The automorphism groups of domestic or tubular exceptional curves over the real numbers

based the talk by Dirk Kussin (Paderborn)

February 22, 2001

Let k be a field. We will consider tame hereditary and canonical kalgebras (in the sense of Ringel and Crawley-Boevey). The structure of the category of indecomposable modules over such an algebra Λ is well-known. It particular, it known there exists a separating tubular family ind₀ Λ which is indexed by some set X. Our aim is to study the geometry of X.

The easiest case is so called homogeneous case, when

$$\Lambda = \begin{pmatrix} G & 0 \\ M & F \end{pmatrix},$$

where F and G are skew fields, which are finite dimensional over k, and M is a tame F-G-bimodule with k acting centrally. In this case all tubes are homogeneous.

If k is algebraically closed then $M = k \oplus k$ and $\mathbb{X} = \mathbb{P}^1(k)$. In nonhomogeneous cases for k algebraically closed we obtain weighted projective lines introduced by Geigle and Lenzing.

For $k = \mathbb{R}$ the structure of X as a topological space has been described by Dlab and Ringel. However, the geometry of X in general is not understood. It has been implicitly described in terms of exceptional curves by Lenzing. We present here the explicit description for $k = \mathbb{R}$. This description will be done in terms of the automorphism group.

Let $\mathscr{H} = \operatorname{coh} \mathbb{X}$ be the category of coherent sheaves over \mathbb{X} . It is a hereditary noetherian category with Serre duality. We define $\operatorname{Aut} \mathscr{H}$ to be the class of all auto-equivalences $F : \mathscr{H} \to \mathscr{H}$ modulo isomorphism relation. We put $\operatorname{Aut} \mathbb{X}$ to be the subgroup of $\operatorname{Aut} \mathscr{H}$ consisting of all $F \in \operatorname{Aut} \mathscr{H}$ which fix the structure sheaf L. It is known that each exceptional curve \mathbb{Y} arise by "insertion of weights" from a homogeneous curve \mathbb{X} . We write $\mathbb{Y} = \mathbb{X} \begin{pmatrix} p_1 & \dots & p_t \\ x_1 & \dots & x_t \end{pmatrix}$, where $x_1, \dots, x_t \in \mathbb{X}$ are pairwise distinct and $p_1, \dots, p_t > 1$ are weights.

Lemma. If X and Y are as above, then $\operatorname{Aut} Y$ is the subgroup of $\operatorname{Aut} X$ formed by the automorphisms which preserve the weights (i.e. p(Fy) = p(y) for all $y \in Y$).

Consider the homogeneous case $\Lambda = \begin{pmatrix} G & 0 \\ M & F \end{pmatrix}$. Assume that $\operatorname{ind} \Lambda$ consists of the preprojective component, the family of homogeneous tubes $\operatorname{ind}_0 \Lambda$ and the preinjective component. Then the category $\operatorname{coh} X$ consists of the transinjective component build up from vector bundles and the tubes consisting from objects of finite length. Let $0 \to L \to \overline{L} \to \tau^- L \to 0$ be the Auslander–Reiten sequence, where L is the structure sheaf of X. Then \overline{L} is indecomposable. Moreover, $\operatorname{Hom}(L,\overline{L}) = M$, $\operatorname{End}(L) = G$ and $\operatorname{End}(\overline{L}) = F$.

We define the group Aut $M = \operatorname{Aut}_k({}_FM_G)$ to be the set of all triples $\varphi = (\varphi_F, \varphi_M, \varphi_G)$, where φ_F is a k-automorphism of F, φ_G is a k-automorphism of G and $\varphi_M : M \to M$ is a k-linear bijection such that $\varphi_M(fmg) = \varphi_F(f)\varphi_M(m)\varphi_G(g)$. Equivalently, we may define Aut(M) as the the group of k-autoequivalences of the category $\{L, \overline{L}\}$.

A triple $\varphi = (\varphi_F, \varphi_M, \varphi_G) \in \operatorname{Aut} M$ is called inner if there exists a unit f in F and an unit g in G such that $\varphi_F(x) = f^{-1}xf$, $\varphi_G(y) = g^{-1}xg$ and $\varphi_M(m) = f^{-1}mg$. We denote the group of inner automorphisms by Inn M. Each triple $(\varphi_F, \varphi_M, \varphi_G)$ induces the automorphism of the k-algebra Λ in a natural way. This automorphism is inner in the usual way if the triple is inner. As usual we put $\operatorname{Out} M := \operatorname{Aut} M/\operatorname{Inn} M$.

Lemma. Let X be a homogeneous exceptional curve with underlying tame bimodule M. Then Aut X is isomorphic to Out M.

Proof. Given an automorphism F of \mathbb{X} we have it is given by an equivalence $F : \mathscr{H} \to \mathscr{H}$ fixing L. Then \overline{L} is also fixed. Hence $F|_{\{L,\overline{L}\}}$ is an autoequivalence of $\{L,\overline{L}\}$, hence belongs to Aut M. Moreover, $F \simeq 1_{\mathscr{H}}$ if and only if its restriction is an inner automorphism.

Conversely, given an autoequivalence $F : \{L, \overline{L}\} \to \{L, \overline{L}\}$ we have an induced element $\tilde{F} \in \operatorname{Aut}(\Lambda)$. Hence we get an equivalence $\tilde{\tilde{F}} : \operatorname{mod} \Lambda \to \operatorname{mod} \Lambda$ which extends to the derived category and by restriction we obtain a selfequivalence of coh X. Moreover this equivalence fixes L and F is inner if and only if $\tilde{\tilde{F}}$ is isomorphic to $1_{\operatorname{mod} \Lambda}$. The above defined maps are mutually inverse.

From now we assume $k = \mathbb{R}$. Let X be a homogeneous exceptional curve over \mathbb{R} . We have up to duality five cases.

	М	$\operatorname{Out} M$	R
1	$_{\mathbb{R}}\mathbb{H}_{\mathbb{H}}$	$\mathrm{SO}_3(\mathbb{R})$	$\mathbb{R}[X,Y,Z]/(X^2+Y^2+Z^2)$
2	$_{\mathbb{R}}(\mathbb{R}\oplus\mathbb{R})_{\mathbb{R}}$	$\mathrm{PGL}_2(\mathbb{R})$	$\mathbb{R}[X,Y]$
3	$_{\mathbb{C}}(\mathbb{C}\oplus\mathbb{C})_{\mathbb{C}}$	$\operatorname{PGL}_2(\mathbb{C}) \rtimes \mathbb{Z}_2$	$\mathbb{C}[X,Y]$
4	$_{\mathbb{H}}(\mathbb{H}\oplus\mathbb{H})_{\mathbb{H}}$	$\mathrm{PGL}_2(\mathbb{R})$	$\mathbb{H}[X,Y], X, Y \text{ are central}$
5	$_{\mathbb{C}}(\mathbb{C}\oplus\overline{\mathbb{C}})_{\mathbb{C}}$	$\mathbb{R}_+ \rtimes \mathbb{Z}_2 \rtimes \mathbb{Z}_2$	$\mathbb{C}[X,\overline{Y}]$

In each case $\operatorname{coh} \mathbb{X} \simeq \operatorname{mod}^{\mathbb{Z}}(R) / \operatorname{mod}_{0}^{\mathbb{Z}}(R)$.

Let X be the projective spectrum $\operatorname{Proj}(R)$ of R. All homogeneous primes ideals of height 1 in R are of the form $R\pi = \pi R$ with π homogeneous. We list the possible forms of π in all cases.

- 1. We have $\pi = ax + by + cz$, where $(a, b, c) \neq (0, 0, 0)$. Hence X can be identified with $S^2/\pm 1 \simeq \mathbb{P}^1(\mathbb{C})/\mathbb{Z}_2$, where $\mathbb{Z}_2 = \langle z \mapsto -1/\overline{z} \rangle$. Here, all points are complex, that is for each $x \in \mathbb{X}$ we have $\operatorname{End}(S_x) = \mathbb{C}$, where S_x is the simple sheaf concentrated in x.
- 2. We have the following possible forms of π :
 - $X, Y + \alpha X, \alpha \in \mathbb{R}$, real points;
 - $(Y + zX)(Y + \overline{z}X), z \in \mathbb{C} \setminus \mathbb{R}$, complex points.

Hence $\mathbb{X} \simeq \mathbb{P}^1(\mathbb{C})/\langle \overline{\cdot} \rangle$.

- 3. We have $\pi = X$ or $\pi = Y + zX$, $z \in \mathbb{C}$, and $\mathbb{X} = \mathbb{P}^1(\mathbb{C})$ is the Riemann sphere with complex points.
- 4. We have the following possible forms of π :
 - $X, Y + \alpha \mathbb{R}, \alpha \in \mathbb{R}$, quaternion points;
 - $(Y + zX)(Y + \overline{z}X), z \in \mathbb{C} \setminus \mathbb{R}$, complex points.

Hence $\mathbb{X} \simeq \mathbb{P}^1(\mathbb{C})/\langle \overline{\cdot} \rangle$.

- 5. We have the following possible forms of π :
 - X, Y, complex points.
 - $Y^2 \alpha X^2 = (Y \sqrt{\alpha}X)(Y + \sqrt{\alpha}X), \alpha > 0$, real points;
 - $Y^2 \alpha X^2$, $\alpha < 0$, quaternion points;
 - $(Y^2 zX^2)(Y^2 \overline{z}X^2), z \in \mathbb{C} \setminus \mathbb{R}$, complex points.

Hence X is a disk with the following distribution of points

Let Σ be the Riemann sphere. Then $\mathbb{X} = \Sigma$ or $\mathbb{X} = \Sigma/\mathbb{Z}_2$, where \mathbb{Z}_2 is generated by an antiholomorphic involution having fixed points of different type (in cases 2, 4, 5), or no fixed points (case 1).

Let Aut' X be the group of conformal maps of Σ , which in cases different from 3 commute with the involution and preserve type of points. Recall that all conformal maps on Σ are given by Möbius transformations

$$z \mapsto \frac{az+b}{cz+d} \text{ or } z \mapsto \frac{a\overline{z}+b}{c\overline{z}+d}$$

where $ab - bc \neq 0$. Hence the group of conformal maps is $\mathrm{PGL}_2(\mathbb{C}) \rtimes \mathbb{Z}_2$. Thus $\mathrm{Aut}' \mathbb{X}$ is:

- 1. $SO_3(\mathbb{R})$.
- 2. $\operatorname{PGL}_2(\mathbb{R})$.
- 3. $\operatorname{PGL}_2(\mathbb{C}) \rtimes \mathbb{Z}_2$.
- 4. $\operatorname{PGL}_2(\mathbb{R})$.
- 5. $\mathbb{R}_+ \rtimes \mathbb{Z}_2$, where $\mathbb{R}_+ = \{ z \mapsto \alpha z \mid \alpha > 0 \}.$

Note that each $\varphi \in \operatorname{Aut} X$ "permutes" points of X.

Theorem. By "restriction to points" we get the homomorphism of groups

$$\Phi: \operatorname{Aut} \mathbb{X} \to \operatorname{Aut}' \mathbb{X},$$

which in cases 1–4 is an isomorphism, and in case 5 is a split epimorphism with kernel generated by γ .

In case 1 Aut $\mathbb{X} = SO_3(\mathbb{R})$. Mean geometry of \mathbb{X} is equipped with additional metric structure (angles). As topological space \mathbb{X} is just $\mathbb{P}^2(\mathbb{R})$, but its automorphism group is $PGL_3(\mathbb{R})$. **Theorem.** If X is a tubular exceptional curve then there is an exact sequence of groups

$$1 \to \operatorname{Pic}_0 \mathbb{X} \rtimes \operatorname{Aut} \mathbb{X} \longrightarrow \operatorname{Aut} D^b \mathbb{X} \to V \longrightarrow 1,$$

where V is either the breid group of B_3 , or it is a subgroup of B_3 of index 3. If $B_3 = \langle s, l | sls = lsl \rangle$, then $V = \langle l^n, s \rangle$, where n = 1 or n = 2. If n = 2 then $\langle l^2, s \rangle = \langle l^2, s | (l^2s)^2 = (sl^2)^2 \rangle$.

We obtain the \mathbbm{X} domestic means no parameter and if \mathbbm{X} is tubular then $\operatorname{Aut} \mathbbm{X}$ is finite.