ON THE DEGREE OF COCYCLES WITH VALUES IN THE
GROUP SU(2)

KRZYSZTOF FRACZEK

ABSTRACT. In this paper are presented some properties of smooth co-
cycles over irrational rotations on the circle with values in the group
SU(2). Tt is proved that the degree of any C*~cocycle (the notion of de-
gree was introduced in [2]) belongs to 27N (N = {0,1,2,...}). It is also
shown that if the rotation satisfies a Diophantine condition, then every
C*—cocycle with nonzero degree is C*°—cohomologous to a cocycle of

the form
2mi(re4w)

0
To>z+— 0 ef2rri(7‘z+w) € SU(2)7

where 27r is the degree of the cocycle and w is a real number. The
above statement is false in the case of cocycles with zero degree. The
proofs are based on ideas presented by R. Krikorian in [6].

1. INTRODUCTION

By T we will mean the circle group {z € C;|z| = 1} which most often
will be treated as the group R/Z; A will denote Lebesgue measure on T.
For every v > 0 we will identify functions on R/yZ with periodic of period
~ functions on R. Let o € T be an irrational number. We will denote by
T:(T,\) — (T, A) the corresponding ergodic rotation Tz = = + a.

Let G be a compact Lie group, p its Haar measure. Let ¢ : T — G be a
measurable function. Denote by T, : (T x G,A® p) — (T x G,A ® p) the
measure—preserving automorphism defined by

Ty(z,9) = (T, g p(7)),

called skew product. Every measurable function ¢ : T — G determines the
measurable cocycle over the rotation 1" given by

o(x)p(Tx) ... p(T" 1) for n>0
o™ (z) = e for n=0
(o(Trz)p(T™ ). .. (T tx))™t for n <0,
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which we will identify with the function ¢. Then T (x,g) = (T, g o™ (1))
for any integer n. Two cocycles p,9 : T — G are cohomologous if there
exists a measurable map p: T — G such that

p(x) = tp(x) = p(z) " Y (z) p(Ta).

For any s € NU {oo}, if ¢, 9, p are of class C*, then we will say that ¢ and
1 are C*—cohomologous. If ¢ and v are cohomologous (C*~cohomologous
resp.), then the map (x, g) — (z,p(z) g) establishes a metrical isomorphism
(C*—conjugation resp.) of T, and Ty.

In the case where G is the circle a lot of properties of a smooth cocycle
¢ : T — T and the associated skew product T, depend on the topological
degree of ¢ denoted by d(¢). For example, in [5] A. Iwanik, M. Lemanczyk,
D. Rudolph have proved that if ¢ is a C?—cocycle with d(y) # 0, then T,
is ergodic and it has countable Lebesgue spectrum on the orthocomplement
of the space of functions depending only on the first variable. On the other
hand, in [3] P. Gabriel, M. Lemanczyk, P. Liardet have proved that if ¢
is absolutely continuous with d(p) = 0, then T, has singular spectrum.
Moreover, if « is Diophantine, then every C*°—cocycle ¢ : T — T is C°°-
cohomologous to a cocycle of the form T 3 z +— e2™d¥)2+w) ¢ T where w
is a real number.

The aim of this paper is to study how the value of degree influences prop-
erties of cocycles in the case where G = SU(2) (the notion of degree for
cocycles with values in SU(2) was introduced in [2]).

1.1. Notation.
For a given matrix A = [aj;lij=12 € M2(C) define the norm of A by

| A] = /%Zijzl laij|?. Observe that if A is an element of the Lie algebra

su(2), i.e.
_ ia b+ic
A= [ —b+ic —ia ] ’
where a,b,c € R, then ||A| = v det A. Moreover, if B is an element of the

group SU(2), i.e.
A | a2
—z2 71 |’

where 21,20 € C, |21|> + |22/ = 1, then AdgA = BAB™! € su(2) and
|AdgA| = ||A||. By ¥ we will mean the maximal torus in SU(2), i.e.

the subgroup of SU(2) containing all matrices of the form [ = 2 ] , where

0
zeT.

Let X be a Riemann manifold. Assume that X is compact. Then by
LY(X,su(2)) we mean the space of all functions f : X — su(2) such that

1l = /X 1 (@)ldA(z) < oo,
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where )\ is normalized Lebesgue measure on X. The space L'(X,su(2))
endowed with the norm || ||1 is a Banach space. Consider the scalar product
of su(2) given by

1
(A,B) = —gtr(adA oadB).

Then ||A]| = v/(A, A). By L?(X,su(2)) we mean the space of all functions
f: X — su(2) such that

120 = \/ /X £ (@) [2dA(z) < oo

For two fi1, f2 € L*(X,5u(2)) set

(i o) o) = /X (1), fo(@))dA(x).

The space L%(X,su(2)) endowed with the above scalar product is a Hilbert
space.

For every s € NU {00}, we will denote by C*(X, SU
function on X with values in SU(2). For any ¢ € C
by L(p) : R — su(2) the function L(p)(x) = De(x)
C*function ¢ : T — su(2) (s € N) set

s = Dk
[9llc- = guax sup | D*()]|

For two ¢,9 € C*(T, SU(2)) define
le —lles = maX(SléI% le(@) = P(@)l[, [1L(p) = L)l gs-1)-

2)) the set all C*—
(R, SU( )) denote

(
1
(p(z))~t. For any

Then (C*(T,SU(2)),|| - — - ||cs) is a metric space for any natural s.

1.2. Definition of degree and basic properties.
One definition of degree for cocycles with values in SU(2) was given in
[2]. The following result establishes the base of this definition.

Theorem 1.1. For every o € CY(T,SU(2)) there exists a measurable and
bounded function ¢ : T — su(2) such that

—L( "y = 4p in LY(T,su(2)) and A-almost everywhere,

as n — +o0o Moreover, Adyyp(Tx) = (x) and ||[¢(x)| is constant for a.e.
zeT.

Proof. First notice that

L(p™) = ZAdw(m @) o T")

L) = - Z Adyn (L(p) 0 T7%) = = Adyom (L('™) 0 T77)
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for any natural n. Let us consider the unitary operator
U : L*(T,su(2)) — L*(T,su(2)), Uf(z)= Adyq)f(Tx).
Then U"f(z) = Adym ) f(T"z) and U™"f(z) = Adn () f(T ") for

any natural n. Therefore

n—1 n
1 o 1 1 1,
SL™) = -3 URLGp) and L(p™) =~ 3T UFL(y)
k=0 k=1

By the von Neuman ergodic theorem, there exist U-invariant 9,¢_ €
L*(T,su(2)) such that

lim —L( My =4, and lim —L( )y =g

n—+oo n n—+oo n
in L%(T,su(2)). Next observe that
H* (@) + @) = [ Adye n>(—*L( T ™"2) + ¢4 (T~ ")) |

= L") a) i (T

It follows that i = ¢ = —_. Moreover |[(2)| = ||Adym¥(Tx)|| =
|¢(T'z)||. Hence |[¢p(x)]|| is constant for a.e. z € T, by the ergodicity of T'.
Let ¢ € L*(T x SU(2),5u(2)) be given by @(z,g) = AdyL(p)(x). Then

P15 (2,9)) = Ady(U"L(p)(2))

for any integer n. Therefore

P(T5(x, 9))

and

—_

By the Birkhoff ergodic 1 17/ : (T (x ,g)) and =370 B(T;%(x,g)) con-
verge for A ® p-a.e. (z, g) € T X SU( ) (p is the normahzed Haar mea-
sure of SU(2)). Consequently, by the Fubini theorem, %L(cp("))(:v) and

LL(¢(=™)(x) converge for a.e. x € T, which completes the proof. O
Definition 1. The number

1 (o™ — £ N=L(o™
[l = lim H L") Ly ok Hn (Rl PTG
we will be called the degree of the cocycle ¢ and denoted by d(¢y).

It is easy to check that degree is invariant under the relation of C'-
cohomology. The following theorem indicates an important property of co-
cycles with nonzero degree.
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Theorem 1.2. (see [2]) Suppose that o : T — SU(2) is a Cl—cocycle with
d(p) # 0. Then the skew product is not ergodic and ¢ is cohomologous

0
to a measurable cocycle of the form T 3 x +— [ V(Ox) W } € T, where
v : T — T is a measurable function. Moreover, all ergodic components of T,
are metrically isomorphic to the skew product Ty : T x T — T x T and T, s
mizing on the orthocomplement of the space of functions depending only on

the first variable.

1.3. Main results.

An important question is: what can one say on values of degree? It is
easy to see that if a cocycle ¢ is cohomologous to a cocycle with values in
the subgroup ¥ via a smooth transfer function, then d(¢) € 2xN. Moreover,
if o is the golden ratio, then the degree of any C?-cocycle belongs to 27N
(see [2]). In the paper we extend this result to all irrational « (see Theo-
rem 2.7). Completely different situation occurs in the case of cocycles over
multidimensional rotations. For details we refer to 2, §8,9]. Moreover, we
prove that degree is invariant under the relation of measurable cohomology
(see Theorem 2.10). The proofs of Theorem 2.7 and 2.10 are based on the
renormalization algorithm for some Z2-actions on R x SU(2) presented by
R. Krikorian in [6] and on the following result.

Theorem 1.3. For every C%—cocycle ¢ : T — SU(2), we have
lim iDL( N (z) =0

n—=+oo n2
for a.e. x €T.

Proof. First observe that

n—1k—1 n—1
—DL = S S L), UEL ()] + % > UMDL(9)),
k=0 j=0 k=0
n k-1 n
DL S, U )] - o S U
k=1 j=1 k=1

for any natural n # 0. Next note that, if {aj}ren is a bounded sequence in
su(2) such that L ") | a; converges, as n — +o0, then

n k—1
533l
k=1 j=1

tends to zero, as n — +oo. This follows by the same method as in [2, Prop.
6.6]. It follows that
— o™ —

whenever
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exists. Now applying Theorem 1.1 completes the proof. 0O

Now assuming Theorem 2.7 we get the following simple conclusion.

Corollary 1.4. Let « be an irrational number and let A : T — SU(2) be
a constant cocycle. Suppose that o : T — SU(2) is a C%-cocycle such that
|l — Allcr < 2m. Then d(p) = 0.

Proof. Since d(p) < ||L(¢)||co and ||L(¢)||co < 27, we have d(¢) < 2.
As d(p) € 27N we obtain d(p) =0. O

We should compare this with the following result, which is due to M.
Herman [4].

Proposition 1.5. For any irrational o the closure (in the C°°—topology)
of the set all C*°—cocycles which are not C°°—cohomologous to any constant
cocycle contains the set of all constant cocycles.

It follows that for any irrational « there exists a C*°—cocycle ¢ : T —
SU(2) with d(¢) = 0 which is not C'*°~cohomologous to any constant cocy-
cle. For any 7 € N and w € R we will denote by exp, ,, : T — SU(2) the
0 _2 } On the other hand,
in Section 3 (see Theorem 3.1) we show that if « satisfies a Diophantine
condition, then every C*°—cocycle ¢ : T — SU(2) with d(p) = 27r # 0 is
C*°—cohomologous to a cocycle exp, ,, (this result has been independently
observed by R. Krikorian but has not been published). This indicates next
essential difference between cocycles with zero and nonzero degree. The
proof of Theorem 3.1 is based on a result (see Proposition 3.3) describing
C>—cocycles in some neighborhood of the cocycle exp, o, which was proved
by R. Krikorian [6, Th. 9.1].

cocycle exp, ,,(z) = e™THWh where h =

2. VALUES OF DEGREE

2.1. Z*-actions on R x SU(2) and the renormalization algorithm.
For the background of the contents of this section we refer the reader to

[6]. Let s € NU {oo}. For any o € R and A € C*(R, SU(2)) we will denote
by (o, A) : R x SU(2) — R x SU(2) the skew product

(o, A)(z,9) = (z + @, g A(2)).
Let a be an irrational number. We will consider Z?-actions on R x SU(2)
of the form ((1,C), (a, A)), where A,C € C%(R,SU(2)), i.e. Z* actions
generated by commuting skew products (1,C) and (a, A). Suppose that
((1,C), (ar, A)) is a Z*-action. Then

Ax)C(x + ) = Clz)A(z + 1)
for any real xz. Note also that if C' = Id, then A : R — SU(2) is a peri-

odic function of period 1. Therefore we can identify any cocycle A : T —
SU(2) over the rotation Tw = z + o with a Z2-action ((1,1d), (a, A)). We
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can extend also the relation of cohomology to Z2-actions. Two Z?-actions
((1,C1), (a, Aq)) and ((1,C9), (o, A2)) are C*—cohomologous if there exists
B e C*(R, SU(2)) such that

(0,B)o (1,C1) 0 (0,B)" = (1,Cy),

(0, B) o (o, A1) 0 (0, B) ™! = (a, As)

or equivalently

B(z)™! Ci(z) Bz +1) = Ca(a),

B(z) ' Ay (x) B(z + a) = As(x).
Notice that every Z2-action ((1,C), (o, A)), where A,C € C*(R, SU(2)) is
C*-cohomologous to a cocycle ((1,1d), (a, A)). For details we refer to [6].

Assume that o € [0,1) is an irrational number with continued fraction

expansion

a=[0;a1,aq,...].
Let (pr/qr)7>_, be the convergents of a (p—1 = 1, g-1 = 0). For every
k> —1 set

Bk = (—1)" (g — p) and ay = [0; agt1, ak+a, ).

Then

1 1
(1) m < B < @,
(2) Br—2 = arBr—1 + Br,
(3) Br=ao-ar-... o,
(4) Bk Qr+1 + Brr1qx = 1.

Let ((1,C), (a, A)) be a Z*-action such that A,C € C*(R, SU(2)). Con-
sider the sequence {(Uy, Vi) }2, of Z*-actions defined by

(Uo, Vo) = ((1,0),(a, A)),
Ues Vi) = (Vie—1,V, FUg—q) for k> 1.
Set Ri((1,C), (o, A)) = (Ug, Vi). Then
Ri((1,C), (o, 4)) = (U™ V)0 (U7
= ((Bk-1,Ck), (Br, Ax)),
where Ay, Cy, € C*(R,SU(2)). Note that
(5) (Uo, Vo) = (U V1 U V).
Observe that if C' =Id, then
(6) Cp =AY
For every k € N set
Ci(2) = Cu(Br—12) and  Ag(z) = Ap(Br_12).

k

“la-1) gnd Ak:A((—l)ka).
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We will also consider the renormalizations of ((1,C), (a, A)) defined by
ﬁk((la 0)7 (a7 A)) = ((17 ék)? (aka Ak))

2.2. Degree of Z>-actions.
Suppose that 4,C € CYR/yZ,SU(2)), where v > 0. Then A, Cj €
CY(R/~Z,SU(2)) for any k € N. Define

di, = d((1,C), (o, A)) = Bl L(Ci) | o1 (v /47y + Br—1 IL(AR) L1 (R /42)-

Of course, dj, does not depend on the choice of 7y, because we always consider
normalized Lebesgue measure on R/yZ. Observe that dj < dj_;1. Indeed,
since

Ap(z) = Cpo1(@)Ap—1(x+ Br—2 — Br—1) ... Ap—1(x + Br—2 — arfBr-1),
Cr(x) = Ap_1(x),
we have
IL(A Nl r/rzy < NL(Cr-1) 1 (r/yz) + @kl L(Ak-1) |1 (R/42)
IL(CllLrwrzy = L(Ak-1)llL1®/42)-
It follows that
d. = BrllL(Cr)llLrwr/yz) + Br—1llL(Ak) || L1 (r/2)
< BeallL(Ch-1)lzr®/yz) + (akBr-1 + Br) [L(Ak-1) || 21 /42)
= dk—lv
by (2).
Definition 2. The number
d(1,C), (a, A)) = klim di((1,C), (a, A))

we will be called the degree of the Z?action ((1,C), (a, A)).

Of course, we should check that the above definition is the extension of
Definition 1. Suppose that A = ¢ € C}(T,SU(2)) and C =Id. By Defini-
tion 1 and (6),

.1 T 1 _
khfgo qkaL(Ak)HLl(T) = klggo o | L(Ci) 1 () = d().

Since B qr+1 + Pr+1 gk = 1, we obtain d(y) = d((1,C), (a, A)).
In the following two lemmas are presented fundamental properties of de-
gree.

Lemma 2.1. Let A,C € CY(R/~Z,SU(2)) and ¢ € C1(T,SU(2)). Suppose
that the Z2-actions ((1,C), (o, A)) and ((1,1d), (o, p)) are Ct-cohomolo-
gous. Then d(yp) =d((1,C),(a, A)).
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Proof. Let B :R — SU(2) be a C'function such that
(0,B)o (1,C) 0 (0,B)"! = (1,1d),
(0,B)o (a,A) o (0,B)~! = (a, ¢).
Then
(0, B) o (Be_1,C) 0 (0, B) ™! = (By_y, ("D Ta-1)y,

(0, B) o (Bk, Ag) o (0, B) ™! = (B, {1 ar)),
Hence
B(x)_l Ck(l‘) B($ + ﬁk—l) — (p((—l)k71Qk_1)(x),
B(x) ™ Ap(z) B(z + B) = o1 %) (),
It follows that

_1\k—1
IZCi)ll pryyz) — 1L D 5= 1100
< LB Lr(o) + LB (81 81-147))

and

Nk
H’L(Ak)HLl(R/yZ) - HL(SO(( 2 qk))”ﬂ([o,«,))’
< NLB o)) + ILB) L (8,80 4+4))-

Since %HL(QD(H))(JZ)H — d(p) in LY(T,R), as n — o0 (by Theorem 1.1), we
have

1 1k
qfk”L@P(( 2 Qk))HLl([Oq)) — d(¢p).

MOI‘(—Z‘OV(—Z‘I‘, "L(B)‘|L1([ﬁk7/8k+,y)) < 2||L(B)”Ll([072»y)) Therefore

. 1 . 1
kILH;O qkaL(Ak)HLl(R/vZ) = klin;o EHL(Ck)HLl(R/'yZ) =d(¢p).
Since B qk+1 + Br+1 qr = 1, we obtain d(¢) = d((1,C), (a, 4)). O

Let o € CXT,SU(2)) and let ((1,Ch). (o, Ar)) = Ri((1,1d), (. ).
Then Ag, Cx € CY(R/B,1,Z,SU(2)).

Lemma 2.2. d((1,Cy), (o, Ag)) = d(p).

Proof. For every v > 0 by S, : R — R we mean the linear scaling
Syx = ~yx. It is easy to check that

R (1, Cr), (o, Ag))
= ((Brak=1/Bk=1,Cnsx© 58, 1), Brtk/Br—1, Antr © S5, _,))-
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Therefore
dn((L ék)v (ak7 "Zlk)) = ﬂn+k—1/ﬁk—1‘|L(Cn+k o Sﬂk71)”L1([0,gkfjl))
+Bntk/ Bo—1[| L(An+k © Sﬂkq)HLl([owglz_ll))

—1

By
- ﬂn+k_1]€ IL(Coyx 0 Spy_,) (@) da
-1

Br_1
-%ﬁn+kj£ IL(Ansx 0 Spy_,) (@)l da
= Burk-1 |1 L(Crg)llLr(r) + Bk | L(Angr)l L1 (T)-

It follows that dy,((1,C%), (ar, Ag)) — d(¢), as n — oo, which proves the
lemma. O

Now we recall a quantity J(y) introduced in [6]. For any function ¢ :
R — SU(2) and y € T we will denote by ¢, : R — SU(2) the function

903/(1‘) = QO(‘,E + y) Write ((15 ék,y)a (O‘k,;lk,y)) = ﬁk((]ﬂld)v (Oé, @y)) Then
Cry(®) = Cr(z + Bilyy) and Ay y(x) = Ap(z + B w).
Let ¢ : T — SU(2) be a C'—cocycle. For every y € T define

1 R o )
Jkly) = /OHL(Ak,y)(x)deJr/o IL(Cry) (@) | de
Y+Br—1 y+0k
_ / ||L(Ak)(x)||dx+/ 1L(C) @) da.

It is easy to check (see |6]) that Ji(y) < Jr—1(y). Let J : T — R be given
by J(y) = limg_ Ji(y). Next note that J(y + «) = J(y) for any y € T.
Indeed, first observe that

Pz —a) = oz — @) o (@) p(z + (n — Do) ™!

for any integer n. Hence

L") (@ = a)|| = L") @)l < [L(p(z — @)l + | L(p(z + (n — Da)].
It follows that for every y € T and ¢ = —1,2 we have

ytatBryi Y+ Bt

| HM¢<“%Mme—/

y+a Y

Y+Br+i Y+ (=1 F B +Bras
s/' Hu@@wm+/ |L()(@)dz — 0,
Y y+(—=1)kB;

because fg+; — 0. Therefore J(y+a) = J(y), by (6). Since J : T — R is the
limit (the convergence is pointwise) of a decreasing sequence of continuous

functions, it follows that J is constant. Define J(¢) = J(y) for any y € T.
In the next section we show that if ¢ € C%(T, SU(2)), then J(¢) = d().

1L (o D)) ()| da
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2.3. Fundamental lemmas and the first main theorem.
Suppose that ¢ : T — SU(2) is a C?—cocycle. Let 1 : T — su(2) be a
measurable function such that

1
—L(p™) — ¢ in L*(T,su(2)) and almost everywhere,
n

as n — £00, Ad,m (Y oT™) = ¢ and [[¢(2)]| = d(p) for ae. z € T (see
Theorem 1.1).

Now we give a few asymptotic properties of the renormalization 7€, which
we will need in proofs of the main theorems.

Lemma 2.3. For a.e. y € T we have

1 7 k
qkﬁk—1L(Ak’y)(x) = (=1)"(y) — 0,

1 5 k
mL(Ck,;)(fU) = (=1)"(y) = 0

uniformly for x € [—1,1] and ||¢(y)| = d(p).

We will denote by A(y) the set of all points y € T satisfying the properties
of Lemma 2.3 and such that

To prove the above lemma, we need the following simple fact.

Lemma 2.4. Let {cp}nen be a sequence of positive numbers, which con-
verges to zero. Let { fn}nen be a sequence of measurable functions on T with
nonnegative real values. Suppose that {fn}nen is uniformly bounded and

fn(x) = 0 for a.e. x € T. Then

1 Yy+cn
- fn(@)dz — 0

cn Y—=Cn
for a.e. y € T.

Proof. Fix € > 0. By the Egoroff theorem, there exists a closed set B
such that A\(B:) > 1 —¢ and

lim sup f,(xz)=0.

n—0 xcB,
Denote by A, the set of all density points of B, i.e.

B _
A. ={z e€T; lim ABe N[ Z’$+Z]):1}.
z—07t 2z
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Then A(A:) = A(B:) > 1 —¢c. Assume that y € A.. Then

1 Y+cCn d
; e fn(x) £
1 1
= — fn(x)dx + — fn(x)dx
Cn [y*Cn»y+Cn]mBs Cn [yfcn’y+6n}\B€
- tn, mn B
< 2 sup fule) + 2wy TN g (o)
z€B. Cn 2€T

Letting n — oo, we obtain
Y+cn
— / fu(x)dx — 0
y
for every y € A.. Consequently, letting € — 0 completes the proof. O

Proof of Lemma 2.3. Let us denote by A’(¢) the set of all points y € T
such that

Y+Br—1
5 / IDL(p D W) (z) | da = 0,
Y—Pr—1

1 y+20k—1
lim / IDL( D 00) @) dr = 0,
k—o0 ﬁk—lqk_1 Y—20k—1

and [|¢(y)|| = d(¢). By Theorems 1.1, 1.3 and Lemma 2.4, the set A'(p)
has full Lebesgue measure. We claim that A’(¢) C A(p). Assume that
y € A'(p) and z € [-1,1]. Then

1 ~ 1 k
LA, Yx) — —L(o((D%ax)
II@C_qu (Agy) () m (@ )W)l
1 k 1 k
= | = L(o((=D%ax) ) — — LoD )y (o
qu (¢} )(Br_1) ” (¢} )(0)]]
Br—1
< L I DL((D ) (2) | d2
4k J—Br_1
1 Y+Br—1
— G [ DL ) )
ﬁk—lqk Y—Br-1
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and
1 -1 1

- - (-D*qp_1)
I UG @) — L ) )

1 _1)k—1 Dh— 1 —Dkgp_q

= LT )y (3 ) — —— LD ) o)
qk—1 dk—1
1 —Dkgp_y 1 —1)kge_q

= /L@ T By (2 — (—1)F)) — ——L(pl T ) (0)
qrk—1 dk—1

1 2Bk—1 g
< — IDL(py ) (2)||d=
k-1 J—28;,_4

1 y+206,_1 X
— Begi / | DL( D 1)) () .
/Bk—lqk—l Y—20k-1

Since Gr_1qr—1 < Br_1qr < 1, we see, using Theorem 1.3 and Lemma 2.4,
that

1 ~ 1 k
LA ) — — L(o((=D%ax) . 0,
By P Ary)(@) = Ly ) ()
1 ~ 1 k
—  LICTYHY(x) = —— L(o((=D k1) . 0
O (Crp)(@) o (¢ )(y)

uniformly for x € [—1,1] and |[¢)(y)|| = d(¢). Moreover,

1 (D -0 () — (=1)F4b(y) — 0
qk—i

for i =0, 1. It follows that y € A(p), and the proof is complete. O
Corollary 2.5. Let ¢ : T — SU(2) be a C?~cocycle. Then J(p) = d(p).
Proof. Choose y € A(p). Then

1 -

— LAk (@) ]| = dl).
1 -

m”L(Ck,y)(x)H — d(p)

uniformly for x € [—1, 1]. Therefore

1
Ju(y) = Qkﬁk—l/ :

| o5 IH k) @)ld

1 [k 1 ~
+qx_10k— ——— || L(Cky)(z)||dx
el e LD

tends to d(y), by (4). It follows that J(y) = d(¢) for a.e. y € T, which
completes the proof. 0O

Lemma 2.6. Let ¢ : T — SU(2) be a C*—cocycle. Assume that 0 € A(yp).
Then

(7) Ap(w) — MO 4 0) — 0,
(8) C«];l(l,)_eL(Ck—l)(O)mCﬂkfl(O) = 0
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uniformly for x € [—1,1]. Moreover, the matrices Ax(0), C; 1(0), L(Ax)(0)
and L(C; 1)(0) asymptotically commute each other, i.e.

(9) [L(AR)(0), LG H(0)] — 0,
(10) L(AW)(0) — Adg, o L(AR)(0) — 0,
(11) L(C)(0) = Adgoa g LICTH(0) — 0,
(12) L(C1)(0) - Ad* (C’ Do) — o
(13) L(A)(0) = Adg-1 ) L(AR)(0) — 0
and if d(¢) # 0 then

(14) Ax(0)C 1 (0) = G 1 (0) A4(0) — 0.

Proof. First note that
L(Ag) (@) — L") 44(0))(2) = L(A)(x) — L(AR)(0) — 0,
LG M) (@) = LEHEDOOEN0) () = LG (@) — L )0) — 0
uniformly for z € [-1, 1] and
Ar(0) = HANOO0F, 0y, C71(0) = HEDO0E 1 (0),
This implies (7) and (8). (9) follows immediately from assumption. Since
1

LLE™)(0) ~ Ad o L™ (n)
= 90 L(e™)(0) — 5 -L(5C)(0)) — 0,

as n — £o00, we have

1
qkBr—1

(L(AR)(0) = Ad g, o) L(AR)((=1)"a))

1 _
= (L M) (0) = Ad g LV N1 i) —

Since (1/qpBr—1)(L(Ar)((=1)%as)) — L(Ax)(0)) tends to zero, we obtain

1 1 ~
arBe—1 (L(AR)(0) = Ad g, () L(Ax)(0)) — 0.
Similarly,
q“lﬁ“(”é? 1(0) = Adgr ) L(CH(0) — 0.

This leads to (10), (11), (12) and (13).

Suppose that d(p) # 0. Then the sequence {||L(Ax)(0)]/}32; is bounded
and separated from zero. Since L(A;)(0) asymptotically commutes with
A (0) and C~’k_1(0), it follows that

Ar(0)C1(0) = €7 1(0)Ax(0) — 0. D
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Theorem 2.7. Let ¢ : T — SU(2) be a C?—cocycle. Then d(p) € 27N.

Proof. First note we can assume that 0 € A(yp), because degree is
invariant under the rotation by any element from the circle. Then d(p) =
|1(0)]]. Next assume that d(p) # 0. Since ((1,Cy), (ag, Ax)) is a Z*-action,

we have

Ap(z)Cr(x + o) = Cr(x)Ap(x + 1) for any real z.

Hence

Cy 1(0) A4 (0) = A (1)Cy ()
From (7) and (8),

Ap(1) — L4004, (0)
Ci (o) — OO o)

—
—

0,
0.
Therefore

21(0) Ag (0) — XA 4, (0)eHCr Ok G-1(0) — 0,
Applying (9)-(14), we get

LA O)FLIC ) (e _, 14.
On the other hand,
L(A)(0) + L(C ) (0)

~ 1
qkBr—1 L(Ar)(0) + ge-1Bs Qk—18k—1

Therefore e¥(©) =Id and d(p) = ||¢(0)|| = 277, where r € N. O

= qxBr-1 L(CM)(0) — (0).

By the same method as in the proof of Theorem 6.3 of [6] one can prove
the following result.

Lemma 2.8. Let ¢ : T — SU(2) be a C*®~cocycle and let N be an infinite
subset of N. Suppose that ¢ satisfies (7)-(14) and

IL(Ax)(0) + L(C ) (0) || — 277,
where v € N\ {0}. Then there exist an increasing sequence {ny}3°, in
N, a sequence {pr}p2, in C®(T,SU(2)) and a real number w such that
(1, C), (., Any)) and ((1,1d), (o, , px)) are C=~cohomologous and

lim ”ka — €XPryw ||CS =0
k—o0
for any natural s.

Additionally, applying Lemmas 2.3-2.8 and Lemmas 2.1,2.2 gives the fol-
lowing conclusion.

Corollary 2.9. Let ¢ : T — SU(2) be a C*®-cocycle with d(yp) = 2mr # 0
and let N be an infinite subset of N. Then there exist y € T, an increasing
sequence {ng 12, in N, a sequence {pr}pe, in C°(T,SU(2)) and w € R
such that
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e the Z2-actions }Nznk((l,ld), (o, 0y)) and ((1,1d), (o, , pr)) are C—
cohomologous,

o d(pr) = d(p) = 2,
o limy .o [|or — exp, 4 los = 0 for any natural s.

2.4. Measurable invariance of degree.

It is easy to see that degree is invariant under C''~cohomology. In the sim-
plest case G = T, degree is invariant even under measurable cohomology, but
the proof of this fact does not work in nonabelian case. Nevertheless, apply-
ing the renormalization algorithm we are able to show measurable invariance
of degree for C?~cocycles.

Theorem 2.10. Suppose that two C?-cocycles 1,02 : T — SU(2) are
measurably cohomologous. Then d(p1) = d(p2).

Proof. Let B : T — SU(2) be a measurable transfer function, i.e.
B(xz)™ p1(z) Bz + a) = pa(2).
Let us denote by A*(B) the set of all y € T such that
Y
i = [ B+ ) - B o

The set A*(B) has full Lebesgue measure. Suppose that y € A*(B). Next
for every natural k£ denote by By, : T — SU(2) the function By ,(z) =
B(Brx +y). Then

2
1Bey — Bz = /0 IB(Brz +y) — B(y)|de

1 284
= 5 | 18w+ - sl —o.

For simplicity of notation let us assume that 0 € A(e1) N A(p2) N A*(B)
and we will write By, instead of By . Since

(0,B) o ((1,1d), (o, 1)) © (0, B) ™' = ((1,1d), (v, ¢2)),

we have

(07 Bk) o ((17 ék((pl))v (akw‘zlk(gpl))) © (07 Bk)il = ((17 ék(()O?))ﬂ (ak,Ak(@Q)))
for any natural k. It follows that

Bi(z) " Ap(1)(2) Br(z + ax) = Ag(p2) ().

Next choose an increasing sequence {ng}ren of even numbers such that

An, (9:)(0) — A; € SU(2),
for i =1,2 and
anﬁnkfl — Q.
Then

L(An,) (i) (2) — atp(pi)(0)
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uniformly for z € [—1,1] for i = 1,2 and 0 < a, by (1). Moreover,
Ank (SOZ)(.’E) — em/’(‘Pi)(O)x 14z

uniformly for z € [~1,1] for i = 1,2, by (7). Since By, — B(0) in L?[0,2], it
follows that
B(O)_l e (P10 4, B(0) = e (e2)(0)z 4,

on [0,1]. This leads to

ad(p) = all¥(p)O)] = L0 4y)))
IL(B(0)~" e e 4, B(0))]
1L (™20 Ay)| = allip(i02)(0)]| = ad(i2).
Since 0 < a we conclude that d(p1) = d(y2). O

3. THE CASE OF ROTATIONS SATISFYING A DIOPHANTINE CONDITION

For every v > 0 and o > 1 define

1

ke g
g
Let us denote by X the set of all & € T such that there exist v > 0 and ¢ > 1
for which oy € CD(7,0) for infinitely many k. Since any set C'D(v, o) has
positive Lebesgue measure, we see that the set > has full Lebesgue measure,

by the ergodicity of the Gauss transformation. In this section we prove the
following result.

CD(vy,0) = {a € T; Yiem (o0}, 1cz ko — 1| >

Theorem 3.1. Let o € ¥. Suppose that ¢ : T — SU(2) is a C*°—cocycle
with d(¢) = 27r # 0. Then ¢ is C*°—cohomologous to a cocycle exp,.,,,
where w s a real number.

To prove it we need the following fact.
Lemma 3.2. For everyy >0, 0 > 1 and r € N\ {0} there exist sy € N and
g0 > 0 such that for any o € CD(~y,0) and any ¢ € C=(T,SU(2)) if

® |l —exp,gllco < eo,
o d(p) =27mr #0,

then ¢ is C*°—cohomologous to a cocycle ex where w s a real number.
raw’

The above lemma (its proof will be given later) is a conclusion from the
following result proved by R. Krikorian [6, Th. 9.1].

Proposition 3.3. For every v > 0, 0 > 1 and r € N\ {0} there exist
so = so(v,0,7) € Nandeg = go(vy,0,7) > 0 such that for any o € CD(vy,0)N
(1/5,1/4) and any ¢ € C=(T,SU(2)) if [ — exp,.gllcso < €0, then
o cither J(p) < 27r,
e or ¢ is C~cohomologous to a cocycle exp, ,,, where w is a real
number.
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Proof of Theorem 3.1. Take v > 0 and ¢ > 1 such that the set
N = {k € Njap € CD(v,0)} is infinite. Choose sp € N and gy > 0
satisfying the properties of Lemma 3.2. By Corollary 2.9, there exist y € T,
an increasing sequence {n;}7°, in N, a sequence {¢;}72, in C°(T,SU(2))
and wy € R such that

® Oy, € CD(’%O-)a

o the Z2>-actions R, ((1,1d), (a,¢,)) and ((1,1d), (an,, ¢r)) are C>—
cohomologous,

o d(pr) = d(p) = 2mr,

® ) — exp,,, in C°(T,SU(2)).

Let k be a natural number such that ||y —exp,. ,, [[cs0 < 0. By Lemma 3.2,
¢x is C*°—cohomologous to a cocycle exp,. ,,,, where ws is a real number. Let
A,C: T — % be C*°functions such that

(1,0) = (5nk—1, Id)% o (ﬁnk,exprw2 OS'B;kl— Yank—1,

1
(Oé, A) = (ﬁnk—la Id)pnk o (ﬂnk7expr7w2 OS]B71 l)pnk_l :
ng—
Since ﬁnk((l,ld), (o, ¢y)) and ((1,1d), (an,,, €xp. y,)) are C°°—cohomologo-
us, Ry, ((1,1d), (o, 0y)) and ((Bn,—1,1d), (Bny» €XDy a0 OSﬁ;kl_l)) are C'°°—co-

homologous, too. From (5), we see that ((1,1d), (o, ¢y)) and ((1,C), (o, A))
are C°>°—cohomologous. Moreover, ((1,C), (a, A)) is C*°~cohomologous to
a Z*action of the form ((1,1d), (o, €)), where £ : T — ¥ is a C®—cocycle.
Then the cocycle ¢, and § are C*°—cohomologous. Let g : T — T be a

C*—cocycle such that {(z) = [ g(x) 0 ] and d(g) > 0. If d(g) <0,

0 g(z)

then we can take

-1

0 g(z) 1 0 0 g(x) 1 0 ’
which is also C*°~cohomologous to ¢,. It follows that d(g) = r. As a is
Diophantine, g is C*°—cohomologous to a cocycle of the form T > z —

e?milretws) ¢ T where ws is a real number. It follows that ¢ is C'%°—
cohomologous to the cocycle exp, ,,,_,,, which completes the proof. O

3.1. Lacking proof.
To prove Lemma 3.2 we need the following facts.

Lemma 3.4. For every v > 0 and o > 1 there exist v/ > 0, o/ > 1 and
M € N such that for every o € CD(~y,0) there exists a natural number
1 <m <M for which ma € (1/5,1/4) N CD(+,d").

Proof. First recall that if « € CD(v,0) , then

1 1
——1 < Gnlgna — pn| < -
Y dn An+1
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Hence qu11 < ¢S~ ! for any natural n. It follows that there exists C' =
C,,0 > 0 such that o € CD(v,0) implies 20 < g7 < C.
Suppose that o € CD(~,0). Then

It follows that there exists a natural number 1 < m’ < C such that
1 1
5 < {m/gea} < T
Hence there exists a natural number 1 < m < M = C? such that ma €
(1/5,1/4). Moreover,

1 1

>

Yymoke — vy Mok°
for any k € N\ {0} and [ € Z. Therefore we can take M = C? o =y M°
and o’ = o, and the proof is complete. O

Lemma 3.5. Let ¢ : T — SU(2) and £ : T — T be C*° cocycles. Let m # 0
be a natural number. Suppose that go(m) and €M) are C*®°—cohomologous as
cocycles over the rotation T™ and d(¢) # 0. Then there exists A € T such
that the cocycles ¢ and & - A are C°°—cohomologous, too.

|kma — 1] >

Proof. Let g : T — T be a C*°—cocycle such that {(z) = [ g(Osc) ‘(](0:1:) } .
Then 27|d(g)| = d(§) = d(y) # 0. By Theorem 1.2, there exist measurable

functions p: T — SU(2) and v : T — T such that
Y(x) 0 ] -1
15 ) =p(x — Tx) .
(15) o) =pta) | 5 o)
Let ¢ : T — SU(2) be a C°°—function such that

o™ (2) = q(z) €™ (z) (T™2) "

Then
(m)
Y (I‘) 0 m, .\ —1
T
(m)
g (IB) 0 m,\—1
= T .
Let ¢ lp = [ _% 2 , where a,b : T — C are measurable functions such
that |a|? 4 |b]?> = 1. Then
a- 7(m) - g(m) caoT™,
h.o~m) — g(m).bon,

ab = (g"™)%. (ab)oT™.
Since d((g"™)?) = 2md(g) # 0, we get either a = 0 or b = 0.
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Case 1. Suppose that b =0. Then a : T — T and ,Yém) = ¢(m)_ Moreover,

Ya(z) 0 } -1
x)=q(z Tx) -,
ota) = ata) | 47 |
by (15). Hence vz : T — T is a C®-cocycle. Using a standard Fourier
analysis method we can assert that there exists [ € N such that vz = g -
e?mit/m  Therefore

em’l/m
ota) = awe@) | © " o |are)

Case 2. Suppose that a =0. Then b: T — T and ’yém) = ¢(™). Moreover,
p(z)

0
V() 0
= q(z
(=) [ 0 m(x)
by (15). Hence v, : T — T is a C*°—cocycle and there exists [ € N such that
% =g- e2mil/m which completes the proof. O

Proof of Lemma 3.2. Fix ¥ >0, 0 > 1 and r € N\ {0}. Let v/ > 0,
o’ > 1 and M € N be constants satisfying the properties of Lemma 3.4.
Take so = so(7/,0’) € Nand & = ¢(v/,0’) € (0,1) satisfying the properties
of Proposition 3.3. Next choose K, R > 0 such that

o™ = ™ [cx0 < Kl = wlleso (1 + [lellowo)F (1 + [[¢]lox0)®

for any irrational «, any cocycles p,9 € C*(T,SU(2)) and any natural
1 <m < M. Define gg = ¢/ /(K (27r + 2)25).
Suppose that o € CD(~,0) and ¢ is a C*°—cocycle such that

[ —exp,ollco <o and d(p) = 27r.
Then there exist a natural number 1 < m < M such that ma € CD(v/,0')N
(1/5,1/4). Therefore
o™ — explp llow
< K —exppglloso (L + [[ellowo) (1 + [ exprg o)
K eo (|| expy llowo +2)*7
< Keo(2mr+2)28 =¢

N

Moreover, J(¢™) = d(p(™) = 2xrm and expgg) = €XPyyp, Where v =

rm(m — 1)a/2. By Proposition 3.3, (™) is C*-cohomologous to a cocycle
expiTU),. Applying Lemma 3.5, we conclude that ¢ is C*°—cohomologous to

a cocycle exp, ,,, where w is a real number. 0O
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APPENDIX A. MORE ABOUT DEGREE

One may ask whether the degree of a cocycle depends on the base rotation
or only on the function, which creates the cocycle. Of course, the degree of
a cocycle is independent of the base rotation in the case where G = T.
Different situation occurs in the case where G = SU(2). For any irrational
a € T and any C'-function ¢ : T — SU(2) we will denote by d(¢, @) the
degree of the cocycle ¢ over the rotation by «. In this section we show that
for any two distinct oy, € T with a3 — s # 1/2 there exists a C*®°—
function ¢ : T — SU(2) for which d(¢,a1) # d(¢, az). For every 5 € T let
pp: T — SU(2) be given by

e2mix 0 }{ cos 2w sin2wf

pﬁ(l’):[ 0 e 2wz —sin2nf3 cos2wfB |-

To construct the desired function, we have to know d(pg, ) for any irrational
a. Obviously, if 3 is equal to 0 or 1/2, then d(pg, @) = 27 for any irrational

a. Suppose that 0 # [ # 1/2. It is easy to check that ||L(,0(52))(x)|| =
47| cos 2m (3| for any x € T and any irrational «. Therefore

i LN Lor,@
o) = _int NG aam) < FILGE i) = 2] cos 28] < 2.
It follows that d(pg, ) = 0 for any irrational cv.

Theorem A.1. Let oy, o be distinct elements of T such that o —ag # 1/2.
Then there exists a C°—function ¢ : T — SU(2) for which d(p,a1) #

d(@v a2)'

Proof. Set
[
TliNV2 12 |

[ cos 21w [3 sin27rﬁ] Ad [ezmﬂ 0 ]
= Ady

Then

—sin2x( cos2nw 0 e 2B
for any B € T. Define

6271’1':(3 0 1 6271'1'1 0
QO(‘T) = |: 0 6—27Tim :| A |: 0 e—27riac :| X
e—2m’(x+o¢1) 0
A |: 0 e27ri(x+a1) :|
Then
e2miz 0 3 6—27ri($+042) 0
p(z) = [ 0 e—2miz A Paz—a; () A 0 e2mi(z+az)

Therefore ¢ and pg are C'°*°—cohomologous as cocycle over the rotation by
a1 and ¢ and pa,—q, are C*—cohomologous as cocycle over the rotation by
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oo. It follows that

dp,n) = d(po,on) = 1,
d(907a2) = d(paz—c‘élva?) = 0,

and the proof is complete. O
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