Elementary modules

based on the talk by Otto Kerner (Düsselford)

March 23, 2000

In our talk k be any field. Let H be a connected hereditary wild algebra. A regular H-module E is called **elementary** if there is not short exact sequence $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$ where U and V are nonzero regular H-modules.

Lemma. (a) If E is an elementary module then $\tau^l E$ is elementary for all $l \in \mathbb{Z}$.

- (b) If E is an elementary module then E is quasi-simple and End(E) is a division algebra.
- (c) For E regular the following are equivalent.
 - (i) E is elementary.
 - (ii) $\tau^l E$ has no proper regular factors for $l \gg 0$.
 - (iii) $\tau^{-l}E$ has no proper regular submodules for $l \gg 0$.

Theorem (Lükas). Let H be connected wild hereditary algebra. Then the set $\{(\dim \tau^i E)_{i \in \mathbb{Z}} \mid E \text{ elementary}\}$ is finite.

Proof. The proof is based on the following observations. There exists a natural number N such that if E is an elementary module then dim $\tau^i E \leq N$ for some *i*.

Let k be algebraically closed and H be the path algebra of following quiver $\cdot \rightleftharpoons \cdot \leftarrow \cdot$. We can use the idea of the proof to calculate elementary modules. Namely, we have that an indecomposable H-module E is elementary if and only if $\dim \tau^i E = (1, 1, 0)$ or $\dim \tau^i E = (1, 2, 0)$ for some i.

An indecomposable regular *H*-module *E* is called **additively elementary** if each short exact sequence $0 \to U \to E^r \to V \to 0$, where *U* and *V* are regular, splits. We know there exist elementary modules which are not additively elementary. Consider the path algebra of quiver

and let E be a quasi-simple $k\mathbb{D}_4$ -module with the dimension-vector $111^{2}100$. Then E is an elementary H-module. However, we have an exact sequence $0 \to X \to E^2 \to Y \to 0$, with X and Y regular H-modules of dimension vectors $111^{1}100$ and $111^{1}100$ respectively.

Theorem. Let E be a quasi-simple regular module with Ext(E, E) = 0. Then the following are equivalent.

- (a) E is elementary.
- (b) E is additively elementary.
- (c) There exists a natural number m_0 such that for any regular module R the minimal right approximation $f : \tau^l E^s \to R$, with $l \ge m_0$, is a monomorphism.
- (d) There exists a natural number m_0 such that for each $l \ge m_0 \tau^l E \oplus M$ is a tilting module for some preinjective module M.

Proof. (b) \Rightarrow (a) is obvious.

(d) \Rightarrow (b). Denote $\tau^l E$ by E' and consider a short exact sequence $0 \rightarrow U \rightarrow (E')^r \rightarrow V \rightarrow 0$ with U and V regular. We apply the functor $\operatorname{Hom}(M, -)$ and we get $0 \rightarrow \operatorname{Ext}(M, U) \rightarrow 0 \rightarrow \operatorname{Ext}(M, V) \rightarrow 0$. Hence U and V belongs to $M^{\perp} = \operatorname{add} E$ and the sequence splits.

(a) \Rightarrow (d). Take m_0 such that $\tau^l E$ has no regular factors and is sincere for $l \ge m_0$. Let $l \ge m_0$ and $E' := \tau^l E$. Then E' is faithful, since it is sincere without selfextensions. Let M be a cokernel of a monomorphism $H \to (E')^r$. Then $T := E' \oplus M$ is a titling H-module. Note that the torsion class $\mathcal{T}(T)$ is generated by E'.

We have to show that M is preinjective. Let V be an indecomposable direct summand of M. Assume V is not preinjective. Then V is regular. We have a nonzero map $f : E' \to V$, which has to be a monomorphism, since E' has no regular factors. Hence it follows that dim Hom(E', V) > 1. Let $Q := \operatorname{Coker} f$. Then $Q \in \mathcal{T}$. We use the following lemma.

Lemma (Unger). Let X and Y be nonisomorphic indecomposable modules without selfextensions such that $\operatorname{Hom}(X, Y) \neq 0$ and $\operatorname{Ext}(Y, X) = 0$. Then either we have a monomorphism $f: X \to Y$ or an epimorphism $g: Y \to X$ such that for $Q := \operatorname{Coker} f$ (respectively $Q := \operatorname{Ker} g$) we have $\operatorname{End}(Q) = K$ and $\dim \operatorname{Ext}(Q, Q) = \dim \operatorname{Hom}(X, Y) - 1$.

According to the above lemma we may assume that dim $\operatorname{Ext}(Q, Q) > 0$, hence Q is regular. Let $\tau_T := t_T \tau_H$ be the relative Auslander–Reiten translation, where t_T denotes the biggest torsion submodule of a given module. We have a short exact sequence $0 \to \tau E' \to \tau V \to \tau Q \to 0$. Note that $\operatorname{Hom}(E', \tau V) = \operatorname{Ext}(V, E') = 0$, hence when we apply the functor Hom(E', -) we get an exact sequence $0 \to \operatorname{Hom}(E', \tau Q) \to \operatorname{Ext}(E', \tau E') \to \operatorname{Ext}(E', \tau V) = 0$, thus dim Hom $(E', \tau Q) = 1$. Then we have a monomorphism $E' \to \tau Q$, hence $\tau_T Q \simeq E'$. If $A := \operatorname{End}(T)$ then an indecomposable A-projective module Hom(T, E') have the property $\tau_A^- \operatorname{Hom}(T, E') = \operatorname{Hom}(T, Q)$ has selfextensions. However, we have maps from Hom(T, E') to all projective A-modules hence Hom(T, E') has to be preprojective, and this is a contradiction.

An indecomposable regular *H*-module *E* is called **orbital elementary** if for each \tilde{E} in $\operatorname{add}(\tau^i E \mid i \in \mathbb{Z})$ any exact sequence $0 \to U \to \tilde{E} \to V \to 0$, with *U* and *V* regular, splits.

Additively elementary modules does not have to be orbital elementary. Let H be path algebra of the quiver $\cdot \rightleftharpoons \cdot \leftarrow \cdot$ and let U_1 be a regular elementary H-module of dimension vector (1, 2, 0). Then for $U_2 := \tau U_1$ we have $\dim U_2 = (3, 4, 4)$ and we have an exact sequence $0 \rightarrow E \rightarrow U_1 \oplus$ $U_2 \rightarrow Q \rightarrow 0$, where E is a regular elementary H-module of dimensionvector (1, 1, 0) and Q is also an elementary module with $\dim Q = (3, 5, 4) =$ $\dim \tau^2 E$.

Theorem. Let C be a connected wild hereditary algebra and M an indecomposable regular quasi-simple C-module with the property that C[M] is tilted or concealed canonical. Then M is orbital elementary.

Proof. Assume that C[M] is a tilted algebra of type H. The proof can be reduced to the following case. There exists a tilting H-module $T = X \oplus P$ such that P is the projective generator of X^{\perp} with $\operatorname{End}(P) = C$, X is quasisimple regular, in the Auslander–Reiten sequence $0 \to \tau_H \to Z \to X \to 0$ we have that Z a is quasi–simple regular C-module and A = C[Z] is tilted of type H.

In this situation we can define a functor $F : \operatorname{reg} C \to \operatorname{reg} H$ by the formula $F(M) := \tau_H^{-m} \tau_{\mathcal{T}}^{2m} \tau_C^{-m} M$, where $m \gg 0$. The functor F is full and dense. If M is indecomposable then F(M) = 0 if and only if $M = \tau_C^i Z$ for some $i \in \mathbb{Z}$. We also have the following theorem.

Theorem. Let $\eta : 0 \to U \xrightarrow{f} V \xrightarrow{g} W \to 0$ be a short exact sequence in reg C.

(a) We have a commutative diagram

•

(b) $F(\eta) = 0$ if and only if for each $\widetilde{Z} \in \text{add}(\tau_C^i Z)$ the morphism $(\widetilde{Z}, g) : (\widetilde{Z}, V) \to (\widetilde{Z}, W)$ is an epimorphism.

Take now $\widetilde{Z} \in \operatorname{add}(\tau)C^iZ$) and a short exact sequence $\eta: 0 \to U \to \widetilde{Z} \to W \to 0$ with U and W regular. Then $F(\eta) = 0$ and it follows from the above theorem that η splits.