Piecewise hereditary one-point extensions of wild hereditary algebras

based on the talk by Otto Kerner (Düsseldorf)

March 15, 2001

Let H be a connected wild hereditary algebra and M a regular H-module such that H[M] is piecewise hereditary. If H[M] is quasi-tilted then H[M] is piecewise hereditary. Moreover, in this case $H[\tau_H^{-r}M]$ is piecewise hereditary for r > 0. In addition, $H[\tau_H^{-r}M]$ is not quasi-tilted for $r \gg 0$. Finally, if N is a regular H-module such that H[N] is piecewise hereditary then there exists r > 0 such that $H[\tau^rN]$ is quasi-tilted.

Let \mathscr{H} be a hereditary category and X be a simple regular object from a $\mathbb{Z}\mathbb{A}_{\infty}$ -component. Then $X^{\perp} \simeq \mod C$. If $Z \to X$ is an irreducible map then C[Z] is a quasi-tilted algebra of type \mathscr{H} . Let $A = C[\tau_C^{-r}Z]$.

Theorem. Let $A = C[\tau_C^{-r}Z]$ be a piecewise hereditary algebra which is not quasi-tilted. Then:

- (a) $\mathscr{P}(C)$ is the unique preprojective component $\mathscr{P}(A)$ of $\Gamma(A)$;
- (b) there exists connected wild concealed factor algebra D of A such that the unique preinjective component *I*(A) of Γ(D) equals *I*(D);
- (c) if \mathscr{C} is a connected component of $\Gamma(A)$ which is neither preprojective nor preinjective then:
 - (i) the stable part \mathscr{C}^s of \mathscr{C} is of the form $\mathbb{Z}\mathbb{A}_{\infty}$;
 - (ii) if $M \in \mathscr{C}^s$ then $\tau_A^{-m}M$ is a C-module and $\tau_C^{-r}\tau_A^{-m}M = \tau_A^{-m-r}M$ for $m \gg 0$ and r > 0;
 - (iii) if $M \in \mathscr{C}^s$ then $\tau_A^m M$ is a *D*-module for $m \gg 0$;
- (d) If N is an indecomposable regular C-module, then $\tau_A^{-r}\tau_C^{-m}N = \tau_C^{-m-r}N$ for $m \gg 0$ and r > 0. Dually, if N' is an indecomposable regular Dmodule, then $\tau_A^r \tau_D^m N' = \tau_D^{m+r} N'$ for $m \gg 0$, r > 0.

Let $T_0 := \tau_C^{r-1}DC$, where DC is a minimal injective cogenerator of X^{\perp} . There exists T'_0 in add T_0 such that we have a minimal approximation λ : $\tau_{\mathscr{H}}X \to T'_0$. Then λ is injective and $T_1 := \operatorname{Coker} \lambda$ is an indecomposable object such that $T := T_0 \oplus T_1$ is a tilting object. We define $B := \operatorname{End}(T)$.

One can show that $\Gamma(B)$ has a unique preinjective component $\mathscr{I}(D')$, where D' is a a wild concealed algebra. Moreover, if \mathscr{C} is a component contained in $\mathscr{H}(T) := \operatorname{Ext}(T, \mathscr{F}(T))$ different from $\mathscr{I}(D')$ then $\mathscr{C}^s = \mathbb{Z}\mathbb{A}_{\infty}$ and for $M \in \mathscr{C}^s$ we have that $\tau_B^m M$ is a D'-module for $m \gg 0$. Moreover, if N is a regular D'-module then $\tau_B^r \tau_{D'}^m N = \tau_{D'}^{m+r} N$ for $m \gg 0$ and $r \ge 0$. We have $\operatorname{id}_B \mathscr{H}(T) \le 1$.

Lemma. We have $\tau^i_{\mathscr{H}} X \in \mathscr{F}(T)$ for all $i \leq 1$.

Lemma. If $M \in \mathscr{I}(D')$ then $\operatorname{Hom}(M, \tau_{\mathscr{H}}^{-i}X) = 0$ for all $i \geq 0$.

Lemma. Let X' := Ext(T, X). Then $\text{pd}_B X' \leq 1$, $\text{pd}_B \tau_B X' \leq 1$ and $\tau_B X'$ is a simple *B*-module.

We construct a titling *B*-module \tilde{T} by the formula $\tilde{T} = \text{Hom}(T, T_0) \oplus X'$. We have $\mathscr{F}(\tilde{T}) = \{M \in \text{mod } B \mid \text{Hom}(\tilde{T}, M) = 0\} = \text{add}(\tau_B X')$. Let $\tilde{T}_0 = \text{Hom}(T, T_0)$. Then

$$\operatorname{End}(\tilde{T}) = \begin{pmatrix} \operatorname{End}(\tilde{T}_0) & \operatorname{Hom}(\tilde{T}_0, X') \\ 0 & k \end{pmatrix}.$$

We have $\operatorname{End}(\tilde{T}_0) = \operatorname{End}(\tau_C^{r-1}DC) \simeq C$. Moreover

$$\operatorname{Hom}(\tilde{T}_0, X') = \operatorname{Hom}(\operatorname{Hom}(T, T_0), \operatorname{Ext}(T, X))$$
$$\simeq \operatorname{Ext}(T_0, X) \simeq \operatorname{Ext}(T_0, Z) = \operatorname{Ext}(DC, \tau^{-r+1}Z) \simeq \tau_A^{-r}Z.$$

We want to describe the preinjective component \mathscr{I} of $\Gamma(C[\tau^{-r}Z])$ if $r \gg 0$. We have a natural division of the vertices of the quiver Q into three classes, which consist of vertices such that corresponding simple modules are preprojective, regular or preinjective, respectively.

Let S be a simple regular or preinjective. Given m > 0 there exists r_0 such that dim Hom $(\tau_C^{-r}Z, S) \ge m$ for all $r \ge r_0$. Since Hom $(M, \mathscr{P}) = 0$ we have no arrows from ω to vertices corresponding to preprojective simple C-modules and we have many arrow to all the remaining vertices. Hence \mathscr{I} contain S_{ω} and all injective modules which correspond to vertices which are regular or preinjective.