Introduction to quantum groups and crystal bases

based on the talk by Markus Reineke (Wuppertal)

January 15, 2002

Let \mathfrak{g} be a finite dimensional complex Lie algebra. Examples of Lie algebras are \mathfrak{gl}_n and \mathfrak{sl}_n , $n \geq 2$. We will always assume that \mathfrak{g} is a semisimple Lie algebra, i.e. $\mathfrak{g} = \bigoplus_{i=1}^k \mathfrak{g}_i$, where \mathfrak{g}_i , $i = 1, \ldots, k$, is a simple Lie algebra, that is $[-, -] \neq 0$ and for each $I \subset \mathfrak{g}_i$ such that $[\mathfrak{g}_i, I] \subset I$ we have either I = 0 or $I = \mathfrak{g}_i$. The semisimple Lie algebras are classified by Dynkin diagrams or, equivalently, by Cartan matrices. For example, \mathfrak{sl}_n is a simple Lie algebra of type \mathbb{A}_{n-1} and \mathfrak{sl}_3 corresponds to the matrix $\binom{2 - 1}{-1}$.

The representation of a Lie algebra \mathfrak{g} in a vector space V is a Lie algebra homomorphism $\mathfrak{g} \to \mathfrak{gl}(V)$. Weyl showed that if \mathfrak{g} is semisimple then the category mod \mathfrak{g} of finite dimensional representations of \mathfrak{g} is semisimple. Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} . The categories mod \mathfrak{g} and mod $U(\mathfrak{g})$ are equivalent, thus the category mod $U(\mathfrak{g})$ is semisimple.

Recall that a complex Lie algebra \mathfrak{g} has a decomposition $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$. For example if $\mathfrak{g} = \mathfrak{sl}_n$, then \mathfrak{n}^- consists of the lower triangular matrices, \mathfrak{h} consists of the diagonal matrices and \mathfrak{n}^+ consists of the upper triangular matrices. We have the generators F_i of \mathfrak{n}^- , H_i of \mathfrak{h} , E_i for \mathfrak{n}^+ , $i \in I$, where I is the set of vertices of the corresponding Dynkin diagram. If $\mathfrak{g} = \mathfrak{sl}_n$ then $F_i = e_{i+1,i}, H_i = e_{i,i} - e_{i+1,i+1}$ and $E_i = e_{i,i+1}, i = 1, \ldots, n-1$. As the consequence $U(\mathfrak{n}^+)$ is generated by $E_i, i \in I$, as an algebra.

Let $\lambda = (\lambda_i)_{i \in I} \in \mathbb{N}I$, $I_{\lambda} := \sum_{i \in I} U(\mathfrak{n}^+) E_i^{\lambda_i + 1}$ and $L_{\lambda} := U(\mathfrak{n}^+)/I_{\lambda}$. We define the action of $U(\mathfrak{g})$ on L_{λ} via $F_i \overline{1} = 0$ and $H_i \overline{1} = \lambda_i \overline{1}$, $i \in I$. It follows that $L_{\lambda}, \lambda \in \mathbb{N}I$, form the complete set of simple $U(\mathfrak{g})$ -modules.

An interesting problem connected with the above description is the question about dim L_{λ} . Another one is the description of the restriction of L_{λ} to $U(\mathfrak{h}) = \mathbb{C}[H_i \mid i \in I]$. This is answered by Weyl character formula, which says that ch $L_{\lambda} := \sum_{\mu \in \mathbb{N}I} \dim(L_{\lambda})_{\mu} e^{\mu} = \frac{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda + \rho)}}{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\rho)}}$. However, there is still a question whether there is a "combinatorial formula" for ch L_{λ} , i.e. a formula of the form $(\dim L_{\lambda})_{\mu}$ equals the number of certain combinatorial objects.

We know that $L_{\lambda} \otimes L_{\mu} = \bigoplus_{\nu \in \mathbb{N}I} L_{\nu}^{c_{\lambda\mu}^{\nu}}$ for some $c_{\lambda\mu}^{\nu}$. We may ask how to compute $c_{\lambda\mu}^{\nu}$. For type \mathbb{A} the answer is contained in the Littlewood-Richardson rule.

We want to deform $U(\mathfrak{g})$. However, complex semisimple Lie algebras are rigid, that is all deformations are trivial. Consequently, $U(\mathfrak{g})$ is rigid as a cocommutative Hopf algebra. Happily, $U(\mathfrak{g})$ is not rigid as a noncocommutative Hopf algebra. From now on we will assume that \mathfrak{g} is of one of the types \mathbb{A} , \mathbb{D} or \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 .

Theorem (Serre). We have $U(\mathfrak{n}^+) = \mathbb{C}\langle E_i | E_i \in I \rangle / ([E_i, E_j]) = 0$ if $a_{ij} = 0$, and $[E_i, [E_i, E_j]] = 0$ if $a_{ij} = -1$.

We have $[E_i, [E_i, E_j]] = E_i^2 E_j - 2E_i E_j E_i + E_j E_i^2$. Thus we may define $\mathscr{U}_v(\mathfrak{n}^+) := \mathbb{C}(v)\langle E_i \mid i \in I \rangle / ([E_i, E_j] = 0 \text{ if } a_{ij} = 0 \text{ and } E_i^2 E_j - (v + v^{-1})E_iE_jE_i + E_jE_i^2 = 0 \text{ if } a_{ij} = -1)$ and $U_v(\mathfrak{n}^+)$ is the $\mathbb{Z}[v, v^{-1}]$ -subalgebra of $\mathscr{U}_v(\mathfrak{n}^+)$ generated by $E_i^{(n)}, i \in I, n \in \mathbb{N}$, where $E_i^{(n)} := \frac{1}{[n]!}E_i^n$, and $[n] := \frac{v^n - v^{-n}}{v - v^{-1}}$. It follows easily that $\mathbb{C}_1 \otimes_{\mathbb{Z}[v, v^{-1}]} U_v(\mathfrak{n}^+) \simeq U(\mathfrak{n}^+)$, where \mathbb{C}_μ denotes a 1-dimensional $\mathbb{Z}[v, v^{-1}]$ -module with v acting by multiplication by μ .

Let Q be a quiver obtained from the diagram determining \mathfrak{g} . For $d \in \mathbb{N}I$ we define $R_d := \bigoplus_{\alpha:i\to j} \operatorname{Hom}_k(k^{d_i}, k^{d_j})$ and $G_d := \prod_{i\in I} \operatorname{GL}(k^{d_i})$, where $k = \mathbb{F}_q$ for some q. Then G_d acts on R_d via $(g_i) * (X_\alpha) := (g_j X_\alpha g_i^{-1})$. We put $\mathscr{H}(Q) := \bigoplus_{d\in\mathbb{N}I} \mathbb{C}^{G_d}(R_d)$, where $\mathbb{C}^{G_d}(R_d)$ denots the space of G_d -invariant complex functions on R_d . The formula $(f * g)(X) := q^\alpha \sum_{U \subset X} g(U) f(X/U)$ defines in $\mathscr{H}(Q)$ a structure of an associative \mathbb{C} -algebra called the Hall algebra. We have $\mathscr{H}(Q) \simeq \mathbb{C}_{\sqrt{q}} \otimes_{\mathbb{Z}[v,v^{-1}]} U_v(\mathfrak{n}^+)$.

Let $\mathscr{B}_q(Q)$ be the set of the characteristic functions of all orbits in all R_d . Then $\mathscr{B}_q(Q)$ is a basis of $\mathscr{H}(Q)$. There exists a basis $\mathscr{B}(Q)$ of $U_v(\mathfrak{n}^+)$, which specializes to $\mathscr{B}_q(Q)$ for each q. However, for different orientations Q of the diagram determining \mathfrak{g} the bases $\mathscr{B}(Q)$ are different. Let $\mathscr{L}(Q) := \mathbb{Z}[v^{-1}]\mathscr{B}(Q)$. If follows that $\mathscr{L}(Q) = \mathscr{L}(Q')$ if Q and Q' have the same underlying graph. Thus we put $\mathscr{L} := \mathscr{L}(Q)$. If $\pi : \mathscr{L} \to \mathscr{L}/v^{-1}\mathscr{L}$ is the canonical projection, then $\pi(\mathscr{B}(Q)) = \pi(\mathscr{B}(Q'))$. We call $B := \pi(\mathscr{B}(Q))$ the crystal basis of $\mathscr{L}/v^{-1}\mathscr{L}$.

There exists the unique basis \mathscr{B} of $U_v(\mathfrak{n}^+)$ such that $\mathscr{B} \subset \mathscr{L}, \pi(\mathscr{B}) = B$ and $\overline{b} = b$ for all $b \in \mathscr{B}$, where $\overline{E}_i = E_i$ and $\overline{v} := v^{-1}$. The proof of the above fact uses degenerations.

Let \mathscr{B}_{μ} be the specialization of \mathscr{B} to $\mathbb{C}_{\mu} \otimes_{\mathbb{Z}[v,v^{-1}]} \mathscr{B}$ and $\pi_{\lambda} : U(\mathfrak{n}^{+}) \to L_{\lambda}$ be the canonical projection.

Theorem (Lusztig/Kashiwara). We have that $\pi_{\lambda}(\mathscr{B}_1) \setminus \{0\}$ is a basis of L_{λ} for all $\lambda \in \mathbb{N}I$.

Proof. Fix $i \in I$ and choose an orientation Q such that i is a source in Q. Then, it follows that $\mathscr{B}_1(Q) \cap U(\mathfrak{n}^+) E_i^{\lambda_i+1}$ is a basis of $U(\mathfrak{n}^+) E_i^{\lambda_i+1}$). As the consequence $\mathscr{B}_1 \cap U(\mathfrak{n}^+) E_i^{\lambda_i+1}$ is a basis of $U(\mathfrak{n}^+) E_i^{\lambda_i+1}$ for all i Hence $\mathscr{B}_1 \cap I_{\lambda}$ is a basis of I_{λ} and the claim follows. \Box

For example we have a basis of \mathfrak{sl}_{n+1} , which is parameterized by triangles $(a_{ij})_{1 \leq i \leq j \leq n}$, $a_{ij} \in \mathbb{N}$. The corresponding basis of L_{λ} is parameterized by those (a_{ij}) , which satisfy $\sum_{1 \leq k \leq i} a_{kj} - \sum_{1 \leq k < i} a_{k,j-1} \leq \lambda_j$ for $i \leq j$.