Recurrence and ergodicity of cocycles over IETs

Krzysztof Frączek

Nicolaus Copernicus University Toruń \& IMPAN Warszawa

May 27 2010, Trzebieszowice

Dynamical Systems Meeting, Lower Silesia 2010
joint paper with Jean-Pierre Conze
Cocycles over interval exchange transformations and multivalued Hamiltonian flows

Multivalued Hamiltonian flows

Let (M, ω) be a compact symplectic smooth surface and β be a closed 1-form on M. Denote by $X: M \rightarrow T M$ the multivalued Hamiltonian vector field determined by

$$
\beta=i_{X} \omega=\omega(X, \cdot)
$$

Let $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ stand for the multivalued Hamiltonian flow on M associated to the vector field X. Since $d \beta=\operatorname{dix}_{X} \omega=0$, the flow $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ preserves the symplectic form ω, and hence it preserves the smooth measure $\nu=\nu_{\omega}$ determined by ω.
Denote by $\pi: \widehat{M} \rightarrow M$ the universal cover of M and by $\widehat{\beta}$ the pullback of β by $\pi: \widehat{M} \rightarrow M$. Since \widehat{M} is simply connected and $\widehat{\beta}$ is also a closed form, there exists a smooth function $H: \widehat{M} \rightarrow \mathbb{R}$, called a multivalued Hamiltonian, such that $d H=\widehat{\beta}$.
By Darboux's theorem, in local coordinates $\omega=d x \wedge d y$, and then

$$
X(x, y)=\left(\frac{\partial}{\partial y} H(x, y),-\frac{\partial}{\partial x} H(x, y)\right)
$$

Multivalued Hamiltonian flows

Assume that H is a Morse function. Then the flow $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ has finitely many fixed points (equal to zeros of β and equal to images of critical points of H by the map π). The set of fixed points $\mathcal{F}(\beta)$ consists of centers or non-degenerated saddles. Assume that any two different saddles are not connected by a separatrix of the flow (called a saddle connection). Nevertheless, the flow can have saddle connections which are loops. Each such saddle connection gives a decomposition of M into two nontrivial invariant subsets.

The surface M can be represented as the finite union of disjoint $\left(\phi_{t}\right)_{t \in \mathbb{R}^{-i n v a r i a n t ~ s e t s ~ a s ~ f o l l o w s ~}}$

$$
M=\mathcal{P} \cup \mathcal{S} \cup \bigcup_{\mathcal{T} \in \mathfrak{T}} \mathcal{T}
$$

where \mathcal{P} is an open set consisting of periodic orbits, \mathcal{S} is a finite union of fixed points or saddle connections, and for each $\mathcal{T} \in \mathfrak{T}$ its closure $\overline{\mathcal{T}}$ is a transitive component of $\left(\phi_{t}\right)_{t \in \mathbb{R}}$.
We will consider the multivalued Hamiltonian flow $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ only on such transitive component \mathcal{T}. Each such flow has a special representation over a minimal IET $T: I \rightarrow I$ and under a roof function $\tau: I \rightarrow \mathbb{R}^{+}$which is piecewise C^{∞} and it has singularities of logarithmic type at discontinuities of T.

Special representation

Extensions of multivalued Hamiltonian flows

Let us consider a system of differential equations on $M \times \mathbb{R}^{\ell}$ of the form

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=X(x), \\
\frac{d y}{d t}=f(x),
\end{array}\right.
$$

for $(x, y) \in M \times \mathbb{R}^{\ell}$, where $f: M \rightarrow \mathbb{R}^{\ell}$ is a smooth function. Then the associated flow $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ on $M \times \mathbb{R}^{\ell}$ is given by

$$
\Phi_{t}^{f}(x, y)=\left(\phi_{t} x, y+\int_{0}^{t} f\left(\phi_{s} x\right) d s\right) .
$$

It follows that $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ is a skew product flow with the base flow $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ on M and the cocycle $F: \mathbb{R} \times M \rightarrow \mathbb{R}^{\ell}$ given by

$$
F(t, x)=\int_{0}^{t} f\left(\phi_{s} x\right) d s
$$

The deviation of the cocycle F was studied by Forni (Ann. of Math. 1997, 2001) for typical $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ with no saddle connections,

Recurrence and ergodicity

The aim of my talk is to discuss recurrence and ergodicity of the flow $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$, where \mathcal{T} is a transitive component of multivalued Hamiltonian flow.
Let us consider the Poincaré map corresponding to the transversal submanifold $I \times \mathbb{R}^{\ell} \subset \overline{\mathcal{T}} \times \mathbb{R}^{\ell}$. This map is isomorphic to the skew product

$$
T_{\varphi}: I \times \mathbb{R}^{\ell} \rightarrow I \times \mathbb{R}^{\ell}, \quad T_{\varphi}(x, y)=(T x, y+\varphi(x))
$$

where

$$
\begin{gathered}
\varphi(x)=\varphi^{f}(x):=F(\tau(x), x)=\int_{0}^{\tau(x)} f\left(\phi_{s} x\right) d s \\
\int_{1} \varphi^{f}(x) d x=\int_{\mathcal{T}} f \omega
\end{gathered}
$$

Recurrence

Therefore, the flow $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$ is isomorphic to a special flows built over T_{φ}.
the recurrence of $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}} \Longleftrightarrow$ the recurrence of T_{φ} the ergodicity of $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}} \Longleftrightarrow$ the ergodicity of T_{φ}

Corollary (after Schmidt)

If $\ell=1$ then $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}$ is recurrent if and only if $\int_{\mathcal{T}} f \omega=0$.

Corollary (after Conze or Schmidt)

if $\int_{\mathcal{T}} f \omega=\int_{1} \varphi(x) d x=0$ and $\left\|\varphi^{(n)}\right\|=o(1 / \sqrt[\ell]{n})$ then the skew product T_{φ}, and hence the flow $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ on $\mathcal{T} \times \mathbb{R}^{\ell}$ are recurrent.

Properties of φ

Theorem

The cocycle φ is piecewise C^{∞} (over exchanged intervals) and

- if $f(x) \neq 0$ for some $x \in \mathcal{F}(\beta) \cap \overline{\mathcal{T}}$ then φ has singularities of logarithmic type;
- if $f(x)=0$ for all $x \in \mathcal{F}(\beta) \cap \overline{\mathcal{T}}$ then φ is of bounded variation and $S(\varphi)=\int_{1} \varphi^{\prime}(x) d x=\int_{\partial \mathcal{T}} f \theta^{\beta}$;
- if additionally $f^{\prime}(x)=f^{\prime \prime}(x)=0$ for all $x \in \mathcal{F}(\beta) \cap \overline{\mathcal{T}}$ then φ and its derivative are piecewise continuous.

The space of functions satisfying the last condition we will denote by $C_{0}^{2}(M, \beta)$.

If $M=\mathbb{T}^{2}$ then T is an irrational rotation the study of $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ leads to the well explored world of cylindrical transformations for piecewise smooth cocycles.

- If $\varphi: \mathbb{T} \rightarrow \mathbb{R}^{\ell}$ is of bounded variation and $\int \varphi(x) d x=0$ then by Denjoy-Koksma inequality T_{φ} is recurrent for each $\ell \geqslant 1$.
- If $\varphi: \mathbb{T} \rightarrow \mathbb{R}$ is piecewise absolutely continuous with $S(\varphi) \neq 0$ then T_{φ} is ergodic (Pask, 1990).
- If $\varphi(x)=-\log x-\log (1-x)+a c(x)$ (for all irrational rotations) or $\varphi(x)=-\log x+a c(x)$ (for almost every - well approximated - rotations) then T_{φ} is ergodic (Frączek-Lemańczyk 2004; Fayad-Lemańczyk 2006).

IETs of periodic type

Definition

Let $T:[0,1) \rightarrow[0,1)$ be an IET exchanging intervals I_{j}, $j=1, \ldots, d . T:[0,1) \rightarrow[0,1)$ is said be of periodic type if for some $0<\rho<1$ the induced transformation $T_{J}, J=[0, \rho)$ is an IET which is isomorphic to T via the rescaling $[0,1) \ni x \mapsto \rho x \in[0, \rho)$, and each interval $J_{i} \subset J, i=1, \ldots, d$ (exchanged by T_{J}) before the first return to J visits all intervals $l_{j}, j=1, \ldots, d$.

This notion is an counterpart to quadratic irrationals.

Proposition

If $T: I \rightarrow I$ is of periodic type then all maximal subintervals of continuity of T^{n} have proportional length, i.e.

$$
\frac{1}{c n} \leqslant\left|I^{\prime}\right| \leqslant \frac{c}{n} \text { for each such subinterval } I^{\prime}
$$

Classical approach

Essential values of the cocycle $\varphi: X \rightarrow G . g \in E(\varphi)$ if

$$
\forall 0 \in V \forall_{\mu(B)>0} \exists_{n \in \mathbb{Z}} \mu\left(B \cap T^{-n} B \cap\left(\varphi^{(n)} \in g+V\right)\right)>0
$$

$E(\varphi) \subset G$ is a subgroup and

$$
T_{\varphi} \text { is ergodic } \Longleftrightarrow E(\varphi)=G .
$$

If there exists $\left(C_{n}\right), \mu\left(C_{n}\right) \geqslant \alpha>0, \mu\left(C_{n} \triangle T^{-1} C_{n}\right) \rightarrow 0$ and φ satisfies a Denjoy-Koksma type inequality on C_{n}, i.e.

$$
\left(\varphi^{\left(q_{n}\right)}\right) \text { is "bounded", }
$$

then $\left(\varphi^{\left(q_{n}\right)}\right)_{*}\left(\mu\left(\cdot \mid C_{n}\right)\right) \rightarrow \nu$ and supp $\nu \subset E(\varphi)$. This approach works for irrational rotations, but does not work for IETs, for which any appropriate Denjoy-Koksma inequality does not exist (Zorich, 1997). Here

$$
\left|\varphi^{\left(h_{n}\right)}(x)-a_{n}\right| \leqslant \operatorname{Var} f \text { on } C_{n},
$$

but we lose control of the behaviour of the sequence $\left(a_{n}\right)$.

Method working for cocycles with non-zero sum of jumps

Theorem

Let T be an IET of periodic type and let $\varphi: I \rightarrow \mathbb{R}$ be C^{2}-function on each exchanged interval. If φ has zero mean and $S(\varphi) \neq 0$ then the skew product is ergodic.

Corollary (from Marmi-Moussa-Yoccoz, 2005)

Any such cocycle is cohomologous to a piecewise linear cocycle with slope $S(\varphi)$.

Therefore we can assume that $\varphi^{(n)}=n x+c$ on each interval of continuity. Since $\int \varphi d x=0, \varphi$ is recurrent

$$
\forall_{\varepsilon>0} \forall_{\mu(B)>0} \exists_{n>0} \mu\left(B \cap T^{-n} B \cap\left(\varphi^{(n)} \in(-\varepsilon, \varepsilon)\right)\right)>0
$$

it follows that

$$
\mu\left(B \cap T^{-n} B \cap\left(\varphi^{(n)} \in(a-\varepsilon, a+\varepsilon)\right)\right)>0
$$

for each a from an interval. Consequently, $E(\varphi)$ contains an interval, and hence T_{φ} is ergodic.

Correction of cocycles

Instead of proving the ergodicity for the original cocycle we make a correction which kills the influence of the unstable bundle of, so called, Rauzy-Veech cocycle.

Theorem

If T has periodic type then every zero mean cocycle $\varphi: I \rightarrow \mathbb{R}$ of bounded variation there exists a piecewise constant (over exchanged intervals) function h such that for the corrected cocycle $\widehat{\varphi}=\varphi+h$ a Denjoy-Koksma type inequality holds.

Then we can use the classical approach.

Theorem

Let T be an IET of periodic type and $\varphi: I \rightarrow \mathbb{R}$ be a zero mean cocycle $\varphi: I \rightarrow \mathbb{R}$ with $S(\varphi)=0$. If φ "has enough rationally independent jumps" (it is a typical property) then the corrected cocycle is ergodic.

The existence of the correction is based on ideas introduced by Marmi-Moussa-Yoccoz (2005). This correction can be naturally transported to the multivalued Hamiltonian setting. More precisely, there exists a finite-dimensional subspace $H \subset C_{0}^{2}(M, \beta)$ and a bounded operator $P: C_{0}^{2}(M, \beta) \rightarrow H$ such that

$$
\varphi^{f+P f}=\widehat{\varphi}
$$

The operator $P: C_{0}^{2}(M, \beta) \rightarrow H$ is closely related to the space of invariant distributions used by Forni (2001) in order to prove the deviation spectrum property. More precisely, if f has zero mean on \mathcal{T} and $P f=0$ then

$$
\left|\int_{0}^{T} f\left(\phi_{s} x\right) d s\right| \leqslant C_{f} \log T
$$

Ergodicity of extensions of multivalued Hamiltonians

Theorem

Suppose that $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ is a multivalued Hamiltonian flow such that $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ on \mathcal{T} has special representation over an IET of periodic type. If $f \in C_{0}^{2}(M, \beta)$ is a function such that $\int_{\mathcal{T}} f \omega=0$ and

- $\int_{\partial \mathcal{T}} f \theta^{\beta} \neq 0$ then the extension $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}$;
- $\int_{\partial \mathcal{T}} f \theta^{\beta}=0$ and we "control" $\int f \theta^{\beta}$ for connected components of $\partial \mathcal{T}$ then the corrected extension $\left(\Phi_{t}^{f+P f}\right)_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}$.

Higher dimensional case

Using both methods of proving ergodicity we can also construct functions f taking values in \mathbb{R}^{ℓ} such that the flow $\left(\Phi_{t}^{f}\right)_{t \in \mathbb{R}}$ is ergodic on $\mathcal{T} \times \mathbb{R}^{\ell}$. Here we have to prove recurrence at first.

Theorem

Let $T: I \rightarrow I$ be an IET of periodic type and let $\theta_{1}>\theta_{2} \geqslant 1$ be the greatest Lyapunov exponents of, so called periodic matrix of T. If $\varphi: I \rightarrow \mathbb{R}$ is a function of bounded variation and zero mean then

$$
\left|\varphi^{(n)}(x)\right| \leqslant C n^{\theta_{2} / \theta_{1}} .
$$

In particular, if $\theta_{2} / \theta_{1}<1 / \ell$ then each cocycle $\varphi: I \rightarrow \mathbb{R}^{\ell}$ of bounded variation and zero mean is recurrent.

THE END!

