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Let k be an algebraically closed field and ) a Dynkin quiver. We denote
by I the set of vertices of Q).

Lemma. Let M and N be representations of Q). There exists a unique rep-
resentation M * N such that M * N <ge, X if and only if there exist a short
exact sequence 0 = N’ — X — M" — 0 with M <geg M" and N <geg N'.

Lemma. If L, M and N are representations of @ then (L x M) x N ~
Lx(M=xN).

Proof. We have the following commutative diagram with exact rows and
columns

&2 0
0 0
| |
& 0 - N = X - M = 0
| |
0 - N - (LxM)xN — LxM — 0
|
L
|
0
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From &; it follows that M * N <ge, X, hence using & we get Lk (M * N) <geq
(L+ M)« N. Similarly, we show (L% M)* N <ges L* (M % N), and the claim
follows. O

We define .Z to be the set of all isoclasses of representations of Q). If we
define multiplication in .# by [M] [N] := [M % N, then we obtain in .# a
structure of monoid, called the monoid of generic extensions of Q).



Theorem. We have 4 ~ (I)/(ij = ji, if there is no edge between i and j,
iji = iij and jij = ijj, if there is an arrow i — j). The isomorphism is
given by the assignment E; — 1.

Recall that the Serre relation in % (n') is E;E; —2E;E; E;+E;E; = 0. The
above relation can be “quantized” as follows E?F; —(q+1)E;E;E;+qE;E? =
0. For ¢ = 0 we get E?E; = E,E;E;. The above “quantized” relation appears
in the non-twisted Hall algebra, that is in a Hall algebra with multiplication
defined as upuy := >y Fiyn(@)ux.

Let Uy, ..., U, be a list of indecomposable representations of () such that
Ext!(U;,U;) = 0fori < j. f M = @;_, U™ then [M] = [Uy]*™ % - -%[U,]*™.
We have also the following result by Bongartz. Assume Extl(U eV, UpV) ~
Ext'(U, V). There exists an exact sequence 0 — V — Y — U — 0 if and
only if Y <gee U ® V. In particular, U x V has no selfextensions. Indeed,
since Ext'(X, X) = 0 for each indecomposable representation X of @, we
only need to show Ext'(X;, D, X;) = 0 for each i, where UV = P, X, is
a decomposition of UV into a direct sum of indecomposable representations.
Let

Oa@Xj%Y%Xi—w (%)
J#i
be an exact sequence. Then Y <o U * V <4qoe U @ V. By the result of
Bongartz, there exists an exact sequence 0 — V — Y — U — 0, hence
UxV <geg Y, and consequently Y ~ U x V, thus the sequence (*) splits.
Using the above observations we may formulate the following algorithm for
calculation of M * N.

Let M =@ U™ and N = @ U;". Then [M]* [N] = [Uy]"™ ---[U,]*"™ =
(O™ s - (U™, If @ < j then [Uj] * [U;] = [Ug]* * -+ * [U;]*% for
some a;, ..., a; which can be read of from the Auslander—Reiten-quiver of
Q. Repeated application of this rule brings [M] % [N] to the form [U;]** x

% [U,]***. Then M * N ~ @;_, U’

Lemma. Let U be an indecomposable representation of Q). If M is a repre-
sentation of @ and 0 — M — X — U™ — 0 is a universal extension, where
n := dim Ext! (U, M), then X ~ U™ % M. Moreover, if Ext'(M,U) = 0 then
[ * [M] + [U] = [U]0*Y « [M].

Let A be an algebra of finite representation type. We may defined generic
extensions in the following way. If M and N are A-modules then there exists a
unique module M % N which is an extensions of M by N and dim End(M @& N)
has a minimal dimension among all extension of M by N. However, in
general we do not have an equality (L * M)+ N = L (M % N) is this case.
Thus we may consider .Z(A) as the free associative monoid generated by
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all isoclasses of A-modules modulo the ideal generated by all elements of the
form [M][N]— [M % N]. For example, if A is the path algebra of the bounded
quiver

195223 Ba=0,

then .#(A) ~ (1,2,3)/(13 = 31,112 = 121,212 = 122,312 = 123,123 =
231,223 = 232,323 = 233). There is a question what is a connection between
A (A) and the representation theory of A.

Let A = k[[T1]], thus in other words we consider the nilpotent represen-
tations of a one-loop quiver. It is known that the representations of A are
parameterized by partitions. The theory of geometry of nilpotent orbits gives
My x M,, = My, thus (A) is a free commutative monoind in [M, . 1].

The monoid of generic extensions of nilpotent representations of A,, has
been studied by Deng and Du (77). There is also a question what happens
for poset representations.

Note, that we may treat the Dynkin quivers of types B, C, F and G, as
the corresponding Dynkin quivers of type A, D and E with automorphism.
For example, the quiver of type B,, may be viewed as the quiver of type D,,; 1
with automorphism identifying two vertices. Let (Q,7) be a quiver with an
automorphism. We define .Z(Q,~y) to be the submonoid of .#(Q) consisting
of y-invariant representations of ().

Let @ be a quiver of infinite representation type. We define .#; to be a
family of all irreducible closed G4 stable subsets of Ry. In .4 = | aent “a,
we may define o7 * B = {X € Ry | there exists a short sequence 0 —
B—-X—>5A—0Ac o Be B} for o € Myand B € M. We call #
a monoid of families of representations of ). We consider the submonoid ¢
of A spanned by R; = {E;}, i € I. If Q is Dynkin then .# = € and .#
coincides with the previous definition.

Theorem. € is a quotient of (I)/(i"*1j = i"ji,ij" = ij5" if there is no
arrow from j to i and there is n arrows form i to j).

Let w=14;---4, be aword in I and &, := R;, *---x R; . Then &, is the
set of all modules having composition series of type w, i.e. M € &, if and
only if M = My D My D --- D M, =0 with My_, /My ~ E). The answer to
the question when &, = &, is encoded in €. Applying Schofield’s theory of
“general properties of representations” we also have that Ry * R, = Ry, if
and only if (¢/,d) > 0 whenever Ry * R._o = R,.



