Xi ∈ P(F ) for each i ∈ N. Then

Exti
F (Ker dn−1, T ) ' Exti+n

F (C, T ) = 0

for each i ∈ N+, hence Ker dn−1 ∈ ⊥
F T = FXT .

Observe that FXT is F -resolving, FXT -res. dimF (mod Λ) < ∞, and
add T is an ExtF -injective cogenerator of FXT . This implies (analo-
gously to a classical result of Auslander and Buchsbaum) that FXT is
contravariantly finite. �

Lemma 4.3. If T is an F -cotilting Λ-module and Γ := EndΛ(T ), then
FT |FXT

is fully faithful and maps F -exact sequences to exact sequences.
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Proposition 4.4. If T is an F -cotilting Λ-module and Γ := EndΛ(T ),
then Λ ' EndΓ(FT (Λ)) and F induces a functorial isomorphism

Exti
F (C, A) ' Exti

Γ(FT (A),FT (C))

for all i ∈ N and A, C ∈ FXT .

Proposition 4.5. Let T be an F -cotilting Λ-module and Γ := EndΛ(T ).
Then the following hold.

(a) FT (FXT ) = ⊥FT (P(F )) and FT (FXT ) is a resolving subcategory
of mod Γ.

(b) FT (FXT ) -res. dim(mod Γ) ≤ idF T + 2.
(c) FT (P(F )) is an Ext-injective cogenerator of FT (FXT ).
(d) FT (FXT ) is a contravariantly finite subcategory of mod Λ.

Recall that, given an algebra Γ, there is a bijection between the
isomorphism classes of the basic cotilting Γ-modules and the resolving
contravariantly finite subcategories X of mod Γ satisfying the condition
that X -res. dim(mod Λ) < ∞, induced by the assignment T 7→ ⊥T .
The inverse bijection is induced by the assignment X 7→ T , where T is
a chosen basic additive generator of X ∩ X⊥.

Theorem 4.6. Let T be an F -cotilting Λ-module and Γ := EndΛ(T ).
Then the following hold.

(a) FT (P(F )) = FT (FXT ) ∩ FT (FXT )⊥.
(b) There exists T0 ∈ mod Γ such that add T0 = FT (P(F )).
(c) If add T0 = FT (P(F )) for T0 ∈ mod Γ, then T0 is a cotilting

Γ-module and

idF T ≤ idΓ T0 ≤ idF T + 2.

(d) The number of the isomorphism classes of the indecomposable
modules in add T equals the number of the isomorphism classes
of the indecomposable modules in P(F ). In particular, P(F ) is
of finite type.

(e) We have

gl. dimF Λ− idF T ≤ gl. dim Γ ≤ gl. dimF Λ + idF T + 2.

Recall that if T is a cotilting Λ-module and Γ := EndΛ(T ), then
idΓFT (Λ) = idΛ T and

gl. dim Λ− idΛ T ≤ gl. dim Γ ≤ gl. dim Λ + idΛ T.

Now we return to the examples from Section 1.
First assume that Λ is representation finite and F = 0, and let M be

an additive generator of mod Λ. Then M is an F -cotilting Λ-module
such that FXM = mod Λ. If Γ := EndΛ(T ), then our results say that
FM induces a duality between mod Λ and proj Γ, and gl. dim Γ ≤ 2.
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Next assume that M is an Auslander generator of mod Λ and F =
FM . Then one easily checks that M is an F -cotilting Λ-module such
that idF T = 0 and FXM = mod Λ. Note that

P(F ) = add(Λ⊕ Tr D(M)).

Consequently, if

Γ := EndΛ(T ) and T0 := FM(Λ⊕ Tr D(M)),

then FM induces a duality between mod Λ and ⊥T0, T0 is a cotilting
Γ-module with idΓ T0 ≤ 2, and

gl. dimF Λ ≤ rep. dim Λ = gl. dim Γ ≤ gl. dimF Λ + 2.

We conclude this section with the following analogue of Bongartz
completion theorem.

Proposition 4.7. Assume that P(F ) is of finite type and let T be a
Λ-module such that Ext1

F (T, T ) = 0 and idF T ≤ 1. Then there exists
X ∈ mod Λ such that T ⊕ X is F -cotilting, idF (T ⊕ X) ≤ 1, and for
each I ∈ I(F ) there exists an exact sequence of the form

0 → T1 → T0 → I → 0

with T0 ∈ add(T ⊕X) and T1 ∈ add T . In particular, T is cotilting if
and only if the number of the isomorphism classes of the indecompos-
able modules in add T equals the number of isomorphism classes of the
indecomposable modules in P(F ).

5. Derived equivalence

Throughout this section we assume that Λ is an algebra and F is an
additive subfunctor of Ext1

Λ(−,−).
Let C be a triangulated category. A full subcategory N of C is called

a null system if the following conditions are satisfied:

(N1) 0 ∈ N ,
(N2) if X ∈ N , then X[1] ∈ N ,
(N3) if

X → Y → Z → X[1]

is a distinguished triangle in C with X, Y ∈ N , then Z ∈ N .

Given a null system N in C we denote by S(N ) the class of all mor-
phisms s in C such that cone s ∈ N . Moreover, by C/N we denote the
category with the same objects as C and with the morphisms from X
to Y being the fractions of the form

X // Y

Z

s

``@@@@@@@ f

??~~~~~~~
,
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where s ∈ S(N ) and f ∈ HomC(Z, Y ). For example, if K(mod Λ)
denotes the homotopy category of the complexes of Λ-modules and N
is the full subcategory of K(mod Λ) consisting of the acyclic complexes,
then N is a null system in K(mod Λ) and K(mod Λ)/N is the derived
category D(mod Λ) of mod Λ.

Let NF denote the full subcategory of K(mod Λ) consisting of the
F -exact complexes. Observe that NF consists of the acyclic complexes
if F = Ext1

Λ(−,−). We say that F is closed if the sequence

F (X, A) → F (X, B) → F (X, C)

is exact for all X ∈ mod Λ and F -exact sequences

0 → A → B → C → 0.

Equivalently, F is closed if and only if the sequence

F (C, X) → F (B, X) → F (A, X)

is exact for all X ∈ mod Λ and each F -exact sequences

0 → A → B → C → 0.

Obviously, if F has enough projectives and injectives, then F is closed.
We have the following.

Theorem 5.1 (Buan). The category NF is a null system in K(mod Λ)
if and only if F is closed.

If F is closed, then we put

DF (mod Λ) := K(mod Λ)/NF

and we denote by Db
F (mod Λ) the additive subcategory of D(mod Λ)

generated by the bounded complexes.

Theorem 5.2 (Buan). Assume that F is closed. If T is an F -cotilting
Λ-module and Γ := EndΛ(T ), then FT induces a duality

Db
F (mod Λ) → Db(mod Γ).

Obviously, if F = Ext1
Λ(−,−), then we obtain a classical theorem of

Happel.

6. n-Auslander algebras

Throughout this section n is a positive integer.
An algebra Γ is called an n-Auslander algebra if

dom. dim Γ ≥ n + 1 ≥ gl. dim Γ.

An additive subcategory C of the category of modules over an algebra
Λ is called n-cluster tilting if C is extension closed and functorially
finite, and ⊥nC = C = C⊥n , where for a subcategory D of the category
of modules over an algebra Λ we put

⊥nD := {X ∈ mod Λ : Exti
Λ(X,D) = 0 for each i ∈ [1, n− 1]}
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and

D⊥n := {X ∈ mod Λ : Exti
Λ(D, X) = 0 for each i ∈ [1, n− 1]}.

By an n-cluster tilting module over an algebra Λ we mean every M ∈
mod Λ such that add M is n-cluster tilting.

Theorem 6.1 (Iyama). The assignment

(Λ, M) 7→ EndΛ(M)

induces a bijection between the Morita equivalence classes of the pairs
(Λ, M) consisting of an algebra Λ and an n-cluster tilting Λ-module M ,
and the Morita equivalence classes of the n-Auslander algebras.

For an algebra Λ we put

τn := D Tr Ωn−1
Λ and τ−n := Tr D Ω

−(n−1)
Λ .

Iyama has proved that if C is an n-cluster tilting subcategory of the
category of modules over an algebra Λ, then τn and τ−n induce mutually
quasi-inverse equivalences between C and C, and give rise to n-fold
almost split extensions in C.

At the end of this section we illustrate how the theory developed so
far can be used in the proof of one of the facts constituting the above
theorem.

Proposition 6.2. If M is an n-cluster tilting module over an algebra
Λ and Γ := EndΛ(M), then Γ is an n-Auslander algebra.

Proof. Let F := FM . Then add M = I(F ), hence M is F -cotilting.
For A ∈ mod Λ we define Λ-modules Ai, i ∈ N, in the following
way: A0 := A and Ai is the cokernel of the minimal left add M -
approximation of Ai−1 for i ∈ N+. Using Wakamatsu lemma we obtain
that Extj

Λ(Ai, M) = 0 for all i ∈ N and j ∈ [1, i]. In particular,
An−1 ∈ ⊥n(add M) = add M , hence gl. dimF Λ ≤ n − 1. Conse-
quently, gl. dim Γ ≤ n + 1 according to Theorem 4.6(e). Moreover,
dom. dim Γ ≥ n + 1, as follows from the following theorem. �

Theorem 6.3 (Müller). Let M be a generator-cogenerator of the cat-
egory of modules over an algebra Λ such that Exti

Λ(M, M) = 0 for all
i ∈ [1, n− 1]. If Γ := EndΛ(M), then dom. dim Γ ≥ n + 1.

7. D Tr-selfinjective algebras

For an algebra Λ we denote by OΛ the additive subcategory of mod Λ
generated by the modules (Tr D)i(Λ), i ∈ N. We say that an algebra Λ
is D Tr-selfinjective ifOΛ is of finite type. Examples of D Tr-selfinjective
algebras are the algebras of finite type, the selfinjective algebras, and
the Auslander algebras of the selfinjective algebras.
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For an algebra Γ we denote by I(Γ) the maximal injective direct
summand of Γ. Moreover, if Λ := EndΓ(I(Γ)), then by M(Γ) we de-
note the basic additive generator of the additive subcategory of mod Λ
generated by the indecomposable direct summands of FI(Γ)(Γ) which
do not belong to OΛ. Recall that an algebra Γ is called Gorenstein if
and only if idΓ Γ < ∞ and pdΓ D(Γ) < ∞.

Theorem 7.1 (Auslander/Solberg). The assignment

Γ 7→ (EndΓ(I(Γ)), M(Γ))

induces a bijection between the Morita equivalence classes of the Goren-
stein algebras such that

dom. dim Γ = 2 = idΓ Γ,

and the Morita equivalence classes of the pairs (Λ, M) consisting of a
D Tr-selfinjective algebra Λ and a Λ-module M such that M ' D Tr(M)
and either M 6= 0 or OΛ 6= proj Λ.

8. τn-selfinjective algebras

Throughout this section n is a positive integer. The aim of this
section is to study the Gorenstein algebras Γ such that

dom. dim Γ ≥ n + 1 ≥ idΓ Γ.

A direct summand X ′ of a module X over an algebra Γ is called
dualizing if there exists an exact sequence of the form

0 → X
f−→ X ′

0 → X ′
1

such that f is a left add X ′-approximation of X and X ′
1 ∈ add X ′.

Theorem 8.1 (Auslander/Solberg). Let M be a dualizing direct sum-
mand of a cotilting module T over an algebra Γ. If Λ := EndΓ(M) and
F := FFM (T ), then FM(T ) is an F -cotilting Λ-module such that

idF FM(Γ) ≤ max{idΓ T, 2} and EndΛ(FM(Γ)) ' Γ.

If, in addition, M is injective, then

idF FM(Γ) ≤ max{idΓ T − 2, 0}.

Proposition 8.2 (Iyama/Solberg). Let Γ be a Gorenstein algebra such
that

dom. dim Γ ≥ n + 1 ≥ idΓ Γ.

If M := I(Γ) and Λ := EndΓ(M), then FM(Γ) is a generator-cogener-
ator of mod Λ such that EndΛ(FM(Γ)) ' Γ and

Exti
Λ(FM(Γ),FM(Γ)) = 0

for each i ∈ [1, n− 1]. Moreover,

τn(FM(Γ)), τ−n (FM(Γ)) ∈ addFM(Γ).
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Proof. Observe that Λ = FM(M) is a direct summand of FM(Γ),
hence FM(Γ) is a generator of mod Λ. Next, M is a direct sum-
mands of D(Γ), hence Λ = HomΓ(M, M) is a direct summand of
HomΓ(M, D(Γ)) ' FD(M)(Γ). This implies that D(Λ) is a direct sum-
mand of D(FD(M)(Γ)) ' FM(Γ), hence FM(Γ) is a cogenerator of
mod Λ.

Next, EndΛ(FM(Γ)) ' Γ due to the previous theorem, and

Exti
Λ(FM(Γ),FM(Γ)) = 0

for each i ∈ [1, n− 1] due to a result of Müller.
Finally, let F := FFM (Γ). The previous theorem implies that FM(Γ)

is an F -cotilting module with

idF FM(Γ) ≤ max{idΓ Γ− 2, 0} ≤ n− 1.

Now, if

0 → FM(Γ) → I0 → I1 → I2 → · · ·
is the minimal injective resolution of FM(Γ), then the sequence

0 → FM(Γ) → I0 → I1 → · · · → In−2 → Ω
−(n−1)
Λ FM(Γ) → 0

is F -exact. Consequently,

Ω
−(n−1)
Λ (FM(Γ)) ∈ I(F ) = add(D(Λ)⊕D Tr(FM(Γ))),

since idF FM(Γ) ≤ n− 1. Thus

τ−n (FM(Γ)) = Tr D Ω
−(n−1)
Λ (FM(Γ)) ∈ addFM(Γ),

and this finishes the proof. �

An additive subcategoryD of the category of modules over an algebra
Λ is called n-precluster tilting if Λ ⊕ D(Λ) ∈ D, τn(D), τ−n (D) ⊆ D,
Exti

Λ(D,D) = 0 for each i ∈ [1, n − 1], and D is functorially finite. A
module M over an algebra Λ is called an n-precluster tilting if add M
is an n-precluster tilting subcategory of mod Λ. If Γ is a Gorenstein
algebra such that

dom. dim Γ ≥ n + 1 ≥ idΓ Γ,

M := I(Γ) and Λ := EndΓ(M), then FM(Γ) is an n-precluster tilting
Λ-module. Every n-cluster tilting subcategory is an n-precluster tilting
subcategory. Finally, if Λ is a D Tr-selfinjective algebra, D Tr(M) ' M
for a Λ-module M , and

T := M ⊕
⊕
n∈N

(Tr D)i(Λ),

then T is an n-precluster tilting Λ-module.



RELATIVE HOMOLOGICAL ALGEBRA AND GORENSTEIN ALGEBRAS 15

Proposition 8.3 (Iyama/Solberg). Let M be an n-precluster tilting
module over an algebra Λ. If Γ := EndΛ(M), then Γ is a Gorenstein
algebra such that

dom. dim Γ ≥ n + 1 ≥ idΓ Γ.

Proposition 8.4 (Iyama/Solberg). Let Λ be an algebra and M the ad-
ditive subcategory of mod Λ generated by the modules τ−l

n (Λ), τ l
n(D(Λ)),

l ∈ N. There exists an n-precluster tilting Λ-module if and only if M
is of finite type and Exti

Λ(M,M) = 0 for each i ∈ [1, n− 1].

It is known that if D is an n-precluster tilting subcategory of the
category of modules over an algebra Λ, then D⊥n = ⊥nD and D⊥n has
n-fold almost split sequences. Moreover, D⊥n is a Frobenius category
and its stable category is a triangulated category with the Serre functor
given by Σnτn.


