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Throughout the talk k will denote a fixed algebraically closed field. All
considered algebras will be basic algebras. We will usually assume that for
an algebra A we have fixed a complete set of pairwise orthogonal primitive
idempotents ex, x ∈ Q0. For x, y ∈ Q0 by A(x, y) we denote exAey. An
algebra A is called schurian if dimk A(x, y) ≤ 1 for all x, y ∈ Q0.

Let A be schurian. For x = (x0, . . . , xp) ∈ Qp+1
0 by φx we denote the map

from A(x0, x1)× · · · ×A(xp−1, xp) to A(x0, xp) induced by the multiplication
in A. Let Sp(A) = {x = (x0, . . . , xp) ∈ Qp+1

0 | x0, . . . , xp are pairwise different
and φx 6= 0}, p ≥ 1, and let S0(A) = Q0. Let Cp(A) = ZSp(A), p ≥ 0, and
let dp : Cp(A)→ Cp−1(A) be defined by

dp(x0, . . . , xp) =

p∑
j=0

(−1)j(x0, . . . , xj−1, xj+1, . . . , xp).

One can show that dp−1dp = 0, thus we get a chain complex C∗(A). By simpli-
cial homology groups of A we mean SHp(A) = Hp(C∗(A)) = Ker dp/ Im dp+1.

Let A be schurian. For x, y ∈ Q0 such that A(x, y) 6= 0 we fix bx,y ∈
A(x, y) with bx,x = ex. Let B1 = {bx,y | (x, y) ∈ S1(A)} and C ′p(A), p ≥
1, be the free abelian group generated by sequences (b1, . . . , bp) such that
b1, . . . , bp ∈ B1 and b1 · · · bp 6= 0. We also put C ′0(A) = ZQ0. If b, b′ ∈ B1 and
bb′ 6= 0, then bb′ = cb,b′b

′′ for uniquely determined cb,b′ ∈ k∗ and b′′ ∈ B1. Let
[b, b′] = b′′. We define d′p : C ′p(A)→ C ′p−1(A) be the formula

d′p(b1, . . . , bp) = (b2, . . . , bp) +

p∑
j=2

(−1)j−1(b1, . . . , bj−2, [bj−1, bj], bj+1, . . . , bp)

+ (−1)p(b1, . . . , bp−1)
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p ≥ 2, and d′1(b) = y − x for b ∈ A(x, y). It easily follows that the maps fp :
Cp(A)→ C ′p(A) defined by (x0, . . . , xp) 7→ (bx0,x1 , . . . , bxp−1,xp), p ≥ 1, x 7→ x,
p = 0, form an isomorphism of complexes. Thus SHp(A) ' Hp(C

′
∗(A)).

We still assume that A is schurian. Let C ′′p (A), p ≥ 1, be the free abelian
group with basis consisting of the sequences (b1, . . . , bp) such that b1, . . . , bp ∈
B and b1 · · · bp 6= 0, where B = {bx,y | x, y ∈ Q0, A(x, y) 6= 0}. Let C ′′0 (A) =
ZQ0. We define d′′p by the same formulas as d′p and we get a complex C ′′∗ (A).

Theorem ([1, Section 8.1]). The inclusion C ′∗(A) ↪→ C ′′∗ (A) induces isomor-
phisms Hp(C

′
∗(A)) ' Hp(C

′′
∗ (A)).

Proof. Let Dp(A) be the subgroup of C ′′p (A) generated by all (b1, . . . , bp) such
that bi = ex for some i and x, p > 0, D0(A) = 0. Obviously, C ′′p (A) = C ′p(A)⊕
Dp(A). Moreover, d′′p(Dp(A)) ⊆ Dp−1(A). Thus C ′′∗ (A) = C ′∗(A)⊕D∗(A) and
we have to show that Hp(D∗(A)) = 0. In order to do it we construct maps
sp : Dp(A) → Dp+1(A) such that sp−1dp + dp+1sp = IdDp(A), p > 0. We
put s0 = 0. Let p ≥ 1 and σ = (b1, . . . , bs, e, . . . , e︸ ︷︷ ︸

k

, d1, . . . , dt) ∈ Dp(A),

where b1, . . . , bs are not idempotents, e = ex for some x ∈ Q0 and d1 6= e.
Then we put sp(σ) = (−1)sε(k)(b1, . . . , bs, e, . . . , e︸ ︷︷ ︸

k+1

, d1, . . . , dt), where ε(k) is

the remainder from the division of k by 2.

Let A be an arbitrary algebra. A subset B of A is called a semi-normed
basis of A if the following conditions are satisfied:

(1) B is a basis of A,

(2) B =
⋃

x,y∈Q0
Bx,y, where Bx,y = B ∩ A(x, y),

(3) ex ∈ B for each x ∈ Q0,

(4) if b, b′ ∈ B then bb′ ∈ kb′′ for some b′′ ∈ B.

Note that if bb′ 6= 0, then b′′ such that bb′ ∈ kb′′ is uniquely determined
by b and b′ and we will denote it by [b, b′]. We will also denote by cb,b′
the unique scalar c ∈ k∗ such that bb′ = λ[b, b′]. If bb′ = 0, then we put
[b, b′] = 0 and cb,b′ = 0. We can define a chain complex C ′′∗ (B) and simplicial
homologies SHp(B) = Hp(C

′′
∗ (B)) as above. Obviously, if A is schurian then

SHp(B) = SHp(A).
Note that SH0(B) is the free abelian group generated by the blocks of

A. In order to calculate SH1(B), we assume that A is indecomposable. Let
Q1 = {b ∈ B ∩ rad(A) | b 6= [b′, b′′] for any b′, b′′ ∈ B ∩ rad(A)}. It follows
that the elements b + rad2(A), b ∈ Q1, form a basis of rad(A)/ rad2(A). As
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the consequence it follows that we may assume that A = kQ/I, where the
set of vertices of Q is Q0, the set of arrows of Q is Q1, s(b) = x and t(b) = y
for b ∈ Q1 ∩ Bx,y, and I is an admissible ideal in Q. It follows that I is
generated by elements of the form u, where u is a path, and u− λw, where
u,w are paths with the same source and target and λ ∈ k∗.

In the above situation the fundamental group Π1(Q, I) of (Q, I) can
be defined in the following way: Π1(Q, I) = Π1(Q)/N(I), where Π1(Q) is
the fundamental group of Q and N(I) is the normal subgroup of Π1(Q)
generated by all the elements of the form wuv−1w−1, where w, u, v are
paths, u, v 6∈ I and u − λv ∈ I for some λ ∈ k∗. Let ω = αε1

1 · · ·αεt
t

be a loop in Q. We associate with ω an element φω =
∑
εiαi of C ′′1 (B).

Since ω is a loop, it follows that d′′1(φω) = 0. Thus φ induces a homomor-
phism Π1(Q, I) → SH1(B), which factorizes through the natural projection
Π1(Q, I) → Π1(Q, I)/[Π1(Q, I),Π1(Q, I)]. It follows that the induced map
Π1(Q, I)/[Π1(Q, I),Π1(Q, I)]→ SH1(B) is an isomorphism.

Note that if A is a triangular and representation finite algebra, then A is
schurian.

Theorem ([2]). Let A be a triangular and representation finite algebra. Then
SH1(A) is a free abelian group and SHp(A) = 0, p > 1.

Let B be a semi-normed basis of an algebra A and let Z be an abelian
group. We define the p-th cohomology group SHp(B,Z) in coefficients in
Z as Hp(HomZ(C ′′∗ (B), Z)). The universal coefficients theorem states, that
there exists an exact sequence 0 → Ext1Z(SHp−1(B), Z) → SHp(B,Z) →
HomZ(SHp(B), Z) → 0 of groups, which splits. In particular, SH1(B,Z) =
HomZ(SH1(B), Z).

Note that associativity of the multiplication in A implies that the map
(b, b′) 7→ cb,b′ induces a 2-cocycle in HomZ(C ′′∗ (B), k∗). On the other hand, if
db,b′ , b, b′ ∈ B, bb′ 6= 0, are elements of k∗ such that the function induced by
the assignment (b, b′) 7→ db,b′ is a 2-cocycle, then the multiplication defined in
A by the formula (b, b′) 7→ db,b′ [b, b

′], where db,b′ = 0 if bb′ = 0, is associative.
If in addition, dex,b = cex,b and db,ex = cb,ex for all b and x, then in this way we
obtain an algebra A′ with the same set of primitive orthogonal idempotents
as A and the semi-normed basis B. Bretscher and Gabriel proved in [2] that
there exists an isomorphism λ : A → A′ such that λb ∈ kb for b ∈ B if and
only if the above 2-cocycles induce the same element in SH2(B, k∗).

We say that a semi-normed basis B of A is multiplicative if bb′ = [b, b′]
for all b, b′ ∈ B.

Corollary. If SH2(B, k∗) = 0, then A has a multiplicative basis.
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Proof. The function (b, b′) 7→ 1 if bb′ 6= 0 and (b, b′) 7→ 0 otherwise, in-
duces a 2-cocycle in HomZ(C ′′∗ (B), k∗), thus we obtain an algebra A′ with
the multiplicative basis B. Since SH2(B, k∗) = 0 is follows that A and A′

are isomorphic, thus A also admits a multiplicative basis.

Corollary. If A is a triangular and representation finite algebra, then A has
a multiplicative basis.

Proof. We have to show that SH2(A, k∗) = 0. According to the universal
coefficients theorem we have an exact sequence 0 → Ext1Z(SH1(A), k∗) →
SH2(A, k∗) → HomZ(SH2(A), k∗) → 0. Since SH1(A) is a free abelian
group, thus Ext1Z(SH1(A), k∗) = 0. Moreover, we have SH2(A) = 0, hence
HomZ(SH2(A), k∗) = 0, and consequently SH2(A, k∗) = 0.

One can show (see [1]) that every representation finite algebra has a
multiplicative basis.

Exercise. Show directly, that if A is a triangular and representation finite
algebra, then SH2(A) is a torsion group.

For an algebra A and an A-A-bimodule M , we can consider a complex

0→ Homk(k,M)
∂0

−→ Homk(A,M)
∂1

−→ Homk(A⊗k A,M)
∂2

−→ · · · ,

where (∂p(f))(a1, . . . , ap+1) = a1f(a2 ⊗ · · · ⊗ ap+1) +
∑p

j=1(−1)jf(a1 ⊗ · · · ⊗
aj−1 ⊗ ajaj+1 ⊗ aj+2 ⊗ · · · ⊗ ap+1) + (−1)p+1f(a1 ⊗ · · · ⊗ ap)ap+1 (in partic-
ular, δ0(f)(a) = af(1) − f(1)a). We call HHp(A,M) = Ker δp/ Im δp−1 the
pth Hochschild cohomology group of A with coefficients in M . We denote
HHp(A,A) by HHp(A).

Let B be a semi-normed basis of an algebra A. For p ≥ 1 we define a map
εp : HomZ(C ′′p (B), k)→ Homk(A⊗

p
, A) defined by the formula εp(f)(b1⊗· · ·⊗

bp) = f(b1, . . . , bp)b1 . . . bp if (b1, . . . , bp) ∈ C ′′p (B) and εp(f)(b1⊗ · · · ⊗ bp) = 0
otherwise. We also put (ε0(f))(1) =

∑
x∈Q0

f(x)ex for f ∈ HomZ(C ′′p (B), k).
One checks that εp, p ≥ 0, induce a homomorphism of complexes, thus we
have the induced k-linear homomorphisms ξp : SHp(B, k)→ HHp(A).

It follows that if A is schurian, then ξp, p ≥ 0, are monomorphisms.
Indeed, ξ0 is a monomorphism since ε0 is a monomorphism. Let p ≥ 2
and take h ∈ Ker d∗p+1. Let f = ξp(h) and assume f = ∂p−1(g) for some
g ∈ Homk(A⊗

p−1
, A). Let (b1, . . . , bp−1) ∈ C ′′p−1(B) with b1 ∈ A(x, s) and

bp−1 ∈ A(t, y).
Then exg(b1 ⊗ · · · ⊗ bp−1)ey = µ(b1, . . . , bp−1)b1 · · · bp−1 for an elements

µ(b1, . . . , bp−1) of k, since A is schurian. Denote by µ the induced map
ZC ′′p−1 → k. It follows that d∗p(µ) = h.

We have the following theorem.
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Theorem. Let Ã→ A be a Galois covering with a free group G such that Ã
is schurian. Then dimkHH

1(A) ≥ rkG.

Proof. Let Ã = kQ̃/Ĩ and A = kQ/I and assume that (Q̃, Ĩ) is a Galois cov-
ering of (Q, I). Then G is a quotient of Π1(Q, I). Since Ã is schurian, it fol-
lows that Ã has a semi-normed basis. Because G is free, one can choose a G-
invariant semi-normed basis. It induces a semi-normed basis B of A such that
α + I ∈ B for every arrow α ∈ Q1. Then Π1(Q, I)/[Π1,Π1] ' SH1(B). As
the consequence, G/[G,G] is a quotient of SH1(B), hence rkG ≤ rkSH1(B).
Then rkG ≤ rkSH1(B) ≤ dimk HomZ(SH1(B), k) = dimk SH

1(B, k) ≤
dimkHH

1(A).

Let A be schurian and triangular. For s ∈ Q0, let A
s

be the incidence
algebra of the poset {t ∈ Q0 | A(s, t) 6= 0}, where t ≤ t′ if and only if
A(s, t)A(t, t′) 6= 0. Let A(s) = A \ {s} and A

(s)
= A

s \ {s}. Dually we define
At, A(t) and A(t). Note that SHn(A

s
) = SHn(At) = 0 for all n > 0. We will

say than an algebra A has no suspended crown if SH1(D(t)) = 0 for every
s, t ∈ Q0 such that A(s, t) 6= 0 and for every full subcategory D of A

s
. It

follows that if gldimA ≤ 2, then A has no suspended crown.
Let A be a schurian and triangular algebra and let s be a source in A.

If (x0, . . . , xp) ∈ Cp(A), then either x0 = s and (x0, . . . , xp) ∈ Cp(A
s
) or

x0 6= s and (x0, . . . , xp) ∈ Cp(A
(s)). Thus we have an epimorphism Cp(A

s
)⊕

Cp(A
(s)) → Cp(A) with the kernel Cp(A

(s)
). In this way we get an exact

sequence of complexes 0 → C∗(A
(s)

) → C∗(A
s
) ⊕ C∗(A

(s)) → C∗(A) → 0,
which induces the following long exact sequence of homologies

· · · → SHp(A
(s)

)→ SHp(A
s
)⊕ SHp(A

(s))→ SHp(A)

→ SHp−1(A
(s)

)→ SHp−1(A
s
)⊕ SHp−1(A

(s))→ · · · ,

which we call the Mayer–Vietoris sequence.
Assume in addition that A has no suspended crown. We want to show

that SH2(A) free. First note that if s is a source then SH2(A
(s)

) = 0. Indeed,
we prove by induction that SH2(D) = 0 for all full subcategories D of A

(s)
.

If t is a target in D, then using the dual Mayer–Vietoris sequence we get an
exact sequence

SH2(Dt)⊕ SH2(D(t))→ SH2(D)→ SH1(D(t)).

Note that SH2(Dt) = 0 by general observations, SH2(D(t)) = 0 by the
induction hypothesis, and SH1(D(t)) = 0 by assumptions on A, hence the
claim follows.
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Now we show that if s is a source, then SH1(A
(s)

) is a free abelian group.
We again use an induction to prove that SH1(D) is a free abelian group for
each full subcategory D of A

(s)
. Using the Mayer–Vietoris sequence we have

SH1(D(t))→ SH1(Dt)⊕ SH1(D(t))→ SH1(D)→ SH0(D(t)).

Here we have SH1(D(t)) = 0, SH1(Dt) = 0, SH1(D(t)) is a free abelian group
and SH0(D(t)) is a free abelian group, which implies the claim.

Now we can show that SH2(A) is free. We again show it for each full
subcategory D of A. We have the following exact sequence

SH2(D
(s)

)→ SH2(D
s
)⊕ SH2(D

(s))→ SH2(D)→ SH1(D
(s)

).

We know that SH2(D
(s)

) = 0, SH2(D
s
) = 0, SH2(D

(s)) is a free abelian
grup and SH1(D

(s)) is a free abelian group, hence the claim follows.

Theorem. Let A be a schurian and triangular algebra such that gldimA ≤ 2
and HH2(A) = 0. Then A has a multiplicative basis.

Proof. Since HH2(A) = 0, hence HomZ(SH2(A), k) = 0, and consequently
SH2(A) = 0, because SH2(A) is a free abelian group. Thus SH2(A, k∗) =
Ext1Z(SH1, k

∗) = 0, as k∗ is divisible. Now the claim follows.
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