Automorphisms of repetitive algebras

based on the talk by Kunio Yamagata (Tokyo)

March 7, 2002

Let K be a field and A a finite dimensional K-algebra. By \hat{A} we will denote the repetitive algebra of A. An automorphism φ of \hat{A} will be called rigid provided $\varphi(A_m) \subset A_m$ for all m. The set of the rigid automorphisms of \hat{A} will be denoted by $\operatorname{Rig}(\hat{A})$. For an invertible element a of A we will denote by θ_a the corresponding inner automorphism of A.

The pair $(\boldsymbol{\sigma}, \mathbf{u}), \boldsymbol{\sigma} \in \prod_{m \in \mathbb{Z}} \operatorname{Aut}(A), \mathbf{u} \in \prod_{m \in \mathbb{Z}} A^*$, is called admissible if $\sigma_{m+1} = \theta_{u_m} \sigma_m$ for any m. For an admissible pair $(\boldsymbol{\sigma}, \mathbf{u})$ the map $\varphi_{\boldsymbol{\sigma}, \mathbf{u}} : \hat{A} \to \hat{A}$ given by

$$\varphi_{\boldsymbol{\sigma},\mathbf{u}}(a) := \sigma_m(a), \ a \in A_m,$$
$$\varphi_{\boldsymbol{\sigma},\mathbf{u}}(f) := f\sigma_m^{-1}L_{u_m^{-1}}, \ f \in DA_m,$$

where $L_a : A \to A$ is the left multiplication by a, is a rigid automorphism of \hat{A} . Moreover, for a rigid automorphism φ of \hat{A} there exists an admissible pair $(\boldsymbol{\sigma}, \mathbf{u})$ such that $\varphi = \varphi_{\boldsymbol{\sigma}, \mathbf{u}}$. Finally, $\varphi_{\boldsymbol{\sigma}, \mathbf{u}} = \varphi_{\boldsymbol{\tau}, \mathbf{v}}$ if and only if $\boldsymbol{\sigma} = \boldsymbol{\tau}$ and $\mathbf{u} = \mathbf{v}$. For $\boldsymbol{\sigma} \in \operatorname{Aut}(A)$ denote $\hat{\boldsymbol{\sigma}} := (\boldsymbol{\sigma}) \in \prod_{m \in \mathbb{Z}} \operatorname{Aut}(A)$. Similarly, for $u \in A^*$ let $\hat{u} := (u_i) \in \prod_{m \in \mathbb{Z}} A^*$. We have $\operatorname{Id}_{\hat{A}} = \varphi_{\operatorname{Id}_{\hat{A},\hat{1}}}, \varphi_{\boldsymbol{\tau}, \mathbf{v}} \varphi_{\boldsymbol{\sigma}, \mathbf{u}} = \varphi_{\boldsymbol{\tau} \boldsymbol{\sigma}, \mathbf{v} \boldsymbol{\tau}(\mathbf{u})}$ and $\varphi_{\boldsymbol{\sigma}, \mathbf{u}}^{-1} = \varphi_{\boldsymbol{\sigma}^{-1}, \boldsymbol{\sigma}^{-1}(\mathbf{u}^{-1})}$.

We define the group $\mathscr{S}(A^*) = (\mathscr{S}, \circ)$ in the following way. Let $\mathscr{S} := \prod_{m \in \mathbb{Z}} A^*$. For **u** and **v** in \mathscr{S} we put $\mathbf{u} \circ \mathbf{v} := \mathbf{u}\theta(\mathbf{u})(\mathbf{v})$, where

$$\theta(\mathbf{u})_m := \begin{cases} \theta_{u_{m-1}\cdots u_0} & m > 0\\ \mathrm{Id}_A & m = 0 \\ \theta_{u_{-1}\cdots u_m}^{-1} & m < 0 \end{cases}$$

Note that for $\mathbf{u} \in \prod A^*$ the pair $(\theta(\mathbf{u}), \mathbf{u})$ is rigid. Moreover, if $(\boldsymbol{\sigma}, \mathbf{u})$ is a rigid pair and $\sigma_0 = \mathrm{Id}_A$, then $(\boldsymbol{\sigma}, \mathbf{u}) = (\theta(\mathbf{u}), \mathbf{u})$. Let $\Phi : \mathrm{Rig}(\hat{A}) \to \mathrm{Aut}(A)$ be a group homomorphism given by $\Phi(\varphi_{\boldsymbol{\sigma},\mathbf{u}}) := \sigma_0$ and $\Psi : \mathrm{Aut}(A) \to \mathrm{Rig}(\hat{A})$ be $\Psi(\sigma) := \varphi_{\hat{\sigma},\hat{1}}$. Then $\Phi \Psi = \mathrm{Id}_{\mathrm{Aut}(A)}$. Moreover, $\mathrm{Ker} \Phi = \{\varphi_{\theta(\mathbf{u}),\mathbf{u}} \mid \mathbf{u} \in \prod_{m \in \mathbb{Z}} A^*\}$ is isomorphic to $\mathscr{S}(A^*)$ as a group.

It follows from the above considerations that we have the split exact sequence $1 \to \mathscr{S}(A^*) \to \operatorname{Rig}(\hat{A}) \to \operatorname{Aut}(A) \to 1$. It is known that there exists a group homomorphism $\chi : \operatorname{Aut}(A) \to \operatorname{Aut}(\mathscr{S}(A^*))$ such that $\mathscr{S}(A^*) \rtimes_{\chi}$ $\operatorname{Aut}(A) \simeq \operatorname{Rig}(\hat{A})$. We obtain by direct calculations that $[\chi(\sigma)](\mathbf{u}) = \hat{\sigma}(\mathbf{u})$. Note that if A^* is commutative, then $\operatorname{Rig}(\hat{A}) \simeq \prod_{m \in \mathbb{Z}} A^* \rtimes_{\chi} \operatorname{Aut}(A)$.

Let $\mathscr{E} = \{e_1, \ldots, e_n\}$ be the complete set of orthogonal primitive idempotents of A. We have a category (A, \mathscr{E}) with $\operatorname{Obj}(A, \mathscr{E}) = \mathscr{E}$. If $\widehat{\mathscr{E}} := \coprod_{m \in \mathbb{Z}} \mathscr{E}$, then $(\hat{A}, \widehat{\mathscr{E}})$ is a category with $\operatorname{Obj}(\hat{A}, \widehat{\mathscr{E}}) = \widehat{\mathscr{E}}$. The groups $\operatorname{Aut}(A, \mathscr{E})$ and $\operatorname{Rig}(\hat{A}, \mathscr{E})$ are subgroups of $\operatorname{Aut}(A)$ and $\operatorname{Rig}(\hat{A})$, respectively. If $u \in A^*$ then $\theta_u \in \operatorname{Aut}(A, \mathscr{E})$ if and only if $ue_i = e_i u$ for all i and if and only if $u \in \sum_{i=1}^n (e_i A e_i)^*$. Note that $\sum_{i=1}^n (e_i A e_i)^*$ is isomorphic as a group with $\prod_{i=1}^n (e_i A e_i)^*$. We also have $\operatorname{Rig}(\hat{A}, \widehat{\mathscr{E}}) = \{\varphi_{\sigma, \mathbf{u}} \in \operatorname{Rig}(\hat{A}) \mid \theta_m \in \operatorname{Aut}(A, \mathscr{E}) \text{ and } \sigma_m \in \operatorname{Aut}(A, \mathscr{E})\}$. Finally, we get $\operatorname{Ker} \Phi = \{\varphi_{\theta(\mathbf{u}),\mathbf{u}} \mid u \in \prod_{i=1}^m (e_i A e_i)^*\}$, hence $\operatorname{Rig}(\hat{A}, \widehat{\mathscr{E}})) \simeq \mathscr{S}(\prod_{i=1}^n (e_i A e_i)^*) \rtimes_{\chi} \operatorname{Aut}(A, \mathscr{E})$. Since $(e_i A e_i)^*$ is commutative for $e_i A e_i$ is uniserial, thus in this case $\operatorname{Rig}(\hat{A}, \widehat{\mathscr{E}})) \simeq \prod_{m \in \mathbb{Z}} \prod_{i=1}^n (e_i A e_i)^* \rtimes_{\chi} \operatorname{Aut}(A, \mathscr{E})$. Similarly, if A is a triangular algebra then $\operatorname{Rig}(\hat{A}, \widehat{\mathscr{E}}) \simeq \prod_{m \in \mathbb{Z}} \prod_{i=1}^n K \rtimes_{\chi} \operatorname{Aut}(A, \mathscr{E})$.

Let $g \in \operatorname{Rig}(\hat{A})$, $h \in \operatorname{Rig}(\hat{B})$. Recall that the category isomorphism $F : \hat{A} \to \hat{B}$ such that Fg = hF, induces a category isomorphism $\hat{A}/(g\nu^m) \simeq \hat{B}/(h\nu^m)$ for any m. Let $\varphi_{\sigma,\mathbf{u}}, \varphi_{\tau,\mathbf{v}} \in \operatorname{Rig}(\hat{A})$. It follows that σ and τ are conjugate if and only if there exists an algebra isomorphism $\hat{A}/(\varphi_{\sigma,\mathbf{u}}\nu) \simeq \hat{A}/(\varphi_{\tau,\mathbf{v}}\nu)$ induced from the categorical isomorphism $\hat{A} \simeq \hat{A}$.