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Let @ be a Dynkin quiver and I the set of vertices of (). We denote
by (—,—) the Euler form of @). Recall that the symmetrization of (—, —) is
given by the Cartan matrix of Q.

For a finite field k with ¢ elements we define Ry := @, ,; Homy (k% k%)
and Gq := [[,c; GL(k%). Recall that #(Q) := @ cn; C¥“Ry is an algebra
with the convolution product

(f % 9)(X) := 0" Y~ g(U) f(X/U),

UcxX

where f : Ry —+ C , g : R, — C and v? = ¢. It follows from the definition
that

(fr -k ) (X) = vZizs{dids) Z [i(Xo/X1) - fu(Xno1/Xn),

X:XODXID"'DXHZO

where f; : R; — C.
The orbits of the action of G4 in R4 are in one to one correspondence with

isoclasses of k-representation of () of dimension vector d. Thus in J7,(Q) we
have a basis E); = pdimEndM=dimM, - We have

_ . (dim M,dim N dim End M+dim End N—dim End X X 2
EyEn =0 "> F v Ex,

[X]

where F{%y(v?) is the number of subrepresentations U of X such that U ~ N
and X/U ~ M.

Let RT be the set of positive roots of ). By the theorem of Gabriel R™
parameterizes the isoclasses of indecomposable representations of (). For o €
R* we denote by U, the indecomposable representation of () of dimension
vector a.. All isoclasses of representations of () are parameterized by functions
R* — N, where f — @, cp+ UL Thus roughly speaking, we can deal with
representations of () over all fields at the same time.
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Proposition (Ringel). We have sy € Z[v?].
tipﬁl;ztﬁif(@) = @ C(v) By and H(Q) := Dy Z[v, v Ey, with mul-
Ey Ey = y{dimMdim N) Z pdimEnd(M)-+dim End N—dim End X X (,,2) 5.
(X]
Lemma 1. If U is indecomposable then EJ} = [m]!Eym.
Proof. 1t follows easily by induction on m. n
Lemma 2. If Hom(N, M) = 0 = Ext' (M, N) then EyExy = Eyen.
Proof. 1t follows immediately by applying definition. m

Recall that the path algebra of () is representation directed, hence there
exists enumeration Uy, ..., U, of indecomposables representation of @), such
that Hom(U;,U;) = 0 and Ext'(U;,U;) = 0 for i < j. Hence, if M =
69;/:1 Uzmz, then Ey = EU1m1 s EZZ’

We choose an order on I = {1,...,n}, such that if there is an arrow i — j
then i < j. Let E; be the simple representation of () corresponding to vertex
7.

Lemma 3. Let d = (dy,...,d,) € NI. Then we have

—di 1
_ 2 v dim Ext* (M, M) EM
[M],dim M=d

EEfl"'E

Edm

Proof. Any representation M of dimension vector d has a unique filtration
M= My > M D - > M, DM, =0 such that M, ;/M; ~ E*.
Thus EEfl R /UZi<j<di€i,djej>Z[MLdimM:d pdimi 2 —dimEnd M @

the claim follows. O

Let %,(n") := C(v)(E; | i € I)/.%,, where .#, is the ideal in C(v)(E; |
i € I) generated by all elements [E;, E;] = 0, 4,j € I such that there is no
edge from i to j, and EYE; — (v + v ") E;E;E; + E;E7, i,j € I such that
there is an edge from i to j. We denote by U,(n") the Z[v,v™!] subalgebra
of %,(n") generated by EZ.(") = LEr i€l neN.

— [n]!

Theorem (Ringel). We have 5(Q) ~ %,(n") and H(Q) ~ U,(n™).



Proof. By direct calculation it follows that there exists an algebra homo-
morphism 7 : %,(n") — J(Q) such that n(E;) := Eg,. We have that
n(U,(n")) C H(Q) and n(EZ-(”)) + Egn. We have to show that H(Q) is
generated by EJ', thus prove that each E)s belongs to span Epn.

If dim M = 1 then M is simple and the claim is obvious. If dim M > 1
then by Lemma 2 we may assume that M ~ U? where U is indecomposable.

— dim Ext!
By Lemma 3 Eyq = EEllil o Bpa, — ZdimN:d’N?équ dimExt (NN) o Tt

follows that each N appearing in the sum is a direct sum if indecomposable
representations V' such that dim V' < dim U, hence we may use induction.
Finally, we show that 1 is a monomorphism. Note that %,(n™) is NI-
graded by deg E; = e;. Similarly, (Q) is NI-graded by deg F); = dim M.
Note that dim J#(Q)q is the number of isoclasses of representation of di-
mension vector d, thus the number of functions f : Rt — N such that
Yo f(@)a=d. On the hand dimcy %, (n")q = dime % (n"), and the latter
equals the number of functions f : R* — N such that > f(a)a = d by
Poincere-Birkhoff-Witt theorem. O



