MODELING RICHARDSON ORBITS VIA DELTA-FILTERED MODULES FOR AN AUSLANDER ALGEBRA

BASED ON THE TALK BY KARIN BAUR

ASSUMPTION.

Throughout the talk k will be a fixed algebraically closed field.

NOTATION.

For $N \in \mathbb{N}_+$ we put

$$Par(N) := \{ (d_1, \dots, d_n) \in \mathbb{N}_+^n \mid n \in \mathbb{N}_+ \text{ and } d_1 + \dots + d_n = N \}.$$

NOTATION.

Let
$$N \in \mathbb{N}_+$$
. For $\mathbf{d} = (d_1, \dots, d_n) \in \operatorname{Par}(N)$ we put

$$P(\mathbf{d}) := \{ g \in \mathrm{SL}_N \mid g_{i,j} = 0 \text{ if } j \le d_1 + \dots + d_l < i \text{ for some } l \in [1, n] \}$$

and

$$\mathfrak{n}(\mathbf{d}) := \{ X \in \mathfrak{sl}_N \mid X_{i,j} = 0 \text{ if } i > d_1 + \dots + d_{l-1} \text{ and } j \le d_1 + \dots + d_l \text{ for some } l \in [1, n] \}.$$

Remark.

If $N \in \mathbb{N}_+$ and $\mathbf{d} \in Par(N)$, then $P(\mathbf{d})$ acts on $\mathfrak{n}(\mathbf{d})$ by conjugation.

THEOREM (RICHARDSON).

If $N \in \mathbb{N}_+$ and $\mathbf{d} \in \operatorname{Par}(N)$, then $P(\mathbf{d})$ possesses an open and dense orbit in $\mathfrak{n}(\mathbf{d})$.

THEOREM (HILLE-RÖHRLE).

If $N \in \mathbb{N}_+$ and $(d_1, \ldots, d_n) \in \operatorname{Par}(N)$, then there is only a finite number of $P(\mathbf{d})$ -orbits in $\mathfrak{n}(\mathbf{d})$ if and only if $n \leq 5$.

NOTATION.

For $n \in \mathbb{N}_+$ let \mathscr{A}_n be the path algebra of the quiver

$$\bullet \bigcap_{1} \bullet \bigcap_{2} \bullet \bigcap_{2} \cdots \bigcap_{\beta_{n-2}} \bullet \bigcap_{n-1} \bullet \bigcap_{n} \bullet \bigcap$$

bound by relations $\alpha_i \beta_i - \beta_{i+1} \alpha_{i+1}$, $i \in [1, n-2]$, and $\alpha_{n-1} \beta_{n-1}$.

NOTATION.

For $n \in \mathbb{N}_+$ and $i \in [1, n]$ we put

$$\Delta(i) := P_{\mathscr{A}_n}(i)/P_{\mathscr{A}_n}(i+1),$$

Date: 12.02.2008.

where $P_{\mathcal{A}_n}(n+1) := 0$.

NOTATION.

For $n \in \mathbb{N}_+$ let $\mathscr{F}(\Delta)$ be the category of \mathscr{A}_n -modules M such that there exists a filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_{l-1} \subset M_l = M$$

such that for each $i \in [1, l]$ there exists $j \in [1, n]$ with $M_i/M_{i-1} \simeq \Delta(j)$.

THEOREM (HILLE-RÖHRLE).

Let $N \in \mathbb{N}_+$ and $\mathbf{d} = (d_1, \dots, d_n) \in \operatorname{Par}(N)$. There exists a bijection between the $P(\mathbf{d})$ -orbits in $\mathfrak{n}(\mathbf{d})$ and the isomorphism classes of \mathscr{A}_n -modules M such that $M \in \mathscr{F}(\Delta)$ and $[M : \Delta(i)] = d_i$ for all $i \in [1, n]$.