Approximations of modules, tilting theory and applications to finitistic dimension conjecture

based on the talk by Jan Trlifaj (Prague)

November 6 and 8, 2001

Let R be an associative ring with 1. We denote by Mod R the category of (right) R-modules. If \mathscr{C} is a class of R-modules and $M \in \operatorname{Mod} R$, then we call a map $f: C \to M$ a \mathscr{C} -precover of M is $C \in \mathscr{C}$ and for each $f': C' \to M$, $C' \in \mathscr{C}$, there exists $h: C' \to C$ with f' = fh. We say that \mathscr{C} is a precovering class if for each $M \in \operatorname{Mod} R$ there exists a \mathscr{C} -precover of M. The \mathscr{C} -precover f of M is called a \mathscr{C} -cover of M if f is right minimal. A class \mathscr{C} is called covering if for each $M \in \operatorname{Mod} R$ there a exists \mathscr{C} -cover of M. Dually, we define \mathscr{C} -preenvelopes, \mathscr{C} -envelopes, preenveloping and enveloping classes.

The class of projective modules is a covering class if and only if R is a right perfect ring. Enochs showed that if R is a commutative domain then the class of torsion free modules is a covering class. There was a conjecture, called the Flat Cover Conjecture, which said that the class of flat modules is covering.

A \mathscr{C} -precover $f : C \to M$ of M is called a special precover if f is an epimorphism and Ker $f \in \mathscr{C}^{\perp} := \operatorname{Ker} \operatorname{Ext}^{1}_{R}(\mathscr{C}, -)$. The class \mathscr{C} is called special precovering if for each M there exists a special \mathscr{C} -precover of M. Dually one defines special preenveloping classes.

The following result is due to Wakamatsu.

Proposition. Let C be closed under extensions and direct summands.

- (i) If C contains all projective modules and is a covering class then C is a special precovering class.
- (ii) If C contains all injective modules and is an enveloping class then C is a special preenveloping class.

A cotorsion pair is a pair $(\mathscr{A}, \mathscr{B})$ of classes of modules such that $\mathscr{A} = {}^{\perp}\mathscr{B}$ and $\mathscr{B} = \mathscr{A}^{\perp}$. Examples of cotorsion pairs are $(\mathscr{P}_0, \operatorname{Mod} R)$, $(\operatorname{Mod} R, \mathscr{I}_0)$ and $(\operatorname{Flat}, \operatorname{Flat}^{\perp})$, where for each n we denote by \mathscr{P}_n the class of modules of projective dimension at most n and by \mathscr{I}_n the class of modules of injective dimension at most n. Moreover, Flat is the class of flat modules and Flat^{\perp} is the class of so called Enochs torsion modules. If \mathscr{C} is a class of modules then $(^{\perp}(\mathscr{C}^{\perp}), \mathscr{C}^{\perp})$ is called a cotorsion pair cogenerated by \mathscr{C} and $(^{\perp}\mathscr{C}, (^{\perp}\mathscr{C})^{\perp})$ is called a cotorsion pair generated by \mathscr{C} .

Let $(\mathscr{A}, \mathscr{B})$ be a cotorsion pair. Then \mathscr{A} is a special precovering class if and only if \mathscr{B} is a special preenveloping class. A cotorsion pair $(\mathscr{A}, \mathscr{B})$ such that \mathscr{A} is a special precovering class and \mathscr{B} is a special preenveloping class is called a complete cotorsion pair.

Proposition (Enochs). If \mathscr{C} is a special precovering class which is closed under direct limits then \mathscr{C} is a covering class. Similarly, if \mathscr{C} is closed under direct limits and \mathscr{C}^{\perp} is a special preenveloping then \mathscr{C}^{\perp} is an enveloping class.

Lemma. Let $M \in \text{Mod } R$ and \mathscr{S} be a set of R-modules. There exists a short exact sequence $0 \to M \to A \to B \to 0$ with $A \in \mathscr{S}^{\perp}$ and B a \mathscr{S} -filtered module, i.e. $B = \bigcup_{\alpha} M_{\alpha}$ with $M_{\alpha} \subset M_{\alpha+1}, M_{\alpha+1}/M_{\alpha} \in \mathscr{S}$ and $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for a limit ordinal α .

Proof. We may assume that $\mathscr{S} = \{S\}$, since $\mathscr{S}^{\perp} = (\bigoplus_{X \in \mathscr{S}} X)^{\perp}$. Let $0 \to K \xrightarrow{\mu} F \to S \to 0$ be an exact sequence with F a free R-module. Let λ be a regular ordinal number bigger than $\operatorname{card}(K)$. We define $(P_{\alpha})_{\alpha < \lambda}$ such that $P_0 = M$ and $P_{\alpha} \subset P_{\alpha+1}$ by induction.

For each α let $\mu_{\alpha} := \bigoplus_{\operatorname{Hom}_{R}(K,P_{\alpha})} \mu \in \operatorname{Hom}(K^{(\operatorname{Hom}_{R}(K,P_{\alpha}))}, F^{(\operatorname{Hom}_{R}(K,P_{\alpha}))})$. If $\psi_{\alpha} : K^{(\operatorname{Hom}_{R}(K,P\alpha))} \to P_{\alpha}$ is a natural map, then for each $\eta \in \operatorname{Hom}_{R}(K,P_{\alpha})$ there exists $\nu_{\eta} : K \to K^{(\operatorname{Hom}_{R}(K,P_{\alpha}))}$ such that $\psi_{\alpha}\nu_{\eta} = \eta$. Moreover, we have $\mu_{\alpha}\nu_{\eta} = \nu'_{\eta}\mu$ for some $\nu'_{\eta} : F \to F^{(\operatorname{Hom}_{R}(K,P_{\alpha}))}$. Let

$$\begin{array}{cccc} K^{(\operatorname{Hom}_{R}(K,P_{\alpha}))} & \xrightarrow{\mu_{\alpha}} & F^{(\operatorname{Hom}_{R}(K,P_{\alpha}))} \\ & & \downarrow^{\psi_{\alpha}} & & \downarrow^{\rho_{\alpha}} \\ & & P_{\alpha} & \xrightarrow{\sigma_{\alpha}} & P_{\alpha+1} \end{array}$$

be a pushout diagram. If α is a limit ordinal then we define $P_{\alpha} := \bigcup_{\beta < \alpha} P_{\beta}$ and we put $A := \bigcup_{\alpha < \lambda} P_{\alpha}$.

In order to show that $A \in S^{\perp}$ we need to show that each map $\tau : K \to A$ factors through F. Since $\operatorname{card}(K) < \lambda$ we have that $\operatorname{Im} \tau \subset P_{\alpha}$ for some α . Let $\eta : K \to P_{\alpha}$ be the induced map. It is enough to show that this extends to a map $\xi : F \to P_{\alpha+1}$. We have $\sigma_{\alpha}\eta = \sigma_{\alpha}\psi_{\alpha}\nu_{\eta} = \rho_{\alpha}\mu_{\alpha}\nu_{\eta} = \rho_{\alpha}v'_{\alpha}\mu$ thus we may take $\xi := \rho_{\alpha}v'_{\alpha}$

Since $B = A/M = \bigcup_{\alpha} P_{\alpha}/P_0$ and $(P_{\alpha+1}/P_0)/(P_{\alpha}/P_0) = P_{\alpha+1}/P_{\alpha} = \bigoplus S$, thus B is a \mathscr{S} -filtered module.

Corollary. If \mathscr{S} is a set of modules then a cotorsion pair $(^{\perp}(\mathscr{S}^{\perp}), \mathscr{S}^{\perp})$ is complete.

Proof. For each *R*-module *M* we have a short exact sequence $0 \to M \to S \to B \to 0$ with $S \in \mathscr{S}^{\perp}$ and *B* a \mathscr{S} -filtered module. We need to show that $B \in {}^{\perp}(\mathscr{S}^{\perp})$. Let $N \in \mathscr{S}^{\perp}$. We know that $B = \bigcup_{\gamma < \delta} B_{\gamma}$ with $\operatorname{Ext}^{1}_{R}(B_{\gamma+1}/B_{\gamma}, N) = 0$ and it implies $\operatorname{Ext}^{1}_{R}(B, N) = 0$.

We also have that, if $R \in \mathscr{S}$ then $({}^{\perp}\mathscr{S})^{\perp}$ coincides with the class of \mathscr{S} -filtered modules.

Corollary. Let $\mathscr{C} = (\mathscr{A}, \mathscr{B})$ be a cotorsion pair and $M \in \text{Mod.}$ Then \mathscr{C} is cogenerated by M if and only if \mathscr{A} consists of direct summands of modules Z such that we have a short exact sequence $0 \to F \to Z \to G \to 0$ with F a free module and G an M-filtered module.

We have the following consequences of the above results.

- (1) The Flat Cover Conjecture is true. By definition the class Flat is closed under direct limits. Moreover, the cotorsion pair (Flat, Flat^{\perp}) is complete. Indeed, it is cogenerated by $\mathscr{S} := \{F \in \text{Flat} \mid \text{card}(F) \leq \text{card}(R)\aleph_0\}$. It follows, since for any $F \in \text{Flat}$ and $x \in F, x \neq 0$, there exists a pure submodule F' of F such that $xR \subset F'$ and $\text{card}(F') \leq \text{card}(R)\aleph_0$. We construct this module using the connection of pure submodules with solution sets of equations. We have that F' is flat and F/F' is flat.
- (2) A module M is said to be torsion free if $\operatorname{Tor}_{1}^{R}(R/rR, M) = 0, r \in R$. Every module has a torsion free cover since (TFree, TFree^{\perp}) is a complete cotorsion pair and the class TFree is closed under direct limits. The class TFree^{\perp} is called the class of Warfield cotorsion modules.
- (3) Let R be a commutative domain and Q the quotient filed of R. The pair $(^{\perp}(Q^{\perp}), Q^{\perp})$ is a complete cotorsion pair. We call Q^{\perp} the class of Matlis cotorsion modules. We have that $(^{\perp}(Q^{\perp}), Q^{\perp}) = (^{\perp}(\mathscr{C}^{\perp}), \mathscr{C}^{\perp})$, where $\mathscr{C} := \operatorname{Mod} Q$ is closed under direct limits, thus Q^{\perp} is an enveloping class.
- (4) One can show that [⊥] PInj = Flat, hence is a covering class, where PInj is the class of pure injective modules. In general, if *C* is a subclass of PInj then ([⊥]C, ([⊥]C)[⊥]) is a complete cotorsion pair, [⊥]C is a covering class and ([⊥]C)[⊥] is an enveloping class.

The answer to the question when $(^{\perp}\mathscr{S}, (^{\perp}\mathscr{S})^{\perp})$ is a complete torsion pair depends on axioms of the set theory.

Let R be a ring. A module T is called a tilting module if $p\dim T < \infty$, $\operatorname{Ext}_{R}^{i}(T, T^{(I)}) = 0, i = 1, 2, \dots, \text{ and there exists an exact sequence}$

$$0 \to R \to T_1 \to \cdots \to T_m \to 0,$$

with $T_i \in \operatorname{Add} T$, $i = 1, \ldots, m$. If pdim $T \leq n$ then we say that T is an *n*-tilting modules.

A tilting module T is called a finite tilting module if all modules in a minimal projective resolution of T are finitely generated and there exists an exact sequence

$$0 \to R \to T_1 \to \cdots \to \cdots T_m \to 0,$$

with $T_i \in \operatorname{add} T$, $i = 1, \ldots, m$. Let T be a finite tilting module and $S := \operatorname{End}_{R}(T)$. It is know due to Miyashida that for each $i = 1, \ldots, n$, $n := \operatorname{pdim} T$, the functors $\operatorname{Ext}_{R}^{i}(T, -)$ and $\operatorname{Tor}_{i}^{S}(-, T)$ are quasi-inverse equivalences between $\bigcap_{\substack{j=1\\ j\neq i}}^{n} \operatorname{Ker} \operatorname{Ext}_{R}^{j}(T, -)$ and $\bigcap_{\substack{j=1\\ j\neq i}}^{n} \operatorname{Ker} \operatorname{Tor}_{j}^{S}(-, T)$. Let \mathscr{C} be a class of module. We denote ${}^{\perp_{n}}\mathscr{C} := \operatorname{Ker} \operatorname{Ext}_{R}^{n}(-, \mathscr{C})$ and

 $^{\perp_{\infty}}\mathscr{C} := \bigcap_{n} {}^{\perp_{n}}\mathscr{C}$

Theorem. Let \mathscr{C} be a class of modules closed under direct summands and cokernels of monomorphisms such that $\mathscr{C} \cap {}^{\perp \infty} \mathscr{C}$ is closed under direct summands. Then \mathscr{C} is a special preenveloping class such that $^{\perp_{\infty}}\mathscr{C} \subset \mathscr{P}_n$ for some n if and only if there exists an n-tilting module T such that $\mathscr{C} = T^{\perp_{\infty}}$.

Proof. Assume there exists an *n*-tilting module T such that $\mathscr{C} = T^{\perp_{\infty}}$. Let $\Omega^i T$ be the *i*-th syzygy of T. Then $\Omega^i T = 0$ for i > n, thus $\mathscr{C} = (\bigoplus_{i=1}^n \Omega^i T)^{\perp}$, hence is a special preenveloping class. We need to show $^{\perp_{\infty}}\mathscr{C} \subset \mathscr{P}_n$. We have $^{\perp_{\infty}}\mathscr{C} = {}^{\perp}\mathscr{C}$, since $\mathscr{C} = T^{\perp_{\infty}}$ is cosyzygy closed. Thus $^{\perp_{\infty}}\mathscr{C} = {}^{\perp}((\bigoplus \Omega^i T)^{\perp})$ is the class of modules filtered by $\bigoplus \Omega^i T$, which is contained in \mathscr{P}_n .

Assume now that \mathscr{C} is a special precovering class such that ${}^{\perp_{\infty}}\mathscr{C} \subset \mathscr{P}_n$ for some n. Then all injective modules belong to \mathscr{C} , hence \mathscr{C} is cosyzygy closed and ${}^{\perp}\mathscr{C} = {}^{\perp}{}^{\infty}\mathscr{C} \subset \mathscr{P}_n$. Since \mathscr{C} is a special preenveloping class, we may construct sequences $0 \to C_i \to T_i \to C_{i+1} \to 0$ with $T_i \in \mathscr{C}$ and $C_{i+1} \in {}^{\perp}\mathscr{C}$, where $C_0 = R$. Since ${}^{\perp}\mathscr{C} \subset \mathscr{P}_n$, it follows that the sequence $0 \to C_{n+1} \to T_{n+1} \to C_{n+2} \to 0$ splits, thus we may assume $T_{n+1} = 0$. We put $T = \bigoplus_{i=0}^{n} T_i$. We have pdim $T \leq n$ since $T_i \in {}^{\perp}\mathscr{C} \subset \mathscr{P}_n$. Moreover, $\operatorname{Ext}^i_R(T, T^{(I)}) = 0$, because $T \in \mathscr{C} \cap {}^{\perp}\mathscr{C}$. Thus T is a tilting module and one can show that $T^{\perp_{\infty}} = \mathscr{C}$.

Corollary. Let \mathscr{C} be a torsion class. Then \mathscr{C} is a special preenveloping class if and only if there exists a 1-tilting such that $\mathscr{C} = \operatorname{Gen}(T)$.

Let $\mathscr{P} := \{M \mid \operatorname{pdim} M < \infty\}$, $\mathscr{P}^{<\infty} := \{M \in \mathscr{P} \mid \operatorname{gen} M < \infty\}$ and $\mathscr{P}_n^{<\infty} := \{M \in \mathscr{P}_n \mid \operatorname{gen} M < \infty\}$. We put gldim $R := \sup_{M \in \operatorname{Mod} R} \operatorname{pdim} M$, Fdim $R := \sup_{M \in \mathscr{P}} \operatorname{pdim} M$ and fdim $R := \sup_{M \in \mathscr{P}^{<\infty}} \operatorname{pdim} M$. We have fdim $R \leq \operatorname{Fdim} R \leq \operatorname{gldim} R$. Moreover, if gldim $R < \infty$ then fdim $R = \operatorname{Fdim} R = \operatorname{gldim} R$. If R is a commutative noetherian ring then Fdim $R = \operatorname{Kdim} R$. In addition, if R is a local commutative noetherian ring then fdim $R = \operatorname{Fdim} R$ if and only if R is a Cohen–Macaulay ring. Nagata has constructed a noetherian commutative ring such that fdim $R = \infty$. There exists also a monomial finite dimensional algebra R over an algebraically closed field such that fdim $R < \operatorname{Fdim} R$. It is not known, if fdim $R < \infty$ for a right artin ring R.

Lemma. Let R be a right coherent ring and $i \leq n$. There exists a tilting module T such that $(\mathscr{P}_n^{<\infty})^{\perp_i} = T^{\perp_{\infty}}$. We also have have $\operatorname{pdim} T \leq n-i+1$.

Theorem. Let R be a right noetherian ring. Then fdim $R < \infty$ if and only if there exists a tilting module such that $(\mathscr{P}^{<\infty})^{\perp} = T^{\perp_{\infty}}$. In this case fdim $R \leq \operatorname{pdim} T$.

Proof. Assume fdim $R < \infty$ and let $\mathscr{C} := (\mathscr{P}^{<\infty})^{\perp}$. We have $\mathscr{C} \cap {}^{\perp}\mathscr{C}$ is closed under direct sums, since if A is a finitely presented module then $\operatorname{Ext}^{i}_{R}(A, \varinjlim N_{\alpha}) \simeq \varinjlim \operatorname{Ext}^{i}_{R}(A, N_{\alpha})$. We have also that \mathscr{C} is a special preenveloping class. Moreover, ${}^{\perp} {}^{\infty} \mathscr{C} = {}^{\perp} \mathscr{C} = {}^{\perp} ((\mathscr{P}^{<\infty})^{\perp}) \subset {}^{\perp} (\mathscr{P}^{\perp}_{m}) \subset \mathscr{P}_{m}$ and one can use the previous theorem.

Assume now there exists a tilting module such that $(\mathscr{P}^{<\infty})^{\perp} = T^{\perp_{\infty}}$. Then $\mathscr{P}^{<\infty} \subset {}^{\perp}((\mathscr{P}^{<\infty})^{\perp}) = {}^{\perp}(T^{\perp_{\infty}}) = {}^{\perp}((\bigoplus_{i=0}^{n} \Omega^{i}T)^{\perp}) \subset \mathscr{P}_{n}$. \Box

Theorem. Let R be an artin algebra. Then fdim $R < \infty$ and there exists a finitely generated tilting module T such that $(\mathscr{P}^{<\infty})^{\perp} = T^{\perp_{\infty}}$ if and only if $\mathscr{P}^{<\infty}$ is contravariantly finite.

If follows that if R is an artin algebra and $\mathscr{P}^{<\infty}$ is contravariantly finite, then fdim $R = \operatorname{Fdim} R < \infty$.

Let $\mathscr{A}_f := {}^{\perp}((\mathscr{P}^{<\infty})^{\perp})$ and $\mathscr{B}_f := (\mathscr{P}^{<\infty})^{\perp}$.

Theorem. Let R be a right artin ring. Then $\mathscr{A}_f \cap \mod R = \mathscr{P}^{<\infty}$. Let $f_S : A_S \to S$ be a special \mathscr{A}_f -precover of a simple R-module S. Then fdim $R = \max_S \operatorname{pdim} A_S$.