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Let g be a finite dimensional complex Lie algebra. Examples of Lie alge-
bras are gl,, and sl,,, n > 2. We will always assume that g is a semisimple Lie
algebra, i.e. g = @le g, where g;, @ = 1,...  k, is a simple Lie algebra, that
is [—,—] # 0 and for each I C g; such that [g;,I] C I we have either I =0
or I = g;. The semisimple Lie algebras are classified by Dynkin diagrams or,
equivalently, by Cartan matrices. For example, sl, is a simple Lie algebra of
type A,,_; and sl; corresponds to the matrix (% 3').

The representation of a Lie algebra g in a vector space V' is a Lie algebra
homomorphism g — gl(V). Weyl showed that if g is semisimple then the
category mod g of finite dimensional representations of g is semisimple. Let
U(g) be the universal enveloping algebra of g. The categories mod g and
mod U(g) are equivalent, thus the category mod U(g) is semisimple.

Recall that a complex Lie algebra g has a decomposition g =n~ @& hdHn’.
For example if g = sl,,, then n~ consists of the lower triangular matrices,
b consists of the diagonal matrices and n* consists of the upper triangular
matrices. We have the generators F; of n=, H; of b, E; for n", i € I, where
I is the set of vertices of the corresponding Dynkin diagram. If g = sl,, then
F, = eit1, Hi = ei; — €414 and B = e;,41, 7 = 1,...,n — 1. As the
consequence U(n") is generated by E;, ¢ € I, as an algebra.

Let A = (\)ier € NI, Iy := Y, , UmH) B} and Ly == U(n*)/1,. We
define the action of U(g) on Ly via F;1 = 0 and H;1 = \;1, i € I. Tt follows
that Ly, A € NI, form the complete set of simple U(g)-modules.

An interesting problem connected with the above description is the ques-
tion about dim L. Another one is the description of the restriction of L, to
U(h) = C[H; | i € I]. This is answered by Weyl character formula, which

w(A+p)
says that ch Ly = >, dim(Ly),e" = Zijizv;g;gl:ae)ew(p; . However, there

is still a question whether there is a “combinatorial formula” for ch L, i.e.




a formula of the form (dim L,), equals the number of certain combinatorial
objects.

We know that Ly ® L, = @, .y, L, for some cxu- We may ask how
to compute cf,. For type A the answer is contained in the Littlewood-
Richardson rule.

We want to deform U(g). However, complex semisimple Lie algebras
are rigid, that is all deformations are trivial. Consequently, U(g) is rigid
as a cocommutative Hopf algebra. Happily, U(g) is not rigid as a non-

cocommutative Hopf algebra. From now on we will assume that g is of one
of the types A, D or Eq, E;, Eg.

Theorem (Serre). We have U(nt) = C(E; | E; € I)/([E;, Ej]) = 0 if ai; =
0, and [EZ, [E“E]H =0 ifaz-j = —1.

We have [E;, [E;, Ej]] = E?E; — 2E,E;F; + E;E?. Thus we may de-
fine %,(n") := C(v)(E; | i € I)/([E;, Ej] = 0if a;; = 0 and E?E; — (v +
v YEE;E; + E;E? =0 if a;; = —1) and U,(n™) is the Z[v, v™!]-subalgebra
of %,(n") generated by Ei("), i € I, n € N, where Ei(") = ﬁE{L, and

—-n

[n] := =27 It follows easily that C; ®zp,,—1) Uy(n™) =~ U(nT), where C,,
denotes a 1-dimensional Z[v, v~ !]-module with v acting by multiplication by
L.

Let @ be a quiver obtained from the diagram determining g. For d € NI
we define Ry := @,,_,; Homp(k% k%) and Gy := [[,c; GL(k%), where
k =T, for some q. Then G4 acts on Ry via (g;) * (Xa) := (9;Xag; *). We put
H(Q) = D ey C“4(Ra), where CY(R,) denots the space of Gg-invariant
complex functions on R4. The formula (f * ¢)(X) := ¢* >, x 9(U)f(X/U)
defines in J#(Q) a structure of an associative C-algebra called the Hall al-
gebra. We have J2(Q) ~ C 5z ®zp,o-1 Up(nh).

Let %,(Q) be the set of the characteristic functions of all orbits in all
Ry. Then %,(Q) is a basis of #(Q). There exists a basis Z(Q) of U,(n"),
which specializes to %,(Q) for each q. However, for different orientations @
of the diagram determining g the bases #(Q) are different. Let Z(Q) :=
Zv1B(Q). If follows that Z(Q) = Z(Q') if @ and Q' have the same
underlying graph. Thus we put .Z := Z2(Q). lf 7 : & — ZL/v 'L is the
canonical projection, then 7(#(Q)) = 7(#A(Q’)). We call B := n(#(Q)) the
crystal basis of £ /v~1.Z.

There exists the unique basis & of U,(n") such that & C £, n(#) = B
and b = b for all b € B, where E; = E; and © := v~'. Th proof of the above
fact uses degenerations.

Let %, be the specialization of % to C, @1 % and my : U(n") — Ly
be the canonical projection.




Theorem (Lusztig/Kashiwara). We have that m\(%1) \ {0} is a basis of L
for all A € NI.

Proof. Fix ¢ € I and choose an orientation () such that ¢ is a source in Q.
Then, it follows that %, (Q) N U(nT)E} ! is a basis of U(nt)E}*!). As the
consequence B, NU(nt)E}M T is a basis of U(nT)E} ! for all i Hence %, N1,
is a basis of I, and the claim follows. O

For example we have a basis of sl,,, 1, which is parameterized by triangles
(aij)1<i<j<n, @ij € N. The corresponding basis of L, is parameterized by
those (ai;), which satisfy >, anj — Do cpeianj1 < Aj for i < j.



