MORE ON FINITE COMPLEXITY #### BASED ON THE TALK BY DAN ZACHARIA Throughout the talk Λ is a fixed selfinjective algebra. ### DEFINITION. An indecomposable Λ -module C is called Ω -perfect if the following conditions are satisfied: - (1) for each irreducible map g terminating at C either $\Omega^n g$ is an epimorphism for each $n \in \mathbb{N}$ or $\Omega^n g$ is a monomorphism for each $n \in \mathbb{N}$, - (2) for each irreducible map g starting at C either $\Omega^n g$ is an epimorphism for each $n \in \mathbb{N}$ or $\Omega^n g$ is a monomorphism for each $n \in \mathbb{N}$. # THEOREM (GREEN/ZACHARIA). If a module C is Ω -perfect and $\operatorname{cx} C < \infty$, then the Auslander–Reiten sequence terminating at C has one of the following forms: # THEOREM (GREEN/ZACHARIA). If there are no periodic simple Λ -modules, then every indecomposable Λ -module is eventually Ω -periodic. Date: 10.07.2009. # THEOREM (KERNER/ZACHARIA). Let \mathscr{C} be a component of the Auslander–Reiten quiver of the algebra Λ such that every module in the quiver \mathscr{C}^s is eventually Ω -periodic and no module in the quiver \mathscr{C}^s is τ -periodic. If the quiver \mathscr{C}^s contains a module of finite complexity, the $\mathscr{C}^s = \mathbb{Z}\Delta$, where the quiver Δ is either extended Dynkin or infinite Dynkin.