MORE ON FINITE COMPLEXITY

BASED ON THE TALK BY DAN ZACHARIA

Throughout the talk Λ is a fixed selfinjective algebra.

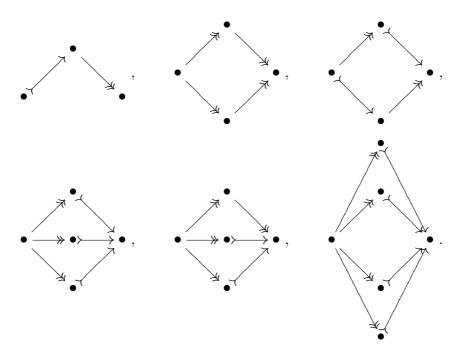
DEFINITION.

An indecomposable Λ -module C is called Ω -perfect if the following conditions are satisfied:

- (1) for each irreducible map g terminating at C either $\Omega^n g$ is an epimorphism for each $n \in \mathbb{N}$ or $\Omega^n g$ is a monomorphism for each $n \in \mathbb{N}$,
- (2) for each irreducible map g starting at C either $\Omega^n g$ is an epimorphism for each $n \in \mathbb{N}$ or $\Omega^n g$ is a monomorphism for each $n \in \mathbb{N}$.

THEOREM (GREEN/ZACHARIA).

If a module C is Ω -perfect and $\operatorname{cx} C < \infty$, then the Auslander–Reiten sequence terminating at C has one of the following forms:



THEOREM (GREEN/ZACHARIA).

If there are no periodic simple Λ -modules, then every indecomposable Λ -module is eventually Ω -periodic.

Date: 10.07.2009.

THEOREM (KERNER/ZACHARIA).

Let \mathscr{C} be a component of the Auslander–Reiten quiver of the algebra Λ such that every module in the quiver \mathscr{C}^s is eventually Ω -periodic and no module in the quiver \mathscr{C}^s is τ -periodic. If the quiver \mathscr{C}^s contains a module of finite complexity, the $\mathscr{C}^s = \mathbb{Z}\Delta$, where the quiver Δ is either extended Dynkin or infinite Dynkin.