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Multivalued Hamiltonian �ows

Let (M, ω) be a compact symplectic smooth surface and β be a

closed 1-form on M. Denote by X : M → TM the multivalued

Hamiltonian vector �eld determined by

β = iXω = ω(X , · ).

Let (φt)t∈R stand for the multivalued Hamiltonian �ow on M

associated to the vector �eld X . Since dβ = diXω = 0, the �ow

(φt)t∈R preserves the symplectic form ω, and hence it preserves the

smooth measure ν = νω determined by ω.
Denote by π : M̂ → M the universal cover of M and by β̂ the

pullback of β by π : M̂ → M. Since M̂ is simply connected and β̂ is

also a closed form, there exists a smooth function H : M̂ → R,
called a multivalued Hamiltonian, such that dH = β̂.
By Darboux's theorem, in local coordinates ω = dx ∧ dy , and then

X (x , y) =

(
∂

∂y
H(x , y),− ∂

∂x
H(x , y)

)
.
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Multivalued Hamiltonian �ows

Assume that H is a Morse function. Then the �ow (φt)t∈R has

�nitely many �xed points (equal to zeros of β and equal to images

of critical points of H by the map π). The set of �xed points F(β)
consists of centers or non-degenerated saddles. Assume that any

two di�erent saddles are not connected by a separatrix of the �ow

(called a saddle connection). Nevertheless, the �ow can have saddle

connections which are loops. Each such saddle connection gives a

decomposition of M into two nontrivial invariant subsets.
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The surface M can be represented as the �nite union of disjoint

(φt)t∈R�invariant sets as follows

M = P ∪ S ∪
⋃
T ∈T
T ,

where P is an open set consisting of periodic orbits, S is a �nite

union of �xed points or saddle connections, and for each T ∈ T its

closure T is a transitive component of (φt)t∈R.
We will consider the multivalued Hamiltonian �ow (φt)t∈R only on

such transitive component T . Each such �ow has a special

representation over a minimal IET T : I → I and under a roof

function τ : I → R+ which is piecewise C∞ and it has singularities

of logarithmic type at discontinuities of T .
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Special representation
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Extensions of multivalued Hamiltonian �ows

Let us consider a system of di�erential equations on M × R` of the
form {

dx
dt

= X (x),
dy
dt

= f (x),

for (x , y) ∈ M ×R`, where f : M → R` is a smooth function. Then

the associated �ow (Φf
t )t∈R on M × R` is given by

Φf
t (x , y) =

(
φtx , y +

∫ t

0

f (φsx) ds

)
.

It follows that (Φf
t )t∈R is a skew product �ow with the base �ow

(φt)t∈R on M and the cocycle F : R×M → R` given by

F (t, x) =

∫ t

0

f (φsx) ds.

The deviation of the cocycle F was studied by Forni (Ann. of

Math. 1997, 2001) for typical (φt)t∈R with no saddle connections.
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Recurrence and ergodicity

The aim of my talk is to discuss recurrence and ergodicity of the

�ow (Φf
t )t∈R on T × R`, where T is a transitive component of

multivalued Hamiltonian �ow.

Let us consider the Poincaré map corresponding to the transversal

submanifold I × R` ⊂ T × R`. This map is isomorphic to the skew

product

Tϕ : I × R` → I × R`, Tϕ(x , y) = (Tx , y + ϕ(x)),

where

ϕ(x) = ϕf (x) := F (τ(x), x) =

∫ τ(x)

0

f (φsx) ds.

∫
I

ϕf (x) dx =

∫
T
f ω
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Recurrence

Therefore, the �ow (Φf
t )t∈R on T × R` is isomorphic to a special

�ows built over Tϕ.

the recurrence of (Φf
t )t∈R ⇐⇒ the recurrence of Tϕ

the ergodicity of (Φf
t )t∈R ⇐⇒ the ergodicity of Tϕ

Corollary (after Schmidt)

If ` = 1 then (Φf
t )t∈R on T × R is recurrent if and only if∫

T f ω = 0.

Corollary (after Conze or Schmidt)

if
∫
T f ω =

∫
I
ϕ(x) dx = 0 and ‖ϕ(n)‖ = o(1/

√̀
n) then the skew

product Tϕ, and hence the �ow (Φf
t )t∈R on T × R` are recurrent.
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Properties of ϕ

Theorem

The cocycle ϕ is piecewise C∞ (over exchanged intervals) and

if f (x) 6= 0 for some x ∈ F(β) ∩ T then ϕ has singularities of

logarithmic type;

if f (x) = 0 for all x ∈ F(β) ∩ T then ϕ is of bounded

variation and S(ϕ) =
∫
I
ϕ′(x) dx =

∫
∂T f θβ ;

if additionally f ′(x) = f ′′(x) = 0 for all x ∈ F(β) ∩ T then ϕ
and its derivative are piecewise continuous.

The space of functions satisfying the last condition we will denote

by C 2
0 (M, β).
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Skew products over rotations

If M = T2 then T is an irrational rotation the study of (Φf
t )t∈R

leads to the well explored world of cylindrical transformations for

piecewise smooth cocycles.

If ϕ : T→ R` is of bounded variation and
∫
ϕ(x) dx = 0 then

by Denjoy-Koksma inequality Tϕ is recurrent for each ` > 1.

If ϕ : T→ R is piecewise absolutely continuous with S(ϕ) 6= 0

then Tϕ is ergodic (Pask, 1990).

If ϕ(x) = − log x − log(1− x) + ac(x) (for all irrational

rotations) or ϕ(x) = − log x + ac(x) (for almost every - well

approximated - rotations) then Tϕ is ergodic

(Fr¡czek�Lema«czyk 2004; Fayad�Lema«czyk 2006).
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IETs of periodic type

De�nition

Let T : [0, 1)→ [0, 1) be an IET exchanging intervals Ij ,

j = 1, . . . , d . T : [0, 1)→ [0, 1) is said be of periodic type if for

some 0 < ρ < 1 the induced transformation TJ , J = [0, ρ) is an IET

which is isomorphic to T via the rescaling [0, 1) 3 x 7→ ρx ∈ [0, ρ),
and each interval Ji ⊂ J, i = 1, . . . , d (exchanged by TJ) before

the �rst return to J visits all intervals Ij , j = 1, . . . , d .

This notion is an counterpart to quadratic irrationals.

Proposition

If T : I → I is of periodic type then all maximal subintervals of

continuity of T n have proportional length, i.e.

1

cn
6 |I ′| 6 c

n
for each such subinterval I ′.

Krzysztof Fr¡czek Recurrence and ergodicity of cocycles over IETs



Classical approach

Essential values of the cocycle ϕ : X → G . g ∈ E (ϕ) if

∀0∈V∀µ(B)>0∃n∈Z µ(B ∩ T−nB ∩ (ϕ(n) ∈ g + V )) > 0

E (ϕ) ⊂ G is a subgroup and

Tϕ is ergodic ⇐⇒ E (ϕ) = G .

If there exists (Cn), µ(Cn) > α > 0, µ(Cn 4 T−1Cn)→ 0 and ϕ
satis�es a Denjoy-Koksma type inequality on Cn, i.e.

(ϕ(qn)) is "bounded",

then (ϕ(qn))∗(µ( · |Cn))→ ν and supp ν ⊂ E (ϕ). This approach
works for irrational rotations, but does not work for IETs, for which

any appropriate Denjoy-Koksma inequality does not exist (Zorich,

1997). Here

|ϕ(hn)(x)− an| 6 Var f on Cn,

but we lose control of the behaviour of the sequence (an).
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Method working for cocycles with non-zero sum of jumps

Theorem

Let T be an IET of periodic type and let ϕ : I → R be C 2�function

on each exchanged interval. If ϕ has zero mean and S(ϕ) 6= 0 then

the skew product is ergodic.

Corollary (from Marmi-Moussa-Yoccoz, 2005)

Any such cocycle is cohomologous to a piecewise linear cocycle

with slope S(ϕ).
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Therefore we can assume that ϕ(n) = nx + c on each interval of

continuity. Since
∫
ϕ dx = 0, ϕ is recurrent

∀ε>0∀µ(B)>0∃n>0 µ(B ∩ T−nB ∩ (ϕ(n) ∈ (−ε, ε))) > 0

it follows that

µ(B ∩ T−nB ∩ (ϕ(n) ∈ (a − ε, a + ε))) > 0

for each a from an interval. Consequently, E (ϕ) contains an

interval, and hence Tϕ is ergodic.
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Correction of cocycles

Instead of proving the ergodicity for the original cocycle we make a

correction which kills the in�uence of the unstable bundle of, so

called, Rauzy-Veech cocycle.

Theorem

If T has periodic type then every zero mean cocycle ϕ : I → R of

bounded variation there exists a piecewise constant (over

exchanged intervals) function h such that for the corrected cocycle

ϕ̂ = ϕ+ h a Denjoy-Koksma type inequality holds.

Then we can use the classical approach.

Theorem

Let T be an IET of periodic type and ϕ : I → R be a zero mean

cocycle ϕ : I → R with S(ϕ) = 0. If ϕ �has enough rationally

independent jumps� (it is a typical property) then the corrected

cocycle is ergodic.
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The existence of the correction is based on ideas introduced by

Marmi-Moussa-Yoccoz (2005). This correction can be naturally

transported to the multivalued Hamiltonian setting. More precisely,

there exists a �nite-dimensional subspace H ⊂ C 2
0 (M, β) and a

bounded operator P : C 2
0 (M, β)→ H such that

ϕf+Pf = ϕ̂.

The operator P : C 2
0 (M, β)→ H is closely related to the space of

invariant distributions used by Forni (2001) in order to prove the

deviation spectrum property. More precisely, if f has zero mean on

T and Pf = 0 then

|
∫ T

0

f (φsx) ds| 6 Cf logT .
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Ergodicity of extensions of multivalued Hamiltonians

Theorem

Suppose that (φt)t∈R is a multivalued Hamiltonian �ow such that

(φt)t∈R on T has special representation over an IET of periodic

type. If f ∈ C 2
0 (M, β) is a function such that

∫
T f ω = 0 and∫

∂T f θβ 6= 0 then the extension (Φf
t )t∈R is ergodic on T × R;∫

∂T f θβ = 0 and we �control�
∫
f θβ for connected

components of ∂T then the corrected extension (Φf+Pf
t )t∈R is

ergodic on T × R.
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Higher dimensional case

Using both methods of proving ergodicity we can also construct

functions f taking values in R` such that the �ow (Φf
t )t∈R is

ergodic on T × R`. Here we have to prove recurrence at �rst.

Theorem

Let T : I → I be an IET of periodic type and let θ1 > θ2 > 1 be

the greatest Lyapunov exponents of, so called periodic matrix of T .

If ϕ : I → R is a function of bounded variation and zero mean then

|ϕ(n)(x)| 6 Cnθ2/θ1 .

In particular, if θ2/θ1 < 1/` then each cocycle ϕ : I → R` of
bounded variation and zero mean is recurrent.
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THE END!
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