Construction of the canonical bases

based on the talk by Markus Reineke (Wuppertal)

January 22, 2002

Let Q be a Dynkin quiver with the set of vertices I. Recall that $U_v(\mathfrak{n}^+) \simeq H(Q)$, where H(Q) is the generic Hall algebra of Q. The basis of H(Q) formed by E_M , where M's are chosen representatives of the isomorphism classes of representations of Q. This basis corresponds to a basis B^Q in $U_v(\mathfrak{n}^+)$.

Theorem (Lusztig). The lattice $\mathscr{L} := \bigoplus_{[M]} \mathbb{Z}[v^{-1}] E_M^Q$ does not depend on the orientation of Q. If $\pi : \mathscr{L} \to \mathscr{L}/v^{-1}\mathscr{L}$ is the canonical projection then $B := \pi(B_Q)$ is independent on the orientation of Q. Furthermore, there exists a unique basis \mathscr{B} of \mathscr{L} such that $\pi(\mathscr{B}) = B$ and $\overline{b} = b$ for all $b \in \mathscr{B}$, where $\overline{E_i} = E_i$ and $\overline{v} = v^{-1}$.

The proof of the first part involves translation of BGP-reflection functors to $\mathscr{U}_{v}(\mathfrak{g})$, Weyl group combinatorics and explicit calculations for type \mathbb{A}_{2} . We present the proof of the second part.

Let k be an algebraically closed field and $d \in \mathbb{N}I$. We define $R_d := \bigoplus_{i \to j} \operatorname{Hom}(k^{d_i}, k^{d_j})$ and $G_d := \prod_{i \in I} \operatorname{GL}(k^{d_i})$. Note that R_d is an affine algebraic variety and G_d is a reductive algebraic group whose action on R_d is algebraic. We say $M \leq N$ if $\mathcal{O}_N \subset \overline{\mathcal{O}_M}$.

Lemma. Let M and N be representations of Q. There exists a unique representation M * N such that for any representation X of Q there exists a short exact sequence $0 \to N' \to X \to M' \to 0$ with $M \leq M'$ and $N \leq N'$ if and only if $M * N \leq X$.

We call M * N the generic extension of M by N.

Proof. Let $d := \dim M$, $e := \dim N$ and \mathscr{Z} be the set of all elements in R_{d+e} of the form $\binom{N' \zeta}{0 M'}$, where $N \leq N'$ and $M \leq M'$. We have a canonical projection $p : \mathscr{Z} \to \mathcal{O}_M \times \mathcal{O}_N$, which is a trivial vector bundle. In particular, \mathscr{Z} is irreducible and $\mathscr{Z}_0 := p^{-1}(\mathscr{O}_M \times \mathscr{O}_N)$ is a dense subset of \mathscr{Z} .

Let $m: G_{d+e} \times \mathscr{Z} \to R_{d+e}$ be the natural map and \mathscr{E} the image of m. Note that $X \in \mathscr{E}$ if and only if there exists a short exact sequence $0 \to N' \to X \to M' \to 0$ with $M \leq M'$ and $N \leq N'$. Moreover $\mathscr{E}_0 := m(G_{d+e} \times \mathscr{Z}_0)$ is a dense subset of \mathscr{E} . Since the closed subset \mathscr{Z} of R_{d+e} is stable under the action of the parabolic subgroup $\left\{ \begin{pmatrix} g_1 & \xi \\ 0 & g_2 \end{pmatrix} \mid g_1 \in G_e, g_2 \in G_d \right\}$ of G_{d+e} , it follows that \mathscr{E} is a closed subset of R_{d+e} . Thus $\mathscr{E} = \overline{\mathscr{O}_L}$ for some L and the claim follows we put M * N := L.

Corollary. Assume $\operatorname{Ext}^{1}(M, N) = 0 = \operatorname{Hom}(N, M)$. If $M \leq M'$ and $N \leq N'$ and we have a short exact sequence $0 \to N' \to X \to M' \to 0$ then $M \oplus N \leq X$. Moreover, if $X \simeq M \oplus N$ then $M' \simeq M$ and $N' \simeq N$.

Proof. Since $\operatorname{Ext}^1(M, N) = 0$ we trivially have $M * N = M \oplus N$ and the first part follows. To prove the second part assume that we have a short exact sequence $0 \to N' \to M \oplus N \to M' \to 0$ for some $M \leq M'$ and $N \leq N'$. Then we get $M * N' = M \oplus N$. Indeed, in general we have $M \oplus N = M * N \leq$ $M * N' \leq M' * N'$ and the above sequence implies $M' * N' \leq M \oplus N$. Consequently, we have a short exact sequence $0 \to N' \to M \oplus N \to M \to 0$. Using that $\operatorname{Hom}(N, M) = 0$ we get $N' \simeq N$. Similarly we show $M' \simeq M$. \Box

In $U_v(\mathfrak{n}^+)$ we have $\overline{E_M} = \sum_{[N]} \omega_N^M E_N$ for some ω_N^M . There is a problem if there is a representation theoretic interpretation of ω_N^M .

Proposition. If $\omega_N^M \neq 0$ then $M \leq N$. Moreover, $\omega_M^M = 1$.

Proof. If dim M = 1, then $M = E_i$ and $\overline{E_{E_i}} = E_{E_i}$.

Let dim M > 1 and assume M is not a power of an indecomposable representation. Then $M = M_1 \oplus M_2$, $M_1 \neq 0 \neq M_2$ and $\text{Ext}^1(M_1, M_2) = 0 = \text{Hom}(M_2, M_1)$. We have

$$\overline{E_M} = \overline{E_{M_1}E_{M_2}} = (\sum_{\substack{M_1 \le A \\ M_2 \le B}} \omega_A^{M_1} E_A) (\sum_{\substack{M_2 \le B \\ M_2 \le B}} \omega_B^{M_2} w^{M_1} \omega_B^{M_2} v^{\alpha(N,A,B)} F_{AB}^N(v^2)) E_N,$$

thus $\omega_N^M = (\sum_{\substack{M_1 \leq A \\ M_2 \leq B}} \omega_A^{M_1} \omega_B^{M_2} v^{\alpha(N,A,B)} F_{AB}^N(v^2))$. If $\omega_N^M \neq 0$ then there exists a short exact sequence $0 \to B \to N \to A \to 0$ with $M_1 \leq A$ and $M_2 \leq B$. Thus we get $M = M_1 \oplus M_2 \leq N$. It also follows that $\omega_M^M = 1$.

Suppose now that $M = U^a$ for an indecomposable representation U. Then $E_M = E_1^{d_1} \cdots E_m^{d_m} - \sum_{N \neq M} v^{-\dim \operatorname{Ext}^1(N,N)} E_N$ and we can use induction. \Box

Lemma. Let V be a free $\mathbb{Z}[v, v^{-1}]$ -module of finite rank with a basis b_i , $i \in I$ and $\overline{\cdot} : V \to V$ a \mathbb{Z} -linear involution such that $\overline{v} = v^{-1}$. If there exists a partial ordering on I such that $\overline{b_i} = b_i + \sum_{j>i} \omega_{ij} b_j$, then there exists a unique basis c_i , $i \in I$, such that $\overline{c_i} = c_i$ and $c_i \in b_i + \sum_{j>i} v^{-1} \mathbb{Z}[v^{-1}] b_j$.

If we apply the lemma to $(U_v(\mathfrak{n}^+))_d$ then we get a unique basis $\mathscr{B} = \{\mathscr{E}_M\}$ such that $\overline{\mathscr{E}_M} = \mathscr{E}_M$ and $\mathscr{E}_M = E_M + \sum_{M < N} \zeta_N^M E_n, \, \zeta_N^M \in v^{-1}\mathbb{Z}[v^{-1}]$. Lusztig Theorem now follows easily.

Note that if M is a semisimple representation then $\mathscr{E}_M = E_m^{(d_m)} \cdots E_1^{(d_1)}$. Similarly, if $\operatorname{Ext}^1(M, M) = 0$ then $\mathscr{E}_M = E_1^{(d_1)} \cdots E_m^{(d_m)}$. It is also known that if Q is a quiver of type \mathbb{A}_2 then $\mathscr{B} = \{E_1^{(a)} E_2^{(b)} E_1^{(c)} \mid b \ge a + c\} \cup \{E_2^{(a)} E_1^{(b)} E_2^{(c)} b \ge a + c\}$.