Horn's Problem and semistability for quiver representations

based on the talk by Christof Geiß

January 30, 2001

This is not an original work of the author, but attempt together with W. Crawley-Boevey to understand solutions of Klyachko et al. of the problem.

Denote by W_{n} the set of all n-tuples $\boldsymbol{\nu}:=\left(\nu_{1} \geq \cdots \geq \nu_{n}\right)$ in \mathbb{R}^{n}. Let H_{n}^{μ} be the set of all triples $(\boldsymbol{\nu}(1), \boldsymbol{\nu}(2), \boldsymbol{\nu}(3))$ from W_{n}^{3} such that there exist Hermition matrices $H(1), H(2), H(3)$ with the property $\operatorname{spec}(H(s))=\boldsymbol{\nu}(s)$ and $H(1)+H(2)+H(3)=\mu 1_{n}$. We want to describe the set H_{n}^{μ}.

Let k be an algebraically closed field. A quiver $Q=\left(Q_{0}, Q_{1}, t, h\right)$ can be viewed as a category. Representations of Q are functors from Q to $\bmod k$. For a representation M of Q we may define $\operatorname{dim} M:=\left(\operatorname{dim}_{k} M(x)\right)_{x \in Q_{0}}$. We have Ringel form on $\mathbb{Z}^{Q_{0}} \times \mathbb{Z}^{Q_{0}}$ such that $\langle\alpha, \beta\rangle:=\sum_{x \in Q_{0}} \alpha(x) \beta(x)-$ $\sum_{a \in Q_{1}} \alpha(t a) \beta(h a)$. We also have an affine variety $\operatorname{Rep}_{Q}^{\beta}$ of representations with dimension vector β, which is by definition $\prod_{a \in Q_{1}} \operatorname{Hom}_{k}\left(k^{\beta(t a)}, k^{\beta(h a)}\right)$. The group $\mathrm{Gl}_{\beta}:=\prod_{x \in Q_{0}} \mathrm{Gl}_{\beta(x)}(k)$ acts on $\operatorname{Rep}_{Q}^{\beta}$ by conjugations. The orbits of this action corresponds to the isoclasses of representations of Q with dimension vector β.

Let $k\left[\operatorname{Rep}_{Q}^{\beta}\right]$ be an affine coordinate ring. We have that $\operatorname{Spec}\left(k\left[\operatorname{Rep}_{Q}^{\beta}\right]^{\mathrm{G1}}{ }_{\beta}\right)$ parameterizes closed orbits in $\operatorname{Rep}_{Q}^{\beta}$. $\operatorname{By} \operatorname{SI}(Q, \beta)$ we denote the ring of semiinvariants, that is $\mathrm{SI}(Q, \beta)=k\left[\operatorname{Rep}_{Q}^{\beta}\right]^{\mathrm{Sl}_{\beta}}$, where $\mathrm{Sl}_{\beta}:=\prod \mathrm{Sl}_{\beta(x)}(k)$. We have a natural grading $\operatorname{SI}(Q, \beta)=\bigoplus_{\sigma \in \Gamma} \mathrm{SI}_{\sigma}(Q, \beta)$, where $\Gamma:=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{Q_{0}}, \mathbb{Z}\right)$ and $f \in \operatorname{SI}_{\sigma}(Q, \beta)$ if and only if $f(g m)=\prod_{x \in Q_{0}}\left(\operatorname{det} g_{x}\right)^{\sigma\left(\varepsilon_{x}\right)} f(m)$ for $m \in \operatorname{Rep}_{Q}^{\beta}$ and $g \in \mathrm{Gl}_{\beta}$.

Suppose that α and β are dimension vectors such that $\langle\alpha, \beta\rangle=0$. Let $m \in \operatorname{Rep}_{Q}^{\alpha}$. We take a projective presentation $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ of M and the induced long exact sequence $0 \rightarrow \operatorname{Hom}_{Q}(M,-) \rightarrow \operatorname{Hom}_{Q}\left(P_{0},-\right) \xrightarrow{\delta^{M}}$ $\operatorname{Hom}_{Q}\left(P_{1},-\right) \rightarrow \operatorname{Ext}_{A}^{1}(M,-) \rightarrow 0$. If $n \in \operatorname{Rep}_{Q}^{\beta}$ then δ_{N}^{M} is a square matrix. Thus we may define $d^{m}: \operatorname{Rep}_{Q}^{\beta} \rightarrow k$ by $d^{m}(n):=\operatorname{det}\left(\delta_{N}^{M}\right)$. Then $d^{m} \in$
$\operatorname{SI}(Q, \beta)_{\langle\alpha,-\rangle}$. Moreover $d^{m}(n) \neq 0$ if and only if $\operatorname{Hom}_{Q}(M, N)=0$. We call d^{m} a Schofield's semi-invariant.

Theorem (Schofield, King, 1994). Let Q be a quiver without oriented cycles and α, β two dimension vectors with $\langle\alpha, \beta\rangle=0$. The following conditions are equivalent.
(a) There exists a representation M with $\operatorname{dim} M=\beta$ and $\left\langle\alpha, \operatorname{dim} M^{\prime}\right\rangle \leq 0$ for all submodules M^{\prime} of M (we say M is $\langle\alpha,-\rangle$-semistable).
(b) For some $l \geq 1$ there exists $0 \neq f \in \mathrm{SI}(Q, \beta)_{l\langle\alpha,-\rangle}$.
(c) For each general subrepresentation $\beta^{\prime} \hookrightarrow \beta$ we have $\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0$.
(d) $\operatorname{ext}(\alpha, \beta)=0$, where $\operatorname{ext}(\alpha, \beta)=0$ is the minimum of $\operatorname{dim}_{k} \operatorname{Ext}_{Q}(N, M)$ for N and M with $\operatorname{dim} N=\alpha$ and $\operatorname{dim} M=\beta$ respectively.
(e) There exists $v \in \operatorname{Rep}_{Q}^{\alpha}$ such that $d^{v}: \operatorname{Rep}_{Q}^{\beta} \rightarrow k$ is nonzero.
(f) If $k=\mathbb{C}$ there exists a representation $w \in \operatorname{Rep}_{Q}^{\beta}$ such that for each $x \in$ Q_{0} we have $\sum_{\substack{a \in Q_{1} \\ h(a)=x}} W(a) W(a)^{+}-\sum_{\substack{a \in Q_{1} \\ t(a)=x}} W(a)^{+} W(a)=\left\langle\alpha, \varepsilon_{x}\right\rangle 1_{\mathbb{C}^{\beta(x)}}$, where A^{+}denotes the conjugate transpose of A.

Let Q be the following quiver:

$$
\begin{aligned}
& x_{1}(1) \leftarrow \cdots \leftarrow x_{n-1}(1) \\
& x_{1}(2) \leftarrow \cdots \leftarrow x_{n-1}(2) \leftarrow x_{n} \\
& x_{1}(3) \leftarrow \cdots \leftarrow x_{n-1}(3)
\end{aligned}
$$

$12 \cdots n-1$
and $\beta=12 \cdots n-1 n$. Assume that we have $\boldsymbol{\nu}(1), \boldsymbol{\nu}(2), \boldsymbol{\nu}(3)$ in W_{n} with $12 \cdots n-1$
integral coefficients and $\boldsymbol{\nu}_{n}(s)=0$. Assume also that $\mu=\frac{1}{n} \sum_{i, s} \nu_{i}(s)$ is an integer. Let α_{ν} be a dimension vector such that $\left\langle\alpha_{\nu}, \varepsilon_{x_{i}(s)}\right\rangle=\nu_{i}(s)-\nu_{i+1}(s)$ and $\left\langle\alpha_{\nu}, \varepsilon_{x_{n}}\right\rangle=\mu$.

Proposition (Derksen, Weyman). Number of summands isomorphic to $S_{\mu^{n}}\left(\mathbb{C}^{n}\right)$ in $\bigotimes_{s=1}^{3} S_{\boldsymbol{\nu}(s)}\left(\mathbb{C}^{n}\right)$ equals $\operatorname{dim} \operatorname{SI}(Q, \beta)_{\langle\boldsymbol{\nu},-\rangle}=\operatorname{dim}\left(\bigotimes_{s} S_{\boldsymbol{\nu}(s)}\right)^{\mathrm{Sl}_{n}(\mathbb{C})}$.

Let \mathscr{P}_{r}^{n} be a set of all r-tuples $1 \leq i_{1}<\cdots<i_{r} \leq n$. For $\mathbf{I}=$ $(\mathbf{i}(1), \mathbf{i}(2), \mathbf{i}(3))$, where $\mathbf{i}(s) \in \mathscr{P}_{r}^{n}$ we define a dimension vector $\beta_{\mathbf{I}}$ such that $\left\langle\alpha_{\nu}, \beta_{\mathbf{I}}\right\rangle=\sum_{s} \sum_{j} \nu_{i_{j}(s)}(s)$.

Proposition. We have $\beta_{\mathbf{I}} \hookrightarrow \beta$ if and only if $\prod_{s} \sigma_{\lambda(\mathbf{i}(s))} \neq 0 \in H^{*}\left(\operatorname{Gr}_{r}^{n}(\mathbb{C})\right)$.
Theorem. The following are equivalent:
(c) For $1 \leq r \leq n$ and each $\mathbf{I} \in \mathscr{P}_{r}^{n}$ with $\sum_{s} \boldsymbol{\lambda}(\mathbf{i}(s))=r(n-r)$ and $\prod \sigma_{\lambda(\mathbf{i}(s))} \neq 0$ we have $\left.\frac{1}{r} \sum_{s} \sum_{j=1}^{r} \nu_{i_{j}(s)}(s)\right) \leq \mu$.
(e) $\bigotimes_{s=1}^{3} S_{\boldsymbol{\nu}(s)}\left(\mathbb{C}^{n}\right)$ has a summand isomorphic to $S_{\left(\mu^{n}\right)}\left(\mathbb{C}^{n}\right)$.
(f) There exists Hermitian matrices $H(1), H(2), H(3)$ with $\sum H(s)=\mu 1_{n}$ and $\operatorname{spec}(H(s))=\boldsymbol{\nu}(s)$.

