Generic extensions of (quiver) representations

based on the talk by Markus Reineke (Wuppertal)

January 24, 2002

Let k be an algebraically closed field and Q a Dynkin quiver. We denote by I the set of vertices of Q.

Lemma. Let M and N be representations of Q. There exists a unique representation M * N such that $M * N \leq_{\text{deg}} X$ if and only if there exist a short exact sequence $0 \to N' \to X \to M' \to 0$ with $M \leq_{\text{deg}} M'$ and $N \leq_{\text{deg}} N'$.

Lemma. If L, M and N are representations of Q then $(L * M) * N \simeq L * (M * N)$.

Proof. We have the following commutative diagram with exact rows and columns

From ξ_1 it follows that $M * N \leq_{\text{deg}} X$, hence using ξ_2 we get $L * (M * N) \leq_{\text{deg}} (L * M) * N$. Similarly, we show $(L * M) * N \leq_{\text{deg}} L * (M * N)$, and the claim follows.

We define \mathscr{M} to be the set of all isoclasses of representations of Q. If we define multiplication in \mathscr{M} by [M] * [N] := [M * N], then we obtain in \mathscr{M} a structure of monoid, called the monoid of generic extensions of Q.

Theorem. We have $\mathscr{M} \simeq \langle I \rangle / (ij = ji)$, if there is no edge between *i* and *j*, iji = iij and jij = ijj, if there is an arrow $i \to j$. The isomorphism is given by the assignment $E_i \mapsto i$.

Recall that the Serre relation in $\mathscr{U}(\mathfrak{n}^+)$ is $E_i E_j - 2E_i E_j E_i + E_j E_i = 0$. The above relation can be "quantized" as follows $E_i^2 E_j - (q+1)E_i E_j E_i + qE_j E_i^2 =$ 0. For q = 0 we get $E_i^2 E_j = E_i E_j E_i$. The above "quantized" relation appears in the non-twisted Hall algebra, that is in a Hall algebra with multiplication defined as $u_M u_N := \sum_X F_{MN}^X(q) u_X$.

Let U_1, \ldots, U_{ν} be a list of indecomposable representations of Q such that $\operatorname{Ext}^1(U_i, U_j) = 0$ for $i \leq j$. If $M = \bigoplus_{i=1}^{\nu} U_i^{m_i}$ then $[M] = [U_1]^{*m_1} * \cdots * [U_{\nu}]^{*m_{\nu}}$. We have also the following result by Bongartz. Assume $\operatorname{Ext}^1(U \oplus V, U \oplus V) \simeq \operatorname{Ext}^1(U, V)$. There exists an exact sequence $0 \to V \to Y \to U \to 0$ if and only if $Y \leq_{\operatorname{deg}} U \oplus V$. In particular, U * V has no selfextensions. Indeed, since $\operatorname{Ext}^1(X, X) = 0$ for each indecomposable representation X of Q, we only need to show $\operatorname{Ext}^1(X_i, \bigoplus_{j \neq i} X_j) = 0$ for each i, where $U * V = \bigoplus_i X_i$ is a decomposition of U * V into a direct sum of indecomposable representations. Let

$$0 \to \bigoplus_{j \neq i} X_j \to Y \to X_i \to 0 \tag{(*)}$$

be an exact sequence. Then $Y \leq_{\text{deg}} U * V \leq_{\text{deg}} U \oplus V$. By the result of Bongartz, there exists an exact sequence $0 \to V \to Y \to U \to 0$, hence $U * V \leq_{\text{deg}} Y$, and consequently $Y \simeq U * V$, thus the sequence (*) splits. Using the above observations we may formulate the following algorithm for calculation of M * N.

Let $M = \bigoplus U_i^{m_i}$ and $N = \bigoplus U_i^{n_i}$. Then $[M] * [N] = [U_1]^{*m_1} \cdots [U_\nu]^{*m_\nu} * [U_1]^{*n_1} * \cdots * [U_\nu]^{*n_\nu}$. If i < j then $[U_j] * [U_i] = [U_i]^{*a_i} * \cdots * [U_j]^{*a_j}$ for some a_i, \ldots, a_j which can be read of from the Auslander–Reiten-quiver of Q. Repeated application of this rule brings [M] * [N] to the form $[U_1]^{*x_1} * \cdots * [U_\nu]^{*x_\nu}$. Then $M * N \simeq \bigoplus_{i=1}^{\nu} U_i^{x_i}$.

Lemma. Let U be an indecomposable representation of Q. If M is a representation of Q and $0 \to M \to X \to U^n \to 0$ is a universal extension, where $n := \dim \operatorname{Ext}^1(U, M)$, then $X \simeq U^n * M$. Moreover, if $\operatorname{Ext}^1(M, U) = 0$ then $[U]^{*n} * [M] * [U] = [U]^{*(n+1)} * [M]$.

Let A be an algebra of finite representation type. We may defined generic extensions in the following way. If M and N are A-modules then there exists a unique module M * N which is an extensions of M by N and dim $\text{End}(M \oplus N)$ has a minimal dimension among all extension of M by N. However, in general we do not have an equality (L * M) * N = L * (M * N) is this case. Thus we may consider $\mathcal{M}(A)$ as the free associative monoid generated by all isoclasses of A-modules modulo the ideal generated by all elements of the form [M][N] - [M * N]. For example, if A is the path algebra of the bounded quiver

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3, \ \beta \alpha = 0,$$

then $\mathcal{M}(A) \simeq \langle 1, 2, 3 \rangle / (13 = 31, 112 = 121, 212 = 122, 312 = 123, 123 = 231, 223 = 232, 323 = 233)$. There is a question what is a connection between $\mathcal{M}(A)$ and the representation theory of A.

Let A = k[[T]], thus in other words we consider the nilpotent representations of a one-loop quiver. It is known that the representations of A are parameterized by partitions. The theory of geometry of nilpotent orbits gives $M_{\lambda} * M_{\mu} = M_{\lambda+\mu}$, thus (\mathcal{A}) is a free commutative monoind in $[M_{(1,...,1)}]$.

The monoid of generic extensions of nilpotent representations of \mathbb{A}_n has been studied by Deng and Du (??). There is also a question what happens for poset representations.

Note, that we may treat the Dynkin quivers of types \mathbb{B} , \mathbb{C} , \mathbb{F} and \mathbb{G} , as the corresponding Dynkin quivers of type \mathbb{A} , \mathbb{D} and \mathbb{E} with automorphism. For example, the quiver of type \mathbb{B}_n may be viewed as the quiver of type \mathbb{D}_{n+1} with automorphism identifying two vertices. Let (Q, γ) be a quiver with an automorphism. We define $\mathscr{M}(Q, \gamma)$ to be the submonoid of $\mathscr{M}(Q)$ consisting of γ -invariant representations of Q.

Let Q be a quiver of infinite representation type. We define \mathscr{M}_d to be a family of all irreducible closed G_d stable subsets of R_d . In $\mathscr{M} = \bigcup_{d \in \mathbb{N}I} \mathscr{M}_d$, we may define $\mathscr{A} * \mathscr{B} := \{X \in R_{d+e} \mid \text{there exists a short sequence } 0 \to B \to X \to A \to 0, A \in \mathscr{A}, B \in \mathscr{B}\}$ for $\mathscr{A} \in \mathscr{M}_d$ and $\mathscr{B} \in \mathscr{M}_e$. We call \mathscr{M} a monoid of families of representations of Q. We consider the submonoid \mathscr{C} of \mathscr{M} spanned by $R_i = \{E_i\}, i \in I$. If Q is Dynkin then $\mathscr{M} = \mathscr{C}$ and \mathscr{M} coincides with the previous definition.

Theorem. \mathscr{C} is a quotient of $\langle I \rangle / (i^{n+1}j = i^n ji, ij^{n+1} = ijj^n)$ if there is no arrow from j to i and there is n arrows form i to j).

Let $\omega = i_1 \cdots i_{\nu}$ be a word in I and $\mathscr{E}_{\omega} := R_{i_1} * \cdots * R_{i_{\nu}}$. Then \mathscr{E}_{ω} is the set of all modules having composition series of type ω , i.e. $M \in \mathscr{E}_{\omega}$ if and only if $M = M_0 \supset M_1 \supset \cdots \supset M_{\nu} = 0$ with $M_{k-1}/M_k \simeq E_k$. The answer to the question when $\mathscr{E}_{\omega} = \mathscr{E}_{\omega'}$ is encoded in \mathscr{C} . Applying Schofield's theory of "general properties of representations" we also have that $R_d * R_e = R_{d+e}$ if and only if $\langle e', d \rangle \ge 0$ whenever $R_{e'} * R_{e-e'} = R_e$.