The Hall algebra as a quantum group based on a talk by Markus Reineke (Wuppertal) January 17, 2002

Let Q be a Dynkin quiver and I the set of vertices of Q. We denote by $\langle -, - \rangle$ the Euler form of Q. Recall that the symmetrization of $\langle -, - \rangle$ is given by the Cartan matrix of Q.

For a finite field k with q elements we define $R_d := \bigoplus_{i \to j} \operatorname{Hom}_k(k^{d_i}, k^{d_j})$ and $G_d := \prod_{i \in I} \operatorname{GL}(k^{d_i})$. Recall that $\mathscr{H}_v(Q) := \bigoplus_{d \in \mathbb{N}I} \mathbb{C}^{G_d} R_d$ is an algebra with the convolution product

$$(f*g)(X) := v^{\langle d,e\rangle} \sum_{U \subset X} g(U) f(X/U),$$

where $f: R_d \to \mathbb{C}$, $g: R_e \to \mathbb{C}$ and $v^2 = q$. It follows from the definition that

$$(f_1 * \dots * f_n)(X) = v^{\sum_{i < j} \langle d_i, d_j \rangle} \sum_{X = X_0 \supset X_1 \supset \dots \supset X_n = 0} f_1(X_0/X_1) \cdots f_n(X_{n-1}/X_n),$$

where $f_i : R_i \to \mathbb{C}$.

The orbits of the action of G_d in R_d are in one to one correspondence with isoclasses of k-representation of Q of dimension vector d. Thus in $\mathscr{H}_v(Q)$ we have a basis $E_M := v^{\dim \operatorname{End} M - \dim M} \chi_{\mathscr{O}_M}$. We have

$$E_M E_N = v^{\langle \dim M, \dim N \rangle} \sum_{[X]} v^{\dim \operatorname{End} M + \dim \operatorname{End} N - \dim \operatorname{End} X} F_{MN}^X(v^2) E_X,$$

where $F_{MN}^X(v^2)$ is the number of subrepresentations U of X such that $U \simeq N$ and $X/U \simeq M$.

Let R^+ be the set of positive roots of Q. By the theorem of Gabriel R^+ parameterizes the isoclasses of indecomposable representations of Q. For $\alpha \in R^+$ we denote by U_{α} the indecomposable representation of Q of dimension vector α . All isoclasses of representations of Q are parameterized by functions $R^+ \to \mathbb{N}$, where $f \mapsto \bigoplus_{\alpha \in R^+} U_{\alpha}^{f(\alpha)}$. Thus roughly speaking, we can deal with representations of Q over all fields at the same time. **Proposition** (Ringel). We have $F_{MN}^X \in \mathbb{Z}[v^2]$.

Let $\mathscr{H}(Q) := \bigoplus_{[M]} \mathbb{C}(v) E_M$ and $H(Q) := \bigoplus_{[M]} \mathbb{Z}[v, v^{-1}] E_M$, with multiplication

$$E_M E_N := v^{\langle \dim M, \dim N \rangle} \sum_{[X]} v^{\dim \operatorname{End}(M) + \dim \operatorname{End} N - \dim \operatorname{End} X} F_{MN}^X(v^2) E_X.$$

Lemma 1. If U is indecomposable then $E_U^m = [m]! E_{U^m}$.

Proof. It follows easily by induction on m.

Lemma 2. If $\operatorname{Hom}(N, M) = 0 = \operatorname{Ext}^1(M, N)$ then $E_M E_N = E_{M \oplus N}$.

Proof. It follows immediately by applying definition.

Recall that the path algebra of Q is representation directed, hence there exists enumeration U_1, \ldots, U_{ν} of indecomposables representation of Q, such that $\operatorname{Hom}(U_j, U_i) = 0$ and $\operatorname{Ext}^1(U_i, U_j) = 0$ for i < j. Hence, if $M = \bigoplus_{i=1}^{\nu} U_i^{m_i}$, then $E_M = E_{U_1}^{m_1} \cdots E_{U_{\nu}}^{m_{\nu}}$.

We choose an order on $I = \{1, ..., n\}$, such that if there is an arrow $i \to j$ then i < j. Let E_i be the simple representation of Q corresponding to vertex i.

Lemma 3. Let $d = (d_1, \ldots, d_n) \in \mathbb{N}I$. Then we have

$$E_{E_1^{d_1}} \cdots E_{E_m^{d_m}} = \sum_{[M], \dim M = d} v^{-\dim \operatorname{Ext}^1(M, M)} E_M.$$

Proof. Any representation M of dimension vector d has a unique filtration $M = M_0 \supset M_1 \supset \cdots \supset M_{n-1} \supset M_n = 0$ such that $M_{i-1}/M_i \simeq E_i^{d_i}$. Thus $E_{E_1^{d_1}} \cdots E_{E_m^{d_m}} = v^{\sum_{i < j} \langle d_i e_i, d_j e_j \rangle} \sum_{[M], \dim M = d} v^{\dim_i d_i^2 - \dim \operatorname{End} M} E_M$, and the claim follows.

Let $\mathscr{U}_{v}(\mathfrak{n}^{+}) := \mathbb{C}(v)\langle E_{i} \mid i \in I \rangle / \mathscr{I}_{v}$, where \mathscr{I}_{v} is the ideal in $\mathbb{C}(v)\langle E_{i} \mid i \in I \rangle$ generated by all elements $[E_{i}, E_{j}] = 0$, $i, j \in I$ such that there is no edge from i to j, and $E_{i}^{2}E_{j} - (v + v^{-1})E_{i}E_{j}E_{i} + E_{i}E_{j}^{2}$, $i, j \in I$ such that there is an edge from i to j. We denote by $U_{v}(\mathfrak{n}^{+})$ the $\mathbb{Z}[v, v^{-1}]$ subalgebra of $\mathscr{U}_{v}(\mathfrak{n}^{+})$ generated by $E_{i}^{(n)} := \frac{1}{[n]!}E_{i}^{n}, i \in I, n \in \mathbb{N}.$

Theorem (Ringel). We have $\mathscr{H}(Q) \simeq \mathscr{U}_v(\mathfrak{n}^+)$ and $H(Q) \simeq U_v(\mathfrak{n}^+)$.

Proof. By direct calculation it follows that there exists an algebra homomorphism $\eta : \mathscr{U}_v(\mathfrak{n}^+) \to \mathscr{H}(Q)$ such that $\eta(E_i) := E_{E_i}$. We have that $\eta(U_v(\mathfrak{n}^+)) \subset H(Q)$ and $\eta(E_i^{(n)}) \mapsto E_{E_i^n}$. We have to show that H(Q) is generated by E_i^n , thus prove that each E_M belongs to span $E_{E_i^n}$.

If dim M = 1 then M is simple and the claim is obvious. If dim M > 1 then by Lemma 2 we may assume that $M \simeq U^q$, where U is indecomposable. By Lemma 3 $E_{U^q} = E_{E_1^{d_1}} \cdots E_{E_n^{d_n}} - \sum_{\dim N = d, N \not\simeq U^q} v^{-\dim \operatorname{Ext}^1(N,N)} E_N$. It follows that each N appearing in the sum is a direct sum if indecomposable representations V such that dim $V < \dim U$, hence we may use induction.

Finally, we show that η is a monomorphism. Note that $\mathscr{U}_{v}(\mathfrak{n}^{+})$ is N*I*graded by deg $E_{i} = e_{i}$. Similarly, $\mathscr{H}(Q)$ is N*I*-graded by deg $E_{M} = \dim M$. Note that dim $\mathscr{H}(Q)_{d}$ is the number of isoclasses of representation of dimension vector d, thus the number of functions $f : \mathbb{R}^{+} \to \mathbb{N}$ such that $\sum_{\alpha} f(\alpha)\alpha = d$. On the hand dim_{$\mathbb{C}(v)$} $\mathscr{U}_{v}(\mathfrak{n}^{+})_{d} = \dim_{\mathbb{C}} \mathscr{U}(\mathfrak{n}^{+})$, and the latter equals the number of functions $f : \mathbb{R}^{+} \to \mathbb{N}$ such that $\sum_{\alpha} f(\alpha)\alpha = d$ by Poincere–Birkhoff–Witt theorem.