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Let Q be a Dynkin quiver with the set of vertices I. Recall that Uv(n
+) '

H(Q), where H(Q) is the generic Hall algebra of Q. The basis of H(Q)
formed by EM , where M ’s are chosen representatives of the isomorphism
classes of representations of Q. This basis corresponds to a basis BQ in
Uv(n

+).

Theorem (Lusztig). The lattice L :=
⊕

[M ] Z[v−1]EQ
M does not depend on

the orientation of Q. If π : L → L /v−1L is the canonical projection then
B := π(BQ) is independent on the orientation of Q. Futhermore, there exists
a unique basis B of L such that π(B) = B and b = b for all b ∈ B, where
Ei = Ei and v = v−1.

The proof of the first part involves translation of BGP-reflection functors
to Uv(g), Weyl group combinatorics and explicit calculations for type A2.
We present the proof of the second part.

Let k be an algebraically closed field and d ∈ NI. We define Rd :=⊕
i→j Hom(kdi , kdj) and Gd :=

∏
i∈I GL(kdi). Note that Rd is an affine al-

gebraic variety and Gd is a reductive algebraic group whose action on Rd is
algebraic. We say M ≤ N if ON ⊂ OM .

Lemma. Let M and N be representations of Q. There exists a unique rep-
resentation M ∗ N such that for any representation X of Q there exists a
short exact sequence 0→ N ′ → X → M ′ → 0 with M ≤ M ′ and N ≤ N ′ if
and only if M ∗N ≤ X.

We call M ∗N the generic extension of M by N .

Proof. Let d := dimM , e := dimN and Z be the set of all elements in
Rd+e of the form

(
N ′ ζ
0 M ′

)
, where N ≤ N ′ and M ≤M ′. We have a canonical

projection p : Z → OM ×ON , which is a trivial vector bundle. In particular,
Z is irreducible and Z0 := p−1(OM × ON) is a dense subset of Z .
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Let m : Gd+e × Z → Rd+e be the natural map and E the image of m.
Note that X ∈ E if and only if there exists a short exact sequence 0→ N ′ →
X → M ′ → 0 with M ≤ M ′ and N ≤ N ′. Moreover E0 := m(Gd+e ×Z0) is
a dense subset of E . Since the closed subset Z of Rd+e is stable under the
action of the parabolic subgroup

{(
g1 ξ
0 g2

) ∣∣ g1 ∈ Ge, g2 ∈ Gd

}
of Gd+e, it

follows that E is a closed subset of Rd+e. Thus E = OL for some L and the
claim follows we put M ∗N := L.

Corollary. Assume Ext1(M,N) = 0 = Hom(N,M). If M ≤ M ′ and N ≤
N ′ and we have a short exact sequence 0 → N ′ → X → M ′ → 0 then
M ⊕N ≤ X. Moreover, if X 'M ⊕N then M ′ 'M and N ′ ' N .

Proof. Since Ext1(M,N) = 0 we trivially have M ∗N = M ⊕N and the first
part follows. To prove the second part assume that we have a short exact
sequence 0→ N ′ →M⊕N →M ′ → 0 for some M ≤M ′ and N ≤ N ′. Then
we get M ∗ N ′ = M ⊕ N . Indeed, in general we have M ⊕ N = M ∗ N ≤
M ∗ N ′ ≤ M ′ ∗ N ′ and the above sequence implies M ′ ∗ N ′ ≤ M ⊕ N .
Consequently, we have a short exact sequence 0→ N ′ →M ⊕N →M → 0.
Using that Hom(N,M) = 0 we get N ′ ' N . Similarly we show M ′ 'M .

In Uv(n
+) we have EM =

∑
[N ] ω

M
N EN for some ωMN . There is a problem

if there is a representation theoretic interpretation of ωMN .

Proposition. If ωMN 6= 0 then M ≤ N . Moreover, ωMM = 1.

Proof. If dimM = 1, then M = Ei and EEi
= EEi

.
Let dimM > 1 and assume M is not a power of an indecomposable

representation. Then M = M1 ⊕M2, M1 6= 0 6= M2 and Ext1(M1,M2) =
0 = Hom(M2,M1). We have

EM = EM1EM2 = (
∑
M1≤A

ωM1
A EA)(

∑
M2≤B

ωM2
B EB)

=
∑
N

(
∑
M1≤A
M2≤B

ωM1
A ωM2

B vα(N,A,B)FN
AB(v2))EN ,

thus ωMN = (
∑

M1≤A
M2≤B

ωM1
A ωM2

B vα(N,A,B)FN
AB(v2)). If ωMN 6= 0 then there exists

a short exact sequence 0 → B → N → A → 0 with M1 ≤ A and M2 ≤ B.
Thus we get M = M1 ⊕M2 ≤ N . It also follows that ωMM = 1.

Suppose now thatM = Ua for an indecomposable representation U . Then
EM = Ed1

1 · · ·Edm
m −

∑
N 6'M v− dimExt1(N,N)EN and we can use induction.
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Lemma. Let V be a free Z[v, v−1]-module of finite rank with a basis bi, i ∈ I
and · : V → V a Z-linear involution such that v = v−1. If there exists
a partial ordering on I such that bi = bi +

∑
j>i ωijbj, then there exists a

unique basis ci, i ∈ I, such that ci = ci and ci ∈ bi +
∑

j>i v
−1Z[v−1]bj.

If we apply the lemma to (Uv(n
+))d then we get a unique basis B = {EM}

such that EM = EM and EM = EM +
∑

M<N ζ
M
N En, ζMN ∈ v−1Z[v−1]. Lusztig

Theorem now follows easily.
Note that if M is a semisimple representation then EM = E

(dm)
m · · ·E(d1)

1 .

Similarly, if Ext1(M,M) = 0 then EM = E
(d1)
1 · · ·E(dm)

m . It is also known

that if Q is a quiver of type A2 then B = {E(a)
1 E

(b)
2 E

(c)
1 | b ≥ a + c} ∪

{E(a)
2 E

(b)
1 E

(c)
2 b ≥ a+ c}.
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