The automorphism groups of domestic or tubular exceptional curves over the real numbers

based the talk by Dirk Kussin (Paderborn)

February 22, 2001

Let k be a field. We will consider tame hereditary and canonical k algebras (in the sense of Ringel and Crawley-Boevey). The structure of the category of indecomposable modules over such an algebra Λ is well-known. It particular, it known there exists a separating tubular family $\operatorname{ind}_{0} \Lambda$ which is indexed by some set \mathbb{X}. Our aim is to study the geometry of \mathbb{X}.

The easiest case is so called homogeneous case, when

$$
\Lambda=\left(\begin{array}{cc}
G & 0 \\
M & F
\end{array}\right),
$$

where F and G are skew fields, which are finite dimensional over k, and M is a tame F - G-bimodule with k acting centrally. In this case all tubes are homogeneous.

If k is algebraically closed then $M=k \oplus k$ and $\mathbb{X}=\mathbb{P}^{1}(k)$. In nonhomogeneous cases for k algebraically closed we obtain weighted projective lines introduced by Geigle and Lenzing.

For $k=\mathbb{R}$ the structure of \mathbb{X} as a topological space has been described by Dlab and Ringel. However, the geometry of \mathbb{X} in general is not understood. It has been implicitly described in terms of exceptional curves by Lenzing. We present here the explicit description for $k=\mathbb{R}$. This description will be done in terms of the automorphism group.

Let $\mathscr{H}=$ coh \mathbb{X} be the category of coherent sheaves over \mathbb{X}. It is a hereditary noetherian category with Serre duality. We define Aut \mathscr{H} to be the class of all auto-equivalences $F: \mathscr{H} \rightarrow \mathscr{H}$ modulo isomorphism relation. We put Aut \mathbb{X} to be the subgroup of Aut \mathscr{H} consisting of all $F \in$ Aut \mathscr{H} which fix the structure sheaf L.

It is known that each exceptional curve \mathbb{Y} arise by "insertion of weights" from a homogeneous curve \mathbb{X}. We write $\mathbb{Y}=\mathbb{X}\left(\begin{array}{lll}p_{1} & \cdots & p_{t} \\ x_{1} & x_{t} \\ x_{t}\end{array}\right)$, where x_{1}, \ldots, $x_{t} \in \mathbb{X}$ are pairwise distinct and $p_{1}, \ldots, p_{t}>1$ are weights.
Lemma. If \mathbb{X} and \mathbb{Y} are as above, then Aut \mathbb{Y} is the subgroup of Aut \mathbb{X} formed by the automorphisms which preserve the weights (i.e. $p(F y)=p(y)$ for all $y \in Y$).

Consider the homogeneous case $\Lambda=\left(\begin{array}{cc}G & 0 \\ M & F\end{array}\right)$. Assume that ind Λ consists of the preprojective component, the family of homogeneous tubes $\operatorname{ind}_{0} \Lambda$ and the preinjective component. Then the category coh \mathbb{X} consists of the transinjective component build up from vector bundles and the tubes consisting from objects of finite length. Let $0 \rightarrow L \rightarrow \bar{L} \rightarrow \tau^{-} L \rightarrow 0$ be the Auslander-Reiten sequence, where L is the structure sheaf of \mathbb{X}. Then \bar{L} is indecomposable. Moreover, $\operatorname{Hom}(L, \bar{L})=M, \operatorname{End}(L)=G$ and $\operatorname{End}(\bar{L})=F$.

We define the group Aut $M=\operatorname{Aut}_{k}\left({ }_{F} M_{G}\right)$ to be the set of all triples $\varphi=$ $\left(\varphi_{F}, \varphi_{M}, \varphi_{G}\right)$, where φ_{F} is a k-automorphism of F, φ_{G} is a k-automorphism of G and $\varphi_{M}: M \rightarrow M$ is a k-linear bijection such that $\varphi_{M}(f m g)=$ $\varphi_{F}(f) \varphi_{M}(m) \varphi_{G}(g)$. Equivalently, we may define $\operatorname{Aut}(M)$ as the the group of k-autoequivalences of the category $\{L, \bar{L}\}$.

A triple $\varphi=\left(\varphi_{F}, \varphi_{M}, \varphi_{G}\right) \in$ Aut M is called inner if there exists a unit f in F and an unit g in G such that $\varphi_{F}(x)=f^{-1} x f, \varphi_{G}(y)=g^{-1} x g$ and $\varphi_{M}(m)=f^{-1} m g$. We denote the group of inner automorphisms by $\operatorname{Inn} M$. Each triple $\left(\varphi_{F}, \varphi_{M}, \varphi_{G}\right)$ induces the automorphism of the k-algebra Λ in a natural way. This automorphism is inner in the usual way if the triple is inner. As usual we put Out $M:=$ Aut $M / \operatorname{Inn} M$.

Lemma. Let \mathbb{X} be a homogeneous exceptional curve with underlying tame bimodule M. Then Aut \mathbb{X} is isomorphic to Out M.

Proof. Given an automorphism F of \mathbb{X} we have it is given by an equivalence $F: \mathscr{H} \rightarrow \mathscr{H}$ fixing L. Then \bar{L} is also fixed. Hence $\left.F\right|_{\{L, \bar{L}\}}$ is an autoequivalence of $\{L, \bar{L}\}$, hence belongs to Aut M. Moreover, $F \simeq 1_{\mathscr{H}}$ if and only if its restriction is an inner automorphism.

Conversely, given an autoequivalence $F:\{L, \bar{L}\} \rightarrow\{L, \bar{L}\}$ we have an induced element $\tilde{F} \in \operatorname{Aut}(\Lambda)$. Hence we get an equivalence $\tilde{\tilde{F}}: \bmod \Lambda \rightarrow$ $\bmod \Lambda$ which extends to the derived category and by restriction we obtain a selfequivalence of $\operatorname{coh} \mathbb{X}$. Moreover this equivalence fixes L and F is inner if and only if $\tilde{\tilde{F}}$ is isomorphic to $1_{\bmod \Lambda}$. The above defined maps are mutually inverse.

From now we assume $k=\mathbb{R}$. Let \mathbb{X} be a homogeneous exceptional curve over \mathbb{R}. We have up to duality five cases.

	M	Out M	R
1	$\mathbb{R} H_{H}$	$\mathrm{SO}_{3}(\mathbb{R})$	$\mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}\right)$
2	$\mathbb{R}(\mathbb{R} \oplus \mathbb{R})_{\mathbb{R}}$	$\mathrm{PGL}_{2}(\mathbb{R})$	$\mathbb{R}[X, Y]$
3	$\mathbb{C}(\mathbb{C} \oplus \mathbb{C})_{\mathbb{C}}$	$\mathrm{PGL}_{2}(\mathbb{C}) \rtimes \mathbb{Z}_{2}$	$\mathbb{C}[X, Y]$
4	$\mathbb{H}(\mathbb{H} \oplus \mathbb{H})_{\mathbb{H}}$	$\mathrm{PGL}_{2}(\mathbb{R})$	$\mathbb{H}[X, Y], X, Y$ are central
5	$\mathbb{C}(\mathbb{C} \oplus \overline{\mathbb{C}})_{\mathbb{C}}$	$\mathbb{R}_{+} \rtimes \mathbb{Z}_{2} \rtimes \mathbb{Z}_{2}$	$\mathbb{C}[X, \bar{Y}]$

In each case $\operatorname{coh} \mathbb{X} \simeq \bmod ^{\mathbb{Z}}(R) / \bmod _{0}^{\mathbb{Z}}(R)$.
Let \mathbb{X} be the projective spectrum $\operatorname{Proj}(R)$ of R. All homogeneous primes ideals of height 1 in R are of the form $R \pi=\pi R$ with π homogeneous. We list the possible forms of π in all cases.

1. We have $\pi=a x+b y+c z$, where $(a, b, c) \neq(0,0,0)$. Hence \mathbb{X} can be identified with $S^{2} / \pm 1 \simeq \mathbb{P}^{1}(\mathbb{C}) / \mathbb{Z}_{2}$, where $\mathbb{Z}_{2}=\langle z \mapsto-1 / \bar{z}\rangle$. Here, all points are complex, that is for each $x \in \mathbb{X}$ we have $\operatorname{End}\left(S_{x}\right)=\mathbb{C}$, where S_{x} is the simple sheaf concentrated in x.
2. We have the following possible forms of π :

- $X, Y+\alpha X, \alpha \in \mathbb{R}$, real points;
- $(Y+z X)(Y+\bar{z} X), z \in \mathbb{C} \backslash \mathbb{R}$, complex points.

Hence $\mathbb{X} \simeq \mathbb{P}^{1}(\mathbb{C}) /\left\langle\left\langle^{-}\right\rangle\right.$.
3. We have $\pi=X$ or $\pi=Y+z X, z \in \mathbb{C}$, and $\mathbb{X}=\mathbb{P}^{1}(\mathbb{C})$ is the Riemann sphere with complex points.
4. We have the following possible forms of π :

- $X, Y+\alpha \mathbb{R}, \alpha \in \mathbb{R}$, quaternion points;
- $(Y+z X)(Y+\bar{z} X), z \in \mathbb{C} \backslash \mathbb{R}$, complex points.

Hence $\mathbb{X} \simeq \mathbb{P}^{1}(\mathbb{C}) /\left\langle\left\langle^{-}\right\rangle\right.$.
5. We have the following possible forms of π :

- X, Y, complex points.
- $Y^{2}-\alpha X^{2}=(Y-\sqrt{\alpha} X)(Y+\sqrt{\alpha} X), \alpha>0$, real points;
- $Y^{2}-\alpha X^{2}, \alpha<0$, quaternion points;
- $\left(Y^{2}-z X^{2}\right)\left(Y^{2}-\bar{z} X^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}$, complex points.

Hence \mathbb{X} is a disk with the following distribution of points

Let Σ be the Riemann sphere. Then $\mathbb{X}=\Sigma$ or $\mathbb{X}=\Sigma / \mathbb{Z}_{2}$, where \mathbb{Z}_{2} is generated by an antiholomorphic involution having fixed points of different type (in cases $2,4,5$), or no fixed points (case 1).

Let $\mathrm{Aut}^{\prime} \mathbb{X}$ be the group of conformal maps of Σ, which in cases different from 3 commute with the involution and preserve type of points. Recall that all conformal maps on Σ are given by Möbius transformations

$$
z \mapsto \frac{a z+b}{c z+d} \text { or } z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d},
$$

where $a b-b c \neq 0$. Hence the group of conformal maps is $\mathrm{PGL}_{2}(\mathbb{C}) \rtimes \mathbb{Z}_{2}$. Thus Aut' \mathbb{X} is:

1. $\mathrm{SO}_{3}(\mathbb{R})$.
2. $\mathrm{PGL}_{2}(\mathbb{R})$.
3. $\mathrm{PGL}_{2}(\mathbb{C}) \rtimes \mathbb{Z}_{2}$.
4. $\mathrm{PGL}_{2}(\mathbb{R})$.
5. $\mathbb{R}_{+} \rtimes \mathbb{Z}_{2}$, where $\mathbb{R}_{+}=\{z \mapsto \alpha z \mid \alpha>0\}$.

Note that each $\varphi \in$ Aut \mathbb{X} "permutes" points of \mathbb{X}.
Theorem. By "restriction to points" we get the homomorphism of groups

$$
\Phi: \text { Aut } \mathbb{X} \rightarrow \text { Aut }^{\prime} \mathbb{X}
$$

which in cases $1-4$ is an isomorphism, and in case 5 is a split epimorphism with kernel generated by γ.

In case 1 Aut $\mathbb{X}=\mathrm{SO}_{3}(\mathbb{R})$. Mean geometry of \mathbb{X} is equipped with additional metric structure (angles). As topological space \mathbb{X} is just $\mathbb{P}^{2}(\mathbb{R})$, but its automorphism group is $\mathrm{PGL}_{3}(\mathbb{R})$.

Theorem. If \mathbb{X} is a tubular exceptional curve then there is an exact sequence of groups

$$
1 \rightarrow \operatorname{Pic}_{0} \mathbb{X} \rtimes \operatorname{Aut} \mathbb{X} \longrightarrow \operatorname{Aut} D^{b} \mathbb{X} \rightarrow V \longrightarrow 1
$$

where V is either the breid group of B_{3}, or it is a subgroup of B_{3} of index 3. If $B_{3}=\langle s, l|$ sls $\left.=l s l\right\rangle$, then $V=\left\langle l^{n}, s\right\rangle$, where $n=1$ or $n=2$. If $n=2$ then $\left\langle l^{2}, s\right\rangle=\left\langle l^{2}, s \mid\left(l^{2} s\right)^{2}=\left(s l^{2}\right)^{2}\right\rangle$.

We obtain the \mathbb{X} domestic means no parameter and if \mathbb{X} is tubular then Aut \mathbb{X} is finite.

