Derived orders and Auslander-Reiten-quivers

based on the part of the talk by Wolfgang Rump (Eichstätt)

October 19, 2000

Let Ω be a poset and F a skewfield. By denote by $\operatorname{Rep}_{F}(\Omega)$ the category of representations of Ω over F that is the the category of all systems $X=$ $\left(X, X_{i}\right)_{i \in \Omega}$, where X is the finite dimensional vector space over F and for each $i \in \Omega X_{i}$ is the subspace of X such that, if $i \leq j$ then $X_{i} \subset X_{j}$.

Assume that p is a minimal element in Ω and q is a maximal element in Ω such that $p \not \leq q$. Let C be the set of all elements $c \in \Omega$ such that $p \not \leq x \not \leq q$. If C is a chain then we can associate to Ω its derivative Ω^{\prime} of Ω in the following way. The elements of Ω^{\prime} are given by $\Omega \backslash C \cup C^{+} \cup C^{-}$, were $C^{ \pm}:=\left\{c^{ \pm} \mid c \in C\right\}$. The relation \leq is obtained in a natural way from the order in Ω and the relations $p \leq c^{+}, c^{-} \leq c^{+}, c^{-} \leq q$ for each $c \in C$. Let $X=\left(X, X_{i}\right)$ be a representation of Ω. We define derived representation X^{\prime} the rule $X_{c^{+}}^{\prime}=X_{c}+X_{p}$ and $X_{c^{-}}^{\prime}=X_{c} \cap X_{q}$. Let $B=\left(F, F_{i}\right)$ be given by the $F_{i}=F$ if $p \geq i$ and $F_{i}=0$ otherwise.

Theorem (Zavadskij). There is a surjection between the isomorphism classes of indecomposable representations of Ω and isomorphism classes of indecomposable representations of Ω^{\prime} which is one to one to one except fiber corresponding to B which is finite.

Let R complete discrete valuation domain. Denote by K its fraction ring and by Π its radical. Λ is called an R-order provided Λ is an R-algebra which is finitely generated and free as an R-module. By Λ-lattice we mean a finitely generated Λ-module. Tiled R-order is $\Lambda=\left(\Pi^{e_{i, j}}\right) \subset M_{n}(K)=A$. Let S be the unique simple A-module. We consider the infinite poset \mathfrak{P}_{Λ} of all nonzero and projective Λ-submodules of S.

