Introduction to quantum groups and crystal bases

based on the talk by Markus Reineke (Wuppertal)

January 15, 2002

Let \mathfrak{g} be a finite dimensional complex Lie algebra. Examples of Lie algebras are $\mathfrak{g l}_{n}$ and $\mathfrak{s l}_{n}, n \geq 2$. We will always assume that \mathfrak{g} is a semisimple Lie algebra, i.e. $\mathfrak{g}=\bigoplus_{i=1}^{k} \mathfrak{g}_{i}$, where $\mathfrak{g}_{i}, i=1, \ldots, k$, is a simple Lie algebra, that is $[-,-] \neq 0$ and for each $I \subset \mathfrak{g}_{i}$ such that $\left[\mathfrak{g}_{i}, I\right] \subset I$ we have either $I=0$ or $I=\mathfrak{g}_{i}$. The semisimple Lie algebras are classified by Dynkin diagrams or, equivalently, by Cartan matrices. For example, $\mathfrak{s l}_{n}$ is a simple Lie algebra of type \mathbb{A}_{n-1} and $\mathfrak{s l}_{3}$ corresponds to the matrix $\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$.

The representation of a Lie algebra \mathfrak{g} in a vector space V is a Lie algebra homomorphism $\mathfrak{g} \rightarrow \mathfrak{g l}(V)$. Weyl showed that if \mathfrak{g} is semisimple then the category $\bmod \mathfrak{g}$ of finite dimensional representations of \mathfrak{g} is semisimple. Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}. The categories $\bmod \mathfrak{g}$ and $\bmod U(\mathfrak{g})$ are equivalent, thus the category $\bmod U(\mathfrak{g})$ is semisimple.

Recall that a complex Lie algebra \mathfrak{g} has a decomposition $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{h} \oplus \mathfrak{n}^{+}$. For example if $\mathfrak{g}=\mathfrak{s l}_{n}$, then \mathfrak{n}^{-}consists of the lower triangular matrices, \mathfrak{h} consists of the diagonal matrices and \mathfrak{n}^{+}consists of the upper triangular matrices. We have the generators F_{i} of \mathfrak{n}^{-}, H_{i} of \mathfrak{h}, E_{i} for $\mathfrak{n}^{+}, i \in I$, where I is the set of vertices of the corresponding Dynkin diagram. If $\mathfrak{g}=\mathfrak{s l}_{n}$ then $F_{i}=e_{i+1, i}, H_{i}=e_{i, i}-e_{i+1, i+1}$ and $E_{i}=e_{i, i+1}, i=1, \ldots, n-1$. As the consequence $U\left(\mathfrak{n}^{+}\right)$is generated by $E_{i}, i \in I$, as an algebra.

Let $\lambda=\left(\lambda_{i}\right)_{i \in I} \in \mathbb{N} I, I_{\lambda}:=\sum_{i \in I} U\left(\mathfrak{n}^{+}\right) E_{i}^{\lambda_{i}+1}$ and $L_{\lambda}:=U\left(\mathfrak{n}^{+}\right) / I_{\lambda}$. We define the action of $U(\mathfrak{g})$ on L_{λ} via $F_{i} \overline{1}=0$ and $H_{i} \overline{1}=\lambda_{i} \overline{1}, i \in I$. It follows that $L_{\lambda}, \lambda \in \mathbb{N} I$, form the complete set of simple $U(\mathfrak{g})$-modules.

An interesting problem connected with the above description is the question about $\operatorname{dim} L_{\lambda}$. Another one is the description of the restriction of L_{λ} to $U(\mathfrak{h})=\mathbb{C}\left[H_{i} \mid i \in I\right]$. This is answered by Weyl character formula, which says that $\operatorname{ch} L_{\lambda}:=\sum_{\mu \in \mathbb{N} I} \operatorname{dim}\left(L_{\lambda}\right)_{\mu} e^{\mu}=\frac{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\lambda+\rho)}}{\sum_{w \in W} \operatorname{sgn}(w) e^{w(\rho)}}$. However, there is still a question whether there is a "combinatorial formula" for ch L_{λ}, i.e.
a formula of the form $\left(\operatorname{dim} L_{\lambda}\right)_{\mu}$ equals the number of certain combinatorial objects.

We know that $L_{\lambda} \otimes L_{\mu}=\bigoplus_{\nu \in \mathbb{N} I} L_{\nu}^{c_{\nu \mu}^{\nu}}$ for some $c_{\lambda \mu}^{\nu}$. We may ask how to compute $c_{\lambda \mu}^{\nu}$. For type \mathbb{A} the answer is contained in the LittlewoodRichardson rule.

We want to deform $U(\mathfrak{g})$. However, complex semisimple Lie algebras are rigid, that is all deformations are trivial. Consequently, $U(\mathfrak{g})$ is rigid as a cocommutative Hopf algebra. Happily, $U(\mathfrak{g})$ is not rigid as a noncocommutative Hopf algebra. From now on we will assume that \mathfrak{g} is of one of the types \mathbb{A}, \mathbb{D} or $\mathbb{E}_{6}, \mathbb{E}_{7}, \mathbb{E}_{8}$.

Theorem (Serre). We have $U\left(\mathfrak{n}^{+}\right)=\mathbb{C}\left\langle E_{i} \mid E_{i} \in I\right\rangle /\left(\left[E_{i}, E_{j}\right]\right)=0$ if $a_{i j}=$ 0 , and $\left[E_{i},\left[E_{i}, E_{j}\right]\right]=0$ if $a_{i j}=-1$.

We have $\left[E_{i},\left[E_{i}, E_{j}\right]\right]=E_{i}^{2} E_{j}-2 E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}$. Thus we may define $\mathscr{U}_{v}\left(\mathfrak{n}^{+}\right):=\mathbb{C}(v)\left\langle E_{i} \mid i \in I\right\rangle /\left(\left[E_{i}, E_{j}\right]=0\right.$ if $a_{i j}=0$ and $E_{i}^{2} E_{j}-(v+$ $\left.v^{-1}\right) E_{i} E_{j} E_{i}+E_{j} E_{i}^{2}=0$ if $\left.a_{i j}=-1\right)$ and $U_{v}\left(\mathfrak{n}^{+}\right)$is the $\mathbb{Z}\left[v, v^{-1}\right]$-subalgebra of $\mathscr{U}_{v}\left(\mathfrak{n}^{+}\right)$generated by $E_{i}^{(n)}, i \in I, n \in \mathbb{N}$, where $E_{i}^{(n)}:=\frac{1}{[n]!} E_{i}^{n}$, and $[n]:=\frac{v^{n}-v^{-n}}{v-v^{-1}}$. It follows easily that $\mathbb{C}_{1} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} U_{v}\left(\mathfrak{n}^{+}\right) \simeq U\left(\mathfrak{n}^{+}\right)$, where \mathbb{C}_{μ} denotes a 1 -dimensional $\mathbb{Z}\left[v, v^{-1}\right]$-module with v acting by multiplication by μ.

Let Q be a quiver obtained from the diagram determining \mathfrak{g}. For $d \in \mathbb{N} I$ we define $R_{d}:=\bigoplus_{\alpha: i \rightarrow j} \operatorname{Hom}_{k}\left(k^{d_{i}}, k^{d_{j}}\right)$ and $G_{d}:=\prod_{i \in I} \mathrm{GL}\left(k^{d_{i}}\right)$, where $k=\mathbb{F}_{q}$ for some q. Then G_{d} acts on R_{d} via $\left(g_{i}\right) *\left(X_{\alpha}\right):=\left(g_{j} X_{\alpha} g_{i}^{-1}\right)$. We put $\mathscr{H}(Q):=\bigoplus_{d \in \mathbb{N} I} \mathbb{C}^{G_{d}}\left(R_{d}\right)$, where $\mathbb{C}^{G_{d}}\left(R_{d}\right)$ denots the space of G_{d}-invariant complex functions on R_{d}. The formula $(f * g)(X):=q^{\alpha} \sum_{U \subset X} g(U) f(X / U)$ defines in $\mathscr{H}(Q)$ a structure of an associative \mathbb{C}-algebra called the Hall algebra. We have $\mathscr{H}(Q) \simeq \mathbb{C}_{\sqrt{q}} \otimes_{\mathbb{Z}\left[v, v^{-1}\right]} U_{v}\left(\mathfrak{n}^{+}\right)$.

Let $\mathscr{B}_{q}(Q)$ be the set of the characteristic functions of all orbits in all R_{d}. Then $\mathscr{B}_{q}(Q)$ is a basis of $\mathscr{H}(Q)$. There exists a basis $\mathscr{B}(Q)$ of $U_{v}\left(\mathfrak{n}^{+}\right)$, which specializes to $\mathscr{B}_{q}(Q)$ for each q. However, for different orientations Q of the diagram determining \mathfrak{g} the bases $\mathscr{B}(Q)$ are different. Let $\mathscr{L}(Q):=$ $\mathbb{Z}\left[v^{-1}\right] \mathscr{B}(Q)$. If follows that $\mathscr{L}(Q)=\mathscr{L}\left(Q^{\prime}\right)$ if Q and Q^{\prime} have the same underlying graph. Thus we put $\mathscr{L}:=\mathscr{L}(Q)$. If $\pi: \mathscr{L} \rightarrow \mathscr{L} / v^{-1} \mathscr{L}$ is the canonical projection, then $\pi(\mathscr{B}(Q))=\pi\left(\mathscr{B}\left(Q^{\prime}\right)\right)$. We call $B:=\pi(\mathscr{B}(Q))$ the crystal basis of $\mathscr{L} / v^{-1} \mathscr{L}$.

There exists the unique basis \mathscr{B} of $U_{v}\left(\mathfrak{n}^{+}\right)$such that $\mathscr{B} \subset \mathscr{L}, \pi(\mathscr{B})=B$ and $\bar{b}=b$ for all $b \in \mathscr{B}$, where $\bar{E}_{i}=E_{i}$ and $\bar{v}:=v^{-1}$. Th proof of the above fact uses degenerations.

Let \mathscr{B}_{μ} be the specialization of \mathscr{B} to $\mathbb{C}_{\mu} \otimes_{\mathbb{Z}\left[v, v^{-1]}\right.} \mathscr{B}$ and $\pi_{\lambda}: U\left(\mathfrak{n}^{+}\right) \rightarrow L_{\lambda}$ be the canonical projection.

Theorem (Lusztig/Kashiwara). We have that $\pi_{\lambda}\left(\mathscr{B}_{1}\right) \backslash\{0\}$ is a basis of L_{λ} for all $\lambda \in \mathbb{N} I$.

Proof. Fix $i \in I$ and choose an orientation Q such that i is a source in Q. Then, it follows that $\mathscr{B}_{1}(Q) \cap U\left(\mathfrak{n}^{+}\right) E_{i}^{\lambda_{i}+1}$ is a basis of $\left.U\left(\mathfrak{n}^{+}\right) E_{i}^{\lambda_{i}+1}\right)$. As the consequence $\mathscr{B}_{1} \cap U\left(\mathfrak{n}^{+}\right) E_{i}^{\lambda_{i}+1}$ is a basis of $U\left(\mathfrak{n}^{+}\right) E_{i}^{\lambda_{i}+1}$ for all i Hence $\mathscr{B}_{1} \cap I_{\lambda}$ is a basis of I_{λ} and the claim follows.

For example we have a basis of $\mathfrak{s l}_{n+1}$, which is parameterized by triangles $\left(a_{i j}\right)_{1 \leq i \leq j \leq n}, a_{i j} \in \mathbb{N}$. The corresponding basis of L_{λ} is parameterized by those $\left(a_{i j}\right)$, which satisfy $\sum_{1 \leq k \leq i} a_{k j}-\sum_{1 \leq k<i} a_{k, j-1} \leq \lambda_{j}$ for $i \leq j$.

