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Abstract. It is proved that some velocity changes in flows on the torus determined by quasi-periodic
Hamiltonians on R2:

Hðxþ m; yþ nÞ ¼ Hðx; yÞ þ m�1 þ n�2;

where �1=�2 is an irrational number with bounded partial quotients, lead to singular flows on T2 with
an ergodic component having a minimal set of self-joinings.
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Introduction

One of the classical problems of ergodic theory is, given a dynamical system
S ¼ ðStÞt 2R acting on a standard probability Borel space (X;B; �), to understand
possible interactions between S and all other systems T ¼ ðTtÞt 2R. Being more
precise, we are interested in a description of all possible situations in which S and
T are seen (as factors) in their common extension U ¼ ðUtÞt 2R. Clearly, we can
restrict ourselves to the class of ‘‘smallest’’ common extensions, that is we will
assume that the sub-�-algebras corresponding to S and T generate the �-algebra
of measurable sets for U – in this case U is called a joining of S and T (see
Section 1 for a formal definition). If for U we take the product system S�T ¼
ðSt� TtÞt 2R (acting on the product space) then, obviously, U is a joining of S and
T. If this is the only way to join S and T then, following Furstenberg [8], we
say that S and T are disjoint. Another easy observation is that given S there are
always systems which are not disjoint from S; indeed a system is never disjoint
from itself and more generally two systems with a non-trivial common factor
cannot be disjoint (there are however non-disjoint systems without common fac-
tors, see e.g. [30]). For a general S, especially in the positive entropy case, a

Research partially supported by KBN grant 1 P03A and by Marie Curie ‘‘Transfer of Knowledge’’
program, project MTKD-CT-2005-030042 (TODEQ) 03826.



description of all possible joinings with an arbitrary T seems to be an impossible
task – this requires a full description of all infinite self-joinings of S, see [25].
However, there is at least one class of zero entropy flows for which such a de-
scription exists. This is the case of so called simple flows introduced by Veech
([34], only Z-actions are considered there) and del Junco-Rudolph [16] (see
Section 1 below). If S is simple and T is ergodic, then a non-product ergodic
joining between T and S is possible only if T has a factor which is given by a
symmetric factor of a finite product of a factor of S with itself (and such joinings
are fully described, see [33]). This result is even more impressive when we restrict
ourselves to a subclass of simple flows, namely to flows with the minimal self-
joining property (MSJ) – these are ergodic flows for which ergodic self-joinings
are products of graphs of their time-t automorphisms, see Section 1 below. Such a
flow S has no non-trivial factors, and factors of a direct product S� � � � �S|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n

are

determined only by symmetries given by subgroups of the group of permutations
on an n-element set. Hence either an ergodic flow T is disjoint from S or T is
extremely ‘‘close’’ to S in the sense, that T is an ergodic extension of a symmet-
ric factor A of S� � � � �S|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n

and an ergodic joining is given by the restriction of

the relative product (over A) to the first copy of S in S� � � � �S|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

and T. We

should also notice that ergodic systems with pure point spectrum are simple, and
that the considerations above are interesting only in the weak mixing case (we
recall that the MSJ property implies weak mixing).

All the considerations above, although of abstract nature, seem to be also
interesting from the smooth point of view. Indeed, assume that Mi (i ¼ 1; 2) is a
compact smooth manifold and let Ai : M ! TM be a smooth vector-field. Denote
by �ðiÞ ¼ ð�ðiÞt Þt 2R the flow given by the solution of the differential equation

d�
ðiÞ
t x

dt
¼ Aið�ðiÞt xÞ:

By compactness of Mi, stationary states (i.e. probability invariant measures) for
�ðiÞ exist. If now, on M1�M2 we consider the product vector field A1�A2 then
any stationary state for the corresponding (product) flow on M1�M2 is a joining
of some stationary states of �ð1Þ and �ð2Þ. This approach will be fruitful if systems
under considerations are uniquely ergodic or if we have finitely many invariant
measures (recall that if M is an orientable manifold then every area – preserving
smooth flow on M has at most genusðMÞ nontrivial ergodic invariant measures; see
Theorem 14.7.6 in [17]). By what was said above, once �ð1Þ is uniquely ergodic
and has the MSJ property we are able to describe stationary states of the system
given by the vector-field A1�A2.

For horocycle flows the problem of self-joinings was solved by Ratner in a
series of remarkable papers ([27]–[29]) in the 1980s. Some horocycle flows turn
out to be simple, or even to have the MSJ property, e.g. if � � SLð2;RÞ is maxi-
mal and not arithmetic lattice then the horocycle flow on SLð2;RÞ=� has MSJ (see
[29]). Thouvenot in [33] has shown that horocycle flows are always factors of
simple systems (in the cocompact case this was already shown by Glasner and
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Weiss in [11]). Hence in dimension 3 the MSJ property appears quite naturally. It
is an open question whether it can also be seen in dimension 2, that is on surfaces.

The present paper brings, in a sense, a positive answer to this question, how-
ever the flows that appear in the paper are singular flows – they will have finitely
many points at which a smooth vector-field defining our system is not defined. Let
us pass now to a more precise description of the main result of the paper.

Let H : R2 ! R be a C1-quasi-periodic function, i.e.

Hðxþ m; yþ nÞ ¼ Hðx; yÞ þ m�1 þ n�2

for all ðx; yÞ2R2 and m; n2Z, and � ¼ �1=�2 is irrational. Clearly, Hðx; yÞ ¼eHHðx; yÞ þ �1xþ �2y, where eHHðx; yÞ : R2 ! R is a periodic function of period 1 in
each coordinate. Then H determines a (quasi-periodic) Hamiltonian flow ðhtÞt 2R

on the torus associated with the following differential equation

d�xx

dt
¼ XHð�xxÞ; where XH ¼

�
@H

@y
;� @H

@x

�
:

If H has no critical point then ðhtÞ is isomorphic to a special flow built over the
rotation by � on the circle and under a positive C1-function (see [4], Ch. 16).
Moreover, if � is Diophantine (there exist �5 1 and C> 0 such that jq�� pj5
Cq�� for all integer numbers p; q with q5 1) then ðhtÞ is isomorphic to a linear
flow on the torus.

Now suppose that H has critical points. Let us recall some terminology and
results proved by Arnold in [3]. Suppose that H is in the general position, i.e. H
has no degenerate critical points and has all critical values distinct. In particular,
each critical point is either a non-degenerate saddle point or a non-degenerate cen-
ter. Moreover critical points repeat periodically (with period 1 in each coordinate)
but their critical values are distinct. Then any superlevel fðx; yÞ2R2 : Hðx; yÞ> cg
has exactly one unbounded connected component which contains a half-plane. Any
connected component of a level set of H passing through a critical point is either
bounded (a point or a lemniscate-like curve) or it has the shape of a folium of
Descartes. In the unbounded case, the critical value level set of H separates the
plane into two unbounded components and a disk; the closure of the disk is called
a trap. A trap is homeomorphic to a closed disk and has a critical point on the
boundary, called the vertex of the trap (the same terminology applies when we pass
to T2). Traps with distinct vertices are disjoint. The phase space of ðhtÞt 2R

decomposes into traps filled with fixed points, separatrices and periodic orbits,
and an ergodic component EC of positive Lebesgue measure.

Now we will change velocity in the flow ðhtÞt 2R. Let f�xx1; . . . ;�xxrg be vertices of
all traps. Suppose p : T2 ! R is a non-negative C1-function which is positive on
the torus except of the points f�xx1; . . . ;�xxrg. Let us consider the flow ð’tÞt 2R on
T2nf�xx1; . . . ;�xxrg associated with the following differential equation

d�xx

dt
¼ Xð�xxÞ; where Xð�xxÞ ¼ XHð�xxÞ

pð�xxÞ :

Since the orbits of ð’tÞ and ðhtÞ are the same (modulo fixed points of ðhtÞ), the
phase space of ð’tÞt 2R decomposes into traps filled with critical points, separa-
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trices and periodic orbits, and the ergodic component EC with positive Lebesgue
measure.

Let us denote by ! ¼ !X the 1-form of class C1 on T2nf�xx1; . . . ;�xxrg given by
!ðYÞ ¼ hX;Yi=hX;Xi.

Theorem 1. If � has bounded partial quotients and
Ð

EC
d! 6¼ 0, then ð’tÞt 2R

is simple, and it is a finite extension of an MSJ-factor.

Our approach to prove Theorem 1 will be a detailed analysis of the special
representation of the Hamiltonian flow ðhtÞ obtained by Arnold, and applied to
ð’tÞ. In fact, the first step will be to prove the following result whose proof is
presented in the Appendix.

Proposition 2. The action of ð’tÞ in EC is isomorphic to a special flow built
over the rotation by � and under a roof function f which is piecewise absolutely
continuous with f 0 2L2ðTÞ. Moreover, the sum of jumps Sðf Þ of f is equal toÐ

EC
d!.

Hence, we have to study special flows over irrational rotations, with particular
roof functions. In fact, such flows were already considered by von Neumann in
1932 [26], where he proved weak mixing property whenever Sðf Þ 6¼ 0. The same
flows were considered by the authors of the present paper in [6], where under von
Neumann’s assumption Sðf Þ 6¼ 0 and boundness of partial quotients of � a certain
combinatorial property, similar to the famous Ratner’s property from [27], on the
orbits of Tf has been proved. This property implies some strong rigidity property
on joinings between Tf and an arbitrary ergodic system. The approach in the
present paper is completely different. We have to show some minimality property
for the set of ergodic self-joinings, that is we study invariant measures for the
product system Tf �Tf (with ‘‘right’’ marginals), and the key argument consists in
showing that such measures are in one-to-one correspondence with some locally
finite measures of some Z2-cylindrical actions. Then the mathematical construc-
tion of the main steps in the paper goes back rather to a use of ideas from non-
singular ergodic theory: close to the concept of Mackey actions (see [24] or [23]),
a use of the concept of Maharam extension (see [2]) and also we will substantially
use some recent results by Sarig [32].

1. Joinings

Assume that T ¼ ðTtÞt 2R and S ¼ ðStÞt 2R are Borel ergodic flows on stan-
dard probability spaces (X;B; �) and (Y ;C; �) respectively. By a joining between
T and S we mean any probability ðTt� StÞt 2R-invariant measure on ðX�Y ;B�
CÞ whose projections on X and Y are equal to � and � respectively. The set of
joinings between T and S is denoted by JðT;SÞ. The subset of ergodic joinings
is denoted by JeðT;SÞ. Ergodic joinings are exactly extremal points in the sim-
plex JðT;SÞ. Of course, the product measure �� �2 JðT;SÞ, moreover, if T
or S is weakly mixing then �� �2 JeðT;SÞ.

We denote by CðTÞ the centralizer of the flow T, this is the group of Borel
automorphisms R : ðX;B; �Þ ! ðX;B; �Þ such that Tt � R ¼ R � Tt for every t2R.
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For every R2CðTÞ by �R2 JðT;TÞ we will denote the graph joining determined
by �RðA�BÞ ¼ �ðA \ R�1BÞ for A;B2B. Then �R is concentrated on the graph of
R and �R2 JeðT;TÞ.

Remark 1. Suppose that flows T and S are uniquely ergodic. Then any finite
ðTt � StÞt 2R-invariant measure on ðX� Y ;B� CÞ is a multiple of a joining from
JðT;SÞ.

If Ti ¼ ðT ðiÞt Þt 2R is a Borel flow on ðXi;Bi; �iÞ for i ¼ 1; . . . ; k then by a k-
joining of T1; . . . ;Tk we mean any probability ðT ð1Þt � . . . � T

ðkÞ
t Þt 2R-invariant

measure on ð
Qk

i¼1 Xi;
Nk

i¼1 BiÞ whose projection on Xi is equal to �i for i ¼
1; . . . ; k.

Suppose that T is an ergodic flow on ðX;B; �Þ and Ti ¼T for i ¼ 1; . . . ; k.
If R1; . . . ;Rk 2CðTÞ then the image of � via the map

X 3 x 7! ðR1x; . . . ;RkxÞ2Xk

is called an off-diagonal joining. Of course, any off-diagonal joining is an ergo-
dic k-self-joining. Suppose that the set of indices f1; . . . ; kg is now partitioned
into some subsets and let on each of these subsets an off-diagonal joining be
given. Then clearly the product of these off-diagonal joinings is a k-self-join-
ing of T.

Definition 1 (see [30]). We say that T is k-fold simple if every ergodic k-self-
joining is a product of off-diagonal joinings. T is simple if it is k-fold simple for
every k2N. If additionally CðTÞ ¼ fTt : t2Rg then we say that T has minimal
self-joining (MSJ).

Proposition 3 (see [31]). If T is a weakly mixing flow then 2-fold simplicity
implies simplicity.

Recall that this result is unknown for automorphisms.

2. Borel group actions and invariant measures

Let ðX; dÞ be a Polish metric space and let B ¼ BX denote the �-algebra of
Borel subsets of X. Denote by AutðX;BÞ the group of all Borel automorphisms of
X. Let G be a Polish Abelian locally compact group. Suppose that T is a Borel G-
action on ðX;BÞ, i.e.

G 3 g 7!Tg2AutðX;BÞ is a group homomorphism and

G�X 3 ðg; xÞ 7! gx ¼ Tgx2X is a Borel map

(G�X is endowed with the product Borel structure). We will say that the G-action
T is free if for every x2X the map G 3 g 7! gx2X is one-to-one. We say that a
measure m on ðX;BÞ is T-quasi-invariant, or G-quasi-invariant if no confusion
arises, if

mðTgAÞ ¼ 0()mðAÞ ¼ 0 for every g2G and A2B;
that is m � g � m for every g2G. A quasi-invariant G-action on ðX;B;mÞ (or the
measure m) is called ergodic if for every G-invariant set A2B (i.e. TgA ¼ A mod
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m for every g2G) we have mðAÞ ¼ 0 or mðAcÞ ¼ 0. A measure m on ðX;BÞ is said
to be T-invariant, or G-invariant if no confusion arises, if

mðTgAÞ ¼ mðAÞ for every g2G and A2B;
that is m � g ¼ m for every g2G. Recall that a measure m on ðX;BÞ is called
locally finite if every point in X has a neighborhood of finite measure (notice that
if ðX; dÞ is locally compact then m is locally finite iff mðKÞ< þ1 for each
compact K � X). We will denote by M�ðX; TÞ, LFðX; TÞ and FðX;TÞ the sets
of T-invariant measures on ðX;BÞ that are �-finite, locally finite and finite respec-
tively. By Me

�ðX; TÞ, LFeðX;TÞ and FeðX;TÞ we will denote subsets of respec-
tive set consisting of ergodic measures.

Let ðX;BÞ and ðY ;CÞ be standard Borel spaces. Let G be a Polish Abelian
locally compact group which acts on ðX;BÞ and ðY ;CÞ in a Borel way. Suppose
that � : ðX;BÞ ! ðY ;CÞ is a Borel factor (G-equivariant) map, i.e.

�ðgxÞ ¼ g�ðxÞ
for every x2X and g2G. Assume that m2M�ðX; TÞ. Let � be a probability
measure on ðX;BÞ which is equivalent to m (� � m) and such that f :¼ d�

dm
2

L1ðX;B;mÞ is a Borel function with f ðxÞ> 0 for all x2X. By the G-invariance
of m we have

d� � g

d�
ðxÞ ¼ f ðgxÞ

f ðxÞ
for �–a.e. x2X and for every g2G.

Let � :¼ ��ð�Þ, i.e. �ðAÞ ¼ �ð��1AÞ for every A2C. Then there exist Y02C
with �ðY0Þ ¼ 1 and a measurable map Y0 3 y 7!�y2PðX;BÞ (PðX;BÞ is the space
of probability measures on ðX;BÞ) such that �yð��1fygÞ ¼ 1 for all y2Y0 andð

X

hðxÞ d�ðxÞ ¼
ð

Y

�ð
X

hðxÞ d�yðxÞ
�

d�ðyÞ

for every h2L1ðX;B; �Þ (see e.g. [9]). For every y2Y0 let my denote the measure
on ðX;BÞ given by

myðAÞ ¼
ð

A

1

f ðxÞ d�yðxÞ for A2B:

Then

mðAÞ ¼
ð

Y

myðAÞ d�ðyÞ for every A2B:

Notice that my is �-finite for �–a.e. y2Y . Moreover if m is additionally locally
finite then my is locally finite as well for �–a.e. y2Y (it is a consequence of the
fact that the topology on X has a countable basis).

We will now show that � � g � � and �gy � g � �y for �–a.e. y2Y and for
every g2G, moreover

d� � g

d�
ðyÞ ¼

ð
X

f ðgxÞ
f ðxÞ d�yðxÞ
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and

d�gy � g

d�y

¼ f � g

f

�
d� � g

d�
ðyÞ

for �–a.e. y2Y and for every g2G. Indeed, suppose that h : ðX;BÞ ! R and k :
ðY ;CÞ ! R are bounded Borel functions. Thenð

X

kðg�1�ðxÞÞhðg�1xÞ d�ðxÞ ¼
ð

Y

kðg�1yÞ
�ð

X

hðg�1xÞ d�yðxÞ
�

d�ðyÞ

¼
ð

Y

kðyÞ
�ð

X

hðxÞ dð�gy � gÞðxÞ
�

dð� � gÞðyÞ:

On the other sideð
X

kðg�1�ðxÞÞhðg�1xÞ d�ðxÞ ¼
ð

X

kð�ðxÞÞhðxÞ dð� � gÞðxÞ

¼
ð

X

kð�ðxÞÞhðxÞ f ðgxÞ
f ðxÞ d�ðxÞ

¼
ð

Y

kðyÞ
�ð

X

hðxÞ f ðgxÞ
f ðxÞ d�yðxÞ

�
d�ðyÞ:

Letting h ¼ 1 we obtainð
Y

kðyÞ dð� � gÞðyÞ ¼
ð

Y

kðyÞ
�ð

X

f ðgxÞ
f ðxÞ d�yðxÞ

�
d�ðyÞ

for every bounded Borel function k : ðY ;CÞ ! R. It follows that � � g � � and

d� � g

d�
ðyÞ ¼

ð
X

f ðgxÞ
f ðxÞ d�yðxÞ

for �–a.e. y2Y and for all g2G. Therefore � is a G-quasi-invariant measure on
ðY ;CÞ. Moreover,ð

Y

kðyÞ
�ð

X

hðxÞ f ðgxÞ
f ðxÞ d�yðxÞ

�
d�ðyÞ

¼
ð

Y

kðyÞ
�ð

X

hðxÞ dð�gy � gÞðxÞ
�

dð� � gÞðyÞ

¼
ð

Y

kðyÞ
�ð

X

hðxÞ d� � g

d�
ðyÞ dð�gy � gÞðxÞ

�
d�ðyÞ:

It follows that

dð�gy � gÞ
d�y

¼ f � g

f

�
dð� � gÞ

d�
ðyÞ ð1Þ

for all g2G and for �–a.e. y2Y . However by replacing the Radon-Nikodym
cocycle ðg; yÞ 7! dð��gÞ

d� ðyÞ by a strict cocycle and proceeding as in Appendix B
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[35] we obtain that (1) holds for a.e. y2Y and for all g2G. Hence

d� � g

d�
ðyÞ � ðmgy � gÞ ¼ my ð2Þ

for �–a.e. y2Y and for all g2G.
Now let us consider a particular case where G ¼ G1 	 G2 is the direct sum of

Polish Abelian locally compact group G1 and G2. Since G1 and G2 can be treated
as subgroups of G they yield Borel subactions of G1 and G2 (on ðX;BÞ and ðY ;CÞ)
which are commuting.

Suppose that the group G2 acts on ðY ;CÞ as the identity, i.e. g2y ¼ y for all
g22G2 and y2Y . Since � is a G2-equivariant map, g2ðXyÞ ¼ Xy for every g22G2

and y2Y , where Xy ¼ ��1ðfygÞ. Then from (2) we have

my � g2 ¼ my ð3Þ
for �–a.e. y2Y and for every g22G2. Therefore for �–a.e. y2Y we can consider a
measure-preserving Borel action of the group G2 on ðXy;BðXyÞ;myÞ and a quasi-
invariant Borel action of the group G1 on ðY ;C; �Þ.

Lemma 4. If the G-action on ðX;B;mÞ is ergodic then the quasi-invariant G1-
action on ðY ;C; �Þ is ergodic as well.

Proof. Let us consider the G-action on ðY ;C; �Þ. Since this action is a fac-
tor (in the non-singular framework) of the G-action on ðX;B;mÞ, it is ergodic.
Moreover, ðg1; g2Þy ¼ g1y for all g12G1, g22G2. Suppose that A2C is a G1-in-
variant subset. Of course, A must be also G-invariant and consequently �ðAÞ ¼ 0
or �ðAcÞ ¼ 0. &

Let ðX; dÞ be a Polish metric space and let ðX;BÞ be its standard Borel space.
Let T1 and T2 be Borel actions on ðX;BÞ of Polish Abelian locally compact groups
G1 and G2 respectively. Suppose that the actions T1 and T2 commute and the G2-
action T2 is free and of type I, i.e. there exists a Borel subset Y 2B such that for
every x2X there exists a unique g22G2 such that g2x2Y . The set Y is said to be
a fundamental domain for the action T2. Then fg2Y : g22G2g is a Borel partition
of X. Let G ¼ G1 	 G2. The actions T1 and T2 determine the action T ¼ T1 	 T2

of the group G on ðX;BÞ by Tðg1;g2Þ ¼ ðT1Þg1
� ðT2Þg2

for ðg1; g2Þ2G. We will
always consider Y with the topology induced by the metric space ðX; dÞ. Thus
ðY ;BYÞ is a standard Borel space. Then � : ðY �G2;BY �BG2

Þ ! ðX;BÞ given
by �ðy; g2Þ ¼ g2y establishes a Borel isomorphism.

Denote by p1 : Y �G2 ! Y and p2 : Y �G2 ! G2 the projection maps. Let � :
ðX;BÞ ! ðY ;BYÞ and � : ðX;BÞ ! ðG2;BG2

Þ be given by � ¼ p1 � ��1 and
� ¼ p2 � ��1. Then �ðxÞ ¼ y iff there exists g22G2 such that g2x ¼ y. This
map determines a new Borel G-action on ðY ;BYÞ given by gy ¼ �ðgxÞ if
y ¼ �ðxÞ. It is easy to see that this action is well defined and g2y ¼ y for any
g2G2. Of course, the map � : ðX;BÞ ! ðY ;BYÞ is G-equivariant. The restriction
of this action to the group G1 we will denote by T1=T2. Then for every y2Y and
g12G1 there exists a unique element g22G2 such that

ðT1=T2Þg1
y ¼ ðT2Þg2

ðT1Þg1
y: ð4Þ
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Moreover the G-action T on ðX;BÞ is Borel isomorphic (via �) to the G-action on
ðY �G2;BY �BG2

Þ given by

ðg1; g2Þðy; g02Þ ¼ ððT1=T2Þg1
y; g2 � g02 � �ððT1Þg1

yÞÞ: ð5Þ
Then p1 : Y �G2 ! Y is G-equivariant map and the fiber over y2Y equals

p�1
1 fyg ¼ fyg�G2 ’ G2:

Of course, the G2-subaction acts inside each fiber. Moreover, since �ðyÞ ¼ 0 for
every y2Y, the G2-subaction on each fiber is topologically conjugate to the action
by translations G2.

Suppose that m is a �-finite T1 	 T2-invariant measure on ðX;BÞ. Then �mm ¼
m � � is a G-invariant �-finite measure on ðY �G2;BY �BG2

Þ. Applying now the
reasoning preceding Lemma 4 for the measure �mm and the G-equivariant map
p1 : Y �G2 ! Y , and using the identification of each fiber p�1

1 fygwith G2 we obtain

�mmðA1�A2Þ ¼
ð

A1

�mmyðA2Þ d�ðyÞ for all A12BY ;A22BG2
;

where � is a probability measure on ðY ;BYÞ and f�mmy : y2Y0g (Y02BY and
�ðY0Þ ¼ 1) is a family of �-finite measures on ðG2;BG2

Þ which are invariant under
all translations on the group G2. It was proved in [13] (see Remark 7, p. 265) such
measures are necessarily multiples of a fixed Haar measure 	G2

on G2. Then there
exists a measurable function c : ðY ;BY ; �Þ ! Rþ such that

�mmy ¼ cðyÞ	G2
for ��a:e: y2Y :

Then from (2) we have

�mmy ¼
d� � g

d�
ðyÞ �mmgy � g ¼ d� � g

d�
ðyÞ cðgyÞ

cðyÞ �mmy;

and hence

d� � g

d�
ðyÞ cðgyÞ

cðyÞ ¼ 1 for ��a:e: y2Y and for all g2G:

Let � be a measure on ðY ;BYÞ given by

�ðAÞ ¼
ð

A

cðyÞ d�ðyÞ for A2BY :

Then � is �-finite and

�ðg�1AÞ ¼
ð

g�1A

cðyÞ d�ðyÞ ¼
ð

A

cðgyÞ d� � gðyÞ

¼
ð

A

cðgyÞ d� � g

d�
ðyÞ d�ðyÞ ¼

ð
A

cðyÞ d�ðyÞ ¼ �ðAÞ

for every g2G1 and A2BY . It follows that T1=T2 is a measure-preserving G1-
action on ðY ;BY ; �Þ. Moreover

�mmðA1�A2Þ ¼
ð

A1

�mmyðA2Þ d�ðyÞ ¼ 	G2
ðA2Þ

ð
A1

cðyÞ d�ðyÞ ¼ �ðA1Þ	G2
ðA2Þ

for all A12BY ;A22BG2
, whence �mm ¼ � � 	G2

.
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On the other hand suppose � is a �-finite T1=T2-invariant measure on ðY ;BYÞ.
Then m ¼ ð� � 	G2

Þ � ��1 is a T1 	 T2-invariant �-finite measure on ðX;BÞ.
Let us denote by � : M�ðY ; T1=T2Þ !M�ðX; T1 	 T2Þ the map

�ð�Þ ¼ ð� � 	G2
Þ � ��1: ð6Þ

Then � is an affine bijection. Moreover, for every �2M�ðY ;T1=T2Þ and for every
h2L1ðX;�ð�ÞÞ we haveð

X

hðxÞ d�ð�ÞðxÞ ¼
ð

G2

ð
Y

hððT2Þg2
yÞ d�ðyÞ d	G2

ðg2Þ:

On the other hand for every m2M�ðX; T1 	 T2Þ, h12L1ðY ;��1ðmÞÞ and
h22L1ðG2; 	G2

Þ we haveð
X

h1ð�ðxÞÞh2ð�ðxÞÞdmðxÞ¼
ð

Y

h1ðyÞdð��1ðmÞÞðyÞ
ð

G2

h2ðg2Þd	G2
ðg2Þ: ð7Þ

Remark 2. In particular, if we assume that G2 is a countable group and let
	G2
ðCÞ ¼ #C (C � G2) thenð

X

hðxÞ d�ð�ÞðxÞ ¼
X

g2 2G2

ð
Y

hððT2Þg2
yÞ d�ðyÞ ð8Þ

and taking h1 ¼ 
A and h2 ¼ 
f0g in (7) we obtain

��1ðmÞðAÞ ¼ mðAÞ for every A2BY : ð9Þ
Lemma 5. �ðMe

�ðY ; T1=T2ÞÞ ¼Me
�ðX; T1 	 T2Þ.

Proof. From Lemma 4 we have �ðMe
�ðY ; T1=T2ÞÞ 
Me

�ðX;T1 	 T2Þ. Assume
that �2Me

�ðY ; T1=T2Þ. It suffices to show that � � 	G2
is an ergodic measure

for the G1 	 G2-action T on Y �G2 given by (5). Suppose that A2BY �BG2
is

a G1 	 G2-invariant subset. Let Ay ¼ fg22G2 : ðy; g2Þ2Ag for any y2Y. By the
Fubini Theorem, Ay2BG2

for any y2Y and the function

Y 3 y 7!	G2
ðAyÞ2Rþ [ fþ1g

is Borel. Moreover g2Ay ¼ Ay mod 	G2
for �–a.e. y2Y and for all g22G2. Since

the G2-subaction on each fiber is transitive (in the algebraic sense), either
	G2
ðAyÞ ¼ 0 or 	G2

ðAc
yÞ ¼ 0 for �–a.e. y2Y . Let B ¼ fy2Y : 	G2

ðAyÞ ¼ 0g.
Since ðTg1

AÞðT1=T2Þg1
y ¼ �ððT1=T2Þg1

yÞ � Ay for all y2Y and g12G1, the set B2
BY is T1=T2-invariant. By the ergodicity of the T1=T2-action on ðY ;BY ; �Þ, either
�ðBÞ ¼ 0 or �ðBcÞ ¼ 0. It follows that either � � 	G2

ðAÞ ¼ 0 or � � 	G2
ðAcÞ ¼ 0;

consequently � � 	G2
is an ergodic measure. &

Lemma 6. If � : Y �G2 ! X is a homeomorphism then

�ðLFðY ; T1=T2ÞÞ ¼LFðX;T1 	 T2Þ:
Proof. Since 	G2

is locally finite, the result follows immediately from the fact
that � is locally finite iff � � 	G2

is locally finite. &
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Lemma 7. Assume that G2 is a countable discrete group,

0<� :¼ minfdðg2x; g02xÞ : x2X; g2; g
0
22G2; g2 6¼ g02g ð10Þ

and the closure of Y in X is compact. Then �ðFðY ;T1=T2ÞÞ ¼LFðX; T1 	 T2Þ.
Proof. Suppose that m2LFðX; T1 	 T2Þ. Then from (9) we have

��1ðmÞðYÞ ¼ mðYÞ4mðYÞ< þ1;
and hence ��1ðmÞ2FðY ;T1=T2Þ.

Now assume that �2FðY ; T1=T2Þ. Take x2X and let U ¼ fx0 2X : dðx; x0Þ<
�=2g. For every g22G2 let Ug2

¼ fy2Y : ðT2Þg2
y2Ug. By assumption, Ug2

,
g22G2 are pairwise disjoint. Therefore from (8) we have

�ð�ÞðUÞ ¼
X

g2 2G2

ð
Y


UððT2Þg2
yÞ d�ðyÞ ¼

X
g2 2G2

�ðUg2
Þ

¼ �ð
[

g2 2G2

Ug2
Þ4 �ðYÞ<1

and hence �ð�Þ2LFðX; T1 	 T2Þ. &

3. Special flow

Let ðX; dÞ be a Polish metric space and let B ¼ BX stand for the �-algebra of
Borel subsets of X. Let T 2AutðX;BÞ. Denote by 	 Lebesgue measure on R and
by BR the �-algebra of Borel sets of R. Assume that f : X ! R is an integrable
positive Borel function which is bounded away from zero. Let Xf ¼ fðx; tÞ2
X�R : 04 t< f ðxÞg. The set Xf will be always considered with the topology
induced by the product topology on X�R. Denote by B f the �-algebra of Borel
sets on Xf . The special flow T f ¼ ððTf ÞtÞt 2R built from T and f is defined on
ðXf ;Bf Þ. Under the action of the special flow each point ðx; rÞ in Xf moves up
along fðx; sÞ : 04 s< f ðxÞg at the unit speed, and we identify the point ðx; f ðxÞÞ
with ðTx; 0Þ (see e.g. [4], Chapter 11). If � is a T-invariant measure on ðX;BÞ
then the flow Tf preserves the restriction � f of the product measure �� 	 of
X�R to Xf . Moreover, �f is ergodic iff � is ergodic.

Given m2Z we put

f ðmÞðxÞ ¼
f ðxÞ þ f ðTxÞ þ . . .þ f ðTm�1xÞ if m> 0

0 if m ¼ 0

�ðf ðTmxÞ þ . . .þ f ðT�1xÞ if m< 0:

8<
:

We will now represent the action Tf as a quotient action of the form (4), where
T1 is an R-action � (defined below) and T2 is a Z-action generated by the skew
product T�f : ðX�R;B�BRÞ ! ðX�R;B�BRÞ given by

T�f ðx; rÞ ¼ ðTx; r � f ðxÞÞ:
The Z-action generated by T�f is given by

Z 3 k 7! ðT�f Þk 2AutðX�R;B�BRÞ:
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Notice that ðT�f Þkðx; rÞ ¼ ðTkx; r � f ðkÞðxÞÞ for each k2Z. Let � ¼ ð�tÞt 2R stand
for the R-action on ðX�R;B�BRÞ given by

�tðx; rÞ ¼ ðx; r þ tÞ:
Notice that the R-action � commutes with the Z-action T�f . Now the Z-action T�f

is free and of type I and Xf is a fundamental domain of this action. Let us con-
sider the R-action �=T�f on Xf . Then ð�=T�f Þt ¼ � � �t, where � : X�R! Xf is
given by

�ðx; rÞ ¼ ðT�f Þnðx; rÞ if f ðnÞðxÞ4 r< f ðnþ1ÞðxÞ: ð11Þ
Therefore the R-action �=T�f coincides with the action of the special flow Tf .

Remark 3. Now using results from Section 2 we can prove a well known result
which says that if X is compact and f is bounded then T is uniquely ergodic iff Tf

is uniquely ergodic. Indeed, notice that � is a free action of type I and Y ¼ X�f0g
its fundamental domain. Moreover, the action T�f =� on Y is isomorphic via a
homeomorphism to the action generated by the automorphism T : X ! X. Since f
is bounded away from zero, by Lemmas 6 and 7, there exists an affine one-to-one
correspondence between FðXf ;Tf Þ and LFðX;TÞ which is equal to FðX; TÞ
because X is compact. This gives our claim.

Remark 4. If T : ðX;B; �Þ ! ðX;B; �Þ is ergodic then a special flow Tf on
ðXf ; �f Þ is weakly mixing iff for every r2Rnf0g and �2C with j�j ¼ 1 the equation

gðTxÞ ¼ �e2�ir f ðxÞgðxÞ
has no measurable solution g : X ! T.

3.1. Continuous centralizer of topological special flows. Suppose that ðX; dÞ
is a compact connected topological manifold. Let T : X ! X be a homeomorphism
and let f : X ! R be a positive continuous function. Let us consider the metric �dd on
Xf given by

�ddððx; tÞ;ðy;sÞÞ¼minfdðx;yÞþjt� sj;dðTx;yÞþ f ðxÞ� tþ s;dðx;TyÞþ f ðyÞ� sþ tg:
Then ðXf ; �ddÞ is a compact manifold and Tf is a topological flow on ðXf ; �ddÞ. Let us
denote by CcðTf Þ the continuous centralizer of Tf , i.e. the group of homeomorph-
isms of ðXf ; �ddÞ which commute with the action of the flow Tf . Let � : X�R! Xf

be given by (11). Then � is a covering map (X�R is considered with the prod-
uct topology). Denote by ClcðTf Þ the set of homeomorphisms from CcðTf Þ which
can be lifted to homeomorphisms of X�R. As it was proved in [18] each such
homeomorphism is of the form

ðx; rÞ 7!�ðSx; r � gðxÞÞ;
where S is a homeomorphism of X which commutes with T and g : X ! R is a
continuous function satisfying

gðTxÞ � gðxÞ ¼ f ðSxÞ � f ðxÞ or equivalently T�f � S�g ¼ S�g � T�f :

Moreover, if T is a minimal rotation on a finite dimension torus then CcðTf Þ ¼
ClcðTf Þ (see Corollary 3.8 in [18]).
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4. Joinings of special flows

Let ðX; d1Þ and ðY ; d2Þ be compact metric spaces. Denote by B and C the
�-algebras of all Borel subsets of X and Y respectively. Let T 2AutðX;BÞ and
S2AutðY ;CÞ. Let f : X ! R and g : Y ! R be positive bounded away from zero
and bounded Borel functions. Let Tf and Sg stand for special flows acting on Xf

and Yg respectively. Let us consider the product flow ðTf
t � S

g
t Þt 2R on ðXf � Yg;

Bf � Cf Þ. Moreover, let us consider the Borel flow ��� on X�R� Y �R (this space
is considered with the product metric) given by

���tðx; r1; y; r2Þ ¼ ðx; r1 þ t; y; r2 þ tÞ

and two skew product Z-actions T�f and S�g on X�R�Y �R given by

T�f
kðx; r1; y; r2Þ ¼ ðTkx; r1 � f ðkÞðxÞ; y; r2Þ;

S�g
kðx; r1; y; r2Þ ¼ ðx; r1; S

ky; r2 � gðkÞðyÞÞ:

Of course, the actions ���, T�f and S�g commute. Let us consider the Z2-action
T�f 	 S�g, i.e.

ðT�f 	 S�gÞðk1;k2Þ ¼ S�g
k1 � T�f

k2 :

This action is free and of type I; moreover, the set Xf �Yg is its fundamental
domain. Then the R-action ���=T�f 	 S�g on Xf � Yg coincides with the product R-
action ðTf

t � S
g
t Þt 2R.

Let us consider the R�Z2-action �	 T�f 	 S�g on X�R� Y �R, i.e.

ð�	 T�f 	 S�gÞðt;k1;k2Þ ¼ S�g
k1 � T�f

k2 � �t:

Let

�1 : M�ðXf � Yg; �=T�f 	 S�gÞ !M�ðX�R� Y �R; �	 T�f 	 S�gÞ

be the affine bijection determined by (6). Then if �2M�ðXf � Yg; ���=T�f 	 S�gÞ
then, by (8), we haveð

X�R� Y �R

hðx; r1; y; r2Þ d�1ð�Þðx; r1; y; r2Þ

¼
X

m;n 2 Z

ð
Xf � Yg

hððTÞm�f ðx; r1Þ; ðS�gÞnðy; r2ÞÞ d�ðx; r1; y; r2Þ ð12Þ

for every h2L1ðX�R� Y �R;�1ð�ÞÞ. Since f and g are bounded away from
zero, the Z2-action T�f 	 S�g satisfies (10). Since f and g are bounded, the closure
of Xf � Yg in X�R� Y �R is compact. Therefore, by Lemma 7, we have

�1ðFðXf � Yg; ðTf
t � Sg

t Þt 2RÞÞ ¼LFðX�R� Y �R; ���	 T�f 	 S�gÞ:

On the other side the R-action ��� on X�R� Y �R is also free and of type I
and the set W ¼ fðx; r; y; 0Þ : x2X; y2Y ; r2Rg is its fundamental domain. Then
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the Z2-action T�f 	 S�g=��� acts on W in the following way

ðT�f 	 S�g=�ðk1;k2ÞÞðx; r; y; 0Þ ¼ ���gðk2ÞðyÞðTk1x; r � f ðk1ÞðxÞ; Sk2 y;�gðk2ÞðyÞÞ
¼ ðTk1x; r þ gðk2ÞðyÞ � f ðk1ÞðxÞ; Sk2 y; 0Þ:

The set W is homeomorphic to X� Y �R; therefore we will identify them.
Moreover the Z2-action T�f 	 S�g=��� we will identify with the Z2-action
T�f ? S�g on X� Y �R given by

ðT�f ? S�gÞðk1;k2Þðx; y; rÞ ¼ ðT
k1x; Sk2y; r þ gðk2ÞðyÞ � f ðk1ÞðxÞÞ:

Let

�2 : M�ðW ; ðT�f 	 S�gÞ=���Þ !M�ðX�R� Y �R; ���	 T�f 	 S�gÞ
be the affine bijection determined by (6). Of course, we will constantly identify
M�ðW; ðT�f 	 S�gÞ=���Þ with M�ðX� Y �R;T�f ? S�gÞ. Then if �2M�ðX�
Y �R;T�f ? S�gÞ then, by (7), we haveð

X� Y �R

h1ðx; y; rÞ d�ðx; y; rÞ
ð

R

h2ðsÞ ds

¼
ð

X�R� Y �R

h1ðx; y; r � sÞh2ðsÞ dð�2ð�ÞÞðx; r; y; sÞ
ð13Þ

for every h12L1ðX� Y �R; �Þ and h22L1ðR; 	RÞ. Since � : W �R! X�R�
Y �R, �ðx; r; y; 0; tÞ ¼ ðx; r þ t; y; tÞ is a homeomorphism, by Lemma 6,

�2ðLFðX� Y �R; T�f ? S�gÞÞ ¼LFðX�R� Y �R; ���	 T�f 	 S�gÞ:
From this and from Lemma 5 we obtain the following conclusion.

Corollary 8.

��1
2 � �1 : M�ðXf � Yg; ðTf

t � Sg
t Þt 2RÞ !M�ðX� Y �R; T�f ? S�gÞ

is an affine bijection such that

��1
2 � �1ðFðXf � Yg; ðTf

t � Sg
t Þt 2RÞÞ ¼LFðX� Y �R; T�f ? S�gÞ

and

��1
2 � �1ðMe

�ðXf � Yg; ðTf
t � Sg

t Þt 2RÞÞ ¼Me
�ðX�Y �R;T�f ? S�gÞ:

Remark 5. Suppose that T 2AutðX;BÞ and S2AutðY ;CÞ are uniquely ergo-
dic with invariant probability measures � and � respectively. Then special flows
Tf and Sg are uniquely ergodic with invariant measures �f and �g respectively (see
Remark 3). Therefore the set FðXf �Yg; ðTf

t � S
g
t Þt 2RÞ coincides with the cone of

positive multiples of joinings between special flows Tf on ðXf ; �f Þ and Sg on
ðYg; �gÞ.

Suppose that � is a �-finite measure on ðX;BÞ that is T-invariant. Assume that
S2AutðX;BÞ commutes with T (then S�� is also T-invariant) and u : X ! R is a
Borel function such that

f ðSxÞ � f ðxÞ ¼ uðTxÞ � uðxÞ for ��a:e: x2X: ð14Þ
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Then

ðT�f Þn � S�uðx; rÞ ¼ S�u � ðT�f Þnðx; rÞ for ��a:e: x2X and all r2R:

Now we can define a Borel map fS�uS�u : Xf ! Xf as the composition of S�u : Xf !
X�R and the projection � : X�R! Xf given by (11). Since the skew product
S�u : X�R! X�R commutes with the flow �, we have

fS�uS�u � Tf
t ðx; rÞ ¼ Tf

t � fS�uS�uðx; rÞ for �f�a:e: ðx; rÞ2Xf and for all t2R: ð15Þ
Remark 6. Notice that if � is ergodic then u in (14) is determined up to an

additive constant. Moreover, if ucðxÞ ¼ uðxÞ þ c (for some c2R) then gS�uc
S�uc
¼fS�uS�u � Tf

�c.
The map fS�uS�u : Xf ! Xf determines a �-finite measure �f

^S�u
on ðXf �Xf ;Bf�

Bf Þ by the formula

�f
^S�u

ðA�BÞ ¼ �f ðA \ fS�uS�u
�1BÞ

for every A;B2Bf . From (15) we have �f
^S�u
2M�ðXf �Xf ; ðTf

t � T
f
t Þt 2RÞ andð

Xf �Xf

hðx1; r1; x2; r2Þ d�f
^S�u

ðx1; r1; x2; r2Þ ¼
ð

Xf

hðx; r; fS�uS�uðx; rÞÞ d�f ðx; rÞ

for every h2L1ðXf �Xf ; �f
^S�u
Þ.

Lemma 9. For every h2L1ðX�X�R;��1
2 � �1ð�f

^S�u
ÞÞ we haveð

X�X�R

hðx; y; rÞ d

�
��1

2 � �1

�
�f

^S�u

��
ðx; y; rÞ

¼
X
n 2 Z

ð
X

hðTnx; Sx; uðxÞ � f ðnÞðxÞÞ d�ðxÞ:

Proof. For every h2L1ðX�R�X�R;�1ð�f
^S�u
ÞÞ from (12) we haveð

X�R�X�R

hðx1; r1; x2; r2Þ d�1ð�f
^S�u

Þðx1; r1; x2; r2Þ

¼
X

m;n 2 Z

ð
Xf �Xf

hððT�f Þnðx1; r1Þ; ðT�f Þmðx2; r2ÞÞ d�f
^S�u

ðx1; r1; x2; r2Þ

¼
X

m;n 2 Z

ð
Xf

hððT�f Þnðx; rÞ; ðT�f Þm � fS�uS�uðx; rÞÞ d�f ðx; rÞ

¼
X

m;n 2 Z

ð
Xf

hððT�f Þmþnðx; rÞ; S�u � ðT�f Þmðx; rÞÞ d�ðxÞ dr

¼
X

m;n 2 Z

ð
ðT�f ÞmXf

hððT�f Þnðx; rÞ; S�uðx; rÞÞ d�ðxÞ dr

¼
X
n 2 Z

ð
X�R

hððT�f Þnðx; rÞ; S�uðx; rÞÞ d�ðxÞ dr:
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Moreover, for every h12L1ðX�X�R;��1
2 � �1ð�f

^S�u
ÞÞ and h22L1ðR; 	RÞ from

(13) we haveð
X�X�R

h1ðx1; x2; rÞ d��1
2 � �1ð�f

^S�u

Þðx1; x2; rÞ
ð

R

h2ðsÞ ds

¼
ð

X�R�X�R

h1ðx1; x2; r � sÞh2ðsÞ d�1ð�f
^S�u

Þðx1; r; x2; sÞ

¼
X
n 2 Z

ð
X�R

h1ðTnx; Sx; uðxÞ � f ðnÞðxÞÞh2ðs� f ðnÞðxÞÞ d�ðxÞ ds

¼
X
n 2 Z

ð
X

h1ðTnx; Sx; uðxÞ � f ðnÞðxÞÞ d�ðxÞ
ð

R

h2ðsÞ ds:

Therefore for every h2L1ðX�X�R;��1
2 � �1ð�f

^S�u
ÞÞ we haveð

X�X�R

hðx1;x2;rÞd��1
2 ��1ð�f

^S�u

Þðx1;x2;rÞ¼
X
n 2 Z

ð
X

hðTnx;Sx;uðxÞ� f ðnÞðxÞÞd�ðxÞ:

&

Remark 7. Assume that � ¼ � is a probability T-invariant measure, S ¼ Id and
u� � t (t2R). Then fS�uS�u ¼ T

f
t and it follows that

��1
2 � �1ð�f

T
f
t

ÞðAÞ ¼
X
n 2 Z

ð
X

1AðTnx; x;�t � f ðnÞðxÞÞ d�ðxÞ

for any bounded Borel subset A � T2�R.

Remark 8. Notice also that

��1
2 � �1ð�f � �f Þ ¼ �� �� 	R:

Indeed, for every h2L1ðX�R�X�R;�1ð�f � �f ÞÞ from (12) we haveð
X�R�X�R

hðx1; r1; x2; r2Þ d�1ð�f � �f Þðx1; r1; x2; r2Þ

¼
X

m;n2 Z

ð
Xf �Xf

hððT�f Þmðx1; r1Þ; ðT�f Þnðx2; r2ÞÞ d�f ðx1; r1Þ d�f ðx2; r2Þ

¼
X

m;n2 Z

ð
ðT�f ÞmXf �ðT�f ÞnXf

hðx1; r1; x2; r2Þ d�ðx1Þ dr1 d�ðx2Þ dr2

¼
ð

X�R�X�R

hðx1; r1; x2; r2Þ d�ðx1Þ dr1 d�ðx2Þ dr2:

Therefore �1ð�f � �f Þ ¼ �� 	R � �� 	R. Furthermore, for every h12L1ðX�
X�R;��1

2 ð�� 	R � �� 	RÞÞ and h22L1ðR; 	RÞ from (13) we haveð
X�X�R

h1ðx1; x2; rÞ d��1
2 ð�� 	R � �� 	RÞðx1; x2; rÞ

ð
R

h2ðsÞ ds

¼
ð

X�R�X�R

h1ðx1; x2; r � sÞh2ðsÞ d�ðx1Þ dr d�ðx2Þ ds

¼
ð

X�X�R

h1ðx1; x2; rÞ d�ðx1Þ d�ðx2Þ dr

ð
R

h2ðsÞ ds:

Therefore ��1
2 ð�� 	R � �� 	RÞ ¼ �� �� 	R. &
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5. Cocycles and skew products

Let T be a Borel action of a countable Abelian discrete group G on a standard
Borel space ðX;BÞ. Let H be a locally compact Abelian group. An H-valued
cocycle over the action T is a Borel function G�X 3 ðg; xÞ ! ’gðxÞ2H such that

’g1þg2
ðxÞ ¼ ’g1

ðxÞ þ ’g2
ðg1xÞ for all g1; g22G; x2X:

If G ¼ Z then the Z-action T we will identify with the automorphism T1 and every
cocycle ’ is determined by the function ’1, and we will identify them as well.

Every H-valued cocycle over T determines a skew product Borel G-action T’
on X�H given by

ðT’Þgðx; hÞ ¼ ðTgx; ’gðxÞ þ hÞ:
Suppose that �2M�ðX; TÞ. Then the product measure �� 	H (	H is a fixed

Haar measure on H) is invariant under the action of the skew product T’. Two
cocycles ’,  over the action T are said to be cohomologous mod � if there exists a
Borel function u : X ! H such that

 gðxÞ :¼ ’gðxÞ þ uðxÞ � uðTgxÞ
for �–a.e. x2X and for all g2G. The function u is called the transfer function.
Then the map

X�H 3 ðx; hÞ 7!#uðx; hÞ ¼ ðx; h� uðxÞÞ2X�H

establishes an isomorphism between the measurable G-actions T’ and T on
ðX�H; �� 	HÞ. Cocycles which are cohomologous mod � to the zero cocycle
are called coboundaries mod �.

Let 
 be an R-valued Borel cocycle over the G-action T . A finite measure � on
ðX;BÞ is called ðe
;TÞ-conformal if � � Tg � � and d� � Tg=d� ¼ e
g �–a.e. for
every g2G.

Let ’ be an H-valued cocycle over T and � : H ! R be a continuous group
homomorphism. Suppose that � is an ðe��’;TÞ-conformal measure. Let m� stand
for the measure on ðX�H;B�BHÞ given by

dm�ðx; hÞ :¼ e��ðhÞ d�ðxÞ d	HðhÞ:
Then m� is a locally finite measure and it is T’-invariant. Such measures are called
Maharam measures (see e.g. [1]).

For every h2H let Qh : X�H ! X�H stand for the map Qhðx; h0Þ ¼
ðx; h0 þ hÞ. Then T’ � Qh ¼ Qh � T’ for every h2H. If m is an ergodic T’-invari-
ant �-finite measure on ðX�H;B�BHÞ then the measure m � Qh is also an er-
godic T’-invariant measure. Therefore either m � Qh?m or m � Qh ¼ cm for some
c> 0. Then, following [2], define

Rm :¼ fh2H : m � Qh � mg:
Let u : X ! H be a Borel function. Let us consider the Borel cocycle ’u over the
action T given by

’u
gðxÞ :¼ ’gðxÞ þ uðxÞ � uðTgxÞ

for every g2G. Then the measure m � #�1
u is �-finite ergodic T’u-invariant with

Rm�#�1
u
¼ Rm.
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Proposition 10 (see [2]). For every ergodic T’-invariant locally finite Borel
measure m on X�H the set Rm is a closed subgroup of H. Moreover, if Rm ¼ H
then m is a Maharam measure.

Proposition 11 (see Theorem 2 in [32]). Let H ¼ R and let m be an ergodic
T’-invariant locally finite Borel measure on X�R. Then there exist a Borel func-
tion u : X ! R and a Borel subset A � X�R with mðAcÞ ¼ 0 such that for every
x2X if there exists r2R with ðx; rÞ2A then

’gðxÞ þ uðxÞ � uðTgxÞ2Rm

for every g2G.

Proposition 12 (see Lemma 8 in [32]). LetR � H be a closed subgroup and let m
be an ergodic T’-invariant locally finite Borel measure on X�H. Suppose that there
exists a Borel function u : X ! H and a Borel subset A � X�H with mðAcÞ ¼ 0
such that for every x2X if there exists h2H with ðx; hÞ2A then

’u
gðxÞ ¼ ’gðxÞ þ uðxÞ � uðTgxÞ2R

for every g2G. Then there exists c2H such that m � #�1
uþc is an ergodic T’u -in-

variant �-finite measure on ðX�R;B�BRÞ, and Rm ¼ Rm�#�1
uþc
� R. If u is

bounded then m � #�1
uþc is locally finite.

5.1. Cocycles over irrational rotations. We denote by T the circle group R=Z
which we will constantly identify with the interval ½0; 1Þ with addition mod 1. For a
real number t denote by ftg its fractional part and by ktk its distance to the nearest
integer number. For an irrational �2T denote by ðqnÞ its sequence of denominators
(see e.g. [19]), that is we have

1

2qnqnþ1

<

������ pn

qn

����< 1

qnqnþ1

;

where

q0 ¼ 1; q1 ¼ a1; qnþ1 ¼ anþ1qn þ qn�1

p0 ¼ 0; p1 ¼ 1; pnþ1 ¼ anþ1pn þ pn�1

and ½0; a1; a2; . . .� stands for the continued fraction expansion of �. We say that
� has bounded partial quotients if the sequence ðanÞ is bounded, or equivalently,
there exists c> 0 such that kq�k> c=q for every q2N. By R� we will denote the
rotation by � on T.

Remark 9. Let f ; g : T! R be positive integrable functions which are co-
homologous over R� mod 	T. Then the special flows ðR�Þf on ðTf ; ð	TÞf Þ and
ðR�Þg on ðTg; ð	TÞgÞ are isomorphic.

Recall that if f : T! R is a piecewise absolutely continuous function for which
�1; . . . ;�k 2T are all its discontinuities and dð�Þ ¼ limy!�� f ðyÞ� limy!�þ f ðyÞ then

Sðf Þ ¼
Xk

j¼1

dð�jÞ ¼
ð

T

f 0ðuÞ du

is called the sum of jumps of f .
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Remark 10. Suppose that � has bounded partial quotients. If f : T! R is an
absolutely continuous function with zero mean such that f 0 2L2ðT; 	TÞ then by the
classical small divisor argument f is a coboundary mod 	T. It follows that every
piecewise absolutely continuous function f : T! R whose derivative is square
integrable is cohomologous to a piecewise linear function whose derivative is
equal to Sðf Þ a.e. Indeed, since gðxÞ ¼

Ð x

0
f 0ðuÞ du� Sðf Þx is absolutely continuous

on T and g0 is square integrable, g is cohomologous to a constant function. On the
other hand f � g is piecewise linear function and its derivative is equal to Sðf Þ
piecewisely. Moreover, discontinuities and jumps of f � g and f are the same.

Let � be an irrational number with bounded partial quotients and let f : T! R
be a piecewise linear function, where B ¼ f�1; �2; . . . ; �kg is the set of all its
discontinuities and dð�Þ is the size of a jump at �2B. Let �� B�B stand for
the equivalence relation given by x � y iff y� x2�Z. For every equivalence class
C2B=� put Sðf ;CÞ :¼

P
� 2 C dð�Þ.

Proposition 13. Suppose that � is an irrational number with bounded partial
quotients and f : T! R is a piecewise linear function with zero mean. Then f is a
coboundary mod 	T if and only if Sðf ;CÞ ¼ 0 for every C2B=�.

Proof. Suppose that Sðf ;CÞ ¼ 0 for every C2B=�. In view of Remark 10
we can assume that f is piecewise constant. By % : T! R denote the function
%ðxÞ ¼ fxg. For every C2B=� choose an element �C 2C. Then for every �2C let
kð�Þ stand for the integer number such that � � �C ¼ kð�Þ�. Set

gðxÞ ¼ �
X

C 2 B=�

X
� 2 C

dð�Þ %ðkð�ÞÞðx� �Þ:

Then

gðxþ �Þ � gðxÞ ¼
X

C 2 B=�

X
� 2 C

dð�Þð%ðkð�ÞÞðx� �Þ � %ðkð�ÞÞðxþ �� �ÞÞ

¼
X

C 2 B=�

X
� 2 C

dð�Þð%ðx� �Þ � %ðxþ kð�Þ�� �ÞÞ

¼
X

C 2 B=�

X
� 2 C

dð�Þð%ðx� �Þ � %ðx� �CÞÞ

¼
X

C 2 B=�

X
� 2 C

dð�Þð
½0;�ÞðxÞ � 
½0;�CÞðxÞ þ �C � �Þ

¼
X
� 2 B

dð�Þð
½0;�ÞðxÞ � �Þ ¼ f ðxÞ

for all x2TnB.
Assume that Sðf ;CÞ 6¼ 0 for some C2B=�.
Case 1. Suppose that Sðf Þ 6¼ 0. Let c be a positive numer such that f þ c

is positive. As it was proved by J. von Neumann in [26], the special flow
ðR�Þfþc

is weakly mixing. In view of Remark 4 T 3 x 7! e2�ir f ðxÞ 2T is not a
multiplicative coboundary for every r2Rnf0g. It follows that f : T! R is not
an additive coboundary.
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Case 2. Suppose that Sðf Þ ¼ 0. In view of Remark 10 we can assume again that
f is piecewise constant. Recall that (see Corollary 1.6 in [10]) if h : T! R is a
piecewise constant function such that Sðh;CÞ 2=Z for some C2B=� then T 3
x 7! e2�ihðxÞ 2T is not a multiplicative coboundary. Since Sðf ;CÞ 6¼ 0 for some
C2B=�, we can find r2Rnf0g such that Sðrf ;CÞ 2=Z. It follows that T 3
x 7! e2�ir f ðxÞ 2T is not a multiplicative coboundary for every r2Rnf0g, and con-
sequently f : T! R is not an additive coboundary. &

Proposition 14 (Denjoy-Koksma inequliaty, see [14]). If f : T! R is a
function of bounded variation then����Xqn�1

k¼0

f ðRk
�xÞ �

ð
T

f d	T

����4Var f

for every x2T and n2N. If f is absolutely continuous then the sequence�Xqn�1

k¼0

f ðRk
� � Þ �

ð
T

f d	T

�
n 2N

tends uniformly to zero.

Proposition 15. Let � be an irrational number and let ðqnÞ be its sequence of
denominators. Let f : T! R be a function of bounded variation with zero mean.
Suppose that there exists a finite subset E � R such that

sup
x 2T

min
r 2 E
jf ðqnÞðxÞ � rj ! 0:

Then for every locally finite ðR�Þf -invariant Borel measure m on T�R we have
Rm \ E 6¼ ;.

The proof of this proposition can be obtained in much the same way as the
proof of Theorem 1.6 in [2].

6. Self-joinings for special flows built over irrational rotations

Let � be an irrational number and let f : T! R be a positive bounded away
from zero and bounded Borel function. Let us consider the Z2-action T on T2

given by

Tðk1;k2Þðx; yÞ ¼ ðxþ k1�; yþ k2�Þ:

Denote by ’ the R-valued cocycle over T defined by

’ðk1;k2Þðx; yÞ ¼ f ðk2ÞðyÞ � f ðk1ÞðxÞ:

By Corollary 8, there is a one-to-one correspondence between ergodic locally
finite T’-invariant Borel measures on T2�R (up to a positive multiple) and
ergodic self-joinings of ðR�Þf .

Proposition 16. Suppose that m is a locally finite T’-invariant ergodic Borel
measure on T�T�R such that Rm ¼ R. Then m ¼ c	T2 �	R for some c> 0.
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Proof. By Proposition 10 there exist a2R and a finite Borel measure � on
T�T such that

dmðx; y; rÞ ¼ dmaðx; y; rÞ ¼ e�ar d�ðx; yÞ d	RðrÞ
and for every ðk1; k2Þ2Z2 we have

� � Tðk1;k2Þ � � and
d� � Tðk1;k2Þ

d�
¼ ea’ðk1 ;k2Þ :

Therefore

d� � Tð0;1Þ
d�

ðx; yÞ ¼ eaf ðyÞ:

Since f is positive, if a 6¼ 0 then d� � Tð0;1Þ=d�< 1 or d� � Tð0;1Þ=d�> 1 depend-
ing on the sign of a, which contradicts the fact that � is a finite measure. Thus
a ¼ 0. Since the Z2-action T is uniquely ergodic, � ¼ c	T2 for some c> 0, and
hence m ¼ �� 	R ¼ c	T2 �	R. &

Suppose that m is a locally finite T’-invariant ergodic Borel measure on
T�T�R. Let us consider two Z-subactions of the Z2-action T’ generated by
automorphisms U ¼ ðT’Þð�1;0Þ and W ¼ ðT’Þð1;1Þ. They jointly generate the action
T’ and

Uðx; y; rÞ ¼ ðx� �; y; rþ f ðx� �ÞÞ; Wðx; y; rÞ ¼ ðxþ �; yþ �; r þ f ðyÞ � f ðxÞÞ:
Let � : T�T�R! T be given by �ðx; y; rÞ ¼ y� x. Then

� �W ¼ � and � � U ¼ R� � �:
Since ��1ðf
gÞ ¼ fðx; xþ 
; rÞ : x2T; r2Rg for every 
2T, we will identify
each fiber ��1ðf
gÞ with T�R. W preserves the fibers of � and

Wðx; xþ 
; rÞ ¼ ðxþ �; xþ �þ 
; r þ f ðxþ 
Þ � f ðxÞÞ;
therefore the action of W on a fiber ��1ðf
gÞ can be identified with the action of a
skew product W
 : T�R! T�R given by

W
ðx; rÞ ¼ ðxþ �; r þ f ðxþ 
Þ � f ðxÞÞ:
In summary, we have Z2-action T’ on T�T�R generated by U and V and

Z2-action on T given by ðR� 	 IdÞðk1;k2Þð
Þ ¼ 
þ k1�. Then � : T�T�R! T
is a Z2-equivariant map for which R� is a factor of U and Id is a factor of V . Under
these circumstances, arguments contained in Section 2 give the existence of a
probability Borel measure � on T, a Borel subset � � T with �ð�Þ ¼ 1 and a
map � 3 
 7!m
2LFðT�T�RÞ such thatð

T2 �R

hðx; y; rÞ dmðx; y; rÞ ¼
ð

T

�ð
T�T�R

hðx; y; rÞ dm
ðx; y; rÞ
�

d�ð
Þ

for every h2L1ðT2�R;mÞ. Since m
 is concentrated on the fiber ��1ðf
gÞ and
every fiber is homeomorphic to T�R, the measure m
 will be treated as the
locally finite measure on T�R. Thenð

T2 �R

hðx; y; rÞ dmðx; y; rÞ ¼
ð

T

�ð
T�R

hðx; xþ 
; rÞ dm
ðx; rÞ
�

d�ð
Þ ð16Þ
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for every h2L1ðT2�R;mÞ. Moreover, m
 �W
 ¼ m
 for �–a.e. 
2T (see (3)),
� � R� � �, � is an ergodic measure for the action of R� (see Lemma 4) and

d� � g

d�
ð
Þ � ðmR�
 � UÞ ¼ m
 for ��a:e: 
2T; ð17Þ

where U : T�R! T�R is given by Uðx; rÞ ¼ ðx� �; r þ f ðx� �ÞÞ (see (2)).

Lemma 17. For �–a.e. 
2T there exists a locally finite W
-invariant and
ergodic measure m0
 on T�R such that Rm0



� Rm.

Proof. By Proposition 11, there exist a Borel function u : T2 ! R and a Borel
subset A � T2�R with mðAcÞ ¼ 0 such that for every ðx; yÞ2T2 if there exists
r2R with ðx; y; rÞ2A then

’ð1;1Þðx;yÞþuðTð1;1Þðx;yÞÞ�uðx;yÞ ¼ f ðyÞ� f ðxÞþuðxþ�;yþ�Þ�uðx;yÞ2Rm:

For every 
2� let A
 ¼ fðx; rÞ2T�R : ðx; xþ 
; rÞ2Ag. Then A
 is a Borel
subset for every 
2� and

0 ¼ mðAcÞ ¼
ð
T

m
ðAc

Þ d�ð
Þ:

It follows that for �–a.e. 
2T we have m
ðAc

Þ ¼ 0. Suppose that m
ðAc


Þ ¼ 0.
Applying the ergodic decomposition theorem (see e.g. [12]) for the automorphism
W
 : ðT�R;m
Þ ! ðT�R;m
Þ we conclude that there exists a locally finite
Borel W
-invariant ergodic measure m0
 on T�R such that m0
ðAc


Þ ¼ 0. Let
u
 : T! R stand for the Borel map u
ðxÞ ¼ uðx; xþ 
Þ. Then for every x2T if
there exists r2R with ðx; rÞ2A
 then

f ðxþ 
Þ � f ðxÞ þ u
ðxþ �Þ � u
ðxÞ2Rm:

Now an application of Proposition 12 for the cocycle generated by x 7! f ðxþ 
Þ�
f ðxÞ over the rotation R� and the measure m0
 gives Rm0



� Rm. &

Let � be an irrational number with bounded partial quotients. Let f : T! R be
a piecewise linear function. For every 
2T let

�f ;
ðxÞ ¼ f ðxþ 
Þ � f ðxÞ:

Theorem 18. Let � be an irrational number with bounded partial quotients
and let f : T! R be a piecewise linear function with non-zero sum of jumps.
Suppose that 
 2=Qþ �Q. If � is a locally finite ðR�Þ�f ;


-invariant ergodic Borel
measure on T�R then R� ¼ R.

Proof. By % : T! R denote the function %ðxÞ ¼ fxg. Then

�%;
ðxÞ ¼ %ðxþ 
Þ � %ðxÞ ¼ 
1½0;1�
ÞðxÞ þ ð
� 1Þ1½1�
;1ÞðxÞ:
Since f and x 7!

Pk
j¼1 djfx� �ig has the same discontinuities and the same values

of jumps, there exists an absolutely continuous function g : T! R such that

f ðxÞ ¼
Xk

j¼1

dj%ðx� �iÞ þ gðxÞ:
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Let us consider the function �
ðqnÞ
%;
 . Since �%;
 is piecewise constant and has

two jumps: of size �1 at 0 and of size 1 at �
, �ðqnÞ
%;
 is also piecewise constant

and has the following jumps: of size �1 at 0;��; . . . ;�ðqn � 1Þ� and of size 1 at
�
;�
� �; . . . ;�
� ðqn � 1Þ�. Moreover, for some sn2N we have

�
ðqnÞ
%;
 ð0Þ ¼ sn
þ ðqn � snÞð
� 1Þ ¼ qn
þ qn � sn:

Therefore �
ðqnÞ
%;
 ð0Þ2fqn
g þ Z and hence

�
ðqnÞ
%;
 ðxÞ2fqn
g þ Z

for every x2T. In fact, we have �
ðqnÞ
%;
 ðxÞ2fqn
g þ f�2;�1; 0; 1; 2g because

j�ðqnÞ
%;
 ðxÞj4Var�%;
 ¼ 2 (see Proposition 14). It follows thatXk

j¼1

dj%
ðqnÞðxþ 
� �iÞ �

Xk

j¼1

dj%
ðqnÞðx� �iÞ ¼

Xk

j¼1

dj�
ðqnÞ
%;
 ðx� �iÞ

2 ðd1 þ � � � þ dkÞfqn
g þ D

¼ Sðf Þfqn
g þ D

where D ¼ d1f�2;�1; 0; 1; 2g þ � � � þ dkf�2;�1; 0; 1; 2g.
Suppose that 
 2=Qþ �Q. Then the set L of limit points of the sequence

ðfqn
gÞn 2N is infinite (see [22]). Let � be a locally finite ðR�Þ�f ;

-invariant ergodic

Borel measure on T�R. Suppose that R� =
R. Then R� ¼ aZ for some a2R.
Since the set

1

Sðf Þ ðaZ� DÞ \ ½0; 1Þ

is finite, there exists b2L which does not belong to this set. Then ðSðf Þbþ DÞ\
aZ ¼ ;. Let ðqkn

Þn 2N be a subsequence of denominators such that fqkn

g ! b.

Since

�
ðqkn Þ
f ;
 ðxÞ ¼ �

ðqkn Þ
g;
 ðxÞ þ

Xk

j¼1

dj�
ðqnÞ
%;
 ðx� �iÞ

2�ðqkn Þ
g;
 ðxÞ þ Sðf Þðfqkn


g � bÞ þ Sðf Þbþ D

and �
ðqkn Þ
g;
 ! 0 uniformly (see Proposition 14), by Proposition 15, we have

R� \ ðSðf Þbþ DÞ 6¼ ;, contrary to ðSðf Þbþ DÞ \ aZ ¼ ;. &

Lemma 19. Suppose that m is a locally finite T’-invariant ergodic Borel
measure on T2�R such that Rm ¼ aZ, a2R. Then the measure � is concentrated
on the set �1 þ ��2 þ �Z, where �1; �22Q and for every 
2�1 þ ��2 þ �Z
the skew product W
 : ðT�R;m
Þ ! ðT�R;m
Þ is ergodic and Rm


¼ aZ.
Moreover, for every h2L1ðT2�R;mÞ we haveð

T2 �R

hðx; y; rÞ dmðx; y; rÞ

¼ �ðf
gÞ
X
k 2 Z

ð
T�R

hðRk
�x; xþ 
; r � f ðkÞðxÞÞ dm
ðx; rÞ:

ð18Þ
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Proof. By Lemma 17 and Theorem 18, the measure � is concentrated on the
set Qþ �Q, consequently, � is discrete. By the ergodicity of R� : ðT; �Þ !
ðT; �Þ, the measure � is concentrated on an orbit, i.e. on the set �1 þ ��2þ
�Z where �1; �22Q. Moreover, using (16) and (17) for every h2L1ðT2�R;mÞ
we haveð

T2 �R

hðx; y; rÞ dmðx; y; rÞ

¼
X
k 2 Z

�ðf
� k�gÞ
ð

T�R

hðx; xþ 
� k�; rÞ dm
�k�ðx; rÞ

¼
X
k 2 Z

�ðf
� k�gÞ
ð

T�R

hðRk
�x; xþ 
; r � f ðkÞðxÞÞ dðm
�k� � U�kÞðx; rÞ

¼ �ðf
gÞ
X
k 2 Z

ð
T�R

hðRk
�x; xþ 
; r � f ðkÞðxÞÞ dm
ðx; rÞ:

We now show that for every 
2�1 þ ��2 þ �Z the skew product W
 :
ðT�R;m
Þ ! ðT�R;m
Þ is ergodic. Indeed, suppose that there exist 
2�1þ
��2 þ �Z and a Borel W
-invariant subset B � T�R such that m
ðBÞ> 0 and
m
ðBcÞ> 0. Let

B ¼ fðx; xþ 
; rÞ2T2�R : ðx; rÞ2Bg
and

A ¼
[

n2 Z

ðT’Þðn;0ÞB:

By definition, the set A is ðT’Þð�1;0Þ-invariant. Moreover, A is also ðT’Þð1;1Þ-in-

variant. Indeed, every element of A is of the form ðT’Þðn;0Þðx; xþ 
; rÞ, where
ðx; rÞ2B. Then

ðT’Þð1;1ÞðT’Þðn;0Þðx; xþ 
; rÞ ¼ ðT’Þðn;0ÞðT’Þð1;1Þðx;xþ 
; rÞ
¼ ðT’Þðn;0Þðxþ�; xþ 
þ�; rþ f ðxþ 
Þ � f ðxÞÞ2A;

because ðxþ �; r þ f ðxþ 
Þ � f ðxÞÞ ¼ W
ðx; rÞ2B. Moreover,

mðAÞ5mðBÞ ¼
X
k 2 Z

�ð
T�R

IBðx; xþ 
þ k�; rÞ dm
þk�ðxÞ
�
�ðf
þ k�gÞ

¼
ð

T�R

IBðx; rÞ dm
ðxÞ�ðf
gÞ ¼ m
ðBÞ�ðf
gÞ> 0:

Similarly we can show that mðAcÞ> 0, contrary to the ergodicity of m. &

Lemma 20. Suppose that m is locally finite T’-invariant ergodic Borel measure
on T2�R such that Rm ¼ aZ. Then a ¼ 0.

Proof. By Lemma 19, there exist 
2QþQ�, a probability measure � on T
concentrated on 
þ Z� and a map 
þ Z� 3 
þ k� 7!m
þk�2LFeðT�R;W
Þ
satisfying (18).
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Suppose, contrary to our claim, that Rm ¼ Rm

¼ aZ, where a> 0. Then there

exists c> 0 such that m � Qka ¼ ckm for every k2Z. Let I � R be an interval such
that m
ðT� IÞ> 0. Let

A ¼ fðx; xþ 
; rÞ2T2�R : x2T; r2 Ig:
Then

mðAÞ ¼ m
ðT� IÞ�ðf
gÞ> 0:

For every l2Z let &ðlÞ :¼ ½l
Ð

f ðxÞdx=a�. By the Denjoy-Koksma inequality

Bl :¼ ðT’Þð0;lÞQ�&ðlÞaA � T2�ðI þ ½�Var f ; aþ Var f �Þ;

whenever l ¼ � qn and

mðBlÞ ¼ mðQ�&ðlÞaAÞ ¼ c�&ðlÞmðAÞ:
Since Bl � ��1ðf
þ l�gÞ, the sets Bl, l2Z are pairwise disjoint. It follows
that

m

� ]
n 2N

ðBqn
] B�qn

Þ
�
¼
X
n 2N

ðc�&ðqnÞ þ c�&ð�qnÞÞmðAÞ ¼ 1:

On the other hand the set]
n2N

ðBqn
] B�qn

Þ � T2�ðI þ ½�Var f ; aþ Var f �Þ

has a compact closure in T�T�R, and therefore, by the local finiteness of the
measure m, has finite m-measure. Consequently, a ¼ 0. &

Lemma 21. Suppose that m is a locally finite T’-invariant ergodic Borel
measure on T2�R such that Rm ¼ f0g. Then there exist 
2Qþ �Q and a
Borel function u : T! R such that

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ for 	T � a:e: x2T:

Moreover, m is a positive multiple of the measure ð��1
2 � �1Þðð	f

TÞfS�uS�u

Þ, where
Sx ¼ xþ 
.

Proof. By Lemma 19, there exist 
2QþQ�, a probability measure � on T
concentrated on 
þ Z� and m
2LFeðT�R;W
Þ satisfying (18) and such that
Rm

¼ Rm ¼ f0g. By Proposition 11, there exist a Borel function v : T! R and a

Borel subset A � T�R with m
ðAcÞ ¼ 0 such that for every x2T if there exists
r2R with ðx; rÞ2A then

f ðxþ 
Þ � f ðxÞ ¼ vðxþ �Þ � vðxÞ:
Moreover, by Proposition 12, there exists c2R such that the measure m
 � #�1

uþc is
an ergodic measure on T�f0g invariant under the action of the automorphism
ðR�Þ0ðx; rÞ ¼ ðxþ �; rÞ. Let u :¼ vþ c. Therefore m
 � #�1

u ¼ � � �0, where � is
an ergodic R�-invariant measure on T. Hence

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ ��a:e:

Smooth singular flows in dimension 2 with the minimal self-joining property



Since #u : ðT�R;m
Þ ! ðT�R;m
 � #�1
u Þ is an isomorphism, the measure

m
 � #�1
u and hence � is �-finite. Moreover, for any h2L1ðT�R;m
Þ we haveð

T�R

hðx; rÞ dm
ðx; rÞ ¼
ð

T�R

hðx; r þ uðxÞÞ dm
 � #�1
u ðx; rÞ

¼
ð

T

hðx; uðxÞÞ d�ðxÞ:

By (18), it follows thatð
T2 �R

hðx; y; rÞ dmðx; y; rÞ ¼ �ðf
gÞ
X
k 2 Z

ð
T

hðxþ k�; xþ 
; uðxÞ � f ðkÞðxÞÞ d�ðxÞ

for every h2L1ðT2�R;mÞ. By Lemma 9, m is a multiple of ð��1
2 � �1Þð�ffS�uS�u

Þ,
where Sx ¼ xþ 
. Notice that � can not be an infinite measure, as otherwise, the
measure �f on Tf would be infinite and therefore �ffS�uS�u

would be infinite and by

Corollary 8, it would follow that ð��1
2 � �1Þð�ffS�uS�u

Þ is not locally finite.

Since � is finite and R�-invariant, � is a positive multiple of 	T. Consequently,

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ 	T�a:e:

and m is a multiple of ð��1
2 � �1Þðð	f

TÞfS�uS�u

Þ. &

Theorem 22. Let � be an irrational number with bounded partial quotients
and let f : T! R be a piecewise linear positive and bounded away from
zero function with Sðf Þ 6¼ 0. Then the special flow ðR�Þf is simple. Moreover, the
centralizer of ðR�Þf consists of automorphisms of the form fS�uS�u, where Sx ¼ xþ 

and u : T! R satisfy

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ 	T�a:e: ð19Þ
Proof. Suppose that � is an ergodic self-joining of ðR�Þf . Then, by Corollary 8,

ð��1
2 � �1Þð�Þ is a locally finite ergodic Borel measure on T2�R invariant under

the skew product Z2-action

ðm; nÞðx; y; rÞ ¼ ðxþ m�; yþ n�; r þ f ðnÞðyÞ � f ðmÞðxÞÞ:
If Rð��1

2
��1Þð�Þ ¼ R, then, by Proposition 16, ð��1

2 � �1Þð�Þ ¼ c	T2 � 	R for some
c> 0. An application of Remark 8 gives � ¼ c	f

T � 	
f
T. If Rð��1

2
��1Þð�Þ ¼ aZ,

a2R, then, by Lemma 20, a ¼ 0. Thus by Lemma 21, � is a multiple of
ð	f

TÞfS�uS�u

, where Sx ¼ xþ 
 and u : T! R satisfy

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ 	T � a:e:

Then fS�uS�u2CððR�Þf Þ. It follows that ðR�Þf is 2-fold simple. Since the flow ðR�Þf
is weakly mixing (see e.g. [26]), an application of Proposition 3 completes the
proof. &

Theorem 23. Let � be an irrational number with bounded partial quotients
and let f : T! R be a piecewise linear function with Sðf Þ 6¼ 0 which is bounded
away from zero. Then CððR�Þf Þ is an Abelian group which is the direct sum of the
subgroup fðR�Þft : t2Rg and a finite subgroup.
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Proof. Let B ¼ f�1; �2; . . . ; �kg be the set of all discontinuities of f and dð�jÞ
stand for the size of jump at �j for j ¼ 1; . . . ; k. We can assume that �j � �i 2=�Z
for i 6¼ j. Otherwise, by Proposition 13, f is cohomologous with a piecewise linear
function satisfying the required property.

By Theorem 22, every element of the centralizer of ðR�Þf is of the form ðR
Þ�u,
where 
2T and u : T! R satisfy (19). Let us denote by � the set of all 
2T for
which the equation

f ðxþ 
Þ � f ðxÞ ¼ uðxþ �Þ � uðxÞ 	T � a:e: ð20Þ
has a Borel solution. Notice that u in (20) is unique up to an additive constant.
Moreover � � T is a subgroup for which �2�.

Suppose that 
2�. Then the set of discontinuities of f ð� þ 
Þ � f ð�Þ is equal to
B ¼ f�1; �2; . . . ; �k; �1 � 
; �2 � 
; . . . ; �k � 
g. By Proposition 13, there exists a
permutation � of the set f1; 2; . . . ; kg such that

�i � ��ðiÞ þ 
2�Z and dð�iÞ ¼ dð��ðiÞÞ ð21Þ
for every i ¼ 1; . . . ; k. Summing up (21) from i ¼ 1 to k we obtain that k
2�Z,
and hence � � 1

k
ðZþ �ZÞ. Therefore the group � has at most two generators.

Suppose that 
 ¼ m
k
þ n

k
�2� (m; n are unique) and u : T! R is a solution of (20).

Since n� ¼ k
 mod 1, we have

f ðnÞðxþ�Þ� f ðnÞðxÞ ¼ f ðxþ n�Þ� f ðxÞ ¼ f ðxþ k
Þ� f ðxÞ ¼ uðkÞðxþ�Þ� uðkÞðxÞ
for 	T–a.e. x2T, where f ð�Þð�Þ and uð�Þð�Þ are considered as cocycles over the
rotations by � and 
 respectively. By the ergodicity of R�, f ðnÞ and uðkÞ differ by
a constant. Therefore we can choose a unique solution u
 : T! R of (20) such
that f ðnÞ ¼ u

ðkÞ

 , or equivalently

Ð
u
 d	 ¼ n

k

Ð
f d	. Next notice that

� 3 
 7!Að
Þ ¼ ^ðR
Þ�u

2CððR�Þf Þ

is a group homomorphism. Indeed, suppose that 
1 ¼ m1

k
þ n1

k
�, 
2 ¼ m2

k
þ n2

k
�2�

and let us consider

u :¼ u
1
þ u
2

� R
1

as a cocycle over R�1þ�2
. Then

uðxþ �Þ � uðxÞ ¼ u
1
ðxþ �Þ � u
1

ðxÞ þ u
2
ðxþ 
1 þ �Þ � u
2

ðxþ 
1Þ
¼ f ðxþ 
1Þ � f ðxÞ þ f ðxþ 
1 þ 
2Þ � f ðxþ 
1Þ
¼ f ðxþ 
1 þ 
2Þ � f ðxÞ:

Moreover, ð
u d	 ¼

ð
u
1

d	þ
ð

u
2
d	 ¼ n1 þ n2

k

ð
f d	;

hence u ¼ u
1þ
2
. If follows that ðR
1þ
2

Þ�u
1þ
2
¼ ðR
2

Þ�u
2
� ðR
1

Þ�u
1
, which

implies our claim.
Moreover

Að
Þkðx; rÞ ¼ �ðxþ k
; r � u
ðkÞ

 ðxÞÞ ¼ �ðxþ n�; r � f ðnÞðxÞÞ ¼ ðx; rÞ
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for every ðx; rÞ2 ðR�Þf . Therefore Að�Þ is a finite Abelian group with at most two
generators. Moreover, every element from CððR�Þf Þ is of the form ^ðR
Þ�u, where

2� and u satisfies (20). Clearly, u ¼ u
 � t and

^ðR
Þ�u ¼ Að
Þ � ðR�Þft ¼ ðR�Þ
f
t � Að
Þ:

Since fðR�Þft : t2Rg \ Að�Þ ¼ fIdg, it follows that CððR�Þf Þ is an Abelian
group which is the direct sum of the group fðR�Þft : t2Rg and the finite group
Að�Þ. &

Corollary 24. If #fSðf ;CÞ : C2B=�g>#ðB=�Þ=2 or �1; . . . ; �k; �; 1 are
independent over Q then Tf has MSJ. In particular, if f has only one discontinuity
then Tf has MSJ.

Proposition 25. Assume that T ¼ ðTtÞt 2R is an ergodic simple flow on a
standard probability space ðX;B; �Þ and CðTÞ is the direct sum of the group of
time-t automorphisms and a finite Abelian group H � CðTÞ. Then T is a finite
extension of an MSJ-flow.

Proof. Let

C ¼ fA2B : hðAÞ ¼ A for all h2Hg:
Then C is a T-invariant �-algebra and T is a finite group extension of the fac-
tor flow T=C on ðX=C;C; �Þ (see e.g. Theorem 1.8.1 in [16]). Since CðTÞ is
Abelian, by Corollary 3.6 in [16], T=C is simple. We now only need to show that

CðT=CÞ ¼ fTt : ðX=C;C; �Þ ! ðX=C;C; �Þ; t2Rg:
Suppose that S2CðT=CÞ and let �S2 JeðT=C;T=CÞ be the corresponding
graph joining. Let �2 JeðT;TÞ be an extension of �S, i.e. �ðAÞ ¼ �SðAÞ for all
A2C� C. Since T is simple and � is not the product measure, there exists
R2CðTÞ such that � ¼ �R. Then there exist a unique t2R and h2H such that
R ¼ h � Tt. Therefore for every A;B2C we have

�ðA \ S�1BÞ ¼ �SðA�BÞ ¼ �RðA�BÞ ¼ �ðA \ T�1
t � h�1BÞ ¼ �ðA \ T�1

t BÞ;
hence S ¼ Tt as automorphisms of X=C, and consequently T=C has MSJ. &

Proof of Theorem 1. Now the claim follows immediately form Proposition 2,
Remark 10, Theorems 22, 23, and Proposition 25. &

A. Special representation of ð’tÞt 2R

Proof of Proposition 2. As it was proved by Arnold in [3], on the torus there
exists a closed C1-curve transversal to the orbits of ðhtÞt 2R on EC. Moreover, the
first-return map (Poincar�ee map) is determined everywhere on the curve, except for a
finite set F of points that are points of the last intersection of the incoming separ-
atrices with the transversal curve. In the induced parameterization, this map is the
circle rotation by �. Recall that if a smooth tangent vector field X on a surface M
preserves a volume form �, then a parameterization � : ½a; b� ! M is induced ifð�ðs2Þ

�ðs1Þ
iX� ¼ s2 � s1 for all s1; s22 ½a; b�:
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Moreover the return time is a C1-function of the parameter everywhere except of
points form the set F. This function has logarithmic singularities at these points (see
[21]). Thus, the ergodic component of ðhtÞ is isomorphic to a special flow built over
the rotation by � and under a roof function with logarithmic singularities.

For the flow ð’tÞt 2R on EC we will consider the same transversal. Hence the
Poincar�ee map is naturally identified with the rotation by � on T. Let f ðxÞ stand for
the time of the first return of x (from the transversal) to the transversal. Then the
action of ð’tÞ in EC is isomorphic to the special flow built over the rotation by �
on T and under the roof function f : T! R. Let �1 < � � � <�r <�rþ1 ¼ �1 be all
discontinuities of f , i.e. they represent the points from the set F. Then f is of class
C1 on ð�i; �iþ1Þ for i ¼ 1; . . . ; r. Fix 14 i4 r. By the Morse Lemma, there exist
a neighborhood ð0; 0Þ2V ¼ Vi � R2 and C1-diffeomorphism � ¼ �i : V !
�iðVÞ � T2 such that �ð0; 0Þ ¼ �xxi and if bHH ¼ H � �, then bHHðx; yÞ ¼ x � y for all
ðx; yÞ2Vi. Recall that

XH ¼ JrH; where J ¼ 0 1

�1 0

� �
and

det A � ðA�1 JÞ ¼ J AT for all A2GLð2;RÞ:
It follows that

JrbHH ¼ JðD�ÞTðrH � �Þ ¼ detðD�ÞðD�Þ�1ðJrH � �Þ;
hence

ðD�Þ
X[

H

p̂p
¼ X � �; where p̂pð�xxÞ ¼ detðD�ð�xxÞÞ pð�ð�xxÞÞ: ð22Þ

Let ð’̂’tÞ stand for the local flow on V given by ’̂’t ¼ ��1 � ’t � �. In view of (22)
ð’̂’tÞ is associated with the following differential equation

dx

dt
¼ x

p̂pðx; yÞ
dy

dt
¼ � y

p̂pðx; yÞ :

Let � ¼ �i be a positive number such that ½��; �� � ½��; �� � V . Let us consider the
C1-curve l : ½��2; �2� ! T2 given by lðsÞ ¼ �ðs=�; �Þ. Notice that l establishes an
induced parameterization with respect to the form �ðx; yÞ ¼ pðx; yÞ dx ^ dy and the
vector field X. Indeed,ðlðs2Þ

lðs1Þ
iX� ¼

ðs2

s1

dx ^ dyðXHðlðuÞÞ; l0ðuÞÞ du ¼
ðs2

s1

dHðlðuÞÞl0ðuÞ du

¼
ðs2

s1

d

dl
ðH � lÞðuÞ du ¼ Hð�ðs2=�; �ÞÞ � Hð�ðs1=�; �ÞÞ

¼ bHHðs2=�; �Þ � bHHðs1=�; �Þ ¼ s2 � s1
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for all s1; s22 ½��2; �2�. Denote by � : ½��2; 0Þ [ ð0; �2� ! R the function for
which �ðsÞ is the time of going out of the point lðsÞ (for the flow ð’tÞ) from the
set �ð½��; �� � ½��; ��Þ. On the other hand �ðsÞ is the time of passage from the
point ðs=�; �Þ to ðsgnðsÞ�; sgnðsÞs=�Þ for the flow ð’̂’tÞ. Therefore

�ðsÞ ¼
ðsgnðsÞ�

s=�

p̂p

�
x;

s

x

�
1

x
dx:

Of course � is of class C1 on ½��2; 0Þ [ ð0; �2�. We will prove that � 0 2L2ð½��2; �2�Þ.
First let us consider � only on ð0; �2�. Let us decompose � ¼ �1 þ �2, where

�1ðsÞ ¼
ð� ffiffi

s
p p̂p

�
x;

s

x

�
1

x
dx; �2ðsÞ ¼

ð ffiffisp
s=�

p̂p

�
x;

s

x

�
1

x
dx¼

ð� ffiffi
s
p p̂p

�
s

x
;x

�
1

x
dx: ð23Þ

Then

� 01ðsÞ ¼ �p̂pð
ffiffi
s
p
;
ffiffi
s
p
Þ 1

2s
þ
ð� ffiffi

s
p
@

@y
p̂p

�
x;

s

x

�
1

x2
dx:

Since p̂pð0; 0Þ ¼ 0, Dp̂pð0; 0Þ ¼ ð0; 0Þ and there exists d> 0 such that

kDp̂pð�xxÞ � Dp̂pð�yyÞk4 dk�xx� �yyk for all �xx;�yy2 ½��; �� � ½��; ��;
we have

kDp̂pðx; yÞk4 dkðx; yÞk4 dðjxj þ jyjÞ for all x; y2 ½��; ��; ð24Þ
hence

jp̂pð�xxÞj ¼ jp̂pð�xxÞ � p̂pð0; 0Þj4 sup
04	4 1

kDp̂pð	�xxÞkk�xxk4 dk�xxk2: ð25Þ

It follows that

j� 01ðsÞj ¼
����� p̂pð

ffiffi
s
p
;
ffiffi
s
p
Þ 1

2s
þ
ð� ffiffi

s
p
@

@y
p̂p

�
x;

s

x

�
1

x2
dx

����
4 d

�
1þ

ð� ffiffi
s
p

�
xþ s

x

�
1

x2
dx

�
¼ d

2

�
3� s

�2
� log

s

�2

�
:

Thus � 012L2ðð0; �2�Þ. In view of (23) the same conclusion can be drawn for �2,
hence � 0 2L2ðð0; �2�Þ. An application the same arguments, with ð0; �2� replaced by
½��2; 0Þ, yields � 0 2L2ð½��2; �2�Þ. It follows that � : ½��2; 0Þ [ ð0; �2� ! R is ab-
solutely continuous.

Now using some standard arguments we conclude that for some "> 0 the
function f : ½�i � "; �iÞ [ ð�i; �i þ "� ! R is absolutely continuous and its deriva-
tive is square integrable.

Finally we will show that Sðf Þ ¼
Ð

EC
d!. First we must prove that

Ð
EC

d!
exists. It suffices to show

Ð
�ið½��i;�i� � ½��i;�i�Þnf�xxig d! is finite for every i ¼ 1; . . . ; r.

Fix 14 i4 r. Then for � ¼ �i we haveð
�ð½��;�� � ½��;��nfð0;0ÞgÞ

d! ¼
ð
½��;�� � ½��;��nfð0;0Þg

��ðd!Þ

¼
ð
½��;�� � ½��;��nfð0;0Þg

dð��!Þ:
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Moreover,

ð��!Þ�xxY ¼ hXð�ð�xxÞÞ;D�ð�xxÞYi
hXð�ð�xxÞÞ;Xð�ð�xxÞÞi ¼ p̂pð�xxÞ

hD�ð�xxÞX[

H
ð�xxÞ;D�ð�xxÞYi

hD�ð�xxÞX[

H
ð�xxÞ;D�ð�xxÞX[

H
ð�xxÞi :

Therefore

ð��!Þðx;yÞ ¼
p̂pðx; yÞ
cðx; yÞ ðaðx; yÞdxþ bðx; yÞdyÞ;

where a; b; c : ½��; �� � ½��; �� ! R are C1-functions such that

aðx; yÞdxþ bðx; yÞdy ¼ D�ðx; yÞT D�ðx; yÞ y

�x

� �
; �

	 

and

cðx; yÞ ¼ D�ðx; yÞ y

�x

� �����
����2

:

It is easy to check that the following functions: Dað�xxÞ, Dbð�xxÞ, að�xxÞ
k�xxk ,

bð�xxÞ
k�xxk ,

cð�xxÞ
k�xxk2,

Dcð�xxÞ
k�xxk are

bounded and
jcð�xxÞj
k�xxk2 is bounded away from zero on ½��; �� � ½��; ��nfð0; 0Þg. From

(24) and (25), the functions
p̂pð�xxÞ
k�xxk2,

Dp̂pð�xxÞ
k�xxk are also bounded on ½��; �� � ½��; ��n

fð0; 0Þg. Since

dð��!Þ ¼
�
� a

c

@p̂p

@y
� p̂p

c

@a

@y
þ ap̂p

c2

@c

@y
þ b

c

@p̂p

@x
þ p̂p

c

@b

@x
þ bp̂p

c2

@c

@x

�
dx ^ dy;

it follows that the form dð��!Þ bounded on ½��; �� � ½��; ��nfð0; 0Þg. ThusÐ
�ð½��;�� � ½��;��nfð0;0ÞgÞ d! exists.

Denote by � : T! T2 the induced parameterization of the transversal
curve. For every n2N and 14 i4 r let us denote by �i;n a singular 1-chain on
EC which is a formal sum of four curves: � : ½�i þ �� 1=n; �i þ �þ 1=n� ! T2

plus ’ð � Þð�ð�i � 1=nÞÞ : ½0; f ð�i � 1=nÞ� ! T2 minus � : ½�i � 1=n; �i þ 1=n� !
T2 minus ’ð � Þð�ð�i þ 1=nÞÞ : ½0; f ð�i þ 1=nÞ� ! T2. Clearly, �i;n is closed but not
exact. Let us denote by An;i the part of EC which is inside the chain �i;n (An;i is
homotopic with an annulus). By the Stokes Theorem, we haveð

EC

d! ¼
Xr

i¼1

�ð
An;i

d!þ
ð
�i;n

!

�
:

Since the measure of An;i tends to zero as n!1 for all i ¼ 1; . . . ; r and the form
d! is bounded on EC, we have Xr

i¼1

ð
An;i

d!! 0:

On the other handð
�i;n

! ¼ f ð�i � 1=nÞ � f ð�i þ 1=nÞ þ
ð�ð�iþ�þ1=nÞ

�ð�iþ��1=nÞ
!�

ð�ð�iþ1=nÞ

�ð�i�1=nÞ
!:
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As ����
ð�ðs2Þ

�ðs1Þ
!

����4 maxfk�0ðsÞk=kXð�ðsÞÞk : s2Tg js2 � s1j

for all s1; s22T, it follows that

lim
n!1

ð
�i;n

! ¼ f�ð�iÞ � fþð�iÞ:

Consequently ð
EC

d! ¼
Xr

i¼1

ðf�ð�iÞ � fþð�iÞÞ ¼ Sðf Þ:

&

B. Examples

In this section we will describe some examples of flows on the two-torus which
have an ergodic component of positive Lebesgue measure satisfying the simplicity
property. We will deal with quasi-periodic Hamiltonians H : R2 ! R having the
form

Hðx; yÞ ¼ �
Xk

i¼1

bi expð�aið sin 2�ðx� xiÞ þ sin 2�ðy� yiÞÞÞ þ �xþ y; ð26Þ

where ai > 0, bi 6¼ 0 for i ¼ 1; . . . ; k, the points ðxi; yiÞ, i ¼ 1; . . . ; k are pairwise
distinct and � has bounded partial quotients. Next take p : T2 ! R given by
pðx; yÞ ¼ qðx; yÞkXHðx; yÞk2

, where q : T2 ! R is a positive C1-function. The
function p is non-negative and is positive except of the set Crit of all critical points
of H on T2. Let us consider the flow ð’tÞt 2R on T2nCrit associated with the vector
field X ¼ XH=p ¼ XH=ðqkXHk2Þ.

Figure 1. The graph of H
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Now let us consider the special case

Hðx; yÞ ¼ � expð�ð sin 2�ðx� 0:5Þ þ sin 2�ðy� 0:75ÞÞÞ þ
ffiffiffi
5
p
� 1

2
� xþ y:

Here H has two critical points in the unit square: �xxs ¼ ð0:4213 . . . ; 0:3892 . . .Þ – a
saddle and �xxc ¼ ð0:4672 . . . ; 0:6963 . . .Þ – a center (see Fig. 1). The phase space of
ð’tÞ decomposes into one trap

Trap ¼ fðx; yÞ2 ½0; 1Þ� ½0; 1Þ : Hðx; yÞ4Hðxs; ysÞ; y5 ysg
and the ergodic component EC ¼ T2nTrap with positive Lebesgue measure (see
Fig. 2). Denote by � : ½0; l� ! @EC (l ¼ lengthð@ECÞÞ the unit speed parametriza-
tion of @EC (@EC is oriented clockwise) such that �ð0Þ ¼ �ðlÞ ¼ �xxs. Then �0ðtÞ ¼
XHð�ðtÞÞ=kXHð�ðtÞÞk for 0< t< l. Since

!ðYÞ ¼ hX; YihX;Xi ¼ q � hXH ; Yi;

by the Stokes Theorem, we haveð
EC

d! ¼
ð
@EC

! ¼
ðl

0

qð�ðtÞÞhXHð�ðtÞÞ; �0ðtÞi dt

¼
ðl

0

qð�ðtÞÞhXHð�ðtÞÞ;XHð�ðtÞÞ=kXHð�ðtÞÞki dt

¼
ðl

0

qð�ðtÞÞkXHð�ðtÞÞk dt ¼
ð
@EC

qðsÞkXHðsÞkds> 0:

Figure 2. The phase space of ð’tÞ
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Let us return to the general case where H has the form (26). For ai, i ¼ 1; . . . ; k
large enough the flow ð’tÞ has k traps: Ti, i ¼ 1; . . . ; k. Similar arguments to those
above show that

IðqÞ :¼
ð

EC

d! ¼
Xk

i¼1

sgnðbiÞ
ð
@Ti

qðsÞkXHðsÞkds:

Let C1þ ðT2Þ stand for the set of positive C1 functions on T2 equipped with the
topology induced from C1ðT2Þ.

If bi, i ¼ 1; . . . ; k have the same sign then IðqÞ 6¼ 0 for every q2C1þ ðT2Þ, and
hence the flow ð’tÞ on EC is simple. In the general case the set Q of all parameters
q2C1þ ðT2Þ for which IðqÞ 6¼ 0 is open and dense. Indeed, this is a consequence of
the facts that the map C1þ ðT2Þ 3 q 7! IðqÞ2R is continuous, the map

C1þ ðT2Þ 3 q 7!
ð
@Ti

qðsÞkXHðsÞkds2R

is strictly increasing for i ¼ 1; . . . ; k and the traps Ti, i ¼ 1; . . . ; k are pairwise
disjoint. It follows that for a typical choice of the parameter q2C1þ ðT2Þ the flow
ð’tÞ on EC is also simple.

Some properties of the flow ð’tÞ for which
Ð

EC
d! ¼ 0 are studied in [7].
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