On simplicial (co)homologies and Hochschild cohomologies of finite dimensional algebras

based on the talk by Stanisław Kasjan

May 8, 2003

Throughout the talk k will denote a fixed algebraically closed field. All considered algebras will be basic algebras. We will usually assume that for an algebra A we have fixed a complete set of pairwise orthogonal primitive idempotents $e_{x}, x \in Q_{0}$. For $x, y \in Q_{0}$ by $A(x, y)$ we denote $e_{x} A e_{y}$. An algebra A is called schurian if $\operatorname{dim}_{k} A(x, y) \leq 1$ for all $x, y \in Q_{0}$.

Let A be schurian. For $\mathbf{x}=\left(x_{0}, \ldots, x_{p}\right) \in Q_{0}^{p+1}$ by $\phi_{\mathbf{x}}$ we denote the map from $A\left(x_{0}, x_{1}\right) \times \cdots \times A\left(x_{p-1}, x_{p}\right)$ to $A\left(x_{0}, x_{p}\right)$ induced by the multiplication in A. Let $S_{p}(A)=\left\{\mathrm{x}=\left(x_{0}, \ldots, x_{p}\right) \in Q_{0}^{p+1} \mid x_{0}, \ldots, x_{p}\right.$ are pairwise different and $\left.\phi_{\mathbf{x}} \neq 0\right\}, p \geq 1$, and let $S_{0}(A)=Q_{0}$. Let $C_{p}(A)=\mathbb{Z} S_{p}(A), p \geq 0$, and let $d_{p}: C_{p}(A) \rightarrow C_{p-1}(A)$ be defined by

$$
d_{p}\left(x_{0}, \ldots, x_{p}\right)=\sum_{j=0}^{p}(-1)^{j}\left(x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{p}\right)
$$

One can show that $d_{p-1} d_{p}=0$, thus we get a chain complex $C_{*}(A)$. By simplicial homology groups of A we mean $S H_{p}(A)=H_{p}\left(C_{*}(A)\right)=\operatorname{Ker} d_{p} / \operatorname{Im} d_{p+1}$.

Let A be schurian. For $x, y \in Q_{0}$ such that $A(x, y) \neq 0$ we fix $b_{x, y} \in$ $A(x, y)$ with $b_{x, x}=e_{x}$. Let $B_{1}=\left\{b_{x, y} \mid(x, y) \in S_{1}(A)\right\}$ and $C_{p}^{\prime}(A), p \geq$ 1 , be the free abelian group generated by sequences $\left(b_{1}, \ldots, b_{p}\right)$ such that $b_{1}, \ldots, b_{p} \in B_{1}$ and $b_{1} \cdots b_{p} \neq 0$. We also put $C_{0}^{\prime}(A)=\mathbb{Z} Q_{0}$. If $b, b^{\prime} \in B_{1}$ and $b b^{\prime} \neq 0$, then $b b^{\prime}=c_{b, b^{\prime}} b^{\prime \prime}$ for uniquely determined $c_{b, b^{\prime}} \in k^{*}$ and $b^{\prime \prime} \in B_{1}$. Let $\left[b, b^{\prime}\right]=b^{\prime \prime}$. We define $d_{p}^{\prime}: C_{p}^{\prime}(A) \rightarrow C_{p-1}^{\prime}(A)$ be the formula

$$
\begin{array}{r}
d_{p}^{\prime}\left(b_{1}, \ldots, b_{p}\right)=\left(b_{2}, \ldots, b_{p}\right)+\sum_{j=2}^{p}(-1)^{j-1}\left(b_{1}, \ldots, b_{j-2},\left[b_{j-1}, b_{j}\right], b_{j+1}, \ldots, b_{p}\right) \\
+(-1)^{p}\left(b_{1}, \ldots, b_{p-1}\right)
\end{array}
$$

$p \geq 2$, and $d_{1}^{\prime}(b)=y-x$ for $b \in A(x, y)$. It easily follows that the maps f_{p} : $C_{p}(A) \rightarrow C_{p}^{\prime}(A)$ defined by $\left(x_{0}, \ldots, x_{p}\right) \mapsto\left(b_{x_{0}, x_{1}}, \ldots, b_{x_{p-1}, x_{p}}\right), p \geq 1, x \mapsto x$, $p=0$, form an isomorphism of complexes. Thus $S H_{p}(A) \simeq H_{p}\left(C_{*}^{\prime}(A)\right)$.

We still assume that A is schurian. Let $C_{p}^{\prime \prime}(A), p \geq 1$, be the free abelian group with basis consisting of the sequences $\left(b_{1}, \ldots, b_{p}\right)$ such that $b_{1}, \ldots, b_{p} \in$ B and $b_{1} \cdots b_{p} \neq 0$, where $B=\left\{b_{x, y} \mid x, y \in Q_{0}, A(x, y) \neq 0\right\}$. Let $C_{0}^{\prime \prime}(A)=$ $\mathbb{Z} Q_{0}$. We define $d_{p}^{\prime \prime}$ by the same formulas as d_{p}^{\prime} and we get a complex $C_{*}^{\prime \prime}(A)$.

Theorem ([1, Section 8.1]). The inclusion $C_{*}^{\prime}(A) \hookrightarrow C_{*}^{\prime \prime}(A)$ induces isomorphisms $H_{p}\left(C_{*}^{\prime \prime}(A)\right) \simeq H_{p}\left(C_{*}^{\prime \prime}(A)\right)$.

Proof. Let $D_{p}(A)$ be the subgroup of $C_{p}^{\prime \prime}(A)$ generated by all $\left(b_{1}, \ldots, b_{p}\right)$ such that $b_{i}=e_{x}$ for some i and $x, p>0, D_{0}(A)=0$. Obviously, $C_{p}^{\prime \prime}(A)=C_{p}^{\prime}(A) \oplus$ $D_{p}(A)$. Moreover, $d_{p}^{\prime \prime}\left(D_{p}(A)\right) \subseteq D_{p-1}(A)$. Thus $C_{*}^{\prime \prime}(A)=C_{*}^{\prime}(A) \oplus D_{*}(A)$ and we have to show that $H_{p}\left(D_{*}(A)\right)=0$. In order to do it we construct maps $s_{p}: D_{p}(A) \rightarrow D_{p+1}(A)$ such that $s_{p-1} d_{p}+d_{p+1} s_{p}=\operatorname{Id}_{D_{p}(A)}, p>0$. We put $s_{0}=0$. Let $p \geq 1$ and $\sigma=(b_{1}, \ldots, b_{s}, \underbrace{e, \ldots, e}_{k}, d_{1}, \ldots, d_{t}) \in D_{p}(A)$, where b_{1}, \ldots, b_{s} are not idempotents, $e=e_{x}$ for some $x \in Q_{0}$ and $d_{1} \neq e$. Then we put $s_{p}(\sigma)=(-1)^{s} \varepsilon(k)(b_{1}, \ldots, b_{s}, \underbrace{e, \ldots, e}_{k+1}, d_{1}, \ldots, d_{t})$, where $\varepsilon(k)$ is the remainder from the division of k by 2 .

Let A be an arbitrary algebra. A subset B of A is called a semi-normed basis of A if the following conditions are satisfied:
(1) B is a basis of A,
(2) $B=\bigcup_{x, y \in Q_{0}} B_{x, y}$, where $B_{x, y}=B \cap A(x, y)$,
(3) $e_{x} \in B$ for each $x \in Q_{0}$,
(4) if $b, b^{\prime} \in B$ then $b b^{\prime} \in k b^{\prime \prime}$ for some $b^{\prime \prime} \in B$.

Note that if $b b^{\prime} \neq 0$, then $b^{\prime \prime}$ such that $b b^{\prime} \in k b^{\prime \prime}$ is uniquely determined by b and b^{\prime} and we will denote it by $\left[b, b^{\prime}\right]$. We will also denote by $c_{b, b^{\prime}}$ the unique scalar $c \in k^{*}$ such that $b b^{\prime}=\lambda\left[b, b^{\prime}\right]$. If $b b^{\prime}=0$, then we put $\left[b, b^{\prime}\right]=0$ and $c_{b, b^{\prime}}=0$. We can define a chain complex $C_{*}^{\prime \prime}(B)$ and simplicial homologies $S H_{p}(B)=H_{p}\left(C_{*}^{\prime \prime}(B)\right)$ as above. Obviously, if A is schurian then $S H_{p}(B)=S H_{p}(A)$.

Note that $S H_{0}(B)$ is the free abelian group generated by the blocks of A. In order to calculate $S H_{1}(B)$, we assume that A is indecomposable. Let $Q_{1}=\left\{b \in B \cap \operatorname{rad}(A) \mid b \neq\left[b^{\prime}, b^{\prime \prime}\right]\right.$ for any $\left.b^{\prime}, b^{\prime \prime} \in B \cap \operatorname{rad}(A)\right\}$. It follows that the elements $b+\operatorname{rad}^{2}(A), b \in Q_{1}$, form a basis of $\operatorname{rad}(A) / \operatorname{rad}^{2}(A)$. As
the consequence it follows that we may assume that $A=k Q / I$, where the set of vertices of Q is Q_{0}, the set of arrows of Q is $Q_{1}, s(b)=x$ and $t(b)=y$ for $b \in Q_{1} \cap B_{x, y}$, and I is an admissible ideal in Q. It follows that I is generated by elements of the form u, where u is a path, and $u-\lambda w$, where u, w are paths with the same source and target and $\lambda \in k^{*}$.

In the above situation the fundamental group $\Pi_{1}(Q, I)$ of (Q, I) can be defined in the following way: $\Pi_{1}(Q, I)=\Pi_{1}(Q) / N(I)$, where $\Pi_{1}(Q)$ is the fundamental group of Q and $N(I)$ is the normal subgroup of $\Pi_{1}(Q)$ generated by all the elements of the form $w u v^{-1} w^{-1}$, where w, u, v are paths, $u, v \notin I$ and $u-\lambda v \in I$ for some $\lambda \in k^{*}$. Let $\omega=\alpha_{1}^{\varepsilon_{1}} \cdots \alpha_{t}^{\varepsilon_{t}}$ be a loop in Q. We associate with ω an element $\phi_{\omega}=\sum \varepsilon_{i} \alpha_{i}$ of $C_{1}^{\prime \prime}(B)$. Since ω is a loop, it follows that $d_{1}^{\prime \prime}\left(\phi_{\omega}\right)=0$. Thus ϕ induces a homomorphism $\Pi_{1}(Q, I) \rightarrow S H_{1}(B)$, which factorizes through the natural projection $\Pi_{1}(Q, I) \rightarrow \Pi_{1}(Q, I) /\left[\Pi_{1}(Q, I), \Pi_{1}(Q, I)\right]$. It follows that the induced map $\Pi_{1}(Q, I) /\left[\Pi_{1}(Q, I), \Pi_{1}(Q, I)\right] \rightarrow S H_{1}(B)$ is an isomorphism.

Note that if A is a triangular and representation finite algebra, then A is schurian.

Theorem ([2]). Let A be a triangular and representation finite algebra. Then $S H_{1}(A)$ is a free abelian group and $S H_{p}(A)=0, p>1$.

Let B be a semi-normed basis of an algebra A and let Z be an abelian group. We define the p-th cohomology group $S H^{p}(B, Z)$ in coefficients in Z as $H^{p}\left(\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}^{\prime \prime}(B), Z\right)\right)$. The universal coefficients theorem states, that there exists an exact sequence $0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(S H_{p-1}(B), Z\right) \rightarrow S H^{p}(B, Z) \rightarrow$ $\operatorname{Hom}_{\mathbb{Z}}\left(S H_{p}(B), Z\right) \rightarrow 0$ of groups, which splits. In particular, $S H^{1}(B, Z)=$ $\operatorname{Hom}_{\mathbb{Z}}\left(S H_{1}(B), Z\right)$.

Note that associativity of the multiplication in A implies that the map $\left(b, b^{\prime}\right) \mapsto c_{b, b^{\prime}}$ induces a 2-cocycle in $\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}^{\prime \prime}(B), k^{*}\right)$. On the other hand, if $d_{b, b^{\prime}}, b, b^{\prime} \in B, b b^{\prime} \neq 0$, are elements of k^{*} such that the function induced by the assignment $\left(b, b^{\prime}\right) \mapsto d_{b, b^{\prime}}$ is a 2-cocycle, then the multiplication defined in A by the formula $\left(b, b^{\prime}\right) \mapsto d_{b, b^{\prime}}\left[b, b^{\prime}\right]$, where $d_{b, b^{\prime}}=0$ if $b b^{\prime}=0$, is associative. If in addition, $d_{e_{x}, b}=c_{e_{x}, b}$ and $d_{b, e_{x}}=c_{b, e_{x}}$ for all b and x, then in this way we obtain an algebra A^{\prime} with the same set of primitive orthogonal idempotents as A and the semi-normed basis B. Bretscher and Gabriel proved in [2] that there exists an isomorphism $\lambda: A \rightarrow A^{\prime}$ such that $\lambda b \in k b$ for $b \in B$ if and only if the above 2-cocycles induce the same element in $S H^{2}\left(B, k^{*}\right)$.

We say that a semi-normed basis B of A is multiplicative if $b b^{\prime}=\left[b, b^{\prime}\right]$ for all $b, b^{\prime} \in B$.

Corollary. If $S H^{2}\left(B, k^{*}\right)=0$, then A has a multiplicative basis.

Proof. The function $\left(b, b^{\prime}\right) \mapsto 1$ if $b b^{\prime} \neq 0$ and $\left(b, b^{\prime}\right) \mapsto 0$ otherwise, induces a 2 -cocycle in $\operatorname{Hom}_{\mathbb{Z}}\left(C_{*}^{\prime \prime \prime}(B), k^{*}\right)$, thus we obtain an algebra A^{\prime} with the multiplicative basis B. Since $S H^{2}\left(B, k^{*}\right)=0$ is follows that A and A^{\prime} are isomorphic, thus A also admits a multiplicative basis.

Corollary. If A is a triangular and representation finite algebra, then A has a multiplicative basis.

Proof. We have to show that $S H^{2}\left(A, k^{*}\right)=0$. According to the universal coefficients theorem we have an exact sequence $0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(S H_{1}(A), k^{*}\right) \rightarrow$ $S H^{2}\left(A, k^{*}\right) \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(S H_{2}(A), k^{*}\right) \rightarrow 0$. Since $S H_{1}(A)$ is a free abelian group, thus $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(S H_{1}(A), k^{*}\right)=0$. Moreover, we have $S H_{2}(A)=0$, hence $\operatorname{Hom}_{\mathbb{Z}}\left(S H_{2}(A), k^{*}\right)=0$, and consequently $S H^{2}\left(A, k^{*}\right)=0$.

One can show (see [1]) that every representation finite algebra has a multiplicative basis.

Exercise. Show directly, that if A is a triangular and representation finite algebra, then $\mathrm{SH}_{2}(A)$ is a torsion group.

For an algebra A and an A - A-bimodule M, we can consider a complex

$$
0 \rightarrow \operatorname{Hom}_{k}(k, M) \xrightarrow{\partial^{0}} \operatorname{Hom}_{k}(A, M) \xrightarrow{\partial^{1}} \operatorname{Hom}_{k}\left(A \otimes_{k} A, M\right) \xrightarrow{\partial^{2}} \cdots,
$$

where $\left(\partial^{p}(f)\right)\left(a_{1}, \ldots, a_{p+1}\right)=a_{1} f\left(a_{2} \otimes \cdots \otimes a_{p+1}\right)+\sum_{j=1}^{p}(-1)^{j} f\left(a_{1} \otimes \cdots \otimes\right.$ $\left.a_{j-1} \otimes a_{j} a_{j+1} \otimes a_{j+2} \otimes \cdots \otimes a_{p+1}\right)+(-1)^{p+1} f\left(a_{1} \otimes \cdots \otimes a_{p}\right) a_{p+1}$ (in particular, $\left.\delta^{0}(f)(a)=a f(1)-f(1) a\right)$. We call $H H^{p}(A, M)=\operatorname{Ker} \delta^{p} / \operatorname{Im} \delta^{p-1}$ the p th Hochschild cohomology group of A with coefficients in M. We denote $H H^{p}(A, A)$ by $H H^{p}(A)$.

Let B be a semi-normed basis of an algebra A. For $p \geq 1$ we define a map $\varepsilon_{p}: \operatorname{Hom}_{\mathbb{Z}}\left(C_{p}^{\prime \prime}(B), k\right) \rightarrow \operatorname{Hom}_{k}\left(A^{\otimes^{p}}, A\right)$ defined by the formula $\varepsilon_{p}(f)\left(b_{1} \otimes \cdots \otimes\right.$ $\left.b_{p}\right)=f\left(b_{1}, \ldots, b_{p}\right) b_{1} \ldots b_{p}$ if $\left(b_{1}, \ldots, b_{p}\right) \in C_{p}^{\prime \prime}(B)$ and $\varepsilon_{p}(f)\left(b_{1} \otimes \cdots \otimes b_{p}\right)=0$ otherwise. We also put $\left(\varepsilon_{0}(f)\right)(1)=\sum_{x \in Q_{0}} f(x) e_{x}$ for $f \in \operatorname{Hom}_{\mathbb{Z}}\left(C_{p}^{\prime \prime}(B), k\right)$. One checks that $\varepsilon_{p}, p \geq 0$, induce a homomorphism of complexes, thus we have the induced k-linear homomorphisms $\xi_{p}: S H^{p}(B, k) \rightarrow H H^{p}(A)$.

It follows that if A is schurian, then $\xi_{p}, p \geq 0$, are monomorphisms. Indeed, ξ_{0} is a monomorphism since ε_{0} is a monomorphism. Let $p \geq 2$ and take $h \in \operatorname{Ker} d_{p+1}^{*}$. Let $f=\xi_{p}(h)$ and assume $f=\partial^{p-1}(g)$ for some $g \in \operatorname{Hom}_{k}\left(A^{\otimes^{p-1}}, A\right)$. Let $\left(b_{1}, \ldots, b_{p-1}\right) \in C_{p-1}^{\prime \prime}(B)$ with $b_{1} \in A(x, s)$ and $b_{p-1} \in A(t, y)$.

Then $e_{x} g\left(b_{1} \otimes \cdots \otimes b_{p-1}\right) e_{y}=\mu\left(b_{1}, \ldots, b_{p-1}\right) b_{1} \cdots b_{p-1}$ for an elements $\mu\left(b_{1}, \ldots, b_{p-1}\right)$ of k, since A is schurian. Denote by μ the induced map $\mathbb{Z} C_{p-1}^{\prime \prime} \rightarrow k$. It follows that $d_{p}^{*}(\mu)=h$.

We have the following theorem.

Theorem. Let $\tilde{A} \rightarrow A$ be a Galois covering with a free group G such that \tilde{A} is schurian. Then $\operatorname{dim}_{k} H H^{1}(A) \geq \operatorname{rk} G$.
Proof. Let $\tilde{A}=k \tilde{Q} / \tilde{I}$ and $A=k Q / I$ and assume that (\tilde{Q}, \tilde{I}) is a Galois covering of (Q, I). Then G is a quotient of $\Pi_{1}(Q, I)$. Since \tilde{A} is schurian, it follows that \tilde{A} has a semi-normed basis. Because G is free, one can choose a G invariant semi-normed basis. It induces a semi-normed basis B of A such that $\alpha+I \in B$ for every arrow $\alpha \in Q_{1}$. Then $\Pi_{1}(Q, I) /\left[\Pi_{1}, \Pi_{1}\right] \simeq S H_{1}(B)$. As the consequence, $G /[G, G]$ is a quotient of $S H_{1}(B)$, hence $\operatorname{rk} G \leq \operatorname{rk} S H_{1}(B)$. Then $\operatorname{rk} G \leq \operatorname{rk} S H_{1}(B) \leq \operatorname{dim}_{k} \operatorname{Hom}_{\mathbb{Z}}\left(S H_{1}(B), k\right)=\operatorname{dim}_{k} S H^{1}(B, k) \leq$ $\operatorname{dim}_{k} H H^{1}(A)$.

Let A be schurian and triangular. For $s \in Q_{0}$, let \bar{A}^{s} be the incidence algebra of the poset $\left\{t \in Q_{0} \mid A(s, t) \neq 0\right\}$, where $t \leq t^{\prime}$ if and only if $A(s, t) A\left(t, t^{\prime}\right) \neq 0$. Let $A^{(s)}=A \backslash\{s\}$ and $\bar{A}^{(s)}=\bar{A}^{s} \backslash\{s\}$. Dually we define $\underline{A}_{t}, A_{(t)}$ and $\underline{A}_{(t)}$. Note that $S H_{n}\left(\bar{A}^{s}\right)=S H_{n}\left(\underline{A}_{t}\right)=0$ for all $n>0$. We will say than an algebra A has no suspended crown if $S H_{1}\left(\underline{D}_{(t)}\right)=0$ for every $s, t \in Q_{0}$ such that $A(s, t) \neq 0$ and for every full subcategory D of \bar{A}^{s}. It follows that if gldim $A \leq 2$, then A has no suspended crown.

Let A be a schurian and triangular algebra and let s be a source in A. If $\left(x_{0}, \ldots, x_{p}\right) \in C_{p}(A)$, then either $x_{0}=s$ and $\left(x_{0}, \ldots, x_{p}\right) \in C_{p}\left(\bar{A}^{s}\right)$ or $x_{0} \neq s$ and $\left(x_{0}, \ldots, x_{p}\right) \in C_{p}\left(A^{(s)}\right)$. Thus we have an epimorphism $C_{p}\left(\bar{A}^{s}\right) \oplus$ $C_{p}\left(A^{(s)}\right) \rightarrow C_{p}(A)$ with the kernel $C_{p}\left(\bar{A}^{(s)}\right)$. In this way we get an exact sequence of complexes $0 \rightarrow C_{*}\left(\bar{A}^{(s)}\right) \rightarrow C_{*}\left(\bar{A}^{s}\right) \oplus C_{*}\left(A^{(s)}\right) \rightarrow C_{*}(A) \rightarrow 0$, which induces the following long exact sequence of homologies

$$
\begin{aligned}
\cdots \rightarrow S H_{p}\left(\bar{A}^{(s)}\right) \rightarrow & S H_{p}\left(\bar{A}^{s}\right) \oplus S H_{p}\left(A^{(s)}\right) \rightarrow S H_{p}(A) \\
& \rightarrow S H_{p-1}\left(\bar{A}^{(s)}\right) \rightarrow S H_{p-1}\left(\bar{A}^{s}\right) \oplus S H_{p-1}\left(A^{(s)}\right) \rightarrow \cdots,
\end{aligned}
$$

which we call the Mayer-Vietoris sequence.
Assume in addition that A has no suspended crown. We want to show that $S H_{2}(A)$ free. First note that if s is a source then $S H_{2}\left(\bar{A}^{(s)}\right)=0$. Indeed, we prove by induction that $S H_{2}(D)=0$ for all full subcategories D of $\bar{A}^{(s)}$. If t is a target in D, then using the dual Mayer-Vietoris sequence we get an exact sequence

$$
S H_{2}\left(\underline{D}_{t}\right) \oplus S H_{2}\left(D_{(t)}\right) \rightarrow S H_{2}(D) \rightarrow S H_{1}\left(\underline{D}_{(t)}\right)
$$

Note that $S H_{2}\left(\underline{D}_{t}\right)=0$ by general observations, $S H_{2}\left(D_{(t)}\right)=0$ by the induction hypothesis, and $S H_{1}\left(\underline{D}_{(t)}\right)=0$ by assumptions on A, hence the claim follows.

Now we show that if s is a source, then $S H_{1}\left(\bar{A}^{(s)}\right)$ is a free abelian group. We again use an induction to prove that $S H_{1}(D)$ is a free abelian group for each full subcategory D of $\bar{A}^{(s)}$. Using the Mayer-Vietoris sequence we have

$$
S H_{1}\left(\underline{D}_{(t)}\right) \rightarrow S H_{1}\left(\underline{D}_{t}\right) \oplus S H_{1}\left(D_{(t)}\right) \rightarrow S H_{1}(D) \rightarrow S H_{0}\left(\underline{D}_{(t)}\right) .
$$

Here we have $S H_{1}\left(\underline{D}_{(t)}\right)=0, S H_{1}\left(\underline{D}_{t}\right)=0, S H_{1}\left(D_{(t)}\right)$ is a free abelian group and $S H_{0}\left(\underline{D}_{(t)}\right)$ is a free abelian group, which implies the claim.

Now we can show that $\mathrm{SH}_{2}(A)$ is free. We again show it for each full subcategory D of A. We have the following exact sequence

$$
S H_{2}\left(\bar{D}^{(s)}\right) \rightarrow S H_{2}\left(\bar{D}^{s}\right) \oplus S H_{2}\left(D^{(s)}\right) \rightarrow S H_{2}(D) \rightarrow S H_{1}\left(\bar{D}^{(s)}\right) .
$$

We know that $S H_{2}\left(\bar{D}^{(s)}\right)=0, S H_{2}\left(\bar{D}^{s}\right)=0, S H_{2}\left(D^{(s)}\right)$ is a free abelian grup and $S H_{1}\left(D^{(s)}\right)$ is a free abelian group, hence the claim follows.

Theorem. Let A be a schurian and triangular algebra such that $\operatorname{gldim} A \leq 2$ and $H H^{2}(A)=0$. Then A has a multiplicative basis.

Proof. Since $H H^{2}(A)=0$, hence $\operatorname{Hom}_{\mathbb{Z}}\left(S H_{2}(A), k\right)=0$, and consequently $S H_{2}(A)=0$, because $S H_{2}(A)$ is a free abelian group. Thus $S H^{2}\left(A, k^{*}\right)=$ $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(S H_{1}, k^{*}\right)=0$, as k^{*} is divisible. Now the claim follows.

References

[1] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón, Representationfinite algebras and multiplicative bases, Invent. Math. 81 (1985), no. 2, 217-285.
[2] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 (1983), no. 1, 21-40.
[3] P. Dräxler, Completely separating algebras , J. Algebra 165 (1994), no. 3, 550-565.
[4] D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Séminaire d'Algebre Paul Dubreil et Marie-Paul Malliavin, Lecture Notes in Math., 1404, Springer, Berlin, 1989, 108-126.
[5] Ma. I. R. Martins and J. A. de la Pena, Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra, J. Pure Appl. Algebra 138 (1999), no. 1, 45-58.
[6] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of algebras, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993, 431-447.

