Elementary modules

based on the talk by Otto Kerner (Düsselford)

March 23, 2000

In our talk k be any field. Let H be a connected hereditary wild algebra. A regular H-module E is called elementary if there is not short exact sequence $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$ where U and V are nonzero regular H modules.

Lemma. (a) If E is an elementary module then $\tau^{l} E$ is elementary for all $l \in \mathbb{Z}$.
(b) If E is an elementary module then E is quasi-simple and $\operatorname{End}(E)$ is a division algebra.
(c) For E regular the following are equivalent.
(i) E is elementary.
(ii) $\tau^{l} E$ has no proper regular factors for $l \gg 0$.
(iii) $\tau^{-l} E$ has no proper regular submodules for $l \gg 0$.

Theorem (Lükas). Let H be connected wild hereditary algebra. Then the set $\left\{\left(\operatorname{dim} \tau^{i} E\right)_{i \in \mathbb{Z}} \mid E\right.$ elementary $\}$ is finite.

Proof. The proof is based on the following observations. There exists a natural number N such that if E is an elementary module then $\operatorname{dim} \tau^{i} E \leq N$ for some i.

Let k be algebraically closed and H be the path algebra of following quiver $\cdot \leftleftarrows \cdot \leftarrow \cdot$. We can use the idea of the proof to calculate elementary modules. Namely, we have that an indecomposable H-module E is elementary if and only if $\operatorname{dim} \tau^{i} E=(1,1,0)$ or $\operatorname{dim} \tau^{i} E=(1,2,0)$ for some i.

An indecomposable regular H-module E is called additively elementary if each short exact sequence $0 \rightarrow U \rightarrow E^{r} \rightarrow V \rightarrow 0$, where U and V are regular, splits. We know there exist elementary modules which are not additively elementary. Consider the path algebra of quiver

and let E be a quasi-simple $k \widetilde{\mathbb{D}}_{4}$-module with the dimension-vector $111^{2} 100$. Then E is an elementary H-module. However, we have an exact sequence $0 \rightarrow X \rightarrow E^{2} \rightarrow Y \rightarrow 0$, with X and Y regular H-modules of dimension vectors $111^{3} 100$ and $111^{1} 100$ respectively.

Theorem. Let E be a quasi-simple regular module with $\operatorname{Ext}(E, E)=0$. Then the following are equivalent.
(a) E is elementary.
(b) E is additively elementary.
(c) There exists a natural number m_{0} such that for any regular module R the minimal right approximation $f: \tau^{l} E^{s} \rightarrow R$, with $l \geq m_{0}$, is a monomorphism.
(d) There exists a natural number m_{0} such that for each $l \geq m_{0} \tau^{l} E \oplus M$ is a tilting module for some preinjective module M.

Proof. (b) \Rightarrow (a) is obvious.
(d) $\Rightarrow(\mathrm{b})$. Denote $\tau^{l} E$ by E^{\prime} and consider a short exact sequence $0 \rightarrow U \rightarrow\left(E^{\prime}\right)^{r} \rightarrow V \rightarrow 0$ with U and V regular. We apply the functor $\operatorname{Hom}(M,-)$ and we get $0 \rightarrow \operatorname{Ext}(M, U) \rightarrow 0 \rightarrow \operatorname{Ext}(M, V) \rightarrow 0$. Hence U and V belongs to $M^{\perp}=$ add E and the sequence splits.
(a) \Rightarrow (d). Take m_{0} such that $\tau^{l} E$ has no regular factors and is sincere for $l \geq m_{0}$. Let $l \geq m_{0}$ and $E^{\prime}:=\tau^{l} E$. Then E^{\prime} is faithful, since it is sincere without selfextensions. Let M be a cokernel of a monomorphism $H \rightarrow\left(E^{\prime}\right)^{r}$. Then $T:=E^{\prime} \oplus M$ is a titling H-module. Note that the torsion class $\mathcal{T}(T)$ is generated by E^{\prime}.

We have to show that M is preinjective. Let V be an indecomposable direct summand of M. Assume V is not preinjective. Then V is regular. We have a nonzero map $f: E^{\prime} \rightarrow V$, which has to be a monomorphism, since E^{\prime} has no regular factors. Hence it follows that $\operatorname{dim} \operatorname{Hom}\left(E^{\prime}, V\right)>1$. Let $Q:=$ Coker f. Then $Q \in \mathcal{T}$. We use the following lemma.
Lemma (Unger). Let X and Y be nonisomorphic indecomposable modules without selfextensions such that $\operatorname{Hom}(X, Y) \neq 0$ and $\operatorname{Ext}(Y, X)=0$. Then either we have a monomorphism $f: X \rightarrow Y$ or an epimorphism $g: Y \rightarrow X$ such that for $Q:=$ Coker f (respectively $Q:=\operatorname{Ker} g$) we have $\operatorname{End}(Q)=K$ and $\operatorname{dim} \operatorname{Ext}(Q, Q)=\operatorname{dim} \operatorname{Hom}(X, Y)-1$.

According to the above lemma we may assume that $\operatorname{dim} \operatorname{Ext}(Q, Q)>0$, hence Q is regular. Let $\tau_{\mathcal{T}}:=t_{T} \tau_{H}$ be the relative Auslander-Reiten translation, where t_{T} denotes the biggest torsion submodule of a given module. We have a short exact sequence $0 \rightarrow \tau E^{\prime} \rightarrow \tau V \rightarrow \tau Q \rightarrow 0$. Note that $\operatorname{Hom}\left(E^{\prime}, \tau V\right)=\operatorname{Ext}\left(V, E^{\prime}\right)=0$, hence when we apply the functor
$\operatorname{Hom}\left(E^{\prime},-\right)$ we get an exact sequence $0 \rightarrow \operatorname{Hom}\left(E^{\prime}, \tau Q\right) \rightarrow \operatorname{Ext}\left(E^{\prime}, \tau E^{\prime}\right) \rightarrow$ $\operatorname{Ext}\left(E^{\prime}, \tau V\right)=0$, thus $\operatorname{dim} \operatorname{Hom}\left(E^{\prime}, \tau Q\right)=1$. Then we have a monomorphism $E^{\prime} \rightarrow \tau Q$, hence $\tau_{\mathcal{T}} Q \simeq E^{\prime}$. If $A:=\operatorname{End}(T)$ then an indecomposable A-projective module $\operatorname{Hom}\left(T, E^{\prime}\right)$ have the property $\tau_{A}^{-} \operatorname{Hom}\left(T, E^{\prime}\right)=$ $\operatorname{Hom}(T, Q)$ has selfextensions. However, we have maps from $\operatorname{Hom}\left(T, E^{\prime}\right)$ to all projective A-modules hence $\operatorname{Hom}\left(T, E^{\prime}\right)$ has to be preprojective, and this is a contradiction.

An indecomposable regular H-module E is called orbital elementary if for each \widetilde{E} in $\operatorname{add}\left(\tau^{i} E \mid i \in \mathbb{Z}\right)$ any exact sequence $0 \rightarrow U \rightarrow \widetilde{E} \rightarrow V \rightarrow 0$, with U and V regular, splits.

Additively elementary modules does not have to be orbital elementary. Let H be path algebra of the quiver $\leftleftarrows \ldots \leftarrow$. and let U_{1} be a regular elementary H-module of dimension vector $(1,2,0)$. Then for $U_{2}:=\tau U_{1}$ we have $\operatorname{dim} U_{2}=(3,4,4)$ and we have an exact sequence $0 \rightarrow E \rightarrow U_{1} \oplus$ $U_{2} \rightarrow Q \rightarrow 0$, where E is a regular elementary H-module of dimensionvector $(1,1,0)$ and Q is also an elementary module with $\operatorname{dim} Q=(3,5,4)=$ $\operatorname{dim} \tau^{2} E$.

Theorem. Let C be a connected wild hereditary algebra and M an indecomposable regular quasi-simple C-module with the property that $C[M]$ is tilted or concealed canonical. Then M is orbital elementary.

Proof. Assume that $C[M]$ is a tilted algebra of type H. The proof can be reduced to the following case. There exists a tilting H-module $T=X \oplus P$ such that P is the projective generator of X^{\perp} with $\operatorname{End}(P)=C, X$ is quasisimple regular, in the Auslander-Reiten sequence $0 \rightarrow \tau_{H} \rightarrow Z \rightarrow X \rightarrow 0$ we have that Z a is quasi-simple regular C-module and $A=C[Z]$ is tilted of type H.

In this situation we can define a functor $F: \operatorname{reg} C \rightarrow \operatorname{reg} H$ by the formula $F(M):=\tau_{H}^{-m} \tau_{\mathcal{T}}^{2 m} \tau_{C}^{-m} M$, where $m \gg 0$. The functor F is full and dense. If M is indecomposable then $F(M)=0$ if and only if $M=\tau_{C}^{i} Z$ for some $i \in \mathbb{Z}$. We also have the following theorem.

Theorem. Let $\eta: 0 \rightarrow U \xrightarrow{f} V \xrightarrow{g} W \rightarrow 0$ be a short exact sequence in reg C.
(a) We have a commutative diagram

(b) $F(\eta)=0$ if and only if for each $\widetilde{Z} \in \operatorname{add}\left(\tau_{C}^{i} Z\right)$ the morphism (\widetilde{Z}, g) : $(\widetilde{Z}, V) \rightarrow(\widetilde{Z}, W)$ is an epimorphism.
Take now $\left.\widetilde{Z} \in \operatorname{add}(\tau) C^{i} Z\right)$ and a short exact sequence $\eta: 0 \rightarrow U \rightarrow \widetilde{Z} \rightarrow$ $W \rightarrow 0$ with U and W regular. Then $F(\eta)=0$ and it follows from the above theorem that η splits.

