Recurrence and ergodicity of cocycles over IETs

Krzysztof Frączek

Nicolaus Copernicus University Toruń & IMPAN Warszawa

May 27 2010, Trzebieszowice

Dynamical Systems Meeting, Lower Silesia 2010

joint paper with Jean-Pierre Conze Cocycles over interval exchange transformations and multivalued Hamiltonian flows

Multivalued Hamiltonian flows

Let (M, ω) be a compact symplectic smooth surface and β be a closed 1-form on M. Denote by $X : M \to TM$ the **multivalued** Hamiltonian vector field determined by

$$\beta = i_X \omega = \omega(X, \cdot).$$

Let $(\phi_t)_{t\in\mathbb{R}}$ stand for the **multivalued Hamiltonian flow** on M associated to the vector field X. Since $d\beta = di_X \omega = 0$, the flow $(\phi_t)_{t\in\mathbb{R}}$ preserves the symplectic form ω , and hence it preserves the smooth measure $\nu = \nu_{\omega}$ determined by ω .

Denote by $\pi: \widehat{M} \to M$ the universal cover of M and by $\widehat{\beta}$ the pullback of β by $\pi: \widehat{M} \to M$. Since \widehat{M} is simply connected and $\widehat{\beta}$ is also a closed form, there exists a smooth function $H: \widehat{M} \to \mathbb{R}$, called a **multivalued Hamiltonian**, such that $dH = \widehat{\beta}$. By Darboux's theorem, in local coordinates $\omega = dx \wedge dy$, and then

$$X(x,y) = \left(\frac{\partial}{\partial y}H(x,y), -\frac{\partial}{\partial x}H(x,y)\right).$$

Multivalued Hamiltonian flows

Assume that H is a Morse function. Then the flow $(\phi_t)_{t \in \mathbb{R}}$ has finitely many fixed points (equal to zeros of β and equal to images of critical points of H by the map π). The set of fixed points $\mathcal{F}(\beta)$ consists of centers or non-degenerated saddles. Assume that any two different saddles are not connected by a separatrix of the flow (called a saddle connection). Nevertheless, the flow can have saddle connections which are loops. Each such saddle connection gives a decomposition of M into two nontrivial invariant subsets.

The surface M can be represented as the finite union of disjoint $(\phi_t)_{t\in\mathbb{R}}$ -invariant sets as follows

$$M=\mathcal{P}\cup\mathcal{S}\cup\bigcup_{\mathcal{T}\in\mathfrak{T}}\mathcal{T},$$

where \mathcal{P} is an open set consisting of periodic orbits, \mathcal{S} is a finite union of fixed points or saddle connections, and for each $\mathcal{T} \in \mathfrak{T}$ its closure $\overline{\mathcal{T}}$ is a transitive component of $(\phi_t)_{t \in \mathbb{R}}$. We will consider the multivalued Hamiltonian flow $(\phi_t)_{t \in \mathbb{R}}$ only on such transitive component \mathcal{T} . Each such flow has a special representation over a minimal IET $\mathcal{T} : I \to I$ and under a roof function $\tau : I \to \mathbb{R}^+$ which is piecewise C^{∞} and it has singularities of logarithmic type at discontinuities of \mathcal{T} .

Special representation

æ

Extensions of multivalued Hamiltonian flows

<

Let us consider a system of differential equations on $M \times \mathbb{R}^{\ell}$ of the form

$$\begin{cases} \frac{dx}{dt} = X(x), \\ \frac{dy}{dt} = f(x), \end{cases}$$

for $(x, y) \in M \times \mathbb{R}^{\ell}$, where $f : M \to \mathbb{R}^{\ell}$ is a smooth function. Then the associated flow $(\Phi_t^f)_{t \in \mathbb{R}}$ on $M \times \mathbb{R}^{\ell}$ is given by

$$\Phi^f_t(x,y) = \left(\phi_t x, y + \int_0^t f(\phi_s x) \, ds\right).$$

It follows that $(\Phi_t^f)_{t \in \mathbb{R}}$ is a skew product flow with the base flow $(\phi_t)_{t \in \mathbb{R}}$ on M and the cocycle $F : \mathbb{R} \times M \to \mathbb{R}^{\ell}$ given by

$$F(t,x)=\int_0^t f(\phi_s x)\,ds.$$

The deviation of the cocycle F was studied by Forni (Ann. of Math. 1997, 2001) for typical $(\phi_t)_{t\in\mathbb{R}}$ with no saddle connections.

The aim of my talk is to discuss recurrence and ergodicity of the flow $(\Phi_t^f)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$, where \mathcal{T} is a transitive component of multivalued Hamiltonian flow.

Let us consider the Poincaré map corresponding to the transversal submanifold $I \times \mathbb{R}^{\ell} \subset \overline{\mathcal{T}} \times \mathbb{R}^{\ell}$. This map is isomorphic to the skew product

$$T_{\varphi}: I \times \mathbb{R}^{\ell} \to I \times \mathbb{R}^{\ell}, \quad T_{\varphi}(x, y) = (Tx, y + \varphi(x)),$$

where

$$\varphi(x) = \varphi^{f}(x) := F(\tau(x), x) = \int_{0}^{\tau(x)} f(\phi_{s}x) \, ds.$$
$$\int_{I} \varphi^{f}(x) \, dx = \int_{\mathcal{T}} f \, \omega$$

Recurrence

Therefore, the flow $(\Phi_t^f)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$ is isomorphic to a special flows built over T_{φ} .

the recurrence of $(\Phi^f_t)_{t \in \mathbb{R}} \iff$ the recurrence of T_{φ} the ergodicity of $(\Phi^f_t)_{t \in \mathbb{R}} \iff$ the ergodicity of T_{φ}

Corollary (after Schmidt)

If $\ell = 1$ then $(\Phi_t^f)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}$ is recurrent if and only if $\int_{\mathcal{T}} f \omega = 0$.

Corollary (after Conze or Schmidt)

if $\int_{\mathcal{T}} f \omega = \int_{I} \varphi(x) dx = 0$ and $\|\varphi^{(n)}\| = o(1/\sqrt[\ell]{n})$ then the skew product T_{φ} , and hence the flow $(\Phi_t^f)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$ are recurrent.

• □ ▶ • • □ ▶ • • □ ▶ •

Theorem

The cocycle φ is piecewise C^∞ (over exchanged intervals) and

- if f(x) ≠ 0 for some x ∈ F(β) ∩ T then φ has singularities of logarithmic type;
- if f(x) = 0 for all $x \in \mathcal{F}(\beta) \cap \overline{\mathcal{T}}$ then φ is of bounded variation and $S(\varphi) = \int_I \varphi'(x) \, dx = \int_{\partial \mathcal{T}} f \, \theta^{\beta};$
- if additionally f'(x) = f''(x) = 0 for all $x \in \mathcal{F}(\beta) \cap \overline{\mathcal{T}}$ then φ and its derivative are piecewise continuous.

The space of functions satisfying the last condition we will denote by $C_0^2(M,\beta)$.

- E - - E -

If $M = \mathbb{T}^2$ then \mathcal{T} is an irrational rotation the study of $(\Phi_t^f)_{t \in \mathbb{R}}$ leads to the well explored world of cylindrical transformations for piecewise smooth cocycles.

- If φ : T → ℝ^ℓ is of bounded variation and ∫ φ(x) dx = 0 then by Denjoy-Koksma inequality T_φ is recurrent for each ℓ ≥ 1.
- If φ : T → R is piecewise absolutely continuous with S(φ) ≠ 0 then T_φ is ergodic (Pask, 1990).
- If $\varphi(x) = -\log x \log(1 x) + ac(x)$ (for all irrational rotations) or $\varphi(x) = -\log x + ac(x)$ (for almost every well approximated rotations) then T_{φ} is ergodic (Frączek-Lemańczyk 2004; Fayad-Lemańczyk 2006).

< 同 > < 回 > < 回 > … 回

IETs of periodic type

Definition

Let $T : [0, 1) \rightarrow [0, 1)$ be an IET exchanging intervals I_j , $j = 1, \ldots, d$. $T : [0, 1) \rightarrow [0, 1)$ is said be of **periodic type** if for some $0 < \rho < 1$ the induced transformation T_J , $J = [0, \rho)$ is an IET which is isomorphic to T via the rescaling $[0, 1) \ni x \mapsto \rho x \in [0, \rho)$, and each interval $J_i \subset J$, $i = 1, \ldots, d$ (exchanged by T_J) before the first return to J visits all intervals I_j , $j = 1, \ldots, d$.

This notion is an counterpart to quadratic irrationals.

Proposition

If $T : I \rightarrow I$ is of periodic type then all maximal subintervals of continuity of T^n have proportional length, i.e.

$$\frac{1}{cn} \leqslant |I'| \leqslant \frac{c}{n} \text{ for each such subinterval } I'.$$

イロト イポト イヨト イヨト

Classical approach

Essential values of the cocycle $\varphi : X \to G$. $g \in E(\varphi)$ if $\forall_{0 \in V} \forall_{\mu(B)>0} \exists_{n \in \mathbb{Z}} \mu(B \cap T^{-n}B \cap (\varphi^{(n)} \in g + V)) > 0$ $E(\varphi) \subset G$ is a subgroup and

$$T_{arphi}$$
 is ergodic $\iff E(arphi) = G.$

If there exists (C_n) , $\mu(C_n) \ge \alpha > 0$, $\mu(C_n \bigtriangleup T^{-1}C_n) \to 0$ and φ satisfies a Denjoy-Koksma type inequality on C_n , i.e.

 $(\varphi^{(q_n)})$ is "bounded",

then $(\varphi^{(q_n)})_*(\mu(\cdot|C_n)) \to \nu$ and supp $\nu \subset E(\varphi)$. This approach works for irrational rotations, but does not work for IETs, for which any appropriate Denjoy-Koksma inequality does not exist (Zorich, 1997). Here

$$|\varphi^{(h_n)}(x) - a_n| \leqslant Var f \text{ on } C_n,$$

but we lose control of the behaviour of the sequence (a_n) .

Theorem

Let T be an IET of periodic type and let $\varphi : I \to \mathbb{R}$ be C^2 -function on each exchanged interval. If φ has zero mean and $S(\varphi) \neq 0$ then the skew product is ergodic.

Corollary (from Marmi-Moussa-Yoccoz, 2005)

Any such cocycle is cohomologous to a piecewise linear cocycle with slope $S(\varphi)$.

Therefore we can assume that $\varphi^{(n)} = nx + c$ on each interval of continuity. Since $\int \varphi \, dx = 0$, φ is recurrent

$$\forall_{\varepsilon>0}\forall_{\mu(B)>0}\exists_{n>0}\ \mu(B\cap\ T^{-n}B\cap(\varphi^{(n)}\in(-\varepsilon,\varepsilon)))>0$$

it follows that

$$\mu(B\cap T^{-n}B\cap (\varphi^{(n)}\in (a-arepsilon,a+arepsilon)))>0$$

for each *a* from an interval. Consequently, $E(\varphi)$ contains an interval, and hence T_{φ} is ergodic.

Correction of cocycles

Instead of proving the ergodicity for the original cocycle we make a correction which kills the influence of the unstable bundle of, so called, Rauzy-Veech cocycle.

Theorem

If T has periodic type then every zero mean cocycle $\varphi : I \to \mathbb{R}$ of bounded variation there exists a piecewise constant (over exchanged intervals) function h such that for the corrected cocycle $\widehat{\varphi} = \varphi + h$ a Denjoy-Koksma type inequality holds.

Then we can use the classical approach.

Theorem

Let T be an IET of periodic type and $\varphi : I \to \mathbb{R}$ be a zero mean cocycle $\varphi : I \to \mathbb{R}$ with $S(\varphi) = 0$. If φ "has enough rationally independent jumps" (it is a typical property) then the corrected cocycle is ergodic.

The existence of the correction is based on ideas introduced by Marmi-Moussa-Yoccoz (2005). This correction can be naturally transported to the multivalued Hamiltonian setting. More precisely, there exists a finite-dimensional subspace $H \subset C_0^2(M,\beta)$ and a bounded operator $P: C_0^2(M,\beta) \to H$ such that

$$\varphi^{f+Pf} = \widehat{\varphi}.$$

The operator $P: C_0^2(M,\beta) \to H$ is closely related to the space of invariant distributions used by Forni (2001) in order to prove the deviation spectrum property. More precisely, if f has zero mean on \mathcal{T} and Pf = 0 then

$$|\int_0^T f(\phi_s x) ds| \leqslant C_f \log T.$$

Theorem

Suppose that $(\phi_t)_{t \in \mathbb{R}}$ is a multivalued Hamiltonian flow such that $(\phi_t)_{t \in \mathbb{R}}$ on \mathcal{T} has special representation over an IET of periodic type. If $f \in C_0^2(M,\beta)$ is a function such that $\int_{\mathcal{T}} f \omega = 0$ and

- $\int_{\partial \mathcal{T}} f \, \theta^{\beta} \neq 0$ then the extension $(\Phi^{f}_{t})_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}$;
- $\int_{\partial \mathcal{T}} f \, \theta^{\beta} = 0$ and we "control" $\int f \, \theta^{\beta}$ for connected components of $\partial \mathcal{T}$ then the corrected extension $(\Phi_t^{f+Pf})_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}$.

Using both methods of proving ergodicity we can also construct functions f taking values in \mathbb{R}^{ℓ} such that the flow $(\Phi_t^f)_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}^{\ell}$. Here we have to prove recurrence at first.

Theorem

Let $T: I \to I$ be an IET of periodic type and let $\theta_1 > \theta_2 \ge 1$ be the greatest Lyapunov exponents of, so called periodic matrix of T. If $\varphi: I \to \mathbb{R}$ is a function of bounded variation and zero mean then

 $|\varphi^{(n)}(x)| \leqslant C n^{\theta_2/\theta_1}.$

In particular, if $\theta_2/\theta_1 < 1/\ell$ then each cocycle $\varphi : I \to \mathbb{R}^\ell$ of bounded variation and zero mean is recurrent.

THE END!

Krzysztof Frączek Recurrence and ergodicity of cocycles over IETs

< 一型

▶ < Ξ >

æ