Construction of the canonical bases

based on the talk by Markus Reineke (Wuppertal)

January 22, 2002

Let Q be a Dynkin quiver with the set of vertices I. Recall that $U_{v}\left(\mathfrak{n}^{+}\right) \simeq$ $H(Q)$, where $H(Q)$ is the generic Hall algebra of Q. The basis of $H(Q)$ formed by E_{M}, where M 's are chosen representatives of the isomorphism classes of representations of Q. This basis corresponds to a basis B^{Q} in $U_{v}\left(\mathfrak{n}^{+}\right)$.

Theorem (Lusztig). The lattice $\mathscr{L}:=\bigoplus_{[M]} \mathbb{Z}\left[v^{-1}\right] E_{M}^{Q}$ does not depend on the orientation of Q. If $\pi: \mathscr{L} \rightarrow \mathscr{L} / v^{-1} \mathscr{L}$ is the canonical projection then $B:=\pi\left(B_{Q}\right)$ is independent on the orientation of Q. Futhermore, there exists a unique basis \mathscr{B} of \mathscr{L} such that $\pi(\mathscr{B})=B$ and $\bar{b}=b$ for all $b \in \mathscr{B}$, where $\overline{E_{i}}=E_{i}$ and $\bar{v}=v^{-1}$.

The proof of the first part involves translation of BGP-reflection functors to $\mathscr{U}_{v}(\mathfrak{g})$, Weyl group combinatorics and explicit calculations for type \mathbb{A}_{2}. We present the proof of the second part.

Let k be an algebraically closed field and $d \in \mathbb{N} I$. We define $R_{d}:=$ $\bigoplus_{i \rightarrow j} \operatorname{Hom}\left(k^{d_{i}}, k^{d_{j}}\right)$ and $G_{d}:=\prod_{i \in I} \mathrm{GL}\left(k^{d_{i}}\right)$. Note that R_{d} is an affine algebraic variety and G_{d} is a reductive algebraic group whose action on R_{d} is algebraic. We say $M \leq N$ if $\mathscr{O}_{N} \subset \overline{\mathscr{O}_{M}}$.

Lemma. Let M and N be representations of Q. There exists a unique representation $M * N$ such that for any representation X of Q there exists a short exact sequence $0 \rightarrow N^{\prime} \rightarrow X \rightarrow M^{\prime} \rightarrow 0$ with $M \leq M^{\prime}$ and $N \leq N^{\prime}$ if and only if $M * N \leq X$.

We call $M * N$ the generic extension of M by N.
Proof. Let $d:=\operatorname{dim} M, e:=\operatorname{dim} N$ and \mathscr{Z} be the set of all elements in R_{d+e} of the form $\left(\begin{array}{cc}N^{\prime} & \zeta \\ 0 & M^{\prime}\end{array}\right)$, where $N \leq N^{\prime}$ and $M \leq M^{\prime}$. We have a canonical projection $p: \mathscr{Z} \rightarrow \overline{\mathscr{O}_{M}} \times \overline{\mathscr{O}_{N}}$, which is a trivial vector bundle. In particular, \mathscr{Z} is irreducible and $\mathscr{Z}_{0}:=p^{-1}\left(\mathscr{O}_{M} \times \mathscr{O}_{N}\right)$ is a dense subset of \mathscr{Z}.

Let $m: G_{d+e} \times \mathscr{Z} \rightarrow R_{d+e}$ be the natural map and \mathscr{E} the image of m. Note that $X \in \mathscr{E}$ if and only if there exists a short exact sequence $0 \rightarrow N^{\prime} \rightarrow$ $X \rightarrow M^{\prime} \rightarrow 0$ with $M \leq M^{\prime}$ and $N \leq N^{\prime}$. Moreover $\mathscr{E}_{0}:=m\left(G_{d+e} \times \mathscr{Z}_{0}\right)$ is a dense subset of \mathscr{E}. Since the closed subset \mathscr{Z} of R_{d+e} is stable under the action of the parabolic subgroup $\left\{\left.\left(\begin{array}{cc}g_{1} & \xi \\ 0 & g_{2}\end{array}\right) \right\rvert\, g_{1} \in G_{e}, g_{2} \in G_{d}\right\}$ of G_{d+e}, it follows that \mathscr{E} is a closed subset of R_{d+e}. Thus $\mathscr{E}=\overline{\mathscr{O}_{L}}$ for some L and the claim follows we put $M * N:=L$.

Corollary. Assume $\operatorname{Ext}^{1}(M, N)=0=\operatorname{Hom}(N, M)$. If $M \leq M^{\prime}$ and $N \leq$ N^{\prime} and we have a short exact sequence $0 \rightarrow N^{\prime} \rightarrow X \rightarrow M^{\prime} \rightarrow 0$ then $M \oplus N \leq X$. Moreover, if $X \simeq M \oplus N$ then $M^{\prime} \simeq M$ and $N^{\prime} \simeq N$.

Proof. Since $\operatorname{Ext}^{1}(M, N)=0$ we trivially have $M * N=M \oplus N$ and the first part follows. To prove the second part assume that we have a short exact sequence $0 \rightarrow N^{\prime} \rightarrow M \oplus N \rightarrow M^{\prime} \rightarrow 0$ for some $M \leq M^{\prime}$ and $N \leq N^{\prime}$. Then we get $M * N^{\prime}=M \oplus N$. Indeed, in general we have $M \oplus N=M * N \leq$ $M * N^{\prime} \leq M^{\prime} * N^{\prime}$ and the above sequence implies $M^{\prime} * N^{\prime} \leq M \oplus N$. Consequently, we have a short exact sequence $0 \rightarrow N^{\prime} \rightarrow M \oplus N \rightarrow M \rightarrow 0$. Using that $\operatorname{Hom}(N, M)=0$ we get $N^{\prime} \simeq N$. Similarly we show $M^{\prime} \simeq M$.

In $U_{v}\left(\mathfrak{n}^{+}\right)$we have $\overline{E_{M}}=\sum_{[N]} \omega_{N}^{M} E_{N}$ for some ω_{N}^{M}. There is a problem if there is a representation theoretic interpretation of ω_{N}^{M}.

Proposition. If $\omega_{N}^{M} \neq 0$ then $M \leq N$. Moreover, $\omega_{M}^{M}=1$.
Proof. If $\operatorname{dim} M=1$, then $M=E_{i}$ and $\overline{E_{E_{i}}}=E_{E_{i}}$.
Let $\operatorname{dim} M>1$ and assume M is not a power of an indecomposable representation. Then $M=M_{1} \oplus M_{2}, M_{1} \neq 0 \neq M_{2}$ and $\operatorname{Ext}^{1}\left(M_{1}, M_{2}\right)=$ $0=\operatorname{Hom}\left(M_{2}, M_{1}\right)$. We have

$$
\begin{aligned}
\overline{E_{M}} & =\overline{E_{M_{1}} E_{M_{2}}}=\left(\sum_{M_{1} \leq A} \omega_{A}^{M_{1}} E_{A}\right)\left(\sum_{M_{2} \leq B} \omega_{B}^{M_{2}} E_{B}\right) \\
& =\sum_{N}\left(\sum_{\substack{M_{1} \leq A \\
M_{2} \leq B}} \omega_{A}^{M_{1}} \omega_{B}^{M_{2}} v^{\alpha(N, A, B)} F_{A B}^{N}\left(v^{2}\right)\right) E_{N},
\end{aligned}
$$

thus $\omega_{N}^{M}=\left(\sum_{\substack{M_{1} \leq A \\ M_{2} \leq B}} \omega_{A}^{M_{1}} \omega_{B}^{M_{2}} v^{\alpha(N, A, B)} F_{A B}^{N}\left(v^{2}\right)\right)$. If $\omega_{N}^{M} \neq 0$ then there exists a short exact sequence $0 \rightarrow B \rightarrow N \rightarrow A \rightarrow 0$ with $M_{1} \leq A$ and $M_{2} \leq B$. Thus we get $M=M_{1} \oplus M_{2} \leq N$. It also follows that $\omega_{M}^{M}=1$.

Suppose now that $M=U^{a}$ for an indecomposable representation U. Then $E_{M}=E_{1}^{d_{1}} \cdots E_{m}^{d_{m}}-\sum_{N \nsim M} v^{-\operatorname{dim} \operatorname{Ext}^{1}(N, N)} E_{N}$ and we can use induction.

Lemma. Let V be a free $\mathbb{Z}\left[v, v^{-1}\right]$-module of finite rank with a basis $b_{i}, i \in I$ and $\overline{:}: V \rightarrow V a \mathbb{Z}$-linear involution such that $\bar{v}=v^{-1}$. If there exists a partial ordering on I such that $\overline{b_{i}}=b_{i}+\sum_{j>i} \omega_{i j} b_{j}$, then there exists a unique basis $c_{i}, i \in I$, such that $\overline{c_{i}}=c_{i}$ and $c_{i} \in b_{i}+\sum_{j>i} v^{-1} \mathbb{Z}\left[v^{-1}\right] b_{j}$.

If we apply the lemma to $\left(U_{v}\left(\mathfrak{n}^{+}\right)\right)_{d}$ then we get a unique basis $\mathscr{B}=\left\{\mathscr{E}_{M}\right\}$ such that $\overline{\mathscr{E}_{M}}=\mathscr{E}_{M}$ and $\mathscr{E}_{M}=E_{M}+\sum_{M<N} \zeta_{N}^{M} E_{n}, \zeta_{N}^{M} \in v^{-1} \mathbb{Z}\left[v^{-1}\right]$. Lusztig Theorem now follows easily.

Note that if M is a semisimple representation then $\mathscr{E}_{M}=E_{m}^{\left(d_{m}\right)} \cdots E_{1}^{\left(d_{1}\right)}$. Similarly, if $\operatorname{Ext}^{1}(M, M)=0$ then $\mathscr{E}_{M}=E_{1}^{\left(d_{1}\right)} \cdots E_{m}^{\left(d_{m}\right)}$. It is also known that if Q is a quiver of type \mathbb{A}_{2} then $\mathscr{B}=\left\{E_{1}^{(a)} E_{2}^{(b)} E_{1}^{(c)} \mid b \geq a+c\right\} \cup$ $\left\{E_{2}^{(a)} E_{1}^{(b)} E_{2}^{(c)} b \geq a+c\right\}$.

