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Abstract. Itis groved that some velocity changes in flows on the torus determined by quasi-periodic
Hamiltonians on R*:
H(x +m,y+n) =H(x,y) + ma; + nay,
where o] /oy is an irrational number with bounded partial quotients, lead to singular flows on T2 with
an ergodic component having a minimal set of self-joinings.
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Introduction

One of the classical problems of ergodic theory is, given a dynamical system
& = (1), r acting on a standard probability Borel space (X, %, ), to understand
possible interactions between %’ and all other systems J = (7;), . . Being more
precise, we are interested in a description of all possible situations in which % and
7 are seen (as factors) in their common extension % = (U;), . . Clearly, we can
restrict ourselves to the class of “smallest” common extensions, that is we will
assume that the sub-o-algebras corresponding to & and .7~ generate the o-algebra
of measurable sets for % — in this case % is called a joining of ¥ and J (see
Section 1 for a formal definition). If for % we take the product system . X J =
(8; X T;), < g (acting on the product space) then, obviously, % is a joining of . and
. If this is the only way to join % and 7 then, following Furstenberg [8], we
say that & and J are disjoint. Another easy observation is that given .% there are
always systems which are not disjoint from .%’; indeed a system is never disjoint
from itself and more generally two systems with a non-trivial common factor
cannot be disjoint (there are however non-disjoint systems without common fac-
tors, see e.g. [30]). For a general &, especially in the positive entropy case, a
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description of all possible joinings with an arbitrary .~ seems to be an impossible
task — this requires a full description of all infinite self-joinings of &, see [25].
However, there is at least one class of zero entropy flows for which such a de-
scription exists. This is the case of so called simple flows introduced by Veech
([34], only Z-actions are considered there) and del Junco-Rudolph [16] (see
Section 1 below). If % is simple and 7 is ergodic, then a non-product ergodic
joining between .7 and .¥ is possible only if .7 has a factor which is given by a
symmetric factor of a finite product of a factor of .% with itself (and such joinings
are fully described, see [33]). This result is even more impressive when we restrict
ourselves to a subclass of simple flows, namely to flows with the minimal self-
joining property (MSJ) — these are ergodic flows for which ergodic self-joinings
are products of graphs of their time-¢ automorphisms, see Section 1 below. Such a
flow & has no non-trivial factors, and factors of a direct product & x --- x & are

determined only by symmetries given by subgroups of the group of penrmutations
on an n-element set. Hence either an ergodic flow 7 is disjoint from & or J is
extremely “close” to .# in the sense, that 7 is an ergodic extension of a symmet-
ric factor .o/ of & x --- x % and an ergodic joining is given by the restriction of

the relative product (oliler /) to the first copy of ¥ in ¥ X --- x ¥ and 7. We
—————

should also notice that ergodic systems with pure point spectfhm are simple, and
that the considerations above are interesting only in the weak mixing case (we
recall that the MSJ property implies weak mixing).

All the considerations above, although of abstract nature, seem to be also
interesting from the smooth point of view. Indeed, assume that M; (i = 1,2) is a
compact smooth manifold and let A; : M — TM be a smooth vector-field. Denote
by &) = (¢§’))te g the flow given by the solution of the differential equation

doWx ,
(Z—tt = Ai(9)x).

By compactness of M;, stationary states (i.e. probability invariant measures) for
®0) exist. If now, on M, x M, we consider the product vector field A; x A, then
any stationary state for the corresponding (product) flow on M; x M, is a joining
of some stationary states of ®(!) and ®). This approach will be fruitful if systems
under considerations are uniquely ergodic or if we have finitely many invariant
measures (recall that if M is an orientable manifold then every area — preserving
smooth flow on M has at most genus(M ) nontrivial ergodic invariant measures; see
Theorem 14.7.6 in [17]). By what was said above, once ®!) is uniquely ergodic
and has the MSJ property we are able to describe stationary states of the system
given by the vector-field A; X A,.

For horocycle flows the problem of self-joinings was solved by Ratner in a
series of remarkable papers ([27]-[29]) in the 1980s. Some horocycle flows turn
out to be simple, or even to have the MSJ property, e.g. if I' C SL(2, R) is maxi-
mal and not arithmetic lattice then the horocycle flow on SL(2, R)/I" has MSJ (see
[29]). Thouvenot in [33] has shown that horocycle flows are always factors of
simple systems (in the cocompact case this was already shown by Glasner and
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Weiss in [11]). Hence in dimension 3 the MSJ property appears quite naturally. It
is an open question whether it can also be seen in dimension 2, that is on surfaces.
The present paper brings, in a sense, a positive answer to this question, how-
ever the flows that appear in the paper are singular flows — they will have finitely
many points at which a smooth vector-field defining our system is not defined. Let
us pass now to a more precise description of the main result of the paper.
Let H : R> — R be a C*®-quasi-periodic function, i.e.

H(x+m,y+n) = H(x,y) + ma; + na,

for all (x,y) €R* and m,n€Z, and o = a;/a is irrational. Clearly, H(x,y) =
H(x,y) + a1x + ayy, where H(x,y) : R* — R is a periodic function of period 1 in
each coordinate. Then H determines a (quasi-periodic) Hamiltonian flow ()
on the torus associated with the following differential equation

dx Yol here X OH OH

i u(X), where Xy = <8_y’_a>
If H has no critical point then (k) is isomorphic to a special flow built over the
rotation by « on the circle and under a positive C*-function (see [4], Ch. 16).
Moreover, if « is Diophantine (there exist v = 1 and C > 0 such that |go — p| =
Cq " for all integer numbers p, g with g > 1) then (k) is isomorphic to a linear
flow on the torus.

Now suppose that H has critical points. Let us recall some terminology and
results proved by Arnold in [3]. Suppose that H is in the general position, i.e. H
has no degenerate critical points and has all critical values distinct. In particular,
each critical point is either a non-degenerate saddle point or a non-degenerate cen-
ter. Moreover critical points repeat periodically (with period 1 in each coordinate)
but their critical values are distinct. Then any superlevel {(x,y) € R* : H(x,y) > c}
has exactly one unbounded connected component which contains a half-plane. Any
connected component of a level set of H passing through a critical point is either
bounded (a point or a lemniscate-like curve) or it has the shape of a folium of
Descartes. In the unbounded case, the critical value level set of H separates the
plane into two unbounded components and a disk; the closure of the disk is called
a trap. A trap is homeomorphic to a closed disk and has a critical point on the
boundary, called the vertex of the trap (the same terminology applies when we pass
to T?). Traps with distinct vertices are disjoint. The phase space of (k).
decomposes into traps filled with fixed points, separatrices and periodic orbits,
and an ergodic component EC of positive Lebesgue measure.

Now we will change velocity in the flow (A;), . . Let {X;, ..., X, } be vertices of
all traps. Suppose p : T> — R is a non-negative C*®-function which is positive on
the torus except of the points {X,...,X.}. Let us consider the flow (¢;), . on
TA\{%,...,X } associated with the following differential equation

% =X(x), where X(x)= X (%)

teR

p(x)
Since the orbits of (p;) and (k) are the same (modulo fixed points of (k;)), the

phase space of (), decomposes into traps filled with critical points, separa-
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trices and periodic orbits, and the ergodic component EC with positive Lebesgue
measure.

Let us denote by w = wy the 1-form of class C* on T*\{%y,...,%,} given by
w(¥) = (X, Y)/(X, X).

Theorem 1. If o has bounded partial quotients and | dw # 0, then (¢;)
is simple, and it is a finite extension of an MSJ-factor.

teR

Our approach to prove Theorem 1 will be a detailed analysis of the special
representation of the Hamiltonian flow (k,) obtained by Arnold, and applied to
(). In fact, the first step will be to prove the following result whose proof is
presented in the Appendix.

Proposition 2. The action of (¢;) in EC is isomorphic to a special flow built
over the rotation by o and under a roof function f which is piecewise absolutely
continuous with f' € L*(T). Moreover, the sum of jumps S(f) of f is equal to

jEC dw.

Hence, we have to study special flows over irrational rotations, with particular
roof functions. In fact, such flows were already considered by von Neumann in
1932 [26], where he proved weak mixing property whenever S(f) # 0. The same
flows were considered by the authors of the present paper in [6], where under von
Neumann’s assumption S(f) # 0 and boundness of partial quotients of « a certain
combinatorial property, similar to the famous Ratner’s property from [27], on the
orbits of T/ has been proved. This property implies some strong rigidity property
on joinings between 7/ and an arbitrary ergodic system. The approach in the
present paper is completely different. We have to show some minimality property
for the set of ergodic self-joinings, that is we study invariant measures for the
product system 77 x T/ (with “right” marginals), and the key argument consists in
showing that such measures are in one-to-one correspondence with some locally
finite measures of some Z>-cylindrical actions. Then the mathematical construc-
tion of the main steps in the paper goes back rather to a use of ideas from non-
singular ergodic theory: close to the concept of Mackey actions (see [24] or [23]),
a use of the concept of Maharam extension (see [2]) and also we will substantially
use some recent results by Sarig [32].

1. Joinings

Assume that 7 = (T}),. g and & = (S;), . p are Borel ergodic flows on stan-
dard probability spaces (X, %4, i) and (Y, %, v) respectively. By a joining between
7 and ¥ we mean any probability (7; X S;), o p-invariant measure on (X x ¥, #®
%) whose projections on X and Y are equal to p and v respectively. The set of
joinings between 7 and & is denoted by J(7, ). The subset of ergodic joinings
is denoted by J°(7, ¥). Ergodic joinings are exactly extremal points in the sim-
plex J(, ). Of course, the product measure ;@ v € J(J,.%), moreover, if 7
or % is weakly mixing then p @ veJé(7, ).

We denote by C(7) the centralizer of the flow .7, this is the group of Borel
automorphisms R : (X, %, u) — (X, %, ) such that T, o R = Ro T, forevery t € R.
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For every Re C() by ur €J(7, 7 ) we will denote the graph joining determined
by pr(A X B) = u(A N R'B) for A, B € 2. Then ji is concentrated on the graph of
Rand pgeJ(7,7).

Remark 1. Suppose that flows . and .% are uniquely ergodic. Then any finite
(T; % S;), c g-invariant measure on (X x ¥, Z ® %) is a multiple of a joining from
J(T,9).

If7,;= (T,("))te[R is a Borel flow on (X;, %;, ;) for i = 1,...,k then by a k-
joining of I ,..., 7 we mean any probability (Ttl X ... X T,k ), ¢ p-invariant
measure on (Hf:lXi,®f:l %;) whose projection on X; is equal to pu; for i =
...k

Suppose that 7 is an ergodic flow on (X, %, u) and ;=7 fori=1,... k.
If Ry,...,R, €C(7) then the image of 4 via the map

X 3 x> (Rix,...,Rx) € X*

is called an off-diagonal joining. Of course, any off-diagonal joining is an ergo-
dic k-self-joining. Suppose that the set of indices {1,...,k} is now partitioned
into some subsets and let on each of these subsets an off-diagonal joining be
given. Then clearly the product of these off-diagonal joinings is a k-self-join-
ing of 7.

Definition 1 (see [30]). We say that .7 is k-fold simple if every ergodic k-self-
joining is a product of off-diagonal joinings. .7 is simple if it is k-fold simple for
every k€ N. If additionally C(7) = {T, : t € R} then we say that J has minimal
self-joining (MSJ).

Proposition 3 (see [31]). If T is a weakly mixing flow then 2-fold simplicity
implies simplicity.

Recall that this result is unknown for automorphisms.

2. Borel group actions and invariant measures

Let (X,d) be a Polish metric space and let = %y denote the o-algebra of
Borel subsets of X. Denote by Aut(X, %) the group of all Borel automorphisms of
X. Let G be a Polish Abelian locally compact group. Suppose that 7 is a Borel G-
action on (X, 4), i.e.

G > g— T, €Aut(X, %) is a group homomorphism and
G xX > (g,x)— gx=TyxeX is a Borel map
(G x X is endowed with the product Borel structure). We will say that the G-action
T is free if for every x € X the map G 3 g+ gx € X is one-to-one. We say that a

measure m on (X, %) is T-quasi-invariant, or G-quasi-invariant if no confusion
arises, if

m(T,A) =0<=m(A) =0 forevery g€G and A€,

that is m o g ~ m for every g € G. A quasi-invariant G-action on (X, %, m) (or the
measure m) is called ergodic if for every G-invariant set A€ 4 (i.e. T,A = A mod
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m for every g € G) we have m(A) = 0 or m(A°) = 0. A measure m on (X, ) is said
to be T-invariant, or G-invariant if no confusion arises, if

m(T,A) = m(A) forevery g€ G and Ac 4,

that is m o g = m for every g€ G. Recall that a measure m on (X, %) is called
locally finite if every point in X has a neighborhood of finite measure (notice that
if (X,d) is locally compact then m is locally finite iff m(K) < + oo for each
compact K C X). We will denote by .#,(X,T), 7 (X,T) and F (X, T) the sets
of T-invariant measures on (X, 4) that are o-finite, locally finite and finite respec-
tively. By #¢(X,T), £7¢(X,T) and Z°(X,T) we will denote subsets of respec-
tive set consisting of ergodic measures.

Let (X,4) and (Y, %) be standard Borel spaces. Let G be a Polish Abelian
locally compact group which acts on (X, %) and (Y, %) in a Borel way. Suppose
that 7 : (X, 4) — (Y, %) is a Borel factor (G-equivariant) map, i.e.

m(gx) = gm(x)
for every x€X and g€ G. Assume that me .#,(X,T). Let p be a probability
measure on (X, %) which is equivalent to m (u ~ m) and such that f := % €

L'(X,%,m) is a Borel function with f(x) >0 for all x€X. By the G-invariance
of m we have

dpog, . f(gx)
a5 (x)
for py—a.e. x€X and for every g€ G.
Let p := ms (), i.e. p(A) = u(7w'A) for every A € %. Then there exist Yo €%
with p(Yy) = 1 and a measurable map Yy 3 y — p, € 2(X, B) (P(X, ) is the space
of probability measures on (X, %)) such that p, (7 '{y}) = 1 for all y € ¥y and

L h(x) dp(x) = L (L h(x) dm(x)) dp(y)

for every h € L'(X, %, u) (see e.g. [9]). For every y € Y, let m, denote the measure
on (X, %) given by

f()

1
my(A) = Lm dpy(x) for A€ A.

Then
m(A) = J my(A)dp(y) for every A€ .
Y

Notice that m, is o-finite for p—a.e. y €Y. Moreover if m is additionally locally
finite then m, is locally finite as well for p—a.e. y€Y (it is a consequence of the
fact that the topology on X has a countable basis).

We will now show that po g~ p and pg, 0 g ~ p, for p—a.e. ycY and for
every g € G, moreover

PO ()~ | 28 do

dp x f(x)
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and

digyog _fosg dpog(y)
diy f dp

for p—a.e. yeY and for every g € G. Indeed, suppose that 4 : (X, %) — R and k :
(Y, %) — R are bounded Borel functions. Then

JX k(g 'm(x))h(g~"x) du(x) = JY k(g™'y) ( JX h(g™'x) duy(x)> dp(y)

= [ k(] a0 0 ) ato0 0

On the other side

JX k(g™ w(x)h(g™"x) du(x) = | k(m(x))h(x)d(po g)(x)

X

[ )0 2 )

X f(x)
_ f(gx)
= [ ko ( [ 7 ) ot
Letting 7 = 1 we obtain
| katpe 0 >) dp(y)

for every bounded Borel function & : (

dpog 8% 4
" <y>j i (v

for p—a.e. yeY and for all g€ G. Therefore p is a G-quasi-invariant measure on
(Y,%). Moreover,

JY k(y) ( JX h(x)];(éc);) dpsy (x)) dp(y)

— R. It follows that po g ~ p and

= [ k00 ( [ 160 275 )y 900 ) )
It follows that
d(pgyog) fog [d(pog)
wot) o8 fdocs), 0

for all g€ G and for p-ae. ycY. However by replacing the Radon-Nikodym
cocycle (g,y)— 4 o‘g)( ) by a strict cocycle and proceeding as in Appendix B
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[35] we obtain that (1) holds for a.e. ye Y and for all g€ G. Hence

PEEG) g 08) = m, 2)

for p—a.e. yeY and for all geG.

Now let us consider a particular case where G = G| @ G, is the direct sum of
Polish Abelian locally compact group G; and G,. Since G, and G, can be treated
as subgroups of G they yield Borel subactions of G; and G; (on (X, %) and (Y, %))
which are commuting.

Suppose that the group G, acts on (Y, %) as the identity, i.e. goy =y for all
82€G, and y€eY. Since 7 is a G,-equivariant map, g>(X,) = X, for every g, € G»
and y €Y, where X, = 7~ !({y}). Then from (2) we have

nmy © g = ny (3)

for p—a.e. y €Y and for every g, € G,. Therefore for p—a.e. y € Y we can consider a
measure-preserving Borel action of the group G, on (X, #(X,),m,) and a quasi-
invariant Borel action of the group G; on (Y, %, p).

Lemma 4. [f the G-action on (X, %, m) is ergodic then the quasi-invariant G-
action on (Y, %, p) is ergodic as well.

Proof. Let us consider the G-action on (Y, %, p). Since this action is a fac-
tor (in the non-singular framework) of the G-action on (X, %,m), it is ergodic.
Moreover, (g1, g2)y = g1y for all g; € Gy, g2 € G,. Suppose that A €% is a Gy-in-
variant subset. Of course, A must be also G-invariant and consequently p(A) = 0
or p(A°) = 0. O

Let (X,d) be a Polish metric space and let (X, %) be its standard Borel space.
Let Ty and T, be Borel actions on (X, %) of Polish Abelian locally compact groups
G and G, respectively. Suppose that the actions 7} and 7, commute and the G-
action T3 is free and of type I, i.e. there exists a Borel subset Y € 4 such that for
every x € X there exists a unique g, € G, such that gox €Y. The set Y is said to be
a fundamental domain for the action T. Then {g,Y : g2 € G, } is a Borel partition
of X. Let G = G| ® G,. The actions T, and T, determine the action 7 = T| ® T,
of the group G on (X, %) by T(y, 4, = (T1),, o (T2),, for (g1,82) €G. We will
always consider Y with the topology induced by the metric space (X,d). Thus
(Y, By) is a standard Borel space. Then ® : (Y X G2, By ® %¢,) — (X, #) given
by ®(y, g2) = g2y establishes a Borel isomorphism.

Denote by p; : Y x G, — Y and p, : Y x G, — G, the projection maps. Let 7 :
(X,4) — (Y,%y) and C: (X,4) — (G2, %¢,) be given by m=p;o® ! and
¢ =pyo® ! Then m(x) =y iff there exists g»€G, such that gox =y. This
map determines a new Borel G-action on (Y,%y) given by gy = m(gx) if
y = m(x). It is easy to see that this action is well defined and g,y =y for any
g € G. Of course, the map = : (X, %) — (Y, %By) is G-equivariant. The restriction
of this action to the group G; we will denote by T;/T5. Then for every y € Y and
g1 € G there exists a unique element g, € G, such that

(T1/T2),y = (T2),(T1),,¥- (4)
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Moreover the G-action T on (X, %) is Borel isomorphic (via ®) to the G-action on
(Y X Gy, By ® HBg,) given by

(g1,82)(v,8)) = ((T1/T2),,¥, 82 - &5 - C((Th),,))- (5)
Then p; : Y X G, — Y is G-equivariant map and the fiber over y € Y equals

Pyt =} x G = G

Of course, the G-subaction acts inside each fiber. Moreover, since {(y) = 0 for
every y € Y, the G,-subaction on each fiber is topologically conjugate to the action
by translations G5.

Suppose that m is a o-finite T; @ T,-invariant measure on (X, %). Then m =
m o ® is a G-invariant o-finite measure on (Y x Gy, By @ %g,). Applying now the
reasoning preceding Lemma 4 for the measure m and the G-equivariant map
p1: Y x G, — Y, and using the identification of each fiber p; ! {y} with G, we obtain

ﬁ’l(Al X A2) = J ﬁ’lV(Az)dp(y) for all A;€%By,A; G%sz
A

where p is a probability measure on (Y,%y) and {m,:yecYy} (Yo %y and

p(Yy) = 1) is a family of o-finite measures on (G, %, ) which are invariant under

all translations on the group G,. It was proved in [13] (see Remark 7, p. 265) such

measures are necessarily multiples of a fixed Haar measure Ag, on G,. Then there

exists a measurable function ¢ : (Y, %y, p) — R such that

my = c(y)A\g, for p—ae. yeY.

Then from (2) we have

iy :deg(y)m og:dﬂog(y)C(gy) -
T T g ey
and hence
d
pog( )c(gy) =1 for p—ae. yeY and forall geG.

dp =7 c(y)
Let v be a measure on (Y, By) given by

v(A) = L c(y)dp(y) for Ac%By.

Then v is o-finite and

v(g'A) = J

c(y) dp(y) = J c(gy)dpo g(»)
g A A

- L c(gy) d’;%(y) dp(y) = L c(y) dp(y) = v(A)

for every g€ G; and A € By. It follows that Ty /T, is a measure-preserving G-
action on (Y, Ay, v). Moreover

ma x2) = [ m(4)dp) = 3an(42) | ) dplo) = vA) A, (42
A A
for all A} € By,Ar € Bg,, whence in = v ® Ag,.
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On the other hand suppose v is a o-finite T} /T>-invariant measure on (Y, %y).
Then m = (v ® A\g,) o @~ ! is a Ty @ Tr-invariant o-finite measure on (X, %).
Let us denote by A : A ,(Y, T /T2) — M (X, Ty © T,) the map

A)=(v®Ag,)o @™ (6)

Then A is an affine bijection. Moreover, for every v € .#,(Y,T;/T) and for every
heL'(X,A(v)) we have

j h(x) dA() (x) =J J W(T3),,y) dv(y) dAc, (82).
X Gy JY

On the other hand for every me.#,(X,Ty ® T»), hy €L'(Y,A"'(m)) and
hy € L' (G, \g,) we have

jxh1<w<x>>hz<<<x>>dm<x>=Lh1<y>d<A1<m>><y>j ha(e)dr,(82). (7)

Gy

Remark 2. In particular, if we assume that G, is a countable group and let
)\Gz(C) = #C (C C Gy) then

Lh(x) TOCEDS j W(T2),.y) do(y) (8)

82 €6y
and taking h; = xa and h, = Xy in (7) we obtain
A~ (m)(A) = m(A) for every A € By. 9)
Lemma 5. A(/(Y, T, /T>)) = M(X, T & Ts).
Proof. From Lemma 4 we have A(/¢(Y,T,/T,)) D 4 (X, Ty & T>). Assume
that ve . #¢(Y,T\/T,). It suffices to show that ¥ ® A\, is an ergodic measure
for the G| @ G-action T on Y X G, given by (5). Suppose that A € By ® A, is

a G| ® G-invariant subset. Let Ay, = {g, € G, : (y,82) €A} for any y€ Y. By the
Fubini Theorem, A, € %¢, for any y €Y and the function

Y2y—Xa(A) ERT U {+x}

is Borel. Moreover g»A, = A, mod Ag, for v—a.e. y €Y and for all g, € G». Since
the Gy-subaction on each fiber is transitive (in the algebraic sense), either
AG,(Ay) =0 or A, (A7) =0 for v-ae. y€Y. Let B={y€Y: Ag(A,) =0}
Since (Tg,A) 1, /1,). y = C((T1/T2),,y) - Ay for all y€Y and g €Gy, the set B€
By is Ty / Tz—invarige]lnt. By the ergodicity of the T, /T>-action on (Y, %y, v), either
v(B) =0 or v(B°) = 0. It follows that either v ® Ag,(A) =0 or v ® Ag,(A°) = 0;
consequently v ® Ag, is an ergodic measure. O

Lemma 6. If ® : Y X G, — X is a homeomorphism then

Proof. Since Ag, is locally finite, the result follows immediately from the fact
that v is locally finite iff v ® Ag, is locally finite. |
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Lemma 7. Assume that G, is a countable discrete group,
0< 6 :=min{d(gax,g>x) : xEX,82,8,E€Ga2,8 # g} (10)
and the closure of Y in X is compact. Then A(F (Y, T,/T»)) = LF (X, T\ & T»).
Proof. Suppose that me ¥ F (X, T\ @ T). Then from (9) we have
A7 (m)(Y) = m(Y) < m(Y) < + oo,

and hence A~'(m) € 7 (Y, T\/T>).

Now assume that v € 7 (Y, T, /T,). Take x€ X and let U = {x¥' € X : d(x,x') <
6/2}. For every g€G, let Uy, = {y€Y: (T2),y€U}. By assumption, U,
g2 € G, are pairwise disjoint. Therefore from (8) we have

AU = 3 j xo(T2))dvy) = 3 v(Us)
82 €6y Y
=v( |J Un) <v(¥)<oo
8 €6y

and hence A(v) e L7 (X, T\ & T»). |

3. Special flow

Let (X,d) be a Polish metric space and let # = %y stand for the o-algebra of
Borel subsets of X. Let T € Aut(X, %). Denote by A Lebesgue measure on R and
by %R the o-algebra of Borel sets of R. Assume that f : X — R is an integrable
positive Borel function which is bounded away from zero. Let X/ = {(x,1) €
X xR:0<t<f(x)}. The set X/ will be always considered with the topology
induced by the product topology on X x R. Denote by %’ the o-algebra of Borel
sets on X'. The special flow T/ = ((T'),), g built from T and f is defined on
(X', #"). Under the action of the special flow each point (x,r) in X/ moves up
along {(x,s) : 0 < s<f(x)} at the unit speed, and we identify the point (x,f(x))
with (Tx,0) (see e.g. [4], Chapter 11). If y is a T-invariant measure on (X, %)
then the flow 7/ preserves the restriction p/ of the product measure p ® A of
X x R to X/. Moreover, ;¢ is ergodic iff y is ergodic.

Given me Z we put

f) +£(Tx)+...+f(T" %) if m>0
" (x) = 0 if m=0
—(f(T"x)+ ... +f(T"'x) if m<O0.

We will now represent the action 7/ as a quotient action of the form (4), where
T is an R-action o (defined below) and 7, is a Z-action generated by the skew
product T_; : (X x R, Z ® %r) — (X x R, # ® Br) given by

T_¢(x,r) = (Tx,r — f(x)).
The Z-action generated by 7T_; is given by
Z35k— (T ) cAut(X x R, B Bg).
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Notice that (T_5)*(x,r) = (T*x,r — f®)(x)) for each k € Z. Let o = (o), .y stand
for the R-action on (X x R, # ® %) given by

oi(x,r) = (x,r +1).

Notice that the R-action o commutes with the Z-action T_y. Now the Z-action T_;
is free and of type I and X’ is a fundamental domain of this action. Let us con-
sider the R-action o/T_; on X. Then (¢/T_¢), = mo o, where m: X x R — X/ is
given by

e, r) = (T4)"(x,r) it f700) < r<f™D (). (11)
Therefore the R-action o/T_; coincides with the action of the special flow 77.

Remark 3. Now using results from Section 2 we can prove a well known result
which says that if X is compact and f is bounded then T is uniquely ergodic iff 7/
is uniquely ergodic. Indeed, notice that o is a free action of type [ and ¥ = X x {0}
its fundamental domain. Moreover, the action T_¢/c on Y is isomorphic via a
homeomorphism to the action generated by the automorphism 7" : X — X. Since f
is bounded away from zero, by Lemmas 6 and 7, there exists an affine one-to-one
correspondence between Z (X, T') and £ Z (X,T) which is equal to Z (X, T)
because X is compact. This gives our claim.

Remark 4. 1f T : (X, %, 1) — (X, %, ) is ergodic then a special flow T/ on
(X7, i) is weakly mixing iff for every r € R\ {0} and y € C with |y| = 1 the equation

2mir f(x)

g(Tx) = e g(x)

has no measurable solution g : X — T.

3.1. Continuous centralizer of topological special flows. Suppose that (X, d)
is a compact connected topological manifold. Let 7 : X — X be a homeomorphism
and let f : X — R be a positive continuous function. Let us consider the metric d on
X/ given by

d((x,1),(v,s)) =min{d(x,y) + |t —s|,d(Tx,y) +f(x) =t +5,d(x,Ty) +f(y) —s+1}.

Then (X, d) is a compact manifold and 7/ is a topological flow on (X', d). Let us
denote by C.(T”) the continuous centralizer of 7, i.e. the group of homeomorph-
isms of (X, d) which commute with the action of the flow 7. Let 7 : X x R — X/
be given by (11). Then 7 is a covering map (X X R is considered with the prod-
uct topology). Denote by C;.(T/) the set of homeomorphisms from C.(7/) which
can be lifted to homeomorphisms of X x R. As it was proved in [18] each such
homeomorphism is of the form

(%, 7) = m(Sx, r = g(x)),

where § is a homeomorphism of X which commutes with 7 and g : X — R is a
continuous function satisfying

g(Tx) — g(x) =f(Sx) —f(x) orequivalently 7T oS ;=8 ,0T 4.

Moreover, if T is a minimal rotation on a finite dimension torus then Cc(Tf) =
Ci.(T!) (see Corollary 3.8 in [18]).
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4. Joinings of special flows

Let (X,d;) and (Y,d;) be compact metric spaces. Denote by % and % the
o-algebras of all Borel subsets of X and Y respectively. Let T € Aut(X, %) and
ScAut(Y,%). Letf : X — Rand g : Y — R be positive bounded away from zero
and bounded Borel functions. Let 7/ and S¢ stand for spemal flows acting on X/
and Y? respectively. Let us consider the product flow (T X 8),cr on (X x Y8,
# © %'). Moreover, let us consider the Borel flow & on X x R x Y x R (this space
is considered with the product metric) given by

5t(x7r17y7r2) = ()C,rl +t,y7"2 +t)
and two skew product Z-actions 7_y and S_, on X x R x Y x R given by
—k
T_f (x7r11y7r2) = (Tkx7r1 _f(k)(x>7yar2)a

—
S_¢ (x,r,y,m) = (x,711, 8,1 —g9)).

g course, the actions &, T__f and S__g commute. Let us consider the Z-action
T_f D S_g, i.e.

— e ki =k
(T @& S—g) ) =S¢ oT

This action is free and of type I; moreover, the set X x ¥¢ is its fundamental
domain. Then the R-action 6/T_; & S_, on X/ x Y¢ coincides with the product R-
action (7] x S%), . g-

Let us consider the R x Z*-action ® T, DS, on X x Rx ¥ x R, i.e.

N N vk =k
ol o S*g)(t,kl,kz) =S “o Ty oo

Let
Ayl g(X <Y, G/ T DS_g) = Me(XXRXYXR,TDT DS ,)

be the affine bijection determined by (6). Then if v € .4 ,(X x Y8,6/T_; & S_,)
then, by (8), we have

J h(X,rl,y,r2)dA1(V)(X,r1,y,rz)
XXxRxYxR

J , h((T)Tf(% 1), (S—¢)" (v, 72)) dv(x, 11y, 12) (12)
mneZ X xys

for every he L'(X x Rx Y x R, A{(v)). Since f and g are bounded away from
zero, the Z>-action T_f ¢ S_g satisfies (10). Since f and g are bounded, the closure
of X/ x Y8 in X x R x Y x R is compact. Therefore, by Lemma 7, we have

A(F (X XY, (T x88),cp) = LF(XXxRXY xR, 6@ T; ®S,).

On the other side the R-action & on X x Rx Y x R is also free and of type I
and the set W = {(x,r,y,0) : x€X,y€Y,r€ R} is its fundamental domain. Then
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the Z2-action T_; & S_,/& acts on W in the following way
(T_ﬂ‘ @ S_*g/a(kl ,kz))(-xv rYy, O) = &g(kz)(y)<Tk]xa r _f<kl>(x)? Skzy’ _g(kz)(y))
= (Thx,r + g(kz)(y) —f(k‘)(x), Sky. 0).

The set W is homeomorphic to X x ¥ x R; therefore we will identify them.
Moreover the Z*-action T_;@®S_,/6 we will identify with the Z2-action
T_yxS_,o0onXxY xR given by

(T—f * S—g)(kl,kz)(x7y7 r) = (Tk1x7 Sk2y7 r+ g(kZ)(y) _f<k1)(x))
Let

Ay Ml o(W, (T DS_,))0) = Me(XXRXYXR,GBT_ ;B S_,)

be the affine bijection determined by (6). Of course, we will constantly identify

MW, (T_y ®S_g)/5) with M,(X XY xR, T_sxS_,). Then if ve.#,(X x
Y x R,T_s % S_,) then, by (7), we have

J hy(x,y,r) du(x,y,r)J hy(s) ds
XxYxR R (13)

hy(x,y,r — s)ha(s) d(A (V) (x, )y, 8)

JX XRXY xR
for every h € L'(X x Y x R,v) and hy € L'(R, Ag). Since ® : W x R — X x R x
Y xR, ®(x,r,y,0,t) = (x,r +t,y,1) is a homeomorphism, by Lemma 6,
M(PFXXYXR T xS)=LFXXxRXY xR s®T_;®S_y).
From this and from Lemma 5 we obtain the following conclusion.
Corollary 8.
Ao Ay (X X YE (T X S8),cp) — Mo(X XY X R, Ty xS_y)
is an affine bijection such that

Ao AM(F (X x Y8, (T) x 88),cp)) = LF (X XY xR, T_yxS_y)

teR

and
Ao Ay (e (X x Y8, (T x S8)

Remark 5. Suppose that T € Aut(X, %) and S € Aut(Y,%) are uniquely ergo-
dic with invariant probability measures p and v respectively. Then special flows
T/ and S¢ are uniquely ergodic with invariant measures ;¢ and ¢ respectively (see
Remark 3). Therefore the set 7 (X' x Y8, (T/ x §%) ;e r) coincides with the cone of
positive multiples of joinings between special flows T/ on (X/, /) and S8 on
(Y8, 08).

Suppose that v is a o-finite measure on (X, %) that is T-invariant. Assume that
SeAut(X, #) commutes with T (then Sxv is also T-invariant) and u : X — Ris a
Borel function such that

f(8x) —f(x) = u(Tx) —u(x) for v—a.e. xeX. (14)

) = MAX XY X R, T_p*S_,).

teR
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Then
(T—f)" o S_y(x,r) =8S_y o (T—f)"(x,r) forv—ae. x€X andall reR.

Now we can define a Borel map S_, : X’ — X as the composition of S_,, : X/ —
X x R and the projection 7 : X x R — X/ given by (11). Since the skew product
S_,: X xR — X x R commutes with the flow o, we have

S_uoT (x,r) =T oS_,(x,r) for/—ae. (x,r)eX andforall reR. (15)

Remark 6. Notice that if v is ergodic then u in (14) is determined up to an
additive constant. Moreover, if u.(x) = u(x) + ¢ (for some c€R) then S_, =
S_,o T/,

The map S_,: X' — X/ determines a o-finite measure 1/ on (X xX' #®
#') by the formula -

V/_(AxB)=/(ANS_,~'B)

—u

for every A,B€ #'. From (15) we have Jv € My(X x X (T) xT}),. ) and
J h(xhrlaanrZ) dV'f'\/(xlyrlax27r2) :J h(x?ras—u(x7r>> de(.X,r)
X x X/ S-u X

for every he L' (X' x X/ ufx)
Lemma 9. For every he L'(X x X x R, A;" o Ay( we have

u

J h(x,y,r)d< > oAl(V’; >> X, ¥, 7
XxXxR “

= 3 | s snaute) =) v

nez
Proof. For every he L'(X x Rx X x R, Al(ng)) from (12) we have

J h(xlyrlaxLrZ)dA1<ng)<x1;r17x27r2)
XXxRxXxR U

= Z h((T*f)n(xlarl)v (T*f)m(x% }"2)) dVg:{(xl?rlvx% r2)

mpe )X <X

h((T-p)" (x,7), (T—)" 0 S—u(x,r)) db/ (x, 7)

JXr

= Z ((T )m+n(x’ r)v S_uo (Tif)m (x’ r)) dV(x) dr

mneZ" Jx!

- Z h((T—f)n<xv r)aS—u(X7 I’))dl/(x) dr

mmnezZ (Tf) X

= Z T—f ( ) S—u(xa r)) dV(X) dr.

nezXxR

M
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Moreover, for every i € LN(X x X x R, A;1 o A, (uf ) and hy €LY (R, \g) from
(13) we have

J hy(x1,x2,7) dAZ_1 OAl(%\,)(xl,xz,r)J hy(s)ds
XxXxR u

R
= hl(xl,xg,r—s)hz(s)dAl(I/gt/)(xl,r,xz,s)
XxRxXxR "
= Z J . i (T"x, Sx, u(x) — £ (x))ho(s — £ (x)) dv(x) ds
nezJXx
= ", Sx, u(x) — £ (x)) dv(x 5 (s) ds.
nezzjw Sku(x) =) o) | ()

Therefore for every he L'(X x X x R, A;! o A, (Vgi)) we have

JXxXth(xmz’r)dA OAI(Vf )(xl,xz,) ZJ h(T"x,Sx,u(x) —f ") (x)) dv(x).

nez’X
Ol

Remark 7. Assume that v = u is a probability T-invariant measure, S = Id and
u= —t (teR). Then S_ = T and it follows that

Ao M )A) = 37 | 1alTm 1 = £ (0) )

nezJX
for any bounded Borel subset A C T? x R.

Remark 8. Notice also that
N'oM(p @) =p®@p® A
Indeed, for every h€ L'(X x R x X x R, A (i @ ¢)) from (12) we have

J h(x1, 71, %2, 72) ANy (1 @ 1) (x1, 71, %0, 72)
XXxRxXxR

= Z J  h((Tp)" (e, 11), (Tp)" (x2, 72)) did (1, 1) dpd! (x2,72)
mneZ X x X/

h(x1, 11, X2, 72) dp(xy) dry dp(xz) drs

mpn ez J(Tf)mxf x (T—p)"Xf

h(xi,ri,x2,12) dp(xy) dry dp(xz) dr,.

J;XRXXXR

Therefore A (1 @ 1) = 1 ® A\g ® 1 ® Ag. Furthermore, for every h; € L'(X x
XXR A (p® A ® p® Ag)) and hy € LY(R, Ag) from (13) we have

J hy(x1,%2,7) AN (U@ A @ 1 ® )\R)(xl,xz,r)J hy(s) ds
XxXxR R

= hy(x1,x2, 7 — $)ha(s) dp(xy) drdp(x,) ds
XxRxXxR

= j hi(x1,x2,7) d,u(xl)du(xz)drj hy(s) ds.
XxXxR R

Therefore Ay (L@ Ag @ 1 ® Ag) = @ pt @ Ag. O
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5. Cocycles and skew products

Let T be a Borel action of a countable Abelian discrete group G on a standard
Borel space (X,%). Let H be a locally compact Abelian group. An H-valued
cocycle over the action T is a Borel function G x X 3 (g,x) — ¢,(x) € H such that

Pgi+g2 (X) = Pg (.X) + (sz(glx) for all 81,8 ¢€ G7XEX'

If G = Z then the Z-action T we will identify with the automorphism 77 and every
cocycle ¢ is determined by the function ¢, and we will identify them as well.

Every H-valued cocycle over T determines a skew product Borel G-action T,
on X X H given by

(Ty)o(x, h) = (Tgx, pg(x) + h).

Suppose that € .#,(X,T). Then the product measure u ® Ay (A\y is a fixed
Haar measure on H) is invariant under the action of the skew product T;,. Two
cocycles ¢, 1 over the action T are said to be cohomologous mod p if there exists a
Borel function u : X — H such that

Pg(x) := pg(x) + u(x) — u(Tyx)

for p—a.e. x€ X and for all g € G. The function u is called the transfer function.
Then the map

XxH> (x,h)— Y (x,h) = (x,h —u(x)) eX xH

establishes an isomorphism between the measurable G-actions T, and T, on
(X X H, u ® Ap). Cocycles which are cohomologous mod y to the zero cocycle
are called coboundaries mod p.

Let 6 be an R-valued Borel cocycle over the G-action T. A finite measure v on
(X, %) is called (¢, T)-conformal if vo T, ~ v and dv o T,/dv = €% v-a.e. for
every g€G.

Let ¢ be an H-valued cocycle over T and o : H — R be a continuous group
homomorphism. Suppose that v is an (e*°?, T)-conformal measure. Let m,, stand
for the measure on (X x H, 4 ® %y ) given by

dma (X, h) = eia(h) dV(X) d)\H(/’Z)

Then m,, is a locally finite measure and it is 7 -invariant. Such measures are called
Maharam measures (see e.g. [1]).

For every heH let Qy: X xH — X x H stand for the map Qp(x,h') =
(x,h +h). Then T, 0 Q) = Qy o T,, for every h€ H. If m is an ergodic T,-invari-
ant o-finite measure on (X X H, 4 ® %y) then the measure m o Q) is also an er-
godic T,-invariant measure. Therefore either m o Q, Lm or m o Q), = cm for some
¢ > 0. Then, following [2], define

Ry ={h€H :mo Q) ~ m}.

Let u : X — H be a Borel function. Let us consider the Borel cocycle " over the
action T given by

©(x) = g (x) +u(x) — u(Tyx)

for every g € G. Then the measure moJJ,! is o-finite ergodic T -invariant with
%moﬁ;l = Bm-
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Proposition 10 (see [2]). For every ergodic T -invariant locally finite Borel
measure m on X X H the set R, is a closed subgroup of H. Moreover, if #,, = H
then m is a Maharam measure.

Proposition 11 (see Theorem 2 in [32]). Let H = R and let m be an ergodic
T,-invariant locally finite Borel measure on X x R. Then there exist a Borel func-
tion u : X — R and a Borel subset A C X x R with m(A°) = 0 such that for every
x€X if there exists r € R with (x,r) €A then

g (x) + u(x) — u(Tex) € R
for every g €G.

Proposition 12 (see Lemma 8 in [32]). Let # C H be a closed subgroup and let m
be an ergodic T,-invariant locally finite Borel measure on X x H. Suppose that there
exists a Borel function u : X — H and a Borel subset A C X x H with m(A°) =0
such that for every x € X if there exists h € H with (x,h) €A then

P (x) = g (x) + u(x) — u(Tex) €A

for every g € G. Then there exists c € H such that m o 191;16 is an ergodic Tu-in-
variant o-finite measure on (X X R, B ® By), and Ry = Ryog.1 C R If u is

bounded then m o 9, is locally finite.

5.1. Cocycles over irrational rotations. We denote by T the circle group R/Z
which we will constantly identify with the interval [0, 1) with addition mod 1. For a
real number ¢ denote by {7} its fractional part and by ||7|| its distance to the nearest
integer number. For an irrational o € T denote by (g, ) its sequence of denominators
(see e.g. [19]), that is we have

1
2Gnqni1

1
qnqn+1 ’

_Pn
qﬂ

<

<’a

where

Q=1 q=a, G =a19n+qgu-

po=0, pi=1,  ppp1 =an1Pn+pa-i
and [0;ay,ay,...] stands for the continued fraction expansion of «. We say that
« has bounded partial quotients if the sequence (a,) is bounded, or equivalently,

there exists ¢ > 0 such that ||ga|| > ¢/q for every g € N. By R, we will denote the
rotation by a on T.

Remark 9. Let f,g: T — R be positive integrable functions which are co-
homologous over R, mod Ar. Then the special flows (R,) on (T/, (7)) and
(R,)® on (T#,(A7)*) are isomorphic.

Recall that if f : T — R is a piecewise absolutely continuous function for which
Bi,..., B €T are all its discontinuities and d(3) = lim,_.3- f(y) — limy_ g+ f(y) then

k
() = Yo d(5) = Lf’(u) du

is called the sum of jumps of f.
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Remark 10. Suppose that o has bounded partial quotients. If f : T — R is an
absolutely continuous function with zero mean such that f’ € L?(T, A1) then by the
classical small divisor argument f is a coboundary mod At. It follows that every
piecewise absolutely continuous function f : T — R whose derivative is square
integrable is cohomologous to a piecewise linear function whose derivative is
equal to S(f) a.e. Indeed, since g(x) = [; f"(u) du — S(f)x is absolutely continuous
on T and g’ is square integrable, g is cohomologous to a constant function. On the
other hand f — g is piecewise linear function and its derivative is equal to S(f)
piecewisely. Moreover, discontinuities and jumps of f — g and f are the same.

Let « be an irrational number with bounded partial quotients and let f : T — R
be a piecewise linear function, where B = {31, (2, ..., 0k} is the set of all its
discontinuities and d(f) is the size of a jump at € B. Let ~C B x B stand for
the equivalence relation given by x ~ y iff y — x € aZ. For every equivalence class
CEB/~ put S(f,C) = 3 ¢ d(B).

Proposition 13. Suppose that « is an irrational number with bounded partial
quotients and f: T — R is a piecewise linear function with zero mean. Then f is a
coboundary mod A\t if and only if S(f,C) = 0 for every C €B/~.

Proof. Suppose that S(f,C) =0 for every C €B/~. In view of Remark 10
we can assume that f is piecewise constant. By ¢ : T — R denote the function
o(x) = {x}. For every C € B/~ choose an element ¢ € C. Then for every 5 € C let
k(B) stand for the integer number such that 5 — ¢ = k(5)a. Set

g == > > d(B) " Dx-p).

CeB/~ BeC
Then
glx+a)—glx)= Z Z d(3) (0% (x — B) — %D (x + a — )

CeB/~ BeC

= > Y dB)(elx—B) - olx+ k(B)a — B)
CeB/~ BeC

= Y > dB)e(x—B) - olx - Bc))
CeB/~ BeC

= > D dB)(xps ) — X0 (%) + Be = B)
CeB/~ BeC

= > d(B)(xp.p () = B) = f(x)

BeB

for all xe T\B.

Assume that S(f, C) #0 for some C € B/~.

Case 1. Suppose that S(f) # 0. Let ¢ be a positive numer such that f + ¢
is positive. As it was proved by J. von Neumann in [26], the special flow
(R,Y ™ is weakly mixing. In view of Remark 4 T 3 x+— e/ & T is not a
multiplicative coboundary for every r € R\{0}. It follows that f : T — R is not
an additive coboundary.
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Case 2. Suppose that S(f) = 0. In view of Remark 10 we can assume again that
f is piecewise constant. Recall that (see Corollary 1.6 in [10]) if 2: T — R is a
piecewise constant function such that S(h,C) ¢ Z for some C€B/~ then T >
x—e?%) € T is not a multiplicative coboundary. Since S(f,C) # 0 for some
CeB/~, we can find re R\{0} such that S(rf,C) ¢Z. It follows that T >
x '+ e>™f%) € T is not a multiplicative coboundary for every r € R\{0}, and con-
sequently f : T — R is not an additive coboundary. ]

Proposition 14 (Denjoy-Koksma inequliaty, see [14]). If f: T — R is a
function of bounded variation then

gn—1

ko)
;ﬂRax) Lf dX\r

for every x€ T and ne N. If f is absolutely continuous then the sequence

gn—1
k . J—
(o=l rav)

< Varf

tends uniformly to zero.

Proposition 15. Let « be an irrational number and let (q,) be its sequence of
denominators. Let f: T — R be a function of bounded variation with zero mean.
Suppose that there exists a finite subset E C R such that

sup min |f%) (x) — r| — 0.

xeT?’ cE
Then for every locally finite (Ra)f-invariant Borel measure m on T X R we have
R NE £ (.

The proof of this proposition can be obtained in much the same way as the
proof of Theorem 1.6 in [2].

6. Self-joinings for special flows built over irrational rotations

Let o be an irrational number and let f: T — R be a positive bounded away
from zero and bounded Borel function. Let us consider the Z>-action T on T2
given by

Tty jor) (X,y) = (x + ki, y + ko).
Denote by ¢ the R-valued cocycle over T defined by

Pl ko) (X, Y) =f* () — f5) ().

By Corollary 8, there is a one-to-one correspondence between ergodic locally
finite T -invariant Borel measures on T2 xR (up to a positive multiple) and
ergodic self-joinings of (R,M)f

Proposition 16. Suppose that m is a locally finite T,-invariant ergodic Borel
measure on T x T x R such that R,, = R. Then m = c A2 X Ag for some ¢ > 0.
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Proof. By Proposition 10 there exist a € R and a finite Borel measure p on
T x T such that

dm(x,y,r) = dmgy(x,y,r) = e " du(x,y) d\r(r)
and for every (k;,k;) € Z* we have

dp o T, iy
10 Ty ) ~ po and le = %Plik)
Therefore
duoT,
%(X’Y) _ 40

Since f is positive, if a # 0 then dju o T(o1)/dpu <1 or dpo Ty y/dp>1 depend-
ing on the sign of a, which contradicts the fact that p is a finite measure. Thus
a = 0. Since the Z>-action T is uniquely ergodic, y = cAp2 for some ¢ >0, and
hence m = 4 @ A\p = c A2 X Ap. O

Suppose that m is a locally finite T,-invariant ergodic Borel measure on
T x T x R. Let us consider two Z- subactlons of the Z*-action T, generated by
automorphisms U = (T, )(71‘0) and W = (T,), ;). They jointly generate the action
T, and '
U(x7y7 }") = ()C - a7y7r+f(x - a))? W(x7y7r) = (X+ o,y + a,r—l—f(y) —f(X))
Let 7: Tx T xR — T be given by n(x,y,r) =y — x. Then

moW=m and moU=R,o0m.
Since 7 '({6}) = {(x,x+0,r) : x€ T, r€R} for every T, we will identify
each fiber 7~!({6}) with T x R. W preserves the fibers of 7 and
Wx,x+0,r) = (x+a,x+a+60,r+f(x+0)—f(x)),
therefore the action of W on a fiber 7~!({6}) can be identified with the action of a
skew product Wy : T x R — T x R given by
Wo(x,r) = (x + o, r +f(x +6) — f(x)).

In summary, we have Z>-action T, on T xT xR generated by U and V and
Z*-action on T given by (R, EDId)<k ) 0)=0+kaThen7m: TxTxR—T
is a Z*-equivariant map for which R,, is a factor of U and Id is a factor of V. Under
these circumstances, arguments contained in Section 2 give the existence of a
probability Borel measure p on T, a Borel subset © C T with p(©) =1 and a
map © 3 0—mye LF (T x T x R) such that

JW xR Hony,r) dmix,y,r) = Jv <J1r xTxR w6y r)dmo(x,, r)>dp(6)

for every he L'(T? x R,m). Since my is concentrated on the fiber 7' ({6}) and
every fiber is homeomorphic to T x R, the measure my will be treated as the
locally finite measure on T x R. Then

er , h(x,y,r)dm(x,y,r) = JT (L . h(x,x + 0, r) dmg(x, r))dp(@) (16)
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for every h€ L'(T? x R, m). Moreover, mg o Wy = my for p-a.e. €T (see (3)),
po R, ~ p, pis an ergodic measure for the action of R, (see Lemma 4) and
dpog
dp
where U : Tx R — T x R is given by U(x,r) = (x — a, r + f(x — «)) (see (2)).

(0) - (mggoU) =my for p—ae. €T, (17)

Lemma 17. For p-a.e. 0€ T there exists a locally finite Wy-invariant and
ergodic measure my on T x R such that Ry C R

Proof. By Proposition 11, there exist a Borel function u : T> — R and a Borel
subset A C T? x R with m(A¢) = 0 such that for every (x,y) € T? if there exists
reR with (x,y,r) €A then

P 6y) Fu(Ty (6y) —uloy) =f0) =f () +uls+ay+a) —ulx,y) € A

For every 6€0 let Ag = {(x,r) €T xR : (x,x+6,r)€A}. Then Ay is a Borel
subset for every 6 € © and

0= m(a) = | mila5) dp(o).

7
It follows that for p—a.e. €T we have mg(Ag) = 0. Suppose that mg(Ag) = 0.
Applying the ergodic decomposition theorem (see e.g. [12]) for the automorphism
Wp: (T x R,mg) — (T x R,my) we conclude that there exists a locally finite
Borel Wy-invariant ergodic measure my on T x R such that mj(A§) = 0. Let
up: T — R stand for the Borel map up(x) = u(x,x + 0). Then for every xe T if
there exists r € R with (x,r) € Ay then

flx+0) —f(x) + up(x + ) — up(x) € R

Now an application of Proposition 12 for the cocycle generated by x+— f(x + 6)—
f(x) over the rotation R, and the measure n gives #,; C Ap. 0

Let « be an irrational number with bounded partial quotients. Let f : T — R be
a piecewise linear function. For every € T let

Kra(x) = f(x +0) — f(x).

Theorem 18. Let « be an irrational number with bounded partial quotients
and let f : T — R be a piecewise linear function with non-zero sum of jumps.
Suppose that 0 ¢ Q + aQ. If v is a locally finite (R.), -invariant ergodic Borel

Ky,
measure on T X R then 2, = R.

Proof. By ¢ : T — R denote the function p(x) = {x}. Then
Foo(x) = o(x +0) — o(x) = 01p,1-9)(x) + (0 — 1)1[1_g,1)(x).

Since f and x +— Z}‘:l di{x — (3;} has the same discontinuities and the same values
of jumps, there exists an absolutely continuous function g : T — R such that

k
F0) = diolx — B) + g(v).
j=1
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Let us consider the function /-s< 9) Since k,4 is piecewise constant and has

two jumps: of size —1 at 0 and of size 1 at —6, n(‘f;> is also piecewise constant
and has the followmg jumps: of size —1 at 0, —q, . . .', —(gn — 1) and of size 1 at
—0,—0 — ..., —0 — (g, — 1)a. Moreover, for some s, € N we have

B (0) = 5,0+ (g — ) (0= 1) = 40+ G — 5.
Therefore E, (0) €{gn0} + Z and hence
Ry (1) € .0} + 2

for every x&T. In fact, we have /-e(q” (x)€{g.0} + {—2,—1,0,1,2} because
|m£}i’;>(x)| < Vark,g = 2 (see Propositlon 14). Tt follows that

k k k
Do 40— 5) = 3 g = ) = 3 (x
Jj=1 j=1 j=1

€(d+ - +d){g.0} +D
= S(F){g.0} + D
where D = d;{-2,—1,0,1,2} +--- + dy{-2,—1,0,1,2}.

Suppose that § ¢ Q@ + aQ. Then the set L of limit points of the sequence
({g40}),, <y 1s infinite (see [22]). Let v be a locally finite (R(y)wﬂ—invariant ergodic
Borel measure on T x R. Suppose that #, & R. Then #, = aZ for some a € R.
Since the set

1
S(f)
is finite, there exists b € L which does not belong to this set. Then (S(f)b + D)N

aZ = 0. Let (qx,) be a subsequence of denominators such that {g 0} — b.
Since

(aZ — D) N0, 1)

neN

n}f’g">(x) =K qg” )+ Z d; n

e %) (x) + S()({qw, 0} — b) + S()b + D
(9ky)

and k 0 0 uniformly (see Proposition 14), by Proposition 15, we have
R, N (S(f)b + D) #0, contrary to (S(f)b + D) NaZ = . O

Lemma 19. Suppose that m is a locally finite T,-invariant ergodic Borel
measure on T* x R such that R,, = aZ, a € R. Then the measure p is concentrated
on the set B1 + af, + aZ, where 31,6, € Q and for every 0€ ) + af + aZ
the skew product Wy : (T x Rymg) — (T x R,my) is ergodic and R, = aZ.
Moreover, for every h€ L' (T? x R, m) we have

j h(x,y, r) dm(x,y, r)
T2x R

=p({6) Y

kEZJTXR

(18)
h(RZx,x +0,r —f(k>(x)) dmg(x,r).
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Proof. By Lemma 17 and Theorem 18, the measure p is concentrated on the
set @ 4+ aQ, consequently, p is discrete. By the ergodicity of R, : (T,p) —
(T, p), the measure p is concentrated on an orbit, i.e. on the set 5 + o+
aZ where 31, 3, € Q. Moreover, using (16) and (17) for every heLl('ﬂ'2 x R, m)
we have

J h(x,y,r)dm(x,y,r)
T xR

=Y p({0 - ka}) L ) h(x,x 4 6 — ko, r) dmg_o(x, 1)

keZ

=3 p({6— ka}) j B(REx, 2+ 6,7 — 9 () d{mp_g © U™)(x, )
keZ TxR

= kx X r — (k> X molX,r).
PN S | B+ =) o)

keZ

We now show that for every €3 + af; + aZ the skew product Wy :
(T x R,my) — (T x R, my) is ergodic. Indeed, suppose that there exist 6 € 3,+
af, + aZ and a Borel Wy-invariant subset B C T x R such that my(B) >0 and
my(B¢) > 0. Let

B={(x,x+0,r)eT*xR: (x,r)€B}

and

A= U(Tcp)( O)E

ne’z
By definition, the set A is (T, o) (- 10)" -invariant. Moreover, A is also (T,,) (1,1y7in-

variant. Indeed, every element of A is of the form (7, ) (o) (X, X + 0, 7), where
(x,r) €B. Then

(T) (1.1)(T) (o) (X3 +6,7) = (Ty) .0y (Tp) (1.1 (X, x + 6, 7)

= (Ty) oy (X + @, x+ 0+, r +f(x+6) — f(x)) €4,

because (x + o, r +f(x + 0) — f(x)) = Wy(x, r) € B. Moreover,

m(A) = m(B) = ];Z <L n Iz(x,x + 60 + ko, r) dm9+k,y(x)> p({0 + ka})

— | tlor) dm)p(6)) = ma(B)o({6)) >0

Similarly we can show that m(A“) >0, contrary to the ergodicity of m. O

Lemma 20. Suppose that m is locally finite T, -invariant ergodic Borel measure
on T? X R such that R,, = aZ. Then a = 0.

Proof. By Lemma 19, there exist § € Q + Qc, a probability measure p on T
concentrated on § + Zoand amap 6 + Za 3 6 + ka— myip € LF(T x R, Wy)
satisfying (18).
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Suppose, contrary to our claim, that #,, = #,,, = aZ, where a > 0. Then there
exists ¢ > 0 such that m o Qy, = cfm for every ke Z. Let I C R be an interval such
that my(T x I) >0. Let

A={(x,x+0,r)eT*xR:xcT,rel}.
Then
m(A) = my(T x 1)p({6}) > 0.
For every 1€ Z let ¢(I) := [ J f(x)dx/a]. By the Denjoy-Koksma inequality
B = (T¢>(0,1)Q7g(l>aA C T2 x (I + [~ Varf,a+ Varf]),
whenever [ = 4 ¢, and
m(Br) = m(Q_peA) = ¢ *m(A).

Since B; C n-' ({0 + la}), the sets B;, €7 are pairwise disjoint. It follows
that

m< | B, ws%)> = (e 4 M) m(A) = oo

neN neN

On the other hand the set
L—Ij (B, WB_,) C T? x (I + [~ Varf,a + Varf))

neN

has a compact closure in T x T x R, and therefore, by the local finiteness of the
measure m, has finite m-measure. Consequently, a = 0. O

Lemma 21. Suppose that m is a locally finite T,-invariant ergodic Borel
measure on T?> x R such that R,, = {0}. Then there exist 0€Q + aQ and a
Borel function u : T — R such that

fx+60)—f(x) =ulx+a) —ulx) for \f —a.e. xT.

Moreover, m is a positive multiple of the measure (A5 oAl)(()\J%)Ev), where
Sx=x+4. -

Proof. By Lemma 19, there exist § € Q + Qc, a probability measure p on T
concentrated on 0 + Za and mp € L F°(T x R, Wp) satisfying (18) and such that
Rm, = An = {0}. By Proposition 11, there exist a Borel functionv: T — Rand a
Borel subset A C T x R with my(A°) = 0 such that for every x € T if there exists
re R with (x,r) €A then

S +0) —f(x) = vlx +a) = v(x).
Moreover, by Proposition 12, there exists ¢ € R such that the measure mg o 9, i
an ergodic measure on T x {0} invariant under the action of the automorphlsm

(Ra)o(x,r) = (x+ a,r). Let u := v+ c. Therefore my o 9,/ = v ® &, where v is
an ergodic R,-invariant measure on . Hence

fx+60) —f(x) =ulx+ a) —ulx)v—ae.
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Since ¥, : (T x R,mp) — (T x R,mpod;') is an isomorphism, the measure
my oV, ! and hence v is o-finite. Moreover, for any 7€ L' (T x R,my) we have

J h(x,r) dmg(x,r) = J h(x,r + u(x)) dmy o ﬂ;l(x, r)
TxR TxR

= J h(x,u(x))dv(x).
.

By (18), it follows that

x,y,r)dm(x,y, r) = X+ ko, x u(x) — O (x)) dv(x
| htyrydmteyr) = po) Y | s+ ko +6.u) = £ do)

kez
for every he L'(T? x R, m). By Lemma 9, m is a multiple of (A;' o A;)(v/ ),
N

where Sx = x + 6. Notice that v can not be an infinite measure, as otherwise, _tlile
measure 2/ on T/ would be infinite and therefore /— would be infinite and by

Corollary 8, it would follow that (A5! o AN () is ot locally finite.
S—u
Since v is finite and R,-invariant, v is a positive multiple of Ay. Consequently,
flx+0)—f(x) =ulx+a) —ulx) Ar—ae.

and m is a multiple of (A;! o Al)(()\ﬁ})?). O

Theorem 22. Let o be an irrational number with bounded partial quotients
and let f: T — R be a piecewise linear positive and bounded away from
zero function with S(f) #0. Then the special flow (R,y)f is simple. Moreover, the

centralizer of (Ra)f consists of automorphisms of the form S_,, where Sx = x + 0
and u: T — R satisfy

fx+0)—f(x) =ulx+a) —ulx) Ar—ae. (19)

Proof. Suppose that 7 is an ergodic self-joining of (Ra)/. Then, by Corollary 8,
(A5 o Ay)(n) is a locally finite ergodic Borel measure on T2 x R invariant under
the skew product Z>-action

(m,n)(x,,7) = (x+ma,y + na,r+ £ (y) = ) (x)).
If %(Aglo/\,)(n) = R, then, by Proposition 16, (A5 o A))(n) = ¢ )\Tz ® Ag for some
¢>0. An application of Remark 8 gives 1 = c)\'% ® )\%. If Ra-1on))(p) = aZ,

a€R, then, by Lemma 20, a =0. Thus by Lemma 21, n is a multiple of
()\]7})? where Sx =x+ 6 and u : T — R satisfy

7 Fx+0) —f(x) = ulx + a) —u(x) I —ae.
Then S_, € C((R,Y). It follows that (R, is 2-fold simple. Since the flow (R, )"

is weakly mixing (see e.g. [26]), an application of Proposition 3 completes the
proof. O]

Theorem 23. Let o be an irrational number with bounded partial quotients
and let f : T — R be a piecewise linear function with S(f) # 0 which is bounded
away from zero. Then C ((Ra)f) is an Abelian group which is the direct sum of the
subgroup {(Ra); : t€R} and a finite subgroup.
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Proof. Let B = {1, (2, ..., B} be the set of all discontinuities of f and d([3;)
stand for the size of jump at 3; for j = 1,..., k. We can assume that §3; — §; ¢ aZ
for i #j. Otherwise, by Proposition 13, f is cohomologous with a piecewise linear
function satisfying the required property.

By Theorem 22, every element of the centralizer of (R, ) is of the form (Ry)_,,
where € T and u : T — R satisfy (19). Let us denote by © the set of all # € T for
which the equation

fx+0)—f(x) =ulx+a) —u(x) Ay —ae. (20)

has a Borel solution. Notice that u in (20) is unique up to an additive constant.
Moreover © C T is a subgroup for which o € ©.

Suppose that # € ©. Then the set of discontinuities of f(- 4+ 8) — f(-) is equal to
B={01,02,---, 5,01 — 0,0, — 0, ..., 0 — 6}. By Proposition 13, there exists a
permutation o of the set {1,2,...,k} such that

Bi — Boii) + 0 €l and d(p;) = d(ﬁa(i)) (21)

for every i = 1,...,k Summing up (21) from i = 1 to k we obtain that k0 € aZ,
and hence © C %(Z + aZ). Therefore the group © has at most two generators.

Suppose that § =4 + 7 € © (m,n are unique) and u : T — R is a solution of (20).

Since nav = k6 mod 1, we have
FO 4 @) =) = f (x4 na) = fx) =f(x+k0) = f(x) = u (x + @) —u¥ (x)
for Ay—a.e. x&€ T, where f0)(-) and u")(-) are considered as cocycles over the
rotations by « and 6 respectively. By the ergodicity of R,, £ and u® differ by
a constant. Therefore we can choose a unique solution uy : T — R of (20) such
that f") = uék), or equivalently [ugdX =% [ fd). Next notice that

030 —A(0) = (Ry)_, €C((Ra))
is a group homomorphism. Indeed, suppose that 0; =7 + 5L a, 6 =2 +2a €O
and let us consider

U := ug, + ug, o Ry,
as a cocycle over Rg, +o,. Then
u(x + a) — u(x) = ug, (x + ) — ug, (x) + ug,(x + 6 + ) — ug,(x + 6)

=fx+01) —f(x)+f(x+6,+6) —f(x+0))

=f(x+ 01+ 02) — f(x).
Moreover,
np + nyp

dA
o2 [ran
= (Re,)_,, © (Ro,)_,, » Which

Jud)\— Jugl d)\—l—Jugzd)\ =

hence u = ug,p,. If follows that (Ry,q,)
implies our claim.
Moreover

AB) (x,r) = m(x + kB, r — ul) (x)) = 7(x + nav, r — O (x)) = (x, r)

—UY;+0,



K. Fraczek and M. Lemanczyk

for every (x,r) € (R, ). Therefore A(©) is a finite Abelian group with at most two
generators. Moreover, every element from C((R,)) is of the form (Rg)_,» where
0 € © and u satisfies (20). Clearly, u = uy — t and

(Ro)—, = A(6) © (Ra); = (Ra)]  A(6).
Since {(R.) : t€ R} NA(©) = {Id}, it follows that C((R,)) is an Abelian
group which is the direct sum of the group {(R,) : 7€ R} and the finite group
A(©). O

Corollary 24. If #{S(f,C) : C€B/~}>#(B/~)/2 or B,..., 0k a,1 are
independent over Q then T' has MSJ. In particular, if f has only one discontinuity
then T/ has MS.J.

Proposition 25. Assume that 7 = (T;),.p is an ergodic simple flow on a
standard probability space (X, B, 1) and C(T") is the direct sum of the group of
time-t automorphisms and a finite Abelian group H C C(7). Then 7 is a finite
extension of an MSJ-flow.

Proof. Let
¢={Ac#:h(A) =Aforall heH}.

Then % is a 7 -invariant o-algebra and .7 is a finite group extension of the fac-
tor flow 7 /€ on (X/%,%, 1) (see e.g. Theorem 1.8.1 in [16]). Since C(7) is
Abelian, by Corollary 3.6 in [16], 7 /% is simple. We now only need to show that

C(7)€) ={T:: (X/€, %, n) — (X/6,%, p); 1 €R}.

Suppose that S€ C(J /%) and let uscJ*(J /¥,7 /%) be the corresponding
graph joining. Let p€J¢(7,7 ) be an extension of yg, i.e. p(A) = pugs(A) for all
Ac¥ ®%. Since 7 is simple and p is not the product measure, there exists
R e C(7) such that p = pg. Then there exist a unique € R and & € H such that
R = h o T,. Therefore for every A, B €% we have

WANS'B) = us(AxB) = ug(AxB) = p(ANT, ' oh™'B) = n(ANT,'B),
hence S = T; as automorphisms of X/%, and consequently 7 /% has MSJ. [

Proof of Theorem 1. Now the claim follows immediately form Proposition 2,
Remark 10, Theorems 22, 23, and Proposition 25. O

A. Special representation of (¢;),

Proof of Proposition 2. As it was proved by Arnold in [3], on the torus there
exists a closed C*°-curve transversal to the orbits of (%), . on EC. Moreover, the
first-return map (Poincaré map) is determined everywhere on the curve, except for a
finite set F' of points that are points of the last intersection of the incoming separ-
atrices with the transversal curve. In the induced parameterization, this map is the
circle rotation by a. Recall that if a smooth tangent vector field X on a surface M
preserves a volume form y, then a parameterization ~ : [a,b] — M is induced if

7(s2)
J ixph = sy — sy for all 51,5, €|a,b].
v(s1)
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Moreover the return time is a C*°-function of the parameter everywhere except of
points form the set F. This function has logarithmic singularities at these points (see
[21]). Thus, the ergodic component of (%,) is isomorphic to a special flow built over
the rotation by « and under a roof function with logarithmic singularities.

For the flow (), on EC we will consider the same transversal. Hence the
Poincaré map is naturally identified with the rotation by « on T. Let f(x) stand for
the time of the first return of x (from the transversal) to the transversal. Then the
action of (¢,) in EC is isomorphic to the special flow built over the rotation by «
on T and under the roof functionf : T — R.Let 8, < --- < 3, < B,41 = [ be all
discontinuities of f, i.e. they represent the points from the set . Then f is of class
C>® on (f;,Bir1) fori=1,...,r. Fix 1 <i < r. By the Morse Lemma, there exist
a neighborhood (0,0)€V =V; C R? and C*-diffeomorphism & =®;:V —
®;(V) C T? such that (0,0) = %; and if H = H o ®, then H(x,y) = x - y for all
(x,y) € V;. Recall that

Xy =JVH, where J:(_O1 (1))

and
detA-(A~'J) =JAT forall AcGL(2,R).
It follows that
JVH = J(D®)" (VH o ®) = det(D®)(DD) " (JVH o ),
hence
XH
p

Let (,) stand for the local flow on V given by ¢, = ®~! 0 ¢, o ®. In view of (22)
(¢y) is associated with the following differential equation

(D®)—+=Xo®, where p(x)=det(DP®(x))p(P(x)). (22)

dx  x

dt  p(x,y)

dy Y

o p(x,y)

Let § = ¢; be a positive number such that [—6, §] x [—6, 8] C V. Let us consider the
C>-curve [ : [-82,6%] — T2 given by I(s) = ®(s/6, 6). Notice that [ establishes an
induced parameterization with respect to the form p(x,y) = p(x,y) dx A dy and the
vector field X. Indeed,

82

1(s2) 52 2
J ixp = J dx AN dy(Xy (L)), (u)) du = J dH (1(u))I' (u) du

l(Sl) S1 81

J % (H o 1)(u) du = H(®(5/5,5)) — H(®(s1/6,5))

= H(s2/6,8) — H(s1/6,6) = 55 — 51
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for all sy,s€[—6%,6°]. Denote by 7:[—6%,0)U(0,6°] — R the function for
which 7(s) is the time of going out of the point I(s) (for the flow (¢;)) from the
set ®([—6,06] x [—6,8]). On the other hand 7(s) is the time of passage from the
point (s/6,06) to (sgn(s)d,sgn(s)s/d) for the flow (¢;). Therefore

sgn(s)é 1
T(s) = J ﬁ(x,£> —dx.
s/6 X)X

Of course 7 is of class C* on [—62,0) U (0, §%]. We will prove that 7/ € L*([—62, 6%]).
First let us consider 7 only on (0, §*]. Let us decompose T = 7| + 7», where

’ 1 v 1 ’ 1
71() :J ﬁ(x,s> —dbx, Tz(S):J f)(x,s> dx:J ﬁ(s,x> —dx. (23)
s x/)x 5/6 x)x s\ x

Then
s
0. .( s\1
) =iz | S (x) e
Since p(0,0) =0, Dp(0,0) = (0,0) and there exists d >0 such that
1Dp(x) = Dp()|| < dllx =yl for all x,ye&[=6,8] x [0, 4],

we have

[1Dp(x, y)[| < dl(x,y)[| < d(|x] + [y]) forall x,y€[-0,0], (24)
hence

p(x)| = [p(x) —p(0,0)] < OjliglllDﬁ(Afc)lll\fll < d|jx|*. (25)

It follows that

)= |-t [ 2p(x2) La
n(s) =] = (Vs Vs) 5 \/anp X, | adx

g K d s K
< - = (3-2_1og = ).
<iie] () i) =5 (-5 e )

Thus 7] € L*((0,6]). In view of (23) the same conclusion can be drawn for 7,
hence 7 € L2((0, 8%]). An application the same arguments, with (0, 6%] replaced by
[—6%,0), yields 7' € L*([—6,&°]). It follows that 7 : [—6%,0) U (0,6%] — R is ab-
solutely continuous.

Now using some standard arguments we conclude that for some ¢ >0 the
function f : [B; — &, 8;) U (B, B: + €] — R is absolutely continuous and its deriva-
tive is square integrable.

Finally we will show that S(f IEC dw. First we must prove that J"EC dw
exists. It suffices to show f 5 5 5\ (i} dw is finite for every i=1,...,r.
Fix 1 < i< r. Then for & = <&>

dw = O*(dw)

L’([—é-ﬁ] x [=6,61\{(0,0)}) J[—M] x [=6,61\{(0,0)}

d(d*w).

J[—M] x [=6,61\{(0,0)}
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Moreover,
L X@@).DEEY) . (DI, (), DY)
(@)Y = em) x@@) P Do, (). DY@, )
Therefore
(@) = 2 b))

where a, b, c : [—0,6] x [-6,6] — R are C*-functions such that

a(x, y)dx + b(x, y)dy — <D<I>(x, VDB (x,y) [ _yx] N >

and
2

ctx) = Do) 2|

It is easy to check that the following functions: Da(x), Db(%), |I<XH) %, %, DIICX(IT) are
bounded and ‘”_” is bounded away from zero on [—6, 6] x [—6,6]\{(0,0)}. From
(24) and (25), the functions %, DIIIZ’SII) are also bounded on [—§, 6] x [—6, 6]\

{(0,0)}. Since

dp pda apdc bdp pOb bpic
d*w) = (- aop _p
d(®"w) ( cdy cdy 28y cdx cdx 2ox dx A dy,

it follows that the form d(®*w) bounded on [—§,68] x [—8,8]\{(0,0)}. Thus

S5 % -s.ep 0.0y de exists.

Denote by v:T — T? the induced parameterization of the transversal
curve. For every n€ N and 1 < i < r let us denote by o;, a singular 1-chain on
EC which is a formal sum of four curves: v : [3; +a — 1/n,3; + o+ 1/n] — T?
plus @ (v(6i — l/n)) :[0,£(8; — 1/n)] — T? minus v: 3 — 1/n, B+ 1/n] —
T2 minus @, (v(B; + 1/n)) : [0,£(8; + 1/n)] — T>. Clearly, 0, is closed but not
exact. Let us denote by A, the part of EC which is inside the chain o;, (A,; is
homotopic with an annulus). By the Stokes Theorem, we have

=2 (2] )

Since the measure of A, ; tends to zero asn — oo foralli = 1,...,7 and the form

dw is bounded on EC, we have
-

ZJ dw — 0.
Ani

i=1
On the other hand
| w=rm—saam+ |

v(Bi+a+1/n) v(Bi+1/n)
(

v(Bi+a—1/n) v(Bi—1/n)
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v(s2)
J w' < max{[[/(s)[|/[1X(v(s))]| : s€ T} [s2 — 51

V(S]

for all sy,s, € T, it follows that

lim J w =f-(Bi) = f+(Bi)-

n—oo

Consequently

J de = i(ff(ﬂi) —f(8) = S(f).
E i=1

B. Examples

In this section we will describe some examples of flows on the two-torus which
have an ergodic component of positive Lebesgue measure satisfying the simplicity
property. We will deal with quasi-periodic Hamiltonians H : R*> — R having the
form

k
H(x,y) = — Y bjexp(—a;i(sin’m(x — x;) + sin’m(y —y;))) +ax+y, (26)

i=1
where a; >0, b;#0 for i = 1,... k, the points (x;,y;), i = 1,...,k are pairwise
distinct and o has bounded partial quotients. Next take p : T> — R given by
p(x,y) = q(x,)||Xu(x,y)||>, where ¢: T> — R is a positive C*-function. The
function p is non-negative and is positive except of the set Crit of all critical points
of H on T2. Let us consider the flow (¢;), . p on T*\Crit associated with the vector

field X = Xu/p = Xu/ (¢ Xul).

Figure 1. The graph of H
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Figure 2. The phase space of ()

Now let us consider the special case

H(x,y) = —exp(—(sin*m(x — 0.5) + sin’z(y — 0.75))) +

5-1
\/_2 X+
Here H has two critical points in the unit square: X, = (0.4213...,0.3892...) —a
saddle and x, = (0.4672...,0.6963...) — a center (see Fig. 1). The phase space of
() decomposes into one trap

Trap = {(x7y> € [07 1) X [07 1) :H(xvy) < H(xSvys)ay = )’s}

and the ergodic component EC = 'I]'z\Trap with positive Lebesgue measure (see
Fig. 2). Denote by v : [0,/] — JEC (I = length(OEC)) the unit speed parametriza-
tion of OEC (OEC is oriented clockwise) such that v(0) = y(I) = X,. Then +/(1) =
Xu(y(2)) /| Xu(y(2))]| for 0 <t <L Since

(X, Y)

W<Y)ZWZCI'<XH,Y>7

by the Stokes Theorem, we have

)
| aw=| w=] aoeuto) o)
EC OEC 0

[
= | 41 0) 0 (30 X (1 0) WX ) )
)

= q(v(f))lle(’v(t))lldf—J q(5)|[ X (s)[|ds > 0.
0 OEC
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Let us return to the general case where H has the form (26). Fora;, i =1,...,k
large enough the flow (i) has k traps: T;, i = 1,. .., k. Similar arguments to those
above show that

oT;

k
I(g) = j o= senh) j a(5)| X (s) |ds.
E i=1

Let Cj’f(Tz) stand for the set of positive C* functions on T2 equipped with the
topology induced from C>®(T?).

If b;, i = 1,...,k have the same sign then I(g) # 0 for every g € C*(T?), and
hence the flow () on EC is simple. In the general case the set Q of all parameters
qe Cj’f(Tz) for which I(g) #0 is open and dense. Indeed, this is a consequence of
the facts that the map C°(T?) 2 g—1(¢) €R is continuous, the map

Cx™) 30| al)xue)ldser
is strictly increasing for i = 1,...,k and the traps 7;, i = 1,...,k are pairwise
disjoint. It follows that for a typical choice of the parameter g € Cj’f(Tz) the flow
(p;) on EC is also simple.

Some properties of the flow (y;) for which [, dw = 0 are studied in [7].
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