ASYMMETRY OVER SELFINJECTIVE ALGEBRAS

BASED ON THE TALK BY DAVID JORGENSEN

ASSUMPTION.

Throughout the talk R is a local noetherian commutative ring with the maximal ideal \mathfrak{m} and the residue field k.

Remark.

Let R be Gorenstein. If R is an Artin algebra, then R is selfinjective.

EXAMPLE.

Let R be Gorenstein and let $\mathbf{x} = (x_1, \ldots, x_e)$ be a minimal generating set of \mathfrak{m} . If $H_i(\mathbf{x})$ denotes the *i*-th Koszul homology group, then $H_i(\mathbf{x}) \simeq H_{e-i}(\mathbf{x})$ for each $i \in [0, e]$.

EXAMPLE.

Let R = Q/I for an ideal I in a regular local ring Q and let \mathbb{F} be the minimal free resolution of R over Q. If R is Gorenstein, then $\mathbb{F}^* \simeq \mathbb{F}$, where $(-)^* := \operatorname{Hom}_Q(-, Q)$.

EXAMPLE.

Assume that R is 0-dimensional and graded. If R is Gorenstein, then the Hilbert series H^R of R is symmetric.

EXAMPLE.

Let $R = k[[T^S]]$ for a semigroup $S \subseteq \mathbb{N}$. Then R is Gorenstein if and only if S is symmetric.

EXAMPLE.

Let R be Gorenstein. If M is a finitely generated R-module, then $\operatorname{pd}_R M < \infty$ if and only if $\operatorname{id}_R M < \infty$. In other words, $\operatorname{Ext}^i_R(M, k) = 0$ for all $i \gg 0$ if and only if $\operatorname{Ext}^i_R(k, M) = 0$ for all $i \gg 0$.

EXAMPLE.

If R is Gorenstein, then R is a dualizing module.

EXAMPLE.

If R is Gorenstein, then every maximal Cohen–Macaulay module M has a complete resolution, i.e. there exists a minimal (Im $\partial_i \subseteq \mathfrak{m}F_i$ for each $i \in \mathbb{Z}$) acyclic complex \mathbb{F} of free modules such that $M \simeq \operatorname{Coker} \partial_1$ and \mathbb{F}^* is acyclic. Let b_i denote the rank of F_i for $i \in \mathbb{Z}$. Then (b_i) and (b_{-i}) grow on the same scale if and only if $(\dim_k \operatorname{Ext}^i_R(M, k))$ and $(\dim_k \operatorname{Ext}^i_R(M^*, k))$ grow by the same scale.

Date: 30.04.2008.

THEOREM (AVRAMOV/BUCHWEITZ).

If M and N are finitely generated modules over a complete intersection R, then the following conditions are equivalent:

(1) $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0$.

(2) $\operatorname{Ext}_{R}^{i}(N, M) = 0$ for all $i \gg 0$.

(3) $\operatorname{Tor}_{i}^{R}(M, N) = 0$ for all $i \gg 0$.

(4) $V(M) \cap V(N) = 0.$

REMARK.

Let M be a finitely generated module over a complete intersection R. Then $\operatorname{Ext}_R^*(M, k)$ has a structure of a finitely generated module over a polynomial ring \mathscr{R} . The cone defined by the annihilator of $\operatorname{Ext}_R^*(M, k)$ is called the support variety of M and denoted V(M). The dimension of V(M) is denoted $\operatorname{cx}_R(M)$ and called the complexity of M. It is known that $(\dim_k \operatorname{Ext}_R^i(M, k))$ grows polynomially of degree $\operatorname{cx}_R(M) - 1$. Avramov and Buchweitz proved that $V(M) = V(M^*)$, hence $(\dim_k \operatorname{Ext}_R^i(M, k))$ and $(\dim_k \operatorname{Ext}_R^i(M^*, k))$ grow by the same scale. One can also prove it using the notion of reducible complexity developed by Bergh.

THEOREM (JORGENSEN/ŞEGA).

There exists a selfinjective algebra R such that $R = k[x_1, \ldots, x_6]/I$ for a homogeneous ideal I, $H^R = 1 + 6t + 6t^2 + t^3$, and which admit finitely generated modules M and N with the following properties:

- (1) $\operatorname{Ext}_{R}^{i}(M, N) = 0$ for all $i \gg 0$, but $\operatorname{Ext}_{R}^{i}(N, M) \neq 0$ for all i > 0.
- (2) $(\dim_k \operatorname{Ext}^i_R(M,k)) = (2)$ while $(\dim_k \operatorname{Ext}^i_R(M^*,k))$ has an exponent grow.