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A note on quasi-similarity of Koopman operators

K. Fr¡czek and M. Lema«czyk

Abstract

Answering a question of A. Vershik we construct two non-weakly isomorphic ergodic automor-
phisms for which the associated unitary (Koopman) representations are Markov quasi-similar. We
also discuss metric invariants of Markov quasi-similarity in the class of ergodic automorphisms.

1. Introduction

Markov operators appear in the classical ergodic theory in the context of joinings, see the
monograph [7]. Indeed, assume that Ti is an ergodic automorphism of a standard probability
Borel space (Xi,Bi, µi), i = 1, 2. Consider λ a joining of T1 and T2, i.e. a T1 × T2-invariant
probability measure on (X1 ×X2,B1 ⊗ B2) with the marginals µ1 and µ2 respectively. Then
the operator Φλ : L2(X1,B1, µ1) → L2(X2,B2, µ2) determined by

〈Φλf1, f2〉L2(X2,B2,µ2) = 〈f1 ⊗ 1X2 ,1X1 ⊗ f2〉L2(X1×X2,B1⊗B2,λ) (1.1)

is Markov (i.e. it is a linear contraction which preserves the cone of non-negative functions and
Φλ1 = 1 = Φ∗λ1) and moreover

Φλ ◦ UT1 = UT2 ◦ Φλ, (1.2)

where UTi
: L2(Xi,Bi, µi) → L2(Xi,Bi, µi) stands for the associated unitary operator: UTi

f =
f ◦ Ti for f ∈ L2(Xi,Bi, µi), i = 1, 2, which is often called a Koopman operator. In fact, each
Markov operator Φ : L2(X1,B1, µ1) → L2(X2,B2, µ2) satisfying the equivariance property (1.2)
is of the form Φλ for a unique joining λ of T1 and T2 (see e.g. [17], [24]). Markov operators
corresponding to ergodic joinings are called indecomposable.
In order to classify dynamical systems one usually considers the measure-theoretic isomor-

phism, i.e. the equivalence given by the existence of an invertible map S : (X1,B1, µ1) →
(X2,B2, µ2) for which S ◦ T1 = T2 ◦ S. The measure-theoretic (metric) isomorphism implies
spectral equivalence of the Koopman operators UT1 and UT2 ; indeed, US−1 (where US−1f1 =
f1 ◦ S−1 for f1 ∈ L2(X1,B1, µ1)) provides such an equivalence. The converse does not hold,
see e.g. [1]; we also recall that all Bernoulli shifts are spectrally equivalent while the entropy
classify them measure-theoretically [19]. One may ask whether there can be some other natural
classi�cation of dynamical systems which lies in between metric and spectral equivalence.
Given (X,B, µ) a standard probability Borel space, following [26], each probability measure

on (X ×X,B ⊗ B) with both marginals µ is called a polymorphism. Regarding automorphisms
of (X,B, µ) as the corresponding graph measures, in [26], Vershik originates a new theory �
the theory of polymorphisms � in which polymorphisms are analogues of automorphisms of
(X,B, µ). Since, in view of (1.1), there is a one-to-one correspondence between polymorphisms
and Markov operators of L2(X,B, µ), as the corresponding equivalence (borrowed for operator
theory, see below) Vershik has chosen Markov quasi-similarity. In particular, Vershik proposed
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to study this new equivalence between polymorphisms and automorphisms, and even between
automorphisms themselves.
Recall that if Ai is a bounded linear operator of a Hilbert space Hi, i = 1, 2, and if there is a

bounded linear operator V : H1 → H2 whose range is dense and which intertwines A1 and A2,
this is V ◦A1 = A2 ◦ V , then A2 is said to be a quasi-image of A1 (see [4]). By duality, A2 is
a quasi-image of A1 if and only if there exists a 1− 1 bounded linear operator W : H2 → H1

intertwining A2 and A1. If also A1 is a quasi-image of A2 then the two operators are called
quasi-similar. Recall also that two operators A1 and A2 are quasi-a�ne if there exists a 1− 1
bounded linear operator V : H1 → H2 with dense range intertwining A1 and A2. In general,
the notion of quasi-a�nity is stronger than quasi-similarity (see however Remark 2.2 below).
Assume additionally that Ai is a Markov operator of Hi = L2(Xi,Bi, µi), i = 1, 2. If A2 is

a quasi-image of A1 and we additionally require V : L2(X1,B1, µ1) → L2(X2,B2, µ2) to be a
Markov operator then A2 is said to be a Markov quasi-image of A1. If additionally A1 is a
Markov quasi-image of A2 then the two operators are called Markov quasi-similar. Operators
A1 and A2 are Markov quasi-a�ne if there exists a 1− 1 Markov operator V between the
corresponding L2-spaces with dense range intertwining A1 and A2.
Notice that each Koopman operator is also a Markov operator. It is known (see e.g. [15], [26])

that if an intertwining Markov operator Φ : L2(X1,B1, µ1) → L2(X2,B2, µ2) is unitary then it
has to be of the form US where S provides a measure-theoretic isomorphism. On the other
hand the quasi-similarity of unitary operators implies their spectral equivalence (see Section 2
below). Therefore, Markov quasi-similarity lies in between the spectral and measure-theoretic
equivalence of dynamical systems. One of questions raised by Vershik in [26] is the following:

Do there exist two automorphisms that are not isomorphic
but are Markov quasi-similar?

(1.3)

In order to answer this question notice that any weakly isomorphic automorphisms (see [25])
T1 and T2 are automatically Markov quasi-similar; indeed, the weak isomorphism means that
there are π1 and π2 which are homomorphisms between T1 and T2 and T2 and T1 respectively,
then U∗π1

and U∗π2
yield Markov quasi-similarity of T1 and T2. Hence, if T1 and T2 are weakly

isomorphic but not isomorphic, we obtain the positive answer to the question (1.3). The �rst
examples of weakly isomorphic but not isomorphic systems were given by Polit in [21]. For
further examples we refer the reader to [12], [13], [23], including the case of K-automorphisms
[8]. It follows that the notion of Markov quasi-similarity has to be considered as an interesting
re�nement of the notion of weak isomorphism, and in Vershik's question (1.3) we have to
replace �not isomorphic� by �not weakly isomorphic�.
The main aim of this note is to answer positively this modi�ed question (1.3) (see

Proposition 4.4 below). We would like to emphasize that despite a spectral �avor of the
de�nition, Markov quasi-similarity is far from being the same as spectral equivalence. For
example, partly answering Vershik's question raised at a seminar at Penn State University in
2004 whether entropy is an invariant of Markov quasi-similarity, we show that zero entropy as
well as K-property are invariants of Markov quasi-similarity of automorphisms, while they are
not invariants of spectral equivalence of the corresponding unitary operators. These facts and
related problems will be discussed in Sections 5-7.

2. Quasi-similarity of unitary operators implies their unitary equivalence

Assume that U is a unitary operator of a separable Hilbert space H. Given x ∈ H by Z(x) we
denote the cyclic space generated by x, i.e. Z(x) = span{Unx : n ∈ Z}. We will use a similar
notation Z(y1, . . . , yk) for the smallest closed U -invariant subspace containing yi, i = 1, . . . , k.
Denote by T the (additive) circle. Then the Fourier transform of the (positive) measure σx �
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called the spectral measure of x � is given by

σ̂x(n) :=
∫

T
e2πint dσx(t) = 〈Unx, x〉 for each n ∈ Z.

Similarly the sequence (〈Unx, y〉)n∈Z is the Fourier transform of the (complex) spectral measure
σx,y of x and y. Given a spectral measure σ we denote

Hσ = {x ∈ H : σx � σ}.

Then Hσ is a closed U -invariant subspace called a spectral subspace of H.
It follows from Spectral Theorem for unitary operators (see e.g. [11] or [20]) that there is a

decomposition

H = Hσ1 ⊕Hσ2 ⊕ . . . (2.1)

into spectral subspaces such that for each i ≥ 1

Hσi =
ni⊕
k=1

Z(x(i)
k ),

where σi ≡ σ
x
(i)
1
≡ σ

x
(i)
2
≡ . . . (ni can be in�nity), and σi ⊥ σj for i 6= j. The class σU of all

�nite measures equivalent to the sum
∑
i≥1 σi is then called the maximal spectral type of U .

Another important invariant of U is the spectral multiplicity function MU : T → {1, 2, . . .} ∪
{∞} (see [11], [20]) which is de�ned σ-a.e., where σ is any measure belonging to the maximal
spectral type of U . Note that decomposition (2.1) is far from being unique but if

H =
∞⊕
i=1

Hσ′i
, Hσ′i

=
n′i⊕
k=1

Z(y(i)
k )

is another decomposition (2.1) in which σi ≡ σ′i, i ≥ 1, then ni = n′i for i ≥ 1. Recall that the
essential supremum mU of MU (called the maximal spectral multiplicity of U) is equal to

inf{m ≥ 1 : Z(y1, . . . , ym) = H for some y1, . . . , ym ∈ H}; (2.2)

if there is no �good� m, them mU = ∞.
Assume that Ui is a unitary operator of a separable Hilbert space Hi, i = 1, 2. Let V : H1 →

H2 be a bounded linear operator which intertwines U1 and U2. Then for each n ∈ Z and x1 ∈ H1

〈Un2 V x1, V x1〉 = 〈Un1 x1, V
∗V x1〉,

so by elementary properties of spectral measures

σV x1 = σx1,V ∗V x1 � σx1 . (2.3)

Assuming additionally that Im(V ) is dense, an immediate consequence of (2.3) is that the
maximal spectral type of a quasi-image of U1 is absolutely continuous with respect to σU1 . It

is also clear that given y
(1)
1 , . . . , y

(1)
m ∈ H1 we have

V (Z(y(1)
1 , . . . , y

(1)
m )) = Z(V y(1)

1 , . . . , V y(1)
m ).

This in turn implies that the maximal spectral multiplicity of a quasi-image of U1 is at most
mU1 .

Proposition 2.1. If U1 and U2 are quasi-similar then they are spectrally equivalent.

Proof. Assume that V : H1 → H2 and W : H2 → H1 intertwine U1 and U2 and have dense
ranges. In view of (2.3) both operators U1 and U2 have the same maximal spectral types.
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Consider a decomposition (2.1) for U1: H1 =
⊕

i≥1Hσ
(1)
i

and let Fi := V (H
σ

(1)
i

) for i ≥ 1. The

subspaces Fi are obviously U2-invariant and let σ
(2)
i (n

(2)
i ) denote the maximal spectral type

(the maximal spectral multiplicity) of U2 on Fi. It follows from (2.3) that σ
(2)
i � σ

(1)
i for

i ≥ 1 and σ
(2)
i , σ

(2)
j are mutually singular (in particular, Fi ⊥ Fj) whenever i 6= j. Moreover,

n
(2)
i ≤ n

(1)
i , i ≥ 1. Since V has dense range, H2 =

⊕
i≥1 Fi. It follows that (up to equivalence

of measures)
∑
i≥1 σ

(i)
2 is the maximal spectral type of U2 hence it is equivalent to

∑
i≥1 σ

(1)
i

and therefore σ
(1)
i ≡ σ

(2)
i for i ≥ 1. The same reasoning applied to the decomposition H2 =⊕

i≥1 Fi and W shows that H1 =
⊕

i≥1W (Fi) and the maximal spectral type of U1 on W (Fi)
is absolutely continuous with respect to σ

(2)
i ≡ σ

(1)
i , i ≥ 1. It follows that W (Fi) = H

σ
(1)
i

for

all i ≥ 1. In particular, we have proved that n
(2)
i = n

(1)
i but we need to show that on Fi the

multiplicity is uniform. Suppose this is not the case, i.e. that for some measure η � σ
(2)
i we

have

Fi = Z(z1)⊕ . . .⊕ Z(zr)⊕ F ′i ,

where for j = 1, . . . r, σzj = η, 1 ≤ r < n
(2)
i and the maximal spectral type of U2 on F ′i is

orthogonal to η. We have

H
σ

(1)
i

= W (Fi) = Gi ⊕W (F ′i ),

where Gi = W (Z(z1)⊕ . . .⊕ Z(zr)) and the maximal spectral types on Gi, say τ(� η), and
W (F ′i ) are mutually singular. It follows that the multiplicity of τ is at most r, which is a

contradiction since all measures absolutely continuous with respect to σ
(1)
i have multiplicity

n
(1)
i .

Remark 2.2. Literally speaking, the notion of quasi-similarity is weaker than the notion
of quasi-a�nity. Proposition 3.4 in [4] tells us that quasi-a�ne unitary operators are unitarily
equivalent. Hence Proposition 2.1 shows in fact that for unitary operators quasi-similarity and
quasi-a�nity are equivalent notions.
It is not clear (see Section 7) whether the notions of Markov quasi-similarity and Markov

quasi-a�nity of Koopman operators coincide.

3. A convolution operator in l2(Z)

In this section we produce a sequence in l2(Z) which will be used to construct a Markov
quasi-a�nity between two non-weakly isomorphic automorphisms in Section 4.
Denote by l0(Z) the subspace of l2(Z) of complex sequences x̄ = (xn)n∈Z such that {n ∈ Z :

xn 6= 0} is �nite.

Proposition 3.1. There exists a nonnegative sequence ā = (an)n∈Z ∈ l2(Z) such that∑
n∈Z an = 1 and

for every x̄ = (xn)n∈Z ∈ l2(Z) if ā ∗ x̄ ∈ l0(Z) then x̄ = 0̄. (3.1)

Each element y ∈ l2(Z) is an L2-function on Z and its Fourier transform is a function h ∈
L2(T) for which ĥ(n) = yn for all n ∈ Z. Moreover, the convolution of l2-sequences corresponds
to the pointwise multiplication of L2-functions on the circle. It follows that in order to �nd the
required sequence ā, it su�ces to �nd a function f ∈ L2(T) such that
� an = f̂(n) ≥ 0,

∑
n∈Z an = 1;
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� for every g ∈ L2(T), if f · g = 0 then g = 0;
� for every non-zero trigonometric polynomial P , if P = f · g then g /∈ L2(T).

This is done below.

Lemma 3.2. If f : [0, 1] → R+ is a convex C2-function such that f(1− x) = f(x) for all
x ∈ [0, 1] then f̂(n) ≥ 0 for all n ∈ Z.

Proof. By assumption, f ′′(x) ≥ 0 for all x ∈ [0, 1]. Using integration by parts twice, for
n 6= 0 we obtain

f̂(n) =
∫1

0

f(x)e−2πinxdx =
∫1

0

f(x) cos(2πnx) dx =
1

2πn

∫1

0

f(x) d sin(2πnx)

= − 1
2πn

∫1

0

f ′(x) sin(2πnx) dx =
1

4π2n2

∫1

0

f ′(x) d cos(2πnx)

=
1

4π2n2

[
f ′(1)− f ′(0)−

∫1

0

f ′′(x) cos(2πnx) dx
]

≥ 1
4π2n2

[
f ′(1)− f ′(0)−

∫1

0

|f ′′(x) cos(2πnx)| dx
]

≥ 1
4π2n2

[
f ′(1)− f ′(0)−

∫1

0

f ′′(x) dx
]

= 0.

Proof of Proposition 3.1. Let us consider f : [0, 1] → R de�ned by

f(x) =
{
e−

1
|x−1/2|+2 if x 6= 1/2

0 if x = 1/2.

Since f ′′(x) ≥ 0 for x ∈ [0, 1], by Lemma 3.2, an = f̂(n) ≥ 0. As f : T → R is a continuous
function of bounded variation,

1 = f(0) =
∑
n∈Z

an.

Since f(x) 6= 0 for x 6= 1/2, if f · g = 0 for some g ∈ L2(T) then g = 0.
Suppose, contrary to our claim, that there exist g ∈ L2(T) and a non-zero trigonometric

polynomial P such that f · g = P . Recall that for every m ≥ 0 we have
∫1

0
e1/xxm dx = +∞,

hence
∫1

0
(e1/xxm)2 dx = +∞. Since P is a non-zero analytic function, there exists m ≥ 0 such

that P (m)(1/2) 6= 0 and P (k)(1/2) = 0 for 0 ≤ k < m. By Taylor's formula, there exist C > 0
and 0 < δ < 1/2 such that |P (x+ 1/2)| ≥ C|x|m for x ∈ [−δ, δ]. It follows that∫

T
|g(x)|2 dx ≥

∫1/2+δ

1/2

|P (x)|2/f(x)2 dx =
∫ δ
0

|P (x+ 1/2)|2/f(x+ 1/2)2 dx

≥
∫ δ
0

(Cxme1/x)2 dx = +∞,

and hence g /∈ L2(T) which completes the proof.

4. Two non-weakly isomorphic automorphisms which are Markov quasi-similar

Let T be an ergodic automorphism of (X,B, µ). Assume that G is a compact metric Abelian
group with Haar measure λG. A measurable function ϕ : X → G is called a cocycle. Using the
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cocycle we can de�ne a group extension Tϕ of T which acts on (X ×G,B ⊗ B(G), µ⊗ λG) by
the formula Tϕ(x, g) = (Tx, ϕ(x) + g).
We will �rst take ϕ : X → Z2 := {0, 1} so that the group extension Tϕ is ergodic. Then

assume that we can �nd S acting on (X,B, µ), ST = TS, such that if we put G = ZZ
2 and

de�ne

ψ : X → G, ψ(x) = (. . . , ϕ(S−1x),
0

ϕ(x), ϕ(Sx), ϕ(S2x), . . .)

then Tψ is ergodic as well (see [13] for concrete examples of T , ϕ and S ful�lling our
requirements). Put now T1 = Tψ and let us take a factor T2 of T1 obtained by �forgetting�
the �rst Z2-coordinate. In other words on (X × ZZ

2 , µ⊗ λZZ
2
) we consider two automorphisms

T1(x, i) = (Tx, . . . , i−1 + ϕ(S−1x),
0

i0 + ϕ(x), i1 + ϕ(Sx), i2 + ϕ(S2x), . . .),

T2(x, i) = (Tx, . . . , i−1 + ϕ(S−1x),
0

i0 + ϕ(x), i1 + ϕ(S2x), i2 + ϕ(S3x), . . .),

where i = (. . . , i−1,
0
i0, i1, i2, . . .). De�ne In : X × ZZ

2 → X × ZZ
2 by putting

In(x, i) = (Snx, . . . , in−1,
0
in, in+2, in+3, . . .).

Then In is measure-preserving and In ◦ T1 = T2 ◦ In. Therefore

UT1 ◦ UIn
= UIn

◦ UT2 (4.1)

with UIn
being an isometry (which is not onto) and

U∗In
F (x, i)

=
1
2

(
F (S−nx, . . . ,

0
i−n, . . . ,

n
i0, 0, i1, . . .) + F (S−nx, . . . ,

0
i−n, . . . ,

n
i0, 1, i1, . . .)

)
.

Let ā = (an)n∈Z ∈ l2(Z) be a nonnegative sequence such that
∑
n∈Z an = 1 and (3.1) holds.

Let J : L2(X × ZZ
2 , µ⊗ λZZ

2
) → L2(X × ZZ

2 , µ⊗ λZZ
2
) stand for the Markov operator de�ned by

J =
∑
n∈Z

anUIn
.

In view of (4.1), J intertwines UT1 and UT2 .
Denote by Fin the set of �nite nonempty subsets of Z. The set Fin may be identi�ed with

the group of characters of the group ZZ
2 . Let us consider two operations on Fin:

G(A) = {s ∈ A : s ≤ 0} ∪ {s+ 1 : s ∈ A, s > 0} for A ∈ Fin;

G−1(B) = {s ∈ B : s ≤ 0} ∪ {s− 1 : s ∈ B, s > 1} for B ∈ Fin with 1 /∈ B.

Of course, G−1(G(A)) = A and G(G−1(B)) = B. Let ∼ stand for the equivalence relation in
Fin de�ned by A ∼ B if A = B + n for some n ∈ Z. Denote by Fin0 a fundamental domain
for this relation.

Lemma 4.1. J has trivial kernel.

Proof. Each F ∈ L2(X × ZZ
2 , µ⊗ λZZ

2
) can be written as

F (x, i) =
∑

A∈Fin
fA(x)(−1)A(i), where A(i) =

∑
s∈A

is.
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Note that
∑
A∈Fin ‖fA‖2L2(X,µ) = ‖F‖2

L2(X×ZZ
2,µ⊗λZZ

2
)
. Since

UIn

(
fA ⊗ (−1)A(·)

)
(x, i) =

(
fA ⊗ (−1)A(·)

)
(In(x, i)) = fA(Snx)(−1)(G(A)+n)(i),

we have

JF (x, i) =
∑
n∈Z

∑
A∈Fin

anfA(Snx)(−1)(G(A)+n)(i).

Notice that n+ 1 /∈ G(A) + n. To reverse the roles played by A and G(A) + n note that if
B ∈ Fin and n+ 1 /∈ B then the set G−1(B − n) is the unique set such that G(G−1(B −
n))) + n = B. It follows that

JF (x, i) =
∑

B∈Fin

∑
n∈Z,n+1/∈B

anfG−1(B−n)(S
nx)(−1)B(i) =

∑
B∈Fin

F̃B(x)(−1)B(i),

where F̃B(x) =
∑
n∈Z,n+1/∈B anfG−1(B−n)(Snx). For every B ∈ Fin0 and x ∈ X we de�ne

ξB(x) = (ξBn (x))n∈Z by setting

ξB−n(x) =
{
fG−1(B−n)(Snx) if n+ 1 /∈ B

0 if n+ 1 ∈ B.

Therefore, for k ∈ Z

F̃B+k(x) =
∑

n∈Z,n+1/∈B+k

anfG−1(B−n+k)(S
nx)

=
∑

n∈Z,(n−k)+1/∈B

anfG−1(B−(n−k))(S
−(k−n)(Skx))

=
∑
n∈Z

anξ
B
k−n(S

kx) = [ā ∗
(
ξB(Skx)

)
]k.

Suppose that J(F ) = 0. It follows that given k ∈ Z and B ∈ Fin0 we have [ā ∗
(
ξB(Skx)

)
]k =

F̃B+k(x) = 0 for µ-a.e. x ∈ X, whence a.s. we also have [ā ∗
(
ξB(x)

)
]k = 0. Letting k run

through Z we obtain that ā ∗
(
ξB(x)

)
= 0̄ for µ-a.e. x ∈ X. On the other hand ξB(x) ∈ l2(Z)

for almost every x ∈ X. In view of (3.1), ξB(x) = 0̄ for every B ∈ Fin0 and for a.e. x ∈ X,
hence fG−1(A) = 0 for every A ∈ Fin with 1 /∈ A. It follows that fA = 0 for every A ∈ Fin,
consequently F = 0.

Lemma 4.2. J∗ has trivial kernel.

Proof. Let

F (x, i) =
∑

A∈Fin
fA(x)(−1)A(i).

Then

U∗In

(
fA ⊗ (−1)A(·)

)
(x, i) =

{
fA(S−nx)(−1)G

−1(A−n)(i) if n+ 1 /∈ A
0 if n+ 1 ∈ A.
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It follows that

J∗F (x, i) =
∑

A∈Fin

∑
n∈Z,n+1/∈A

anfA(S−nx)(−1)G
−1(A−n)(i)

=
∑

B∈Fin

∑
n∈Z

anfG(B)+n(S−nx)(−1)B(i)

=
∑

A∈Fin,1/∈A

∑
n∈Z

anfA+n(S−nx)(−1)G
−1(A)(i).

Furthermore,

J∗F (x, i) =
∑

A∈Fin0

∑
k∈Z,1/∈A−k

∑
n∈Z

anfA+n−k(S−nx)(−1)G
−1(A−k)(i)

=
∑

A∈Fin0

∑
k∈Z,1/∈A−k

[ā ∗
(
ζA(S−kx)

)
]k(−1)G

−1(A−k)(i),

where ζA(x) = (ζA(x)l)l∈Z is given by ζA(x)l = fA−l(Slx).
Suppose that J∗(F ) = 0. It follows that [ā ∗ ζA(S−kx)]k = 0 for every A ∈ Fin0, k + 1 /∈ A

and for a.e. x ∈ X. Hence ā ∗
(
ζA(x)

)
∈ l0(Z) for µ-a.e. x ∈ X (the only possibly non-zero

terms of the convolved sequence have indices belonging to A− 1). Since ζA(x) ∈ l2(Z), in view
of (3.1), ζA(x) = 0 for every A ∈ Fin0 and for µ-a.e. x ∈ X. Thus fA = 0 for all A ∈ Fin and
consequently F = 0.

It follows from the above two lemmas that the ranges of J and J∗ are dense. Clearly J and
J∗ intertwine the Koopman operators UT1 and UT2 , hence we have proved the following.

Proposition 4.3. Under the above notation the automorphisms T1 and T2 are Markov
quasi-similar. �

Recall that in [13] constructions of the above type have been used to produce weakly
isomorphic transformations that are not isomorphic. In fact our transformation T1 is the same
as the transformation T...,−1,0,1,2,... in Subsection 4.2 in [13], where it is proved that each metric
endomorphism that commutes with T1 is invertible. It follows that T1 cannot be a factor of the
system given by its proper factor; in particular, it is not weakly isomorphic to T2. In other
words we have proved the following.

Proposition 4.4. There are ergodic automorphisms which are Markov quasi-similar but
they are not weakly isomorphic. �

Remark 4.5. The Markov quasi-similarity between T1 and T2 constructed above is given
by a 1− 1 Markov operator with dense range, that is, in fact we have shown that UT1 and UT2

are Markov quasi-a�ne. The Markov operator is given as a convex combination of isometries
which separately have no dense ranges as they are not onto (and obviously their ranges are
closed).

Let us emphasize that not each non-trivial choice of weights (an) gives rise to an operator
with dense range as the following example shows.
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Example 4.6. Set an = 1
2n+1 for n ≥ 0 and an = 0 for n < 0. We will show that in this

case ker J∗ 6= {0}. Denoting by S the automorphism of (X × ZZ
2 , µ⊗ λZZ

2
) given by

S(x, i) = (Sx, . . . , i−1, i0,
0
i1, i2, . . .),

we have In = I0 ◦ S
n
for any n ∈ Z, and hence

J∗ = U∗I0 ◦
∞∑
n=0

1
2n+1

U
S
−n .

In fact, we will prove that (
−1

2
U
S
−1 + Id

)(
kerU∗I0

)
⊂ ker J∗. (4.2)

Notice that if 0 6= G ∈ L2(X × ZZ
2 , µ⊗ λZ

Z2
) then − 1

2G ◦ S
−1

+G 6= 0 because the norms of

the two summands are di�erent. To prove (4.2) take G ∈ kerU∗I0 and let F = − 1
2G ◦ S

−1
+G.

Thus

J∗F = U∗I0

( ∞∑
n=0

1
2n+1

F ◦ S−n
)

= U∗I0

∞∑
n=0

(
1

2n+1
G ◦ S−n − 1

2n+2
G ◦ S−n−1

)
= U∗I0

(
1
2
G

)
= 0.

Since kerU∗I0 is not trivial, the claim follows.

5. Metric invariants of Markov quasi-similarity

By Proposition 2.1 the Markov quasi-similarity is stronger than spectral equivalence of
Koopman representations (it will be clear from the results of this section that it is essentially
stronger). In particular all spectral invariants like ergodicity, weak mixing, mild mixing,
mixing and rigidity are invariants for Markov quasi-similarity. It also follows that each
transformation which is spectrally determined, that is for which spectral equivalence is the
same as measure-theoretical equivalence, is also Markov quasi-equivalence unique (up to
measure-theoretic isomorphism). In particular each automorphism Markov quasi-similar to
an ergodic transformation with discrete spectrum is isomorphic to it. The same holds for
Gaussian-Kronecker systems (see [5]).
This spectral �avor is still persistent when we consider Markov quasi-images. Indeed, each

Markov operator between L2-spaces �preserves� the subspace of zero mean functions, therefore
a direct consequence of (2.3) is that a transformation which is a Markov quasi-image of an
ergodic (weakly mixing, mixing) system remains ergodic (weakly mixing, mixing). Despite all
this, Markov quasi-similarity is far from being spectral equivalence. In order to justify this
statement, we need a non-disjointness result from [17] (in fact its proof) which we now brie�y
recall.
Assume that Ti is an ergodic automorphism of (Xi,Bi, µi), i = 1, 2, and let Φ :

L2(X1,B1, µ1) → L2(X2,B2, µ2) be a Markov operator intertwining UT1 and UT2 . Then Φ sends
L∞-functions to L∞-functions and we can consider HΦ, the L

2-span of

{Φ(f (1)
1 ) · . . . · Φ(f (1)

m ) : f (1)
i ∈ L∞(X1,B1, µ1), i = 1, . . . ,m, m ≥ 1}.

It turns out that HΦ = L2(AΦ) where AΦ ⊂ B2 is a T2-invariant σ-algebra (in other words Φ
de�nes a factor of T2). Then by the proof of the main non-disjointness result (Theorem 4) in [17]
this factor is also a factor of an (ergodic) in�nite self-joining of T1. If we assume additionally
that ImΦ is dense then HΦ = L2(X2,B2, µ2) and the factor given by AΦ is equal to T2 itself.
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Proposition 5.1. If T2 is a Markov quasi-image of T1 then T2 is a factor of some in�nite
ergodic self-joinings of T1. �

As all the systems determined by (in�nite) joinings of zero entropy systems have zero entropy
and the systems given by joinings of distal systems are also distal (for these results see e.g.
[7]), Proposition 5.1 yields the following conclusion.

Proposition 5.2. Each automorphism which is a Markov quasi-image of a zero entropy
system has zero entropy. Each automorphism which is a Markov quasi-image of a distal system
remains distal. In particular, zero entropy and distality are invariants of Markov quasi-similarity
in the class of measure-preserving systems. �

As a matter of fact, we can prove that zero entropy is an invariant of Markov quasi-similarity
in the class of measure-preserving systems in a simpler manner. Recall that T1 and T2 are
said to be disjoint (in the sense of Furstenberg [6]) if the only joining between them is the
product measure. The following result will help us to indicate further invariants of Markov
quasi-similarity.

Lemma 5.3. If T1 is disjoint from S and T2 is a Markov quasi-image of T1 then T2 is also
disjoint from S.

Proof. Indeed, assume that Φ ◦ UT1 = UT2 ◦ Φ and Φ has dense range. If T2 and S are not
disjoint then we have a non-trivial Markov operator Ψ intertwining UT2 and US . Since Φ has
dense range, Ψ ◦ Φ is a non-trivial Markov operator intertwining UT1 and US and therefore T1

is not disjoint from S.

Given a class M of automorphisms denote by M⊥ the class of those transformations which
are disjoint from all members of M. In view of Lemma 5.3 we have the following.

Proposition 5.4. M⊥ is closed under taking automorphisms which are Markov quasi-
images of members of M⊥. In particular, if M = M⊥⊥ then M is closed under taking
automorphisms which are Markov quasi-images of members of M. �

If by K and ZE we denote the classes of Kolmogorov automorphisms and zero entropy
automorphisms respectively then we have K = ZE⊥ ([6]) and therefore by Proposition 5.4 we
obtain the following.

Corollary 5.5. Every automorphism which is a Markov quasi-image of a Kolmogorov
automorphism is also K. In particular, K property is an invariant of Markov quasi-similarity
in the class of measure-preserving systems. �

Problem 1. Is the same true for Bernoulli automorphisms?

Notice that also ZE = K⊥. Therefore we can apply Proposition 5.4 with M = ZE to obtain
that an automorphism which is a Markov quasi-image of a zero entropy system has zero entropy.
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6. JP property and Markov quasi-similarity

Definition 1. An ergodic automorphism T on (X,B, µ) is said to have the joining
primeness (JP) property (see [16]) if for each pair of weakly mixing automorphisms S1 on
(Y1, C1, ν1) and S2 on (Y2, C2, ν2) and for every indecomposable Markov operator

Φ : L2(X,µ) → L2(Y1 × Y2, ν1 ⊗ ν2)

intertwining UT and US1×S2 we have (up to some abuse of notation) ImΦ ⊂ L2(Y1, C1, ν1) or
ImΦ ⊂ L2(Y2, C2, ν2).

The class of JP automorphisms includes in particular the class of simple systems ([10]). For
other natural classes of JP automorphisms including some smooth systems see [16] (we should
however emphasize that a �typical� automorphism is JP [16]).
Assume that T is JP and S1, S2, . . . are weakly mixing. Let Φ : L2(X,µ) → L2(Y1 × Y2 ×

. . . , ν1 ⊗ ν2 ⊗ . . .) be a Markov operator intertwining UT and US1×S2×.... Let Φ =
∫
Γ

Φγ dP (γ)
be the decomposition corresponding to the ergodic decomposition of the joining determined by
Φ. Slightly abusing notation, we claim that for P -a.e. γ ∈ Γ

Φγ(L2(X,B, µ)) ⊂ L2(Yiγ , Ciγ , νiγ ), for some iγ ∈ {1, 2, . . .}.

Indeed, we use repeatedly the de�nition of JP property: We represent Πn≥1Sn as S1 ×
(Πn≥2Sn) and if ImΦγ is not included in L2(Y1, ν1) then ImΦγ ⊂ L2(Y2 × Y3 × . . . , ν2 ⊗ ν3 ⊗
. . .). In the next step we write Πn≥1Sn = (S1 × S2)× (Πn≥3Sn) and we check if ImΦγ ⊂
L2(Y1 × Y2, ν1 ⊗ ν2) (if it is the case then ImΦγ ⊂ L2(Y2, ν2)); if it is not the case then
ImΦγ ⊂ L2(Y3 × Y4 × . . . , ν3 ⊗ ν4 ⊗ . . .), etc. If for each n ≥ 1, ImΦγ ⊥ L2(Y1 × . . .× Yn, ν1 ⊗
. . .⊗ νn), then ImΦγ = 0 (since functions depending on �nitely many coordinates are dense),
and hence Φγ = 0.
It follows that for some 0 ≤ an ≤ 1 with

∑
n≥1 an = 1

Φ =
∑
n≥1

anΦn, (6.1)

where ImΦn ⊂ L2(Yn, Cn, νn). In particular,

ImΦ ⊂
⊕
n≥1

L2(Yn, Cn, νn) ⊂ L2(Y1 × Y2 × . . . , C1 ⊗ C2 ⊗ . . . , ν1 ⊗ ν2 ⊗ . . .). (6.2)

Note that the space F :=
⊕
L2(Yn, νn) is closed and US1×S2×...-invariant.

Lemma 6.1. Under the above notation, if A ⊂ C1 ⊗ C2 ⊗ . . . is a factor of S1 × S2 × . . . and
it is also a Markov quasi-image of a JP automorphism T then there exists n0 ≥ 1 such that
A ⊂ Cn0 ; in other words the factor given by A is a factor of Sn0 .

Proof. Asume that Φ intertwines UT and the Koopman operator of the factor action of
S1 × S2 × . . . on A. Since the range of Φ is dense in L2(A), it follows that Φ : L2(X,B, µ) →
L2(A) ⊂ F . We now use an argument from [9]: Take A ∈ A. In view of (6.2) we have

1A − (ν1 ⊗ ν2 ⊗ . . .)(A) = f1(y1) + f2(y2) + . . .

with fn ∈ L2
0(Yn, νn), n ≥ 1. Since the distribution of the random variable 1A − (ν1 ⊗ ν2 ⊗

. . .)(A) is a measure on a two element set and the random variables f1, f2, . . . are independent,
all of them but one, say fnA

, are equal to zero. In other words, A ∈ CnA
. It easily follows that

the function A 3 A 7→ nA is constant (see [9]).
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Let T be a simple weakly mixing automorphism. By the de�nition of simplicity, it follows
that each of its ergodic in�nite self-joinings is, as a dynamical system, isomorphic to a
Cartesian product T×n with n ≤ ∞. Since each simple system has the JP property, in view
of Proposition 5.1 and Lemma 6.1 (in which Sn = T ) we obtain the following.

Proposition 6.2. Each automorphism which is a Markov quasi-image of a simple map T
is a factor of T . �

It follows from the above proposition that if T1 and T2 are weakly mixing simple
automorphisms and are Markov quasi-similar then they are isomorphic.

Remark 6.3. In our example of T1 and T2 non-weakly isomorphic but Markov quasi-similar
T2 is a factor of T1 but (because of absence of weak isomorphism) T1 is not a factor of T2.
Hence the family of factors of T2 is strictly included in the family of automorphisms which are
Markov quasi-images of T2.

When we apply Proposition 6.2 to the MSJ maps (see [10]) we obtain that such systems are
Markov quasi-similarly prime, that is we have the following.

Corollary 6.4. The only non-trivial automorphism which is a Markov quasi-image of an
MSJ system T is T itself. �

Remark 6.5. Assume that T enjoys the MSJ property. Take Φ1,Φ2 two joinings of T
and T × T so that ImΦ1 ∩

(
L2(X,µ)⊗ 1X

)
6= {0} and ImΦ2 ∩

(
1X ⊗ L2(X,µ)

)
6= {0}. Then

Φ := aΦ1 + (1− a)Φ2 is a Markov operator intertwining UT and UT×T and if 0 < a < 1, then
the range of Φ is not dense in L2(AΦ). Indeed, AΦ is either T × T or T � T (the factor of
T × T determined by the σ-algebra of sets invariant under exchange of coordinates) and the
claim follows from Lemma 6.1. This is the answer to a question raised by François Parreau in
a conversation with the second named author of the note.
It means that if we try to de�ne Markov quasi-image by requiring that AΦ = B2 instead of

requiring that the range of Φ is dense in L2(X2,B2, µ2) then we obtain a strictly weaker notion.

7. Final remarks and problems

Notice that the joining of T1 and T2 corresponding to the Markov operator in Section 4 and
based on constructions from [13] is not ergodic (i.e. the Markov operator is decomposable). In
fact, in our construction of two non-weakly isomorphic Markov quasi-similar automorphisms T1

and T2 no Markov operator corresponding to an ergodic joining between T1 and T2 can have
dense range. Indeed, �rst recall that ergodic Markov quasi-similar automorphisms have the
same Kronecker factors. Then notice that T1 and T2 are compact abelian group extensions of
the same (in [13] this is the classical adding machine system) Kronecker factor. Hence, assume
that T is an ergodic automorphism with discrete spectrum and let φ : X → G, ψ : X → H be
ergodic cocycles with values in compact abelian groups G and H respectively. We then have
the following.

Tφ and Tψ are Markov quasi-similar via indecomposable

Markov operators if and only if they are weakly isomorphic.
(7.1)
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Indeed, every ergodic joining between such systems is the relatively independent extension of
the graph joining given by an isomorphism I of so called natural factors TφJ and TψF acting
on X ×G/J and X ×H/F respectively, see [14]. The Markov operator Φ corresponding to
such a joining is determined by the orthogonal projection on the L2(X ×H/F, µ⊗ λH/F ); in
particular the range of Φ is closed. Therefore it has dense range only if ImΦ = L2(X ×H,µ⊗
λH) which means that in fact I settles a metric isomorphism of Tψ and a factor of Tφ. In other
words, Tψ is a factor of Tφ.
This shows that there exist two ergodic automorphisms which are Markov quasi-similar but

Markov quasi-similarity cannot be realized by indecomposable Markov operators with dense
ranges.
We have been unable to construct an indecomposable 1− 1 Markov operator Φ with dense

range intertwining the Koopman operators given by two non-isomorphic ergodic automor-
phisms T1 and T2. One might think about such a construction using Markov operators given
as convex combinations of USi

where Si are space isomorphisms which are not intertwining T1

and T2 (see e.g. [2] for the notion of near simplicity where a similar idea is applied).
It seems that Proposition 2.1 rules out a possibility to �nd two Markov quasi-similar Gaussian

automorphisms which are not isomorphic by a use of so called Gaussian joinings [17] (recall
that Gaussian joinings are ergodic joinings). Indeed, once a Markov quasi-similarity is given
by an integral of Markov operators corresponding to Gaussian joinings, it sends chaos into
chaos (see [17] for details). In particular, �rst chaos is sent into �rst chaos, and we obtain a
quasi-similarity of the unitary actions restricted to the �rst chaos. By Proposition 2.1 these
actions on the �rst chaos are spectrally equivalent which in turn implies measure-theoretic
isomorphism of the Gaussian systems.
We do not know however if we can have two non-weakly isomorphic Poisson suspension

systems which are Markov quasi-similar by a use of Poissonian joinings (which are ergodic),
see [3] and [22].

Problem 2. Recall that in the construction carried out in Section 4, T2 was a factor of T1.
Is it possible to construct Markov quasi-similar automorphisms T1 and T2 such that T1 and T2

have no common (non-trivial) factors?

Of course such T1 and T2 must not be disjoint (see [6]). The most �popular� construction of a
pair of non-disjoint systems without common factors is (T, T � T ) (for a particular T ; see [9],
[23]). Notice however that these two automorphisms are not Markov quasi-similar if T has the
JP property (see Lemma 6.1), that is, in all known cases where T and T � T have no common
(isomorphic) non-trivial factors.

Problem 3. As we have already noticed in Remark 2.2, Markov quasi-a�nity implies
Markov quasi-similarity. Are these notions equivalent? If the answer is positive then each
weakly isomorphic transformations would have to be Markov quasi-a�ne. Are examples of
weakly isomorphic non-isomorphic automorphisms from [12], [13] or [23] Markov quasi-a�ne?

Problem 4. The examples of Markov quasi-similar automorphisms which are not isomor-
phic presented in this note have in�nite spectral multiplicity. Is it possible to �nd such examples
in the class of systems with simple spectrum (or of �nite spectral multiplicity)? In the class of
rank one systems?
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Recall that in case of �nite spectral multiplicity systems their weak isomorphism implies
isomorphism, see e.g. [18].
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