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This is not an original work of the author, but attempt together with
W. Crawley-Boevey to understand solutions of Klyachko et al. of the problem.

Denote by Wn the set of all n-tuples ν := (ν1 ≥ · · · ≥ νn) in Rn. Let
Hµ
n be the set of all triples (ν(1),ν(2),ν(3)) from W 3

n such that there exist
Hermition matrices H(1), H(2), H(3) with the property spec(H(s)) = ν(s)
and H(1) +H(2) +H(3) = µ1n. We want to describe the set Hµ

n .
Let k be an algebraically closed field. A quiver Q = (Q0, Q1, t, h) can be

viewed as a category. Representations of Q are functors from Q to mod k.
For a representation M of Q we may define dimM := (dimkM(x))x∈Q0 .
We have Ringel form on ZQ0 × ZQ0 such that 〈α, β〉 :=

∑
x∈Q0

α(x)β(x) −∑
a∈Q1

α(ta)β(ha). We also have an affine variety RepβQ of representations

with dimension vector β, which is by definition
∏

a∈Q1
Homk(k

β(ta), kβ(ha)).

The group Glβ :=
∏

x∈Q0
Glβ(x)(k) acts on RepβQ by conjugations. The or-

bits of this action corresponds to the isoclasses of representations of Q with
dimension vector β.

Let k[RepβQ] be an affine coordinate ring. We have that Spec(k[RepβQ]Glβ)

parameterizes closed orbits in RepβQ. By SI(Q, β) we denote the ring of semi-

invariants, that is SI(Q, β) = k[RepβQ]Slβ , where Slβ :=
∏

Slβ(x)(k). We have

a natural grading SI(Q, β) =
⊕

σ∈Γ SIσ(Q, β), where Γ := HomZ(ZQ0 ,Z) and

f ∈ SIσ(Q, β) if and only if f(gm) =
∏

x∈Q0
(det gx)

σ(εx)f(m) for m ∈ RepβQ
and g ∈ Glβ.

Suppose that α and β are dimension vectors such that 〈α, β〉 = 0. Let
m ∈ RepαQ. We take a projective presentation 0→ P1 → P0 →M → 0 of M

and the induced long exact sequence 0→ HomQ(M,−)→ HomQ(P0,−)
δM−−−→

HomQ(P1,−)→ Ext1
A(M,−)→ 0. If n ∈ RepβQ then δMN is a square matrix.

Thus we may define dm : RepβQ → k by dm(n) := det(δMN ). Then dm ∈
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SI(Q, β)〈α,−〉. Moreover dm(n) 6= 0 if and only if HomQ(M,N) = 0. We call
dm a Schofield’s semi-invariant.

Theorem (Schofield, King, 1994). Let Q be a quiver without oriented cycles
and α, β two dimension vectors with 〈α, β〉 = 0. The following conditions
are equivalent.

(a) There exists a representation M with dimM = β and 〈α,dimM ′〉 ≤ 0
for all submodules M ′ of M (we say M is 〈α,−〉-semistable).

(b) For some l ≥ 1 there exists 0 6= f ∈ SI(Q, β)l〈α,−〉.

(c) For each general subrepresentation β′ ↪→ β we have 〈α, β′〉 ≤ 0.

(d) ext(α, β) = 0, where ext(α, β) = 0 is the minimum of dimk ExtQ(N,M)
for N and M with dimN = α and dimM = β respectively.

(e) There exists v ∈ RepαQ such that dv : RepβQ → k is nonzero.

(f) If k = C there exists a representation w ∈ RepβQ such that for each x ∈
Q0 we have

∑
a∈Q1

h(a)=x
W (a)W (a)+−

∑
a∈Q1

t(a)=x
W (a)+W (a) = 〈α, εx〉1Cβ(x),

where A+ denotes the conjugate transpose of A.

Let Q be the following quiver:

x1(1) ← · · · ← xn−1(1)
↖

x1(2) ← · · · ← xn−1(2) ← xn
↙

x1(3) ← · · · ← xn−1(3)

and β =
1 2 · · · n− 1
1 2 · · · n− 1 n
1 2 · · · n− 1

. Assume that we have ν(1), ν(2), ν(3) inWn with

integral coefficients and νn(s) = 0. Assume also that µ = 1
n

∑
i,s νi(s) is an

integer. Let αν be a dimension vector such that 〈αν , εxi(s)〉 = νi(s)− νi+1(s)
and 〈αν , εxn〉 = µ.

Proposition (Derksen, Weyman). Number of summands isomorphic to Sµn(Cn)
in

⊗3
s=1 Sν(s)(Cn) equals dim SI(Q, β)〈ν,−〉 = dim(

⊗
s Sν(s))

Sln(C).

Let Pn
r be a set of all r-tuples 1 ≤ i1 < · · · < ir ≤ n. For I =

(i(1), i(2), i(3)), where i(s) ∈ Pn
r we define a dimension vector βI such that

〈αν , βI〉 =
∑

s

∑
j νij(s)(s).
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Proposition. We have βI ↪→ β if and only if
∏

s σλ(i(s)) 6= 0 ∈ H∗(Grnr (C)).

Theorem. The following are equivalent:

(c) For 1 ≤ r ≤ n and each I ∈ Pn
r with

∑
s λ(i(s)) = r(n − r) and∏

σλ(i(s)) 6= 0 we have 1
r

∑
s

∑r
j=1 νij(s)(s)) ≤ µ.

(e)
⊗3

s=1 Sν(s)(Cn) has a summand isomorphic to S(µn)(Cn).

(f) There exists Hermitian matrices H(1), H(2), H(3) with
∑
H(s) = µ1n

and spec(H(s)) = ν(s).
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