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Let k be an algebraically closed field and Q a Dynkin quiver. We denote
by I the set of vertices of Q.

Lemma. Let M and N be representations of Q. There exists a unique rep-
resentation M ∗N such that M ∗N ≤deg X if and only if there exist a short
exact sequence 0→ N ′ → X →M ′ → 0 with M ≤deg M

′ and N ≤deg N
′.

Lemma. If L, M and N are representations of Q then (L ∗ M) ∗ N '
L ∗ (M ∗N).

Proof. We have the following commutative diagram with exact rows and
columns

ξ2 0
0 0y y

ξ1 0 → N → X → M → 0∥∥ y y
0 → N → (L ∗M) ∗N → L ∗M → 0y y

L == Ly y
0 0

.

From ξ1 it follows that M ∗N ≤deg X, hence using ξ2 we get L∗(M ∗N) ≤deg

(L∗M)∗N . Similarly, we show (L∗M)∗N ≤deg L∗ (M ∗N), and the claim
follows.

We define M to be the set of all isoclasses of representations of Q. If we
define multiplication in M by [M ] ∗ [N ] := [M ∗N ], then we obtain in M a
structure of monoid, called the monoid of generic extensions of Q.
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Theorem. We have M ' 〈I〉/(ij = ji, if there is no edge between i and j,
iji = iij and jij = ijj, if there is an arrow i → j). The isomorphism is
given by the assignment Ei 7→ i.

Recall that the Serre relation in U (n+) is EiEj−2EiEjEi+EjEi = 0. The
above relation can be “quantized” as follows E2

iEj−(q+1)EiEjEi+qEjE
2
i =

0. For q = 0 we get E2
iEj = EiEjEi. The above “quantized” relation appears

in the non-twisted Hall algebra, that is in a Hall algebra with multiplication
defined as uMuN :=

∑
X F

X
MN(q)uX .

Let U1, . . . , Uν be a list of indecomposable representations of Q such that
Ext1(Ui, Uj) = 0 for i ≤ j. IfM =

⊕ν
i=1 U

mi
i then [M ] = [U1]

∗m1∗· · ·∗[Uν ]∗mν .
We have also the following result by Bongartz. Assume Ext1(U⊕V, U⊕V ) '
Ext1(U, V ). There exists an exact sequence 0 → V → Y → U → 0 if and
only if Y ≤deg U ⊕ V . In particular, U ∗ V has no selfextensions. Indeed,
since Ext1(X,X) = 0 for each indecomposable representation X of Q, we
only need to show Ext1(Xi,

⊕
j 6=iXj) = 0 for each i, where U ∗V =

⊕
iXi is

a decomposition of U∗V into a direct sum of indecomposable representations.
Let

0→
⊕
j 6=i

Xj → Y → Xi → 0 (∗)

be an exact sequence. Then Y ≤deg U ∗ V ≤deg U ⊕ V . By the result of
Bongartz, there exists an exact sequence 0 → V → Y → U → 0, hence
U ∗ V ≤deg Y , and consequently Y ' U ∗ V , thus the sequence (∗) splits.
Using the above observations we may formulate the following algorithm for
calculation of M ∗N .

Let M =
⊕

Umi
i and N =

⊕
Uni
i . Then [M ] ∗ [N ] = [U1]

∗m1 · · · [Uν ]∗mν ∗
[U1]

∗n1 ∗ · · · ∗ [Uν ]
∗nν . If i < j then [Uj] ∗ [Ui] = [Ui]

∗ai ∗ · · · ∗ [Uj]
∗aj for

some ai, . . . , aj which can be read of from the Auslander–Reiten-quiver of
Q. Repeated application of this rule brings [M ] ∗ [N ] to the form [U1]

∗x1 ∗
· · · ∗ [Uν ]

∗xν . Then M ∗N '
⊕ν

i=1 U
xi
i .

Lemma. Let U be an indecomposable representation of Q. If M is a repre-
sentation of Q and 0→ M → X → Un → 0 is a universal extension, where
n := dim Ext1(U,M), then X ' Un ∗M . Moreover, if Ext1(M,U) = 0 then
[U ]∗n ∗ [M ] ∗ [U ] = [U ]∗(n+1) ∗ [M ].

Let A be an algebra of finite representation type. We may defined generic
extensions in the following way. IfM andN are A-modules then there exists a
unique module M ∗N which is an extensions of M by N and dim End(M⊕N)
has a minimal dimension among all extension of M by N . However, in
general we do not have an equality (L ∗M) ∗N = L ∗ (M ∗N) is this case.
Thus we may consider M (A) as the free associative monoid generated by
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all isoclasses of A-modules modulo the ideal generated by all elements of the
form [M ][N ]− [M ∗N ]. For example, if A is the path algebra of the bounded
quiver

1
α−→ 2

β−→ 3, βα = 0,

then M (A) ' 〈1, 2, 3〉/(13 = 31, 112 = 121, 212 = 122, 312 = 123, 123 =
231, 223 = 232, 323 = 233). There is a question what is a connection between
M (A) and the representation theory of A.

Let A = k[[T ]], thus in other words we consider the nilpotent represen-
tations of a one-loop quiver. It is known that the representations of A are
parameterized by partitions. The theory of geometry of nilpotent orbits gives
Mλ ∗Mµ = Mλ+µ, thus (A) is a free commutative monoind in [M(1,...,1)].

The monoid of generic extensions of nilpotent representations of Ãn has
been studied by Deng and Du (??). There is also a question what happens
for poset representations.

Note, that we may treat the Dynkin quivers of types B, C, F and G, as
the corresponding Dynkin quivers of type A, D and E with automorphism.
For example, the quiver of type Bn may be viewed as the quiver of type Dn+1

with automorphism identifying two vertices. Let (Q, γ) be a quiver with an
automorphism. We define M (Q, γ) to be the submonoid of M (Q) consisting
of γ-invariant representations of Q.

Let Q be a quiver of infinite representation type. We define Md to be a
family of all irreducible closed Gd stable subsets of Rd. In M =

⋃
d∈NI Md,

we may define A ∗ B := {X ∈ Rd+e | there exists a short sequence 0 →
B → X → A → 0, A ∈ A , B ∈ B} for A ∈Md and B ∈Me. We call M
a monoid of families of representations of Q. We consider the submonoid C
of M spanned by Ri = {Ei}, i ∈ I. If Q is Dynkin then M = C and M
coincides with the previous definition.

Theorem. C is a quotient of 〈I〉/(in+1j = inji, ijn+1 = ijjn if there is no
arrow from j to i and there is n arrows form i to j).

Let ω = i1 · · · iν be a word in I and Eω := Ri1 ∗ · · · ∗Riν . Then Eω is the
set of all modules having composition series of type ω, i.e. M ∈ Eω if and
only if M = M0 ⊃M1 ⊃ · · · ⊃Mν = 0 with Mk−1/Mk ' Ek. The answer to
the question when Eω = Eω′ is encoded in C . Applying Schofield’s theory of
“general properties of representations” we also have that Rd ∗ Re = Rd+e if
and only if 〈e′, d〉 ≥ 0 whenever Re′ ∗Re−e′ = Re.
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