The Hall algebra as a quantum group

based on a talk by Markus Reineke (Wuppertal)

January 17, 2002

Let Q be a Dynkin quiver and I the set of vertices of Q. We denote by $\langle-,-\rangle$ the Euler form of Q. Recall that the symmetrization of $\langle-,-\rangle$ is given by the Cartan matrix of Q.

For a finite field k with q elements we define $R_{d}:=\bigoplus_{i \rightarrow j} \operatorname{Hom}_{k}\left(k^{d_{i}}, k^{d_{j}}\right)$ and $G_{d}:=\prod_{i \in I} \mathrm{GL}\left(k^{d_{i}}\right)$. Recall that $\mathscr{H}_{v}(Q):=\bigoplus_{d \in \mathbb{N} I} \mathbb{C}^{G_{d}} R_{d}$ is an algebra with the convolution product

$$
(f * g)(X):=v^{\langle d, e\rangle} \sum_{U \subset X} g(U) f(X / U)
$$

where $f: R_{d} \rightarrow \mathbb{C}, g: R_{e} \rightarrow \mathbb{C}$ and $v^{2}=q$. It follows from the definition that
$\left(f_{1} * \cdots * f_{n}\right)(X)=v^{\sum_{i<j}\left\langle d_{i}, d_{j}\right\rangle} \sum_{X=X_{0} \supset X_{1} \supset \cdots \supset X_{n}=0} f_{1}\left(X_{0} / X_{1}\right) \cdots f_{n}\left(X_{n-1} / X_{n}\right)$,
where $f_{i}: R_{i} \rightarrow \mathbb{C}$.
The orbits of the action of G_{d} in R_{d} are in one to one correspondence with isoclasses of k-representation of Q of dimension vector d. Thus in $\mathscr{H}_{v}(Q)$ we have a basis $E_{M}:=v^{\operatorname{dim} \operatorname{End} M-\operatorname{dim} M} \chi_{\mathscr{O}_{M}}$. We have

$$
E_{M} E_{N}=v^{\langle\operatorname{dim} M, \operatorname{dim} N\rangle} \sum_{[X]} v^{\operatorname{dim} \operatorname{End} M+\operatorname{dim} \operatorname{End} N-\operatorname{dim} \operatorname{End} X} F_{M N}^{X}\left(v^{2}\right) E_{X}
$$

where $F_{M N}^{X}\left(v^{2}\right)$ is the number of subrepresentations U of X such that $U \simeq N$ and $X / U \simeq M$.

Let R^{+}be the set of positive roots of Q. By the theorem of Gabriel R^{+} parameterizes the isoclasses of indecomposable representations of Q. For $\alpha \in$ R^{+}we denote by U_{α} the indecomposable representation of Q of dimension vector α. All isoclasses of representations of Q are parameterized by functions $R^{+} \rightarrow \mathbb{N}$, where $f \mapsto \bigoplus_{\alpha \in R^{+}} U_{\alpha}^{f(\alpha)}$. Thus roughly speaking, we can deal with representations of Q over all fields at the same time.

Proposition (Ringel). We have $F_{M N}^{X} \in \mathbb{Z}\left[v^{2}\right]$.
Let $\mathscr{H}(Q):=\bigoplus_{[M]} \mathbb{C}(v) E_{M}$ and $H(Q):=\bigoplus_{[M]} \mathbb{Z}\left[v, v^{-1}\right] E_{M}$, with multiplication

$$
E_{M} E_{N}:=v^{\langle\operatorname{dim} M, \operatorname{dim} N\rangle} \sum_{[X]} v^{\operatorname{dim} \operatorname{End}(M)+\operatorname{dim} \operatorname{End} N-\operatorname{dim} \operatorname{End} X} F_{M N}^{X}\left(v^{2}\right) E_{X} .
$$

Lemma 1. If U is indecomposable then $E_{U}^{m}=[m]!E_{U^{m}}$.
Proof. It follows easily by induction on m.
Lemma 2. If $\operatorname{Hom}(N, M)=0=\operatorname{Ext}^{1}(M, N)$ then $E_{M} E_{N}=E_{M \oplus N}$.
Proof. It follows immediately by applying definition.
Recall that the path algebra of Q is representation directed, hence there exists enumeration U_{1}, \ldots, U_{ν} of indecomposables representation of Q, such that $\operatorname{Hom}\left(U_{j}, U_{i}\right)=0$ and $\operatorname{Ext}^{1}\left(U_{i}, U_{j}\right)=0$ for $i<j$. Hence, if $M=$ $\bigoplus_{i=1}^{\nu} U_{i}^{m_{i}}$, then $E_{M}=E_{U_{1}^{m_{1}}} \cdots E_{U_{\nu}}^{m_{\nu}}$.

We choose an order on $I=\{1, \ldots, n\}$, such that if there is an arrow $i \rightarrow j$ then $i<j$. Let E_{i} be the simple representation of Q corresponding to vertex i.

Lemma 3. Let $d=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{N} I$. Then we have

$$
E_{E_{1}^{d_{1}}} \cdots E_{E_{m}^{d_{m}}}=\sum_{[M], \operatorname{dim} M=d} v^{-\operatorname{dim} \operatorname{Ext}{ }^{1}(M, M)} E_{M} .
$$

Proof. Any representation M of dimension vector d has a unique filtration $M=M_{0} \supset M_{1} \supset \cdots \supset M_{n-1} \supset M_{n}=0$ such that $M_{i-1} / M_{i} \simeq E_{i}^{d_{i}}$.
 the claim follows.

Let $\mathscr{U}_{v}\left(\mathfrak{n}^{+}\right):=\mathbb{C}(v)\left\langle E_{i} \mid i \in I\right\rangle / \mathscr{I}_{v}$, where \mathscr{I}_{v} is the ideal in $\mathbb{C}(v)\left\langle E_{i}\right|$ $i \in I\rangle$ generated by all elements $\left[E_{i}, E_{j}\right]=0, i, j \in I$ such that there is no edge from i to j, and $E_{i}^{2} E_{j}-\left(v+v^{-1}\right) E_{i} E_{j} E_{i}+E_{i} E_{j}^{2}, i, j \in I$ such that there is an edge from i to j. We denote by $U_{v}\left(\mathfrak{n}^{+}\right)$the $\mathbb{Z}\left[v, v^{-1}\right]$ subalgebra of $\mathscr{U}_{v}\left(\mathfrak{n}^{+}\right)$generated by $E_{i}^{(n)}:=\frac{1}{[n!!} E_{i}^{n}, i \in I, n \in \mathbb{N}$.

Theorem (Ringel). We have $\mathscr{H}(Q) \simeq \mathscr{U}_{v}\left(\mathfrak{n}^{+}\right)$and $H(Q) \simeq U_{v}\left(\mathfrak{n}^{+}\right)$.

Proof. By direct calculation it follows that there exists an algebra homomorphism $\eta: \mathscr{U}_{v}\left(\mathfrak{n}^{+}\right) \rightarrow \mathscr{H}(Q)$ such that $\eta\left(E_{i}\right):=E_{E_{i}}$. We have that $\eta\left(U_{v}\left(\mathfrak{n}^{+}\right)\right) \subset H(Q)$ and $\eta\left(E_{i}^{(n)}\right) \mapsto E_{E_{i}^{n}}$. We have to show that $H(Q)$ is generated by E_{i}^{n}, thus prove that each E_{M} belongs to span $E_{E_{i}^{n}}$.

If $\operatorname{dim} M=1$ then M is simple and the claim is obvious. If $\operatorname{dim} M>1$ then by Lemma 2 we may assume that $M \simeq U^{q}$, where U is indecomposable. By Lemma $3 E_{U^{q}}=E_{E_{1}^{d_{1}}} \cdots E_{E_{n}^{d_{n}}}-\sum_{\operatorname{dim} N=d, N \not U^{q}} v^{-\operatorname{dim} \operatorname{Ext}{ }^{1}(N, N)} E_{N}$. It follows that each N appearing in the sum is a direct sum if indecomposable representations V such that $\operatorname{dim} V<\operatorname{dim} U$, hence we may use induction.

Finally, we show that η is a monomorphism. Note that $\mathscr{U}_{v}\left(\mathfrak{n}^{+}\right)$is $\mathbb{N} I$ graded by $\operatorname{deg} E_{i}=e_{i}$. Similarly, $\mathscr{H}(Q)$ is $\mathbb{N} I$-graded by $\operatorname{deg} E_{M}=\operatorname{dim} M$. Note that $\operatorname{dim} \mathscr{H}(Q)_{d}$ is the number of isoclasses of representation of dimension vector d, thus the number of functions $f: R^{+} \rightarrow \mathbb{N}$ such that $\sum_{\alpha} f(\alpha) \alpha=d$. On the hand $\operatorname{dim}_{\mathbb{C}(v)} \mathscr{U}_{v}\left(\mathfrak{n}^{+}\right)_{d}=\operatorname{dim}_{\mathbb{C}} \mathscr{U}\left(\mathfrak{n}^{+}\right)$, and the latter equals the number of functions $f: R^{+} \rightarrow \mathbb{N}$ such that $\sum_{\alpha} f(\alpha) \alpha=d$ by Poincere-Birkhoff-Witt theorem.

