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Abstract. By studying the weak closure of multidimensional off-diagonal
self-joinings we provide a sufficient condition for non-isomorphism of a flow
with its inverse, hence the non-reversibility of a flow. This is applied to special
flows over rigid automorphisms. In particular, we apply the criterion to special
flows over irrational rotations, providing a large class of non-reversible flows,
including some analytic reparametrizations of linear flows on T2, so called
von Neumann’s flows and some special flows with piecewise polynomial roof
functions. A topological counterpart is also developed with the full solution
of the problem of the topological self-similarity of continuous special flows
over irrational rotations. This yields examples of continuous special flows over
irrational rotations without non-trivial topological self-similarities and having
all non-zero real numbers as scales of measure-theoretic self-similarities.
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1. Introduction

Given a (measurable) measure-preserving flow T = (Tt)t∈R on a probability
standard Borel space (X,B, µ) one says that it is reversible (or time reversible) if T is
isomorphic to its inverse with a conjugating automorphism S : (X,B, µ)→ (X,B, µ)

Date: December 29, 2012.
2000 Mathematics Subject Classification. 37A10, 37B05.
Research supported by Narodowe Centrum Nauki grant DEC-2011/03/B/ST1/00407.

1



2 K. FRĄCZEK, J. KUŁAGA-PRZYMUS, AND M. LEMAŃCZYK

being an involution1, i.e.:

(1.1) Tt ◦ S = S ◦ T−t for each t ∈ R

and

(1.2) S2 = Id.

As far as we know, in ergodic theory, this problem was not systematically studied
for flows. In case of automorphisms first steps were taken up in [13]. In that paper
it has been shown that for an arbitrary automorphism T with simple spectrum
all isomorphisms (if there is any) between T and T−1 must be involutions. The
same result holds for flows: a simple spectrum flow isomorphic to its inverse is
reversible, in fact, (1.1) implies (1.2)2. Another class of flows in which (1.1) puts
some restrictions on the order of S is the class of flows having so called weak
closure property: each element R of the centralizer C(T ) is a weak limit of time-t
automorphisms, i.e. R = limk→∞ Ttk for some tk → ∞, namely, we must have
S4 = Id 3. Moreover, if S2 6= Id then T is not reversible4.

It is easy to observe that isomorphisms between T and T−1 lift to isomorphisms of
the corresponding suspension flow (see Section 2 for the definition of the suspension
flow) and its inverse. Moreover, as observed e.g. in [5], each isomorphism between
the suspension flow and its inverse must come from an isomorphism of T and T−1.
In [13], there is a construction of an automorphism T satisfying the weak closure
property, isomorphic to its inverse and such that all conjugations between T and
T−1 have order four. By taking the suspension flow over this example we obtain
an ergodic flow having the weak closure property, being isomorphic to its inverse
and such that all conjugations satisfying (1.1) are of order four, so this flow is not
reversible.

The problem of reversibility is closely related to the self-similarity problem (see
[6], [9]). Recall that s ∈ R∗ is a scale of self-similarity for a measure-preserving flow
T = (Tt)t∈R if T is isomorphic to the flow T ◦ s := (Tst)t∈R. We will denote the
multiplicative subgroup of all scales of self-similarity by I(T ) ⊂ R∗. The flow T is
called self-similar if I(T ) * {−1, 1}. Of course, if T is reversible then −1 ∈ I(T ).

1It should be noticed that, in general, even if (1.1) and (1.2) are satisfied for some S then we can
find S′ which is not an involution but satisfies (1.1) [13]. For example, take T (x, y) = (x+α, x+y)

on T2. Then T−1(x, y) = (x− α,−(x− α) + y) and S(x, y) = (−x, x+ y) settles an isomorphism
of T and its inverse. Of course S2 = Id. On the other hand if we set σγ(x, y) = (x, y + γ) then
σγT = Tσγ and σγS = Sσγ . Hence (Sσγ)T = T−1(Sσγ). But (Sσγ)n = Sn (mod 2)σnγ , so we
obtain a conjugation which is of infinite order (if γ is irrational).

Another example can be given by taking first a weakly mixing flow (St)t∈R and then considering
Tt = St × S−t in which (x, y) 7→ (y, x) yields reversibility of T . On the other hand, W (x, y) =
(S1y, x) also settles an isomorphism of T and its inverse and since W 2 = S1 × S1, W is even
weakly mixing.

2 The proof from [13] goes through for flows.
One more natural case when isomorphism of T and its inverse implies reversibility arises if we

assume that the centralizer C((Tt)) is trivial, i.e. equal to {Tt : t ∈ R} and the R-action t 7→ Tt
is free. Indeed, as in [13], we notice that whenever S satisfies (1.1) then S2 belongs to C(T ), so
S2 = Tt0 . Now, clearly Tt0S = STt0 and since Tt0S = ST−t0 , we have T−t0 = Tt0 and hence
t0 = 0 by the freeness assumption.

3We borrow the argument from [13]: C(T ) 3 S2 = limk→∞ Ttk and since TtkS = ST−tk , by
passing to the limit, S3 = S−1.

4Again, borrowing the argument from [13], suppose that S′ satisfies (1.1). Then SS′ ∈ C(T ),
so SS′ = limk→∞ Ttk . Since TtkS = ST−tk , (SS′)S = S(SS′)−1, whence (S′)2 = S−2, but
S4 = Id, so S2 = (S′)2.

Note that it follows that if T satisfies the weak closure theorem, is isomorphic to its inverse
and is not reversible then it has a 2-point fiber factor, namely {B ∈ B : S2B = B}, which is
reversible.
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The papers [40], [41] concerning some particular rank one automorphisms were
historically the first to show that the non-isomorphism of an automorphism and its
inverse can be detected on the level of 3-self-joinings by studying the weak closure
of 3-off-diagonal self-joinings (see also [6]). By taking the suspensions of Ryzhikov’s
automorphisms we obtain flows non-isomorphic to their inverses.

One of the purposes of this paper is to generalize Ryzhikov’s approach and
present potential asymmetries in the weak closure of higher dimensional off-diagonal
self-joinings when we change time in the suspension over a rigid automorphism. We
recall that one of possibilities to show the absence of self-similarities for a non-rigid
flow is to show that in the weak closure of its 2-off-diagonal self-joinings there is
an integral of off-diagonal joinings, and this approach was fruitfully used in [9] to
study special flows over irrational rotations.

In Section 3 we extend techniques introduced in [8] for 2-joinings5 to the class of
higher order joinings, see Proposition 3.7. This is necessary because the 2-joining
method breaks down when we try to prove the non-isomorphism of the flow and its
inverse. Indeed, in our method (similarly to [41]) we seek integral type self-joinings
which are sufficiently “asymmetric” and are in the weak closure of off-diagonal self-
joinings. Then, the asymmetry should result in the non-isomorphism of a flow and
its inverse. Such a method cannot work on the level of 2-self-joinings because it is
spectral. Therefore, to distinguish between the flow and its inverse, we will apply
r-joinings (for r ≥ 3), see Proposition 3.9 and its consequences.

In Section 4, using Corollary 3.13 (i.e. the 3-joinings approach), we prove that
any von Neumann flow is not isomorphic to its inverse for almost every rotation in
the base.

In Section 5, the approach developed in Section 3 is applied to special flows T f
built over irrational rotations Tx = x+ α on the circle and under Cr−1-roof func-
tions (r is an odd natural number) which are polynomials of degree r on two com-
plementary intervals [0, β) and [β, 1) (0 < β < 1). Here to show non-isomorphism
of T f with the inverse, we need to study r + 1–joinings and we prove that for a.e.
β the flow T f is not isomorphic to its inverse, whenever α satisfies a Diophantine
type condition (along a subsequence, see (5.2)).

In Section 6 the 3-joining approach turns out to be sufficient to construct an
analytic area-preserving flow on the two torus which is not isomorphic to its inverse.
In other words, we show that we can change time in an ergodic linear flow (which
is always reversible) in an analytic way so that the resulting flow is weakly mixing
and not reversible. We use the AACCP method introduced in [23]. Additionally,
slightly modifying the construction, we prove that the resulting flow has no rational
self-similarities. In fact, we obtain disjointness (in the Furstenberg sense) of any
two different rational time automorphisms. This kind of investigations is partly
motivated by Sarnak’s conjecture on orthogonality of deterministic sequences from
Möbius function through disjointness, see [3].

In Section 7, we come back to automorphisms, and as in [41], we show that the
3-joining method can be applied to a class of rank one automorphisms having a
subsequence of towers of Chacon’s type. We show that they are not reversible (we
recall that rank one automorphisms have simple spectra).

In Section 8 we deal with topological self-similarities of continuous time changes
of minimal linear flows on the two torus. Each such flow is topologically conjugate
to the special flow T f build over an irrational rotation Tx = x+α on the circle and
under a continuous roof function f : T→ R+. We show that if T f is topologically

5We use the term 2-joinings for short, however only 2-self-joinings that are in the weak closure
of off-diagonal joinings are used in this method. The same remark applies for joinings of higher
order.
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self-similar then α is a quadratic irrational and f is topologically cohomological to
a constant function. It follows that if a continuous time change of a minimal linear
flow on the two torus is topologically self-similar then it is topologically conjugate
to a minimal linear flows as well. As a byproduct, we obtain an example of a
continuous flow T on the torus which has no topological self-similarities and the
group of scales of self-similarity (for T treated as a measure-preserving system) is
equal to R∗.

For the problem of topological reversibility and its generalizations in the class of
topological Markov shifts, see [26].

First historical examples of automorphisms non-isomorphic to their inverses were
provided by Anzai [2], Malkin [30] and Oseledets [35]. Moreover, the property of
being isomorphic to its inverse (the more, reversibility) is not a typical property.
As shown by del Junco [16] (for automorphisms) and by Danilenko and Ryzhikov
[6] (for flows), typically we have disjointness with the inverse action. But there
are quite a few natural classes of flows which are reversible. Let us go through a
selection of known examples.

A) All ergodic flows with discrete spectrum are reversible. This follows
easily from the Halmos-von Neumann theorem, see e.g. [4] (the fact that each iso-
morphism must be an involution is a consequence of the simplicity of the spectrum
of such flows).

B) All Gaussian flows are reversible. Indeed, each Gaussian flow is determined
by a one-parameter unitary group U = (Ut)t∈R acting on a separable Hilbert space
H such that there is a spectral decomposition

(1.3) H =
∞⊕
n=1

R(xn) with σx1 � σx2 � . . . and σxn(A) = σxn(−A)

for each Borel subset A ⊂ R and n ≥ 1 (and σx1 is assumed to be continuous), see
[19], [27], [28]. Now, the action U on R(xn) is isomorphic to the action V(n):

V
(n)
t (f)(x) = e2πitxf(x) for f ∈ L2(R, σxn),

so Inf(x) = f(−x) is an involution which settles an isomorphism of V(n) and its
inverse. Then, up to isomorphism, I =

⊕∞
n=1 I

(n) is an involution which settles an
isomorphism of U and its inverse6 and it extends to a measure-preserving isomor-
phism of the corresponding Gaussian flow (Tt) and its inverse, see e.g. [28].

C) Some horocycle flows are reversible. Let Γ ⊂ PSL2(R) be a discrete
subgroup with finite covolume. Then the homogeneous space X = Γ\PSL2(R)
is the unit tangent bundle of a surface M of constant negative curvature. Let us
consider the corresponding horocycle flow7 (ht)t∈R and geodesic flow (gs)s∈R on X.
Since

(1.4) gshtg
−1
s = he−2st for all s, t ∈ R,

the flows (ht)t∈R and (he−2st)t∈R are measure-theoretic isomorphic for each s ∈ R,
so all positive numbers are self-similarity scales for a horocycle flow.

We will now show that some horocycle flows are reversible. Let now J denote
the matrix

J =
(

1 0
0 −1

)
.

6Notice that the same argument works for an arbitrary Koopman representation Ut = UTt . In
other words, an arbitrary Koopman representation is unitarily reversible.

7We have ht(Γx) = Γ ·
„
x ·
»

1 t

0 1

–«
and gs(Γx) = Γ ·

„
x ·
»
e−s 0

0 es

–«
.
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Clearly, J /∈ SL2(R). However, if Γ satisfies Γ = J−1ΓJ then J will also act on
Γ\PSL2(R):

J(Γx) := J−1ΓxJ = (J−1ΓJ)J−1xJ = ΓJ−1xJ.

Moreover,
J−1htJ = h−t

and since J yields an order two map, we obtain that in this case the horocycle flow
is reversible. It follows that I((ht)t∈R) = R∗.

Corollary 1.1. In the modular case Γ := PSL2(Z) ⊂ PSL2(R), the horocycle flow
(ht)t∈R is reversible.

There are even cocompact lattices Γ which are not “compatible” with the matrix
J . In this case a deep theory of Ratner [38] implies that in particular (ht)t∈R is not
measure-theoretically isomorphic to its inverse.

Let us come back to the horocycle flow (ht)t∈R on the modular space Γ\PSL2(R),
Γ = PSL2(Z). By Corollary 1.1, this flow is reversible. Moreover, C((ht)t∈R) =
{ht : t ∈ R}. Indeed, first note that

{α ∈ PSL2(R) : αΓα−1 = Γ} = Γ.

In view of the celebrated Ratner’s Rigidity Theorem (see Corollary 2 in [37]), it
follows that C((ht)t∈R) is indeed trivial8. Hence, we obtain the following more
precise version of Corollary 1.1 (cf. footnote 2).

Corollary 1.2. In the modular case Γ := PSL2(Z) ⊂ PSL2(R) we have C((ht)t∈R)
= {ht : t ∈ R}. Then, each S establishing isomorphism of (ht)t∈R with its inverse
is an involution. Moreover, S = ht0 ◦ J for some t0 ∈ R.

D) All Bernoulli flows are reversible. This is done in two steps. If the entropy
is infinite then (via Ornstein’s isomorphisms theorem [32]) we have a Gaussian
realization of such a flow and we use B). If the entropy is finite then (again via
[32]) we can consider the geodesic flow on Γ\PSL2(R). Then

K−1gtK = g−t for all t ∈ R, where K =
(

0 1
−1 0

)
.

This establishes an isomorphism between (gt)t∈R and (g−t)t∈R via an involution
(K2 = Id as an element of PSL2(R)) 9 and hence the isomorphism of (gst)t∈R and
(g−st)t∈R for each s ∈ R \ {0}.
E) Geodesic flow revisited, Hamiltonian dynamics.10 In this case we ob-
tain always reversibility, because each such flow acts on a tangent space following
geodesics: the configuration space consists of pairs (x, v) (x – placement, v – speed)
and the involution is simply given by

(x, v) 7→ (x,−v).

8The general result of Ratner states that elements of the centralizer are the composition of ht0
with the automorphism given by Γx 7→ Γ(αx), where αΓα−1 = Γ.

9An alternative proof of reversibility of Bernoulli was pointed to us by J.-P. Thouvenot. Indeed,
consider the shift T : {0, 1}Z → {0, 1}Z given by T ((xn)n∈Z) = (xn+1)n∈Z, where {0, 1}Z is
equipped with the product measure µ = P⊗Z with P ({0}) = P ({1}) = 1/2. Then the map
I : (xn)n∈Z 7→ (x−n)n∈Z is an involution conjugating T with T−1. Moreover, there is a roof
function f constant on each of the cylinder sets {(xn)n∈Z : x0 = 0}, {(xn)n∈Z : x0 = 1} such that
the special flow T f is Bernoulli [33]. Now, it suffices to apply Remark 2.3 below to conclude that
T f (as well as T f ◦ s for each s ∈ R \ {0}) is reversible. For the infinite entropy case it suffices to
consider the infinite product T f × T f × . . .

10This was pointed out to us by E. Gutkin.
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The authors would like to thank the referee for the comments improving the
presentation of the results of the paper and also for suggesting us one more natural
class of reversible flows given by special flows over reversible interval exchange
transformations (see Remark 2.4).

2. Special flows

Assume that T is an ergodic automorphism of a standard probability Borel space
(X,B, µ). We let B(R) and λR stand for the Borel σ-algebra and Lebesgue measure
on R respectively.

Assume f : X → R is an L1 strictly positive function. Denote by T f = (T ft )t∈R
the corresponding special flow under f (see e.g. [4], Chapter 11). Recall that such
a flow acts on (Xf ,Bf , µf ), where Xf = {(x, s) ∈ X × R : 0 ≤ s < f(x)} and
Bf (µf ) is the restriction of B ⊗ B(R) (µ ⊗ λR) to Xf . Under the action of T f a
point in Xf moves vertically at unit speed, and we identify the point (x, f(x)) with
(Tx, 0). Clearly, T f is ergodic as T is ergodic. To describe this R-action formally
set

f (k)(x) =

 f(x) + f(Tx) + . . .+ f(T k−1x) if k > 0
0 if k = 0

−
(
f(T kx) + . . .+ f(T−1x)

)
if k < 0.

Let us consider the skew product T−f : X × R→ X × R,

T−f (x, r) = (Tx, r − f(x))

and the flow (σt)t∈R on (X × R,B ⊗ B(R), µ⊗ λR)

σt(x, r) = (x, r + t).

Then for every (x, r) ∈ Xf we have

(2.1) T ft (x, r) = Tn−f ◦ σt(x, r) = (Tnx, r + t− f (n)(x)),

where n ∈ Z is unique for which f (n)(x) ≤ r + t < f (n+1)(x).

Remark 2.1. Recall that if T is an ergodic automorphism of a standard probability
Borel space (X,B, µ) is aperiodic. Moreover, any special flow T f is also aperiodic,
i.e. for every t 6= 0 we have µf ({(x, s) ∈ Xf : T ft (x, s) = (x, s)}) = 0.

Remark 2.2. The special flow T f can also be seen as the quotient R-action (σt)t∈R,
σt(x, r) = (x, r+ t) on the space X ×R/ ≡, where ≡ is the T−f -orbital equivalence
relation, T−f (x, r) = (Tx,−f(x) + r). Indeed, σt ◦ T−f = T−f ◦ σt, so σt acts on
the quotient space. Moreover, the quotient space X×R/ ≡ is naturally isomorphic
with Xf by choosing the unique point from the T−f -orbit of (x, r) belonging to
Xf . Finally, (

T f
)
t
(x, r) = (T−f )k σt(x, r)

for a unique k ∈ Z.

Using Remark 2.2 we will now provide a criterion for a special flow to be iso-
morphic to its inverse.

Remark 2.3. Assume that T is isomorphic to its inverse: ST = T−1S. Assume
moreover that

(2.2) f(Sx)− f(x) = h(x)− h(Tx)

for a measurable h : X → R. We claim that the special flow T f is isomorphic to its
inverse and is reversible if S2 = Id and h(TSx) = h(x). Indeed, first notice that

(2.3) (T−f )−1 = T−1
f◦T−1 .
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Set
g(x) = f(x)− h(Tx)

and consider Sg,−1 : X × R→ X × R,

Sg,−1(x, r) = (Sx, g(x)− r).

Note that Sg,−1 is measurable and preserves the measure µ⊗ λR. It follows imme-
diately that

(2.4) Sg,−1 ◦ σt = σ−t ◦ Sg,−1 for each t ∈ R.

All we need to show is that Sg,−1 acts on the space of orbits, that is, it sends a
T−f -orbit into another T−f -orbit. For that, it is enough to show that

(2.5) Sg,−1 ◦ T−f ◦ (Sg,−1)−1 = (T−f )−1
.

Now, in view of (2.3), the equation (2.5) is equivalent to showing that

f(T−1Sx) + g(x) = g(Tx) + f(x)

which indeed holds as by (2.2) (replacing x by Tx) we have

f(STx)− f(Tx) = h(Tx)− h(T 2x),

so f(T−1Sx)− f(Tx) = h(Tx)− h(T 2x), whence

f(T−1Sx)− f(x) = f(Tx)− f(x) + h(Tx)− h(T 2x) = g(Tx)− g(x),

so indeed Sg,−1 settles an isomorphisms of T f and its inverse.
For the second part, we simply check that under the assumption S2 = Id, we

have g(Sx) = g(x) if and only if h(x) = h(TSx).
Finally, notice that in the original functional equation (2.2) we can consider RS

instead of S with R ∈ C(T ) (note however that even if S2 = Id we may now have
(RS)2 6= Id).

To illustrate Remark 2.3 first consider the special flow over irrational rotation
Tx = x+ α on T = [0, 1) with the roof function f of the form

f(x) =
{
b for x ∈ [0, a)
c for x ∈ [a, 1),

where 0 < a < 1 and b, c > 0. Then take Rx = x+ a and Sx = −x. Note that RS
is involution and check that f ◦R ◦ S = f , which by Remark 2.3 means that T f is
reversible.

Here is another application of Remark 2.3.

Remark 2.4. Let T : [0, 1) → [0, 1) be an m-interval exchange transformation
(see e.g. [42]) based on the symmetric permutation, i.e. T transforms the i–th
interval to an (m + 1 − i)–th interval for i = 1, . . . ,m. Denote by λi > 0 the
length of the i-th interval. Let us consider the roof function f : [0, 1)→ R+ which
is constant over each exchanged interval. Then the special flow T f is reversible.
Indeed, remark that T−1 is also an m-interval exchange transformation based on
the symmetric permutation for which the length of the i–th interval is λm+1−i for
i = 1, . . . ,m. It follows that T−1 is metrically isomorphic to T via the involution
Sx = 1− x. Moreover, f ◦ T−1 = f ◦ S. Therefore, f(Sx)− f(x) = h(x)− h(Tx)
with h(x) = f(T−1x) = f(Sx) and h(TSx) = f(Sx) = h(x). In view of Remark
2.3, this yields the reversibility of T f .

This gives rise to a class of reversible linear flows on a translation space of each
genus ≥ 1 (see [42], Lemma 2.12).



8 K. FRĄCZEK, J. KUŁAGA-PRZYMUS, AND M. LEMAŃCZYK

If we take f = 1 then the resulting special flow is called the suspension flow of
T . Note also that special flows are obtained by so called (measurable) change of
time of the suspension flow (see [4]). It is easy to see that

T 1
t (x, r) = (T [t+r]x, {t+ r}).11

Recall that a sequence (qn) of integers, qn → ∞, is called a rigidity sequence for
T if T qn → Id (similarly we define a real-valued rigidity sequence for flows). Note
that whenever (qn) is

(2.6) a rigidity sequence for T , it is a rigidity sequence for the suspension.

Directly from Remark 2.3, it follows that the suspension of the reversible automor-
phism yields a reversible flow.

Remark 2.5. Similarly as the functional equation (2.2) defines an isomorphism of
T f with its inverse, if S ∈ C(T ) in (2.2) then

(2.7) f(Sx)− f(x) = g(x)− g(Tx)

with g : X → R measurable, yields an element of C(T f ). Indeed, consider the skew
product

Sg : X × R→ X × R, Sg(x, r) = (Sx, r + g(x)).
Then Sg commutes with the flow (σt)t∈R and, by (2.8), with the skew product T−f .
It follows that Sg can be considered as an automorphism on Xf = (X × R)/ ≡
with commutes with the special flow T f .

The following lemma tells us that whenever the centralizer of T f is trivial, we
can solve the functional equation (2.7) only in a trivial way.

Lemma 2.6. Assume that T is ergodic and C(T f ) = {T ft : t ∈ R}. Suppose that
S ∈ C(T ) and g : X → R is a measurable function such that

(2.8) f ◦ S − f = g − g ◦ T.
Then there exist k ∈ Z and t0 ∈ R such that

S = T k and g = t0 − f (k).

Proof. By Remark 2.5, the automorphism

Sg : X × R→ X × R, Sg(x, r) = (Sx, r + g(x))

can be considered as an element of C(T f ). By assumption, there exists t0 ∈ R such
that Sg = T ft0 on Xf . Therefore, there exists a measurable function k : X ×R→ Z
with

(Sx, r + g(x)) = Sg(x, r) = T
k(x,r)
−f (x, r + t0) = (T k(x,r)x, r + t0 − f (k(x,r))(x)),

so
Sx = T k(x,r) and g(x) = t0 − f (k(x,r))(x)).

It follows that k does not depend on the second coordinate, i.e. k(x, r) = k(x)
(indeed, f (k1)(x) 6= f (k2)(x) whenever k1 6= k2) and Sx = T k(x)x. Thus

T 1+k(x)x = TSx = STx = T k(Tx)(Tx) = T k(Tx)+1x.

By the ergodicity of T , k ◦ T = k and hence k is constant, which proves our
claim. �

3. Joinings and non-isomorphism of a flow with its inverse

In this section we will present a method of proving non-reversibility by studying
the weak closure of off diagonal self-joinings (of order at least 3).

11[·] stands for the integer part of a real number.



NON-REVERSIBILITY FOR ERGODIC FLOWS 9

3.1. Self-joinings for ergodic flows. Assume that T = (Tt)t∈R is an ergodic flow
on (X,B, µ). For any k ≥ 2 by a k-self-joining of T we mean any probability (Tt×
. . .×Tt)t∈R-invariant measure λ on (Xk,B⊗k) whose projections on all coordinates
are equal to µ, i.e.

λ(X × . . .×X ×Ai ×X × . . .×X) = µ(Ai) for any 1 ≤ i ≤ k and Ak ∈ B.

We will denote by Jk(T ) the set of all k-self-joinings for T . If the flow (Tt × . . .×
Tt)t∈R on (Xk, λ) is ergodic then λ is called an ergodic k-joining.

Let {Bn : n ∈ N} be a countable family in B which is dense in B for the (pseudo-)
metric dµ(A,B) = µ(A4B). Let us consider the metric d on Jk(T ) defined by

d(λ, λ′) =
∑

n1,...,nk∈N

1
2n1+...+nk

|λ(Bn1 × . . .×Bnk)− λ′(Bn1 × . . .×Bnk)|.

Endowed with corresponding to d topology the set Jk(T ) is compact.
For any family S1, . . . , Sk−1 of elements of the centralizer C(T ) we will denote

by µS1,...,Sk−1 the k-joining determined by

µS1,...,Sk−1(A1 × . . .×Ak−1 ×Ak) = µ(S−1
1 A1 ∩ . . . ∩ S−1

k−1Ak−1 ∩Ak)

for all A1, . . . , Ak ∈ B. Since µS1,...,Sk−1 is the image of the measure µ via the
map x 7→ (S1x, . . . , Sk−1x, x), this joining is ergodic. When all Si are time ti-
automorphisms of the flow, then µS1,...,Sk−1 is called an off-diagonal self-joining.

For any probability Borel measure P ∈ P(Rk−1) we will deal with the measure∫
Rk−1 µTt1 ,...,Ttk−1

dP (t1, . . . , tk−1) defined by∫
Rk−1

µTt1 ,...,Ttk−1
dP (t1, . . . , tk−1)(A) :=

∫
Rk−1

µTt1 ,...,Ttk−1
(A)dP (t1, . . . , tk−1)

for any A ∈ B⊗k. Then
∫

Rk−1 µTt1 ,...,Ttk−1
dP (t1, . . . , tk−1) ∈ Jk(T ). In the follow-

ing section we will provide a criterion of having such an integral self-joining in the
weak closure of off-diagonal joinings for some special flows.

Similarly, we also consider joinings between different ( ergodic) flows, say T =
(Tt)t∈R and S = (St)t∈R. Following [10], we say that T and S are disjoint if
J(T ,S) = {µ⊗ ν). We write T ⊥ S.

3.2. A sufficient condition of existence of integral joinings in the weak
closure. Let G be a locally compact Abelian Polish group. Assume that ‖ · ‖ is
an F-norm inducing a translation invariant metric d on G. Denote by G the one-
point compactification of G. Assume moreover that T : (X,B, µ) → (X,B, µ) is
an ergodic automorphism and Fn : X → G, n ≥ 1, is a sequence of measurable
functions such that

(3.1) (Fn)∗µ→ P ∈ P(G)

∗-weakly; P(G) stands for the set of probability Borel measures on G. The following
result is a natural generalization of Lemma 4.1 from [8].

Proposition 3.1. Under the above assumptions, suppose moreover that

(3.2) Fn ◦ T − Fn → 0 in measure.

Then for each φ ∈ C(G), h : X → G measurable and j ∈ L1(X,B, µ) we have

lim
n→∞

∫
X

φ(Fn(x) + h(x))j(x) dµ(x) =
∫
X

∫
G

φ(g + h(x))j(x) dP (g)dµ(x).
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Proof. We will first assume that h = 0. In order to prove the above weak conver-
gence we need to show that

(3.3) lim
n→∞

∫
X

φ(Fn(x))j(x) dµ(x) = 0

for each j whose mean is zero. Now, since the functions of the form k ◦ T −
k with k ∈ L1(X,B, µ) are dense in the latter subspace we need to show that
limn→∞

∫
X
φ(Fn(x))(k(Tx)− k(x)) dµ(x) = 0. We have∫

X

φ(Fn(x))j(x) dµ(x) =
∫
X

φ(Fn(x))k(Tx) dµ(x)−
∫
X

φ(Fn(Tx))k(Tx) dµ(x)

=
∫
X

(φ(Fn(x))− φ(Fn(Tx))) k(Tx) dµ(x).

Now, since φ is uniformly continuous and bounded and (3.2) holds, (3.3) follows.
Suppose now that h =

∑m
i=1 hi · 1Ai is a simple function (hi ∈ G and the sets

Ai, 1 ≤ i ≤ m form a measurable partition of X). We have∫
X

φ(Fn(x) + h(x))j(x) dµ(x) =
m∑
i=1

∫
X

φ(Fn(x) + hi)j(x)1Ai(x) dµ(x)

→
m∑
i=1

∫
G

φ(g + hi) dP (g)
∫
X

(j · 1Ai)(x) dµ(x)

=
∫
X

∫
G

φ(g + h(x))j(x) dP (g)dµ(x).

All we need to show now is that for each ε > 0 we can find a measurable hε : X → G
taking only finitely many values so that

(3.4)
∣∣∣∣∫
X

φ(Fn(x) + h(x))j(x) dµ(x)−
∫
X

φ(Fn(x) + hε(x))j(x) dµ(x)
∣∣∣∣ < ε

and

(3.5)
∣∣∣∣∫
X

φ(g + h(x))j(x) dµ(x)−
∫
X

φ(g + hε(x))j(x) dµ(x)
∣∣∣∣ < ε.

Given ε > 0 we select δ > 0 so that

‖g1 − g2‖ < δ ⇒ |φ(g1)− φ(g2)| < ε/(2‖j‖L1).

Then select η > 0 so that whenever µ(A) < η∫
A

|j(x)| dµ(x) < ε/(4‖φ‖∞).

Finally choose hε : X → G measurable so that hε takes only finitely many values
and

µ ({x ∈ X : |hε(x)− h(x)| ≥ δ}) < η.

We have∣∣∣∣∫
X

φ(Fn(x) + h(x))j(x) dµ(x)−
∫
X

φ(Fn(x) + hε(x))j(x) dµ(x)
∣∣∣∣

≤ 2
∫
{x∈X: ‖hε(x)−h(x)‖≥δ}

‖φ‖∞|j(x)| dµ(x)

+
∫
{x∈X: ‖hε(x)−h(x)‖<δ}

ε

2‖j‖L1
|j(x)| dµ(x) < ε.

We established (3.4) and (3.5) follows in the same manner. �
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Lemma 3.2. For all t0, . . . , td−1 ∈ R and all measurable sets A0, . . . , Ad ⊂ Xf we
have

µf

(
d−1⋂
i=0

(T f )tiAi ∩Ad

)
=

∑
k0,k1,...,kd−1∈Z

µ⊗ λR

(
d−1⋂
i=0

(
(T−f )kiσtiAi

)
∩Ad

)
.

Moreover, the sets
⋂d−1
i=0

(
(T−f )kiσtiAi

)
∩ Ad, (k0, . . . , kd−1) ∈ Zd are pairwise

disjoint.

Proof. Given (t0, . . . , td−1) ∈ Rd and (x, r) ∈ Xf ,

(T f )ti(x, r) = (T−f )kiσti(x, r) for a unique ki ∈ Z for 0 ≤ i ≤ d− 1.

Hence if we fix i ∈ {0, . . . , d− 1} then

T fti(Ai) =
⋃
k∈Z

T k−fσti(Ai) ∩Xf .

The sets on the RHS12 of the above equality are pairwise disjoint and they corre-
spond to the images via T fti of the partition of Xf into pairwise disjoint sets on
which the action of T fti corresponds to T

k
−fσti , k ∈ Z. Therefore (remembering that

Ad ⊂ Xf )
d−1⋂
i=0

T fti(Ai) ∩Ad =
d−1⋂
i=0

⋃
ki∈Z

T k−fσti(Ai) ∩Ad

=
⋃

k0,k1,...,kd−1∈Z

(
d−1⋂
i=0

(
(T−f )kiσtiAi

)
∩Ad

)
.

It follows that the above representation corresponds to the partition of the spaceXf

into countably many subsets Xf
k0,...,kd−1

, (k0, . . . , kd−1) ∈ Zd, on which, for each i =
0, . . . , d− 1, (T f )ti acts as (T−f )kiσti . Moreover, since (T f )ti is an automorphism,
the images (T−f )kiσti

(
Xf
k0,...,kd−1

)
are pairwise disjoint for (k0, . . . , kd−1) ∈ Zd

and the result follows. �

Lemma 3.3. Suppose that A0, . . . , Ad ⊂ X × R are measurable rectangles of the
form Ai = Bi × Ci for 0 ≤ i ≤ d. Then

µ⊗ λR

(
d−1⋂
i=0

(
(T−f )kiAi

)
∩Ad

)

=
∫

Td−1
i=0 T

kiBi∩Bd
λR

(
d−1⋂
i=0

(
Ci + f (−ki)(x)

)
∩ Cd

)
dµ(x).

Proof. We have (x, r) ∈
⋂d−1
i=0 (T−f )ki(Bi × Ci) ∩Bd × Cd if and only if

(x, r) = (T kiyi, ri − f (ki)(yi)) with (yi, ri) ∈ Bi × Ci
for 0 ≤ i ≤ d− 1 and (x, r) ∈ Bd × Cd. Thus

(x, r) ∈
d−1⋂
i=0

(T−f )ki(Bi × Ci) ∩Bd × Cd

if and only if

x ∈
d−1⋂
i=0

T kiBi ∩Bd and r ∈
d−1⋂
i=0

(
Ci − f (ki)(T−kix)

)
∩ Cd.

12This is the abbreviation of right hand side; similarly we use LHS.
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Since f (m)(T−mx) = −f (−m)(x) for any m ∈ Z, the result follows. �

As an immediate consequence of (the second part of) Lemma 3.2 and Lemma 3.3
we obtain the following result.

Remark 3.4. For fixed t0, . . . , td−1 ∈ R and ki0 ∈ Z with 0 ≤ i0 ≤ d − 1 and for
all measurable sets Ai ⊂ Xf of the form Ai = Bi × Ci where 0 ≤ i ≤ d we have13

∑
kj∈Z,j 6=i0

µ⊗ λR

(
d−1⋂
i=0

(T−f )kiσtiAi ∩Ad

)
≤ µ⊗ λR

(
(T−f )ki0σti0Ai0 ∩Ad

)
=
∫
T
ki0Bi0∩Bd

λR

(
(Ci0 + ti0 + f (−ki0 )(x)) ∩ Cd

)
dµ(x)

≤
∫
X

λR

((
Ci0 + ti0 + f (−ki0 )(x)

)
∩ Cd

)
dµ(x).

Suppose that f ∈ L2(X,µ) and (qn)n∈N is a sequence of integer numbers such
that the sequence (f (qn)

0 )n∈N is bounded in L2(X,µ), where f0 := f −
∫
f dµ.

Lemma 3.5 (Lemma 4.4 in [8]). For every pair of bounded sets D,E ⊂ R there
exists a sequence (ak)k∈Z of positive numbers such that

•
∑
k∈Z ak < +∞,

•
∫
X
λR

(
(D − f (qn)

0 (x) + f (k)(x)) ∩ E
)
dµ ≤ ak for each n ∈ N and k ∈ Z.

Remark 3.6. For any l1, l2 ∈ Z we have

f (l1+l2)(x)− l1 = f (l1)(x)− l1 + f (l2)(T l1x) = f
(l1)
0 (x) + f (l2)(T l1x).

Proposition 3.7. Suppose that f ∈ L2(X,µ) is a positive function with
∫
X
f dµ =

1 and there exists c > 0 such that f (k) ≥ ck for a.a. x ∈ X and for all k ∈ N
large enough. Let (qin)n≥1 be rigidity sequences for T for 0 ≤ i ≤ d− 1. Moreover,
suppose that the sequences

(
f

(qin)
0

)
n≥1

are bounded in L2(X,µ) for 0 ≤ i ≤ d − 1

and

(3.6)
(
f

(q0
n)

0 , . . . , f
(qd−1
n )

0

)
∗

(µ)→ P weakly in P(Rd).

Then

(3.7)
(
µf
)
T f
q0n
,...,T f

q
d−1
n

→
∫

R

(
µf
)
T f−t0

,...,T f−td−1

dP (t0, . . . , td−1).

Remark 3.8. Before we pass to the proof let us see the assertion of the proposition
in case of the suspension flow, i.e. f = 1, that is, f0 = 0. In this case P is the Dirac
measure at zero of Rd, so in (3.7) we have a convergence to the diagonal (d+1)-self-
joining ∆d+1. This can be see directly in view of (2.6); indeed, all sequences (qin) are
rigidity sequences for the suspension flow and hence yield convergence of the LHS
in (3.7) to ∆d+1. It follows that Proposition 3.7 provides a class of (measurable)
change of times of the suspension flow, so that the LHS in (3.7) weakly converges
to the integral of off-diagonal (d + 1)-self-joinings given by the limit distribution
in (3.6).

If T is rigid and reversible, then so is its suspension. We will see later the the
changes of time described in Proposition 3.7 may lead to non-reversible flows.

13Here and in what follows
P
kj∈Z,j 6=i0 means

P
k0,...,ki0−1,ki0+1,...,kd−1

.
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Proof. First notice that all we need to show is that (3.7) holds for all measurable
rectangles Ai ⊂ Xf of the form Ai = Bi×Ci (0 ≤ i ≤ d) such that Ci are bounded
for 0 ≤ i ≤ d.

Setting

ank0,...,kd−1
:= µ⊗ λR

(
d−1⋂
i=0

(
(T−f )−ki(T−f )−q

i
nσ−qinAi

)
∩Ad

)

for n ∈ N, k0, . . . , kd−1 ∈ Z, by Lemma 3.2, we have

(3.8) µf

(
d−1⋂
i=0

(T f )−qinAi ∩Ad

)
=

∑
k0,...,kd−1∈Z

ank0,...,kd−1
.

Since σ−qin(Ai) = Bi × (Ci − qin), using Lemma 3.3 and Remark 3.6, we obtain

ank0,...,kd−1
=
∫

Td−1
i=0 T

−ki−qinBi∩Bd
λR

(d−1⋂
i=0

(
Ci − qin + f (ki+q

i
n)(x)

)
∩ Cd

)
dµ(x)

=
∫

Td−1
i=0 T

−ki−qinBi∩Bd
λR

(d−1⋂
i=0

(
Ci + f

(qin)
0 (x) + f (ki)(T q

i
nx)
)
∩ Cd

)
dµ(x).

(3.9)

Using again Remark 3.6, for all n ∈ N, k0, . . . , kd−1 ∈ Z we have

bnk0,...,kd−1
:=
∫

Td−1
i=0 T

−kiBi∩Bd
λR

(
d−1⋂
i=0

(
Ci − qin + f (k+qin)(x)

)
∩ Cd

)
dµ(x)

=
∫

Td−1
i=0 T

−kiBi∩Bd
λR

(
d−1⋂
i=0

(
Ci+f

(qin)
0 (x)+f (ki)(T q

i
nx)
)
∩ Cd

)
dµ(x).

(3.10)

We claim that

(3.11) lim
n→∞

(
ank0,...,kd−1

− bnk0,...,kd−1

)
= 0 for all k0, . . . , kd−1 ∈ Z.

Notice that in formulas (3.9) and (3.10) describing ank0,...,kd−1
and bnk0,...,kd−1

respec-
tively we have

ψn(x) := λR

(
d−1⋂
i=0

(
Ci − qin + f (ki+q

i
n)(x)

)
∩ Cd

)
≤ λR(Cd).

Therefore,

∣∣ank0,...,kd−1
− bnk0,...,kd−1

∣∣ =
∣∣∣ ∫Td−1

i=0 T
−ki−qinBi∩Bd

ψn dµ−
∫

Td−1
i=0 T

−kiBi∩Bd
ψn dµ

∣∣∣
≤ λR(Cd) µ

(( d−1⋂
i=0

T−ki−q
i
nBi ∩Bd

)
4
( d−1⋂
i=0

T−kiBi ∩Bd
))

≤ λR(Cd)
d−1∑
i=0

µ(T q
i
nBi4Bi).

and (qin)n≥1 for 0 ≤ i ≤ d− 1 are rigidity sequences for T , this gives (3.11).
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Let ε > 0 and fix 0 ≤ i0 ≤ d− 1 and ki0 ∈ Z. By Remark 3.4 and Remark 3.6,
for any n ∈ N we have

∑
kj∈Z,j 6=i0

ank0,...,kd−1
≤
∫
X

λR

((
Ci0 − qi0n + f (ki0+qi0n )(x)

)
∩ Cd

)
dµ(x)

=
∫
X

λR

((
Ci0 + f

(qi0n )
0 (x) + f (ki0 )(T q

i0
n x)

)
∩ Cd

)
dµ(x)

=
∫
X

λR

((
Ci0 − f

(−qi0n )
0 (x) + f (ki0 )(x)

)
∩ Cd

)
dµ(x).

Therefore, by Lemma 3.5, there exists M > 0 such that for any 0 ≤ i0 ≤ d− 1 and
n ∈ N ∑

|ki0 |>M

∑
kj∈Z,j 6=i0

ank0,...,kd−1
<

ε

4d
.

It follows that
(3.12) ∑

max(|k0|,...,|kd−1|)>M

ank0,...,kd−1
≤

∑
0≤i0≤d−1

∑
|ki0 |>M

∑
kj∈Z,j 6=i0

ank0,...,kd−1
≤ ε/4.

Let us consider Fn : X → Rd, Fn(x) = (F 0
n(x), . . . , F d−1

n (x)) with

F in(x) = f
(qin)
0 (x) + f (ki)(T q

i
nx)− f (ki)(x) for i = 0, . . . , d− 1

and (k0, . . . , kd−1) fixed. Since (qin)n≥1 is a rigidity sequence for T , f (ki)◦T qin−f (ki)

tends to zero in measure when n → ∞ for every i = 0, . . . , d − 1. Therefore, (3.6)
implies (Fn)∗µ→ P weakly in P(Rd). Moreover,

F in ◦ T − F in = (f ◦ T ki) ◦ T q
i
n − (f ◦ T ki) for i = 0, . . . , d− 1,

so Fn ◦T −Fn → 0 in measure. Now using Proposition 3.1 with G = Rd and (3.10)
we obtain

bnk0,...,kd−1

=
∫

Td−1
i=0 T

−kiBi∩Bd
λR

( d−1⋂
i=0

(
Ci + f

(qin)
0 (x) + f (ki)(T q

i
nx)
)
∩ Cd

)
dµ(x)

=
∫

Td−1
i=0 T

−kiBi∩Bd
λR

( d−1⋂
i=0

(
Ci + F in(x) + f (ki)(x)

)
∩ Cd

)
dµ(x)

→
∫

Td−1
i=0 T

−kiBi∩Bd

∫
Rd
λR

( d−1⋂
i=0

(
Ci+ti+f (ki)(x)

)
∩Cd

)
dP (t0, . . . , td−1)dµ(x)

=: ck0,...,kd−1

(3.13)
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for each k0, . . . , kd−1 ∈ Z. By Fubini’s theorem and Lemma 3.3 we have

ck0,...,kd−1

=
∫

Rd

∫
Td−1
i=0 T

kiBi∩Bd
λR

(d−1⋂
i=0

(
Ci+ti+f (ki)(x)

)
∩Cd

)
dµ(x) dP (t0, . . . , td−1)

=
∫

Rd
µ⊗ λR

( d−1⋂
i=0

(T−f )−kiσti(Bi × Ci) ∩ (Bd × Cd)
)
dP (t0, . . . , td−1)

=
∫

Rd
µ⊗ λR

( d−1⋂
i=0

(T−f )−kiσtiAi ∩Ad
)
dP (t0, . . . , td−1).

(3.14)

Moreover, by Lemma 3.2,∑
k0,...,kd−1∈Z

ck0,...,kd−1

=
∑

k0,...,kd−1∈Z

∫
Rd
µ⊗λR

( d−1⋂
i=0

(T−f )−kiσtiAi ∩Ad
)
dP (t0, . . . , td−1)

=
∫

Rd
µf
( d−1⋂
i=0

(T f )tiAi ∩Ad
)
dP (t0, . . . , td−1).

(3.15)

Increasing M , if necessary, we can assume that

(3.16)
∑

max(|k0|,...,|kd−1|)>M

ck0,...,kd−1 ≤ ε/4.

Combining (3.11) with (3.13) we get

ank0,...,kd−1
→ ck0,...,kd−1 for all k0, . . . , kd−1 ∈ Z.

Therefore, there exists N ∈ N such that for all n ≥ N and k0, . . . , kd−1 ∈ Z with
max(|k0|, . . . , |kd−1|) ≤M

|ank0,...,kd−1
− ck0,...,kd−1 | <

ε

2(2M + 1)d
.

In view of (3.12) and (3.16), it follows that∣∣∣ ∑
k0,...,kd−1∈Z

ank0,...,kd−1
−

∑
k0,...,kd−1∈Z

ck0,...,kd−1

∣∣∣
≤

∑
max(|k0|,...,|kd−1|)>M

ank0,...,kd−1
+

∑
max(|k0|,...,|kd−1|)>M

ck0,...,kd−1

+
∑

max(|k0|,...,|kd−1|)≤M

|ank0,...,kd−1
− ck0,...,kd−1 | < ε.

By (3.8) and (3.15), this completes the proof. �

3.3. FS-type joinings and non-isomorphism of a flow with its inverse.
From now on we assume that all flows under consideration are ergodic and aperiodic.

For any ε̄ = (ε0, . . . , εd−1) ∈ {0, 1}′d := {0, 1}d \ {(0, . . . , 0)} and for any vector
x̄ = (x0, . . . , xd−1) ∈ Rd let

x̄(ε) = ε0x0 + ε1x1 + . . .+ εd−1xd−1.
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If we look at the assumptions of Proposition 3.7 we see that for any choice of
ε̄ = (ε0, . . . , εd−1) ∈ {0, 1}′d setting q̄n := (q0

n, q
1
n, . . . , q

d−1
n ) we have

(q̄n(ε̄))n≥1 is a rigidity sequence for T and
(
f

(q̄n(ε̄))
0

)
n≥1

is bounded in L2.

we can assume that((
f

(q̄n(ε̄))
0

)
ε̄∈{0,1}′d

)
∗
→ Q ∈ P(R{0,1}

′d
) when n→∞.

For any t̄ ∈ R{0,1}′d denote by µft̄ ∈ J2d(T f ) the off-diagonal 2d-self-joining
defined the family of elements of the centralizer {T ft̄ε̄ : ε̄ ∈ {0, 1}′d}, this is

µft̄

( ∏
ε̄∈{0,1}d

Aε̄

)
= µf

( ⋂
ε̄∈{0,1}d

T f−t̄ε̄Aε̄

)
,

we make the convention that t̄(0,...,0) = 0 for any t̄ ∈ R{0,1}′d . Hence, in view of
Proposition 3.7

(3.17) µf(q̄n(ε̄))
ε̄∈{0,1}′d

→
∫

R{0,1}′d
µf−t̄ dQ(t̄).

Recall that given ā = (a0, . . . , ad−1) ∈ Rd, by the finite sum set FS(ā) of ā we
mean

FS(ā) = {a0, a1, . . . , ad−1, a0 + a1, a0 + a2, . . . , a0 + a1 + . . .+ ad−1}

=
{
ā(ε̄) : ε̄ ∈ {0, 1}′d

}
.

The off-diagonal joinings on the LHS of (3.17) have certain symmetry property
(explored below) which, when assuming isomorphism of the flow with its inverse,
should result in a certain symmetry property of the limit measure Q. Hence, if
the expected symmetry of Q does not take place we obtain that the flow is not
isomorphic to its inverse. We now pass to a precise description of the symmetry of
Q in a more general situation.

Assume that T = (Tt)t∈R is an ergodic and aperiodic flow on (X,B, µ). Suppose
that there exists a sequence (q̄n)n≥1 in Rd, and a probability Borel measure Q ∈
P(R{0,1}′d) such that

(3.18) µ(q̄n(ε̄))
ε̄∈{0,1}′d

→
∫

R{0,1}′d
µ−t̄ dQ(t̄) in J2d(T ).

Note that, because of the aperiodicity of T , for distinct t̄, s̄ ∈ R{0,1}′d the measures
µt̄, µs̄ are orthogonal. Therefore, the integral in (3.18) represents the ergodic
decomposition of the limit measure.

We also assume that T and T ◦ (−1) are isomorphic, i.e. for some invertible
S : (X,B, µ)→ (X,B, µ)

(3.19) S ◦ Tt ◦ S−1 = T−t for each t ∈ R.

The map S : X → X induces a continuous (affine) invertible map S∗ : J2d(T ) →
J2d(T ) such that

S∗(ρ)
( ∏
ε̄∈{0,1}d

Aε̄

)
:= ρ

( ∏
ε̄∈{0,1}d

S−1Aε̄

)
for Aε̄ ∈ B, ε̄ ∈ {0, 1}d.



NON-REVERSIBILITY FOR ERGODIC FLOWS 17

Moreover, for any t̄ ∈ R{0,1}′d

S∗(µt̄)
( ∏
ε̄∈{0,1}d

Aε̄

)
= µt̄

( ∏
ε̄∈{0,1}d

S−1Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

T−t̄ε̄S
−1Aε̄

)
= µ

(
S−1

⋂
ε̄∈{0,1}d

Tt̄ε̄Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

Tt̄ε̄Aε̄

)
= µ−t̄

( ∏
ε̄∈{0,1}d

Aε̄

)
Thus

(3.20) S∗ (µt̄) = µ−t̄.

By the continuity of S∗

S∗
(
µ(q̄n(ε̄))

ε̄∈{0,1}′d

)
→ S∗

(∫
R{0,1}′d

µ−t̄ dQ(t̄)
)

=
∫

R{0,1}′d
S∗(µ−t̄) dQ(t̄).

In view of (3.20), it follows that

(3.21) µ(−q̄n(ε̄))
ε̄∈{0,1}′d

→
∫

R{0,1}′d
µt̄ dQ(t̄).

Let us consider the involution

I : {0, 1}d → {0, 1}d, I(ε0, . . . , εd−1) = (1− ε0, . . . , 1− εd−1),

θ̄ : R{0,1}
′d
→ R{0,1}

′d
, θ̄

(
(t̄ε̄)ε̄∈{0,1}′d

)
=
((
t̄(1,...,1) − t̄I(ε̄)

)
ε̄∈{0,1}′d

)
.

Thus, by (3.18)

µ(−q̄n(ε̄))
ε̄∈{0,1}′d

( ∏
ε̄∈{0,1}d

Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

Tq̄n(ε̄)Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

Tq̄n(ε̄)−q̄n(1,...,1)Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

T−q̄n(I(ε̄))Aε̄

)
= µ

( ⋂
ε̄∈{0,1}d

T−q̄n(ε̄)AI(ε̄)

)
= µ(q̄n(ε̄))

ε̄∈{0,1}′d

( ∏
ε̄∈{0,1}d

AI(ε̄)

)
→
∫

R{0,1}′d
µ−t̄

( ∏
ε̄∈{0,1}d

AI(ε̄)

)
dQ(t̄) =

∫
R{0,1}′d

µ
( ⋂
ε̄∈{0,1}d

Tt̄ε̄AI(ε̄)

)
dQ(t̄)

=
∫

R{0,1}′d
µ
( ⋂
ε̄∈{0,1}d

Tt̄I(ε̄)Aε̄

)
dQ(t̄)

=
∫

R{0,1}′d
µ
( ⋂
ε̄∈{0,1}d

T−(t̄(1,...,1)−t̄I(ε̄))Aε̄

)
dQ(t̄)

=
∫

R{0,1}′d
µθ̄(t̄)

( ∏
ε̄∈{0,1}d

Aε̄

)
dQ(t̄);

in the last line we use the fact that t̄(1,...,1)− t̄I(ε̄) = 0 for ε̄ = (0, . . . , 0). In view of
(3.21), it follows that∫

R{0,1}′d
µTt̄ dQ(t̄) =

∫
R{0,1}′d

µTt̄ dθ̄∗Q(t̄).

By the uniqueness of ergodic decomposition, we get θ̄∗(Q) = Q. In this way we
have proved the following result.

Proposition 3.9. Assume that T = (Tt)t∈R is an ergodic and aperiodic flow on
(X,B, µ). Assume that T satisfies (3.18). If the measure Q is not invariant under
the map θ̄ : R{0,1}′d → R{0,1}′d then (Tt)t∈R is not isomorphic to its inverse. In
particular, (Tt)t∈R is not reversible.



18 K. FRĄCZEK, J. KUŁAGA-PRZYMUS, AND M. LEMAŃCZYK

Remark 3.10. Suppose additionally that the flow T is weakly mixing. Then each
its non-trivial factor is also weakly mixing, so it is ergodic and aperiodic. For each
such factor (3.18) is evidently valid. It follows that the absence of isomorphism to
the inverse is inherited by non-trivial factors of T .

Two particular cases follows. First, consider the case d = 2. Then the space
R{0,1}′2 is identified with R3 by the map R{0,1}′2 3 t 7→ (t(1,1), t(1,0), t(0,1)) ∈ R3.
The the map θ̄ is identified with θ : R3 → R3, θ(t, u, v) = (t, t− v, t− u).

Corollary 3.11. Assume that T = (Tt)t∈R is an ergodic and aperiodic flow on
(X,B, µ). Assume moreover that

µTrn+qn ,Trn ,Tqn
7→
∫

R3
µT−t,T−u,T−v dQ(t, u, v)

for some probability measure Q ∈ P(R3). If the measure Q is not invariant under
the map (t, u, v) 7→ (t, t− v, t− u) then T is not isomorphic to its inverse.

Now suppose that q̄n = (qn, . . . , qn). Then q̄n(ε̄) = |ε̄|qn, where |ε̄| = ε1+· · ·+εd.
Let us consider the maps

% : Rd → R{0,1}
′d
, %

(
(xj)d−1

j=0

)
=
(
xd−|ε|

)
ε̄∈{0,1}′d ,

θ : Rd → Rd, θ(t0, t1, . . . , td−1) = (t0, t0 − td−1, . . . , t0 − t1).

Then % ◦ θ = θ̄ ◦ %. Moreover, if

(3.22) µTdqn ,T(d−1)qn ,...,Tqn
7→
∫

Rd
µT−t0 ,T−t1 ,...,T−td−1

dP (t0, . . . , td−1)

for some P ∈ P(Rd) then (3.18) holds for a measure Q = %∗(P ) ∈ P(R{0,1}′d).
Moreover, θ̄∗(Q) = Q implies %∗θ∗(P ) = %∗(P ), and hence θ∗(P ) = P . As a
conclusion from Proposition 3.9 we obtain the following.

Corollary 3.12. Assume that T = (Tt)t∈R is an ergodic and aperiodic flow on
(X,B, µ). Assume that (3.22) is valid for a measure P ∈ P(Rd). If the measure P
is not invariant under the map θ : Rd → Rd then T is not isomorphic to its inverse.

Finally consider d = 2.

Corollary 3.13. Assume that T = (Tt)t∈R is an ergodic and aperiodic flow on
(X,B, µ). Assume also that

µT2qn ,Tqn
→
∫

R2
µT−t,T−u dQ(t, u)

for some probability measure Q on R2. If the measure Q is not invariant under
θ(t, u) = (t, t − u) then (Tt)t∈R is not isomorphic to its inverse. In particular, if
(0, x) ∈ R2 is an atom of Q but (0,−x) is not then T is not isomorphic to its
inverse.

In next three sections we will deal with special flows built over irrational rotations
on the circle. Such flows are always ergodic and aperiodic (see Remark 2.1), so we
can apply the results of this section for proving the absence of isomorphism with
their inverses.

4. Special flows over irrational rotations non-isomorphic to their
inverses

In this section we will discuss non-reversibility property for special flows built
over irrational rotations on the circle and under piecewise absolutely continuous
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roof functions. For a real number t denote by {t} its fractional part and by ‖t‖ its
distance to the nearest integer number.

We call a function f : T → R piecewise absolutely continuous if there exist
β1, . . . , βK ∈ T such that f |(βj ,βj+1) is an absolutely continuous function for j =
1, . . . ,K (βK+1 = β1). Let dj := f−(βj) − f+(βj), where f±(β) = limy→β± f(y).
Then the number

(4.1) S(f) :=
K∑
j=1

dj =
∫

T
f ′(x)dx

is the sum of jumps of f . Without loss of generality we can restrict ourselves
to functions continuous on the right. Each such function can be represented as
f = fpl + fac, where fac : T → R is an absolutely continuous function with zero
mean and

fpl(x) =
K∑
i=1

di{x− βi}+ d.

In this section we will prove non-reversibility for special flows T f built over almost
every irrational rotation Tx = x + α and under roof functions f with S(f) 6= 0.
Such flows are called von Neumann flows.

We need some auxiliary simple lemmas.

Lemma 4.1. Let (Xn) be a sequence of random variables (each one defined on a
probability space (Ω,F , µ)) with values on Rd. Assume that for n ≥ 1 we have a
partition {Ank : k = 1, . . . ,K} of Ω such that µ(Ank ) → δk when n → ∞ for each
k = 1, . . . ,K. Assume moreover that for each k = 1, . . . ,K

(Xn)∗(µAnk )→ Pk when n→∞

weakly in the space of probability measures on Rd (µC stands for the relevant con-
ditional measure: µC(A) := µ(A ∩ C)/µ(C)). Then

(Xn)∗(µ)→
K∑
k=1

δkPk.

Proof. Assume that φ : Rd → R is continuous and bounded. Then∫
Rd
φ(t) d ((Xn)∗ (µ)) (t) =

∫
Ω

φ(Xn) dµ =
K∑
k=1

µ(Ank )
∫

Ω

φ(Xn) dµAnk

→
K∑
k=1

δk

∫
Rd
φ(t) dPk(t).

�

Lemma 4.2. Let (Xn) and (Cn) be sequences of random variables (each one defined
on a probability space (Ωn,Fn, µn)) with values on Rd. Assume that (Xn)∗(µn)→ P
and Cn tends uniformly to the constant function c ∈ Rd. Then

(Xn + Cn)∗(µn)→ (Tc)∗(P ),

where Tc(x) = x+ c in Rd.

Proof. Fix s ∈ Rd. By assumption∫
Ω

e2πis·Xn dµn →
∫

Rd
e2πis·t dP (t).
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Moreover,∣∣∣ ∫
Ω

e2πis·(Xn+Cn) dµn −
∫

Rd
e2πis·(t+c) dP (t)

∣∣∣
=
∣∣∣ ∫

Ω

e2πis·(Xn+Cn−c) dµn −
∫

Rd
e2πis·t dP (t)

∣∣∣
≤
∣∣∣ ∫

Ω

e2πis·Xn dµn −
∫

Rd
e2πis·t dP (t)

∣∣∣+ 2π|s|
∫

Ω

|Cn − c| dP (t).

It follows that∫
Ω

e2πis·(Xn+Cn) dµn →
∫

Rd
e2πis·(t+c) dP (t) =

∫
Rd
e2πis·t d((Tc)∗(P ))(t),

which completes the proof. �

The following lemma holds.

Lemma 4.3. Let (Xn) be a sequence of random variables (each one defined on
a probability space (Ωn,Fn, µn)) with values on Rd such that (Xn)∗(µn) → P .
Assume that A : Rd → Rd′ is continuous. Then

(A(Xn))∗ (µn)→ A∗(P ).

Remark 4.4. Directly from the definition it follows that {x+ y} = {x+ {y}} for
each x, y ∈ R. Moreover, whenever a, b ∈ T = [0, 1), we have

{x+ a− b} − {x− b} = a− 1[{b−a},b)(x)

for x ∈ T, where [{b−a}, b) is understood as an interval on the circle (if d > e then
[d, e) = [d, 1)∪ [0, e)). Indeed, {x+ a− b} − {x− b} = {a+ {x− b}} − {x− b} and
for 0 ≤ t < 1 we have {a+ t} − t = a if 0 ≤ t < 1− a and a− 1 for 1− a ≤ t < 1.

For any irrational number α = [0; a1, a2, . . .) ∈ T denote by (pn/qn)n≥0 the
sequence of convergents in continued fraction expansion of α (see e.g. [21] for basic
properties of continued fraction expansion of α).

Lemma 4.5. The set Λ ⊂ [0, 1) of those α irrational for which for each ε > 0 there
exists 0 < δ < ε such that

qnk‖qnkα‖ → δ

along a subsequence nk = nk(ε) is of full Lebesgue measure.

Proof. We have
1
2

1
an+1 + 1

< qn‖qnα‖ <
1

an+1
.

The result follows directly from the ergodicity of the Gauss map G : [0, 1)→ [0, 1)
(see e.g. [7]). �

Assume that f(x) =
∑K
i=1 di{x − βi} + d. Let Tx = x + α and suppose that

{qnα} = ‖qnα‖. The case where {qnα} = 1 − ‖qnα‖ can be treated in a similar
way. We have

f
(qn)
0 (T qnx)− f (qn)

0 (x) = f (qn)(T qnx)− f (qn)(x) =
qn−1∑
j=0

(f ◦ T qn − f) (T jx).

Moreover, in view of Remark 4.4,

f(T qny)− f(y) =
K∑
i=1

di ({y + qnα− βi} − {y − βi})

=
K∑
i=1

di ({y + ‖qnα‖ − βi} − {y − βi}) =
K∑
i=1

di
(
‖qnα‖ − 1[βi−‖qnα‖,βi)(y)

)
.
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Thus

(4.2) f (qn)(T qnx)−f (qn)(x) = qn‖qnα‖
( K∑
i=1

di

)
−

K∑
i=1

di

qn−1∑
j=0

1[βi−‖qnα‖,βi)(x+jα).

Moreover, since [s, s+‖qnα‖) is the base of a Rokhlin tower of height qn+1, we have

(4.3)
qn−1∑
j=0

1[βi−‖qnα‖,βi)(x+ jα) = 0 or 1.

Given n ≥ 1 and ε ∈ {0, 1}K , taking into account (4.3), set

(4.4) Anε =

x ∈ T :
qn−1∑
j=0

1[βi−‖qnα‖,βi)(x+ jα) = εi for i = 1, . . . ,K

 .

Then, in view of (4.2), for x ∈ Anε we have

(4.5) f (qn)(T qnx)− f (qn)(x) = qn‖qnα‖S(f)− Cε,

where Cε =
∑K
i=1 diεi (note that C0 = C(0,...,0) = 0).

Suppose that the roof function f : T → R is a piecewise absolutely continuous
function and let us decompose f = fpl + fac. Suppose that qn‖qnα‖ → δ > 0
and µ(Anε ) → pε for ε ∈ {0, 1}K (sets Anε are defined accordingly to the function
fpl). By Koksma-Denjoy inequality (see e.g. [24]), ‖(fpl)(qm)

0 ‖sup ≤ Var f , thus the
sequence

(
((fpl)

(qn)
0 )∗(µAnε )

)
n≥0

of distributions is uniformly tight. By passing to
a further subsequence, if necessary, we can also assume that

(4.6)
(

(fpl)
(qn)
0

)
∗

(µAnε )→ Pε when n→∞.

Recall that (see e.g. [15])

(4.7) ‖f (qn)
ac ‖sup → 0.

Set Xn =
(
f

(2qn)
0 , f

(qn)
0

)
: T→ R2. Then(

f
(2qn)
0 , f

(qn)
0

)
=
(

2(fpl)
(qn)
0 + f

(qn)
pl ◦ T qn − f (qn)

pl , (fpl)
(qn)
0

)
+
(
f (2qn)
ac , f (qn)

ac

)
.

In view of (4.5), for x ∈ Anε
(4.8) Xn =

(
2(fpl)

(qn)
0 , (fpl)

(qn)
0

)
+ (qn‖qnα‖S(f)− Cε, 0) +

(
f (2qn)
ac , f (qn)

ac

)
.

Let A : R→ R2, Ax = (2x, x). Thus

Yn :=
(

2(fpl)
(qn)
0 , (fpl)

(qn)
0

)
= A ◦ f (qn)

0 ,

so by Lemma 4.3 and (4.6),

(4.9) (Yn)∗ (µAnε )→ A∗(Pε).

Since Xn = Yn + (qn‖qnα‖S(f) − Cε, 0) +
(
f

(2qn)
ac , f

(qn)
ac

)
on Anε , (f (2qn)

ac , f
(qn)
ac )

uniformly tends to zero (see (4.7)) and qn‖qnα‖ → δ, in view of Lemma 4.2 14,

(4.10) (Xn)∗ (µAnε )→
(
T(δS(f)−Cε,0)

)
∗A∗(Pε).

Therefore, by Lemma 4.1,

(4.11) (Xn)∗ (µ)→
∑

ε∈{0,1}K
pε
(
T(δS(f)−Cε,0)

)
∗A∗(Pε) =: P.

14We apply the lemma for µn = µAnε , Xn = Yn and Cn = (qn‖qnα‖S(f) − Cε, 0) +

(f
(2qn)
ac , f

(qn)
ac ).
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On the other hand (see Proposition 3.7), limn→∞ (Xn)∗ (µ) = P , so

(4.12)
∑

ε∈{0,1}K
pε
(
T(δS(f)−Cε,0)

)
∗A∗(Pε) = P.

Theorem 4.6. If α ∈ Λ (see Lemma 4.5) and S(f) 6= 0 then the special flow T f

is is not isomorphic to its inverse.

Proof. Take δ > 0 so that Kδ < 1, qn‖qnα‖ → δ (by passing to a subsequence, if
necessary) and

δ < min{|Cε| > 0, ε ∈ {0, 1}K}/(2|S(f)|).
Suppose now that the special flow T f is reversible. By Proposition 3.7 and

Corollary 3.13, θ∗P = P , where θ(t, u) = (t, t− u). Using (4.12), since

θ ◦ T(c,0) ◦A = T(−c,0) ◦A ◦ Tc,

we have
θ∗P =

∑
ε∈{0,1}K

pε
(
T(−δS(f)+Cε,0)

)
∗A∗

(
TδS(f)−Cε

)
∗ (Pε).

Each measure of the form
(
T(c,0)

)
∗A∗P

′ (with P ′ a probability on R) is concentrated
on the set

Rc := {(2x+ c, x) : x ∈ R}.
Clearly, Rc∩Rc′ = ∅ for c 6= c′. If for some ε ∈ {0, 1}K , pε > 0 and δS(f)−Cε 6= 0,
since θ∗P = P , there must exist ε′ ∈ {0, 1}K such that

pε′ > 0 and − δS(f) + Cε = δS(f)− Cε′ ,

whence

(4.13) Cε + Cε′ = 2δS(f).

Then

An0 = {x ∈ T :
qn−1∑
j=0

1[βi−‖qnα‖,βi)(x+ jα) = 0 for i = 1, . . . ,K}

= {x ∈ T : (∀0 ≤ j < qn)(∀1 ≤ i ≤ K) x+ jα /∈ [βi − ‖qnα‖, βi)}

=
qn−1⋂
j=0

K⋂
i=1

(
T \ T−j [βi − ‖qnα‖, βi)

)
= T \

qn−1⋃
j=0

K⋃
i=1

T−j [βi − ‖qnα‖, βi).

It follows that

1− µ(An0 ) = µ

qn−1⋃
j=0

K⋃
i=1

T−j [βi − ‖qnα‖, βi)

 ≤ Kqn‖qnα‖,
so µ(An0 ) ≥ 1−Kqn‖qnα‖ and therefore

lim inf µ(An0 ) ≥ 1−Kδ > 0.

Thus p0 > 0 and δS(f)−C0 = δS(f) 6= 0, it follows from (4.13) (applied to ε = 0)
that there exists ε ∈ {0, 1}K such that

Cε + C0 = 2δS(f),

whence |Cε|
2|S(f)| = δ which yields a contradiction to the definition of δ. �
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4.1. Non-isomorphism with the inverse in the affine case. Given a special
flow T f for which

∫
X
f dµ = 1, T rn , T qn → Id, assume that

(f (rn+qn)
0 , f

(rn)
0 , f

(qn)
0 )→ P

with ‖f (qn)
0 ‖L2 , ‖f (rn)

0 ‖L2 ≤ C. In view of Proposition 3.7 and Corollary 3.11, we
have:

µf
T frn+qn

,T frn ,T
f
qn

→
∫

R3
µf
T f−t,T

f
−u,T

f
−v
dP (t, u, v).

For each (a, b, c) ∈ R3 we have

P̂ (a, b, c) = lim
n→∞

∫
X

e2πi(af
(rn+qn)
0 (x)+bf

(rn)
0 (x)+cf

(qn)
0 (x)) dµ(x).

Denote θ(t, u, v) = (t, t− v, t− u) and note that

(4.14) θ∗(P ) = P if and only if P̂ (a, b, c) = P̂ (a+ b+ c,−c,−a).

Moreover

P̂ (a+ b+ c,−c,−b) = lim
n→∞

∫
X

e2πi
(

(a+b+c)f
(rn+qn)
0 −cf(rn)

0 −bf(qn)
0

)
dµ

= lim
n→∞

∫
X

e2πi
(
af

(rn+qn)
0 +bf

(rn)
0 +cf

(qn)
0 +(b+c)(f(rn)◦T qn−f(rn))

)
dµ,

(4.15)

note that f (rn) ◦ T qn − f (rn) = f (qn) ◦ T rn − f (qn).
Consider now the affine case

f(x) = x+ c, Tx = x+ α

with f0(x) = x− 1
2 and α = [0; a1, a2, . . .]. Our aim is to get a larger set of α’s than

those resulting from Theorem 4.6 for which the special flow T f is not isomorphic
to its inverse..

Proposition 4.7. If there exists a subsequence of denominators (qkn)n≥1 of α such
that qkn+1‖qknα‖ → κ ∈ (1/2, 1) then T f is not isomorphic to its inverse.

Proof. To simplify notation we will write n instead of kn.
Suppose that T f is isomorphic to its inverse. In view of Corollary 3.11 and

(4.14), if (f (qn+1+qn)
0 , f

(qn+1)
0 , f

(qn)
0 ) → P then P̂ (a, b, c) = P̂ (a + b + c,−c,−a) for

each a, b, c ∈ R. We have

f
(qn+1)
0 (T qnx)− f (qn+1)

0 (x) =
qn+1−1∑
j=0

(f(T jx+ qnα)− f(T jx))

and, by Remark 4.4, f(y + qnα)− f(y) ∈ ±‖qnα‖+ Z for any y ∈ T. Thus

f
(qn+1)
0 (T qnx)− f (qn+1)

0 (x) = ±qn+1‖qnα‖+Mn(x) with Mn(x) ∈ Z.

It follows that

e2πil(f
(qn+1)
0 (T qnx)−f

(qn+1)
0 (x)) = e±2πilqn+1‖qnα‖ → e±2πilκ

for each integer l. By our standing assumption, e4πiκ 6= 1. Taking into ac-
count (4.15) we obtain that

P̂ (a, b, c) = P̂ (a+ b+ c,−a,−c) = e±2πi(b+c)κP̂ (a, b, c) whenever b+ c ∈ Z,

hence

(4.16) P̂ (1,−1,−1) = 0.
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On the other hand, the function

f
(qn+1+qn)
0 (x)− f (qn+1)

0 (x)− f (qn)
0 (x) = f

(qn+1)
0 (T qnx)− f (qn+1)

0 (x)

= ±qn+1‖qnα‖+Mn(x),

so

|P̂ (1,−1,−1)| = lim
n→∞

∣∣∣ ∫
T
e2πi

(
f

(qn+1+qn)
0 (x)−f

(qn+1)
0 (x)−f(qn)

0 (x)
)
dx
∣∣∣

= lim
n→∞

∣∣e±2πiqn+1‖qnα‖
∣∣ = 1.

This implies |P̂ (1,−1,−1)| = 1 which gives rise to a contradiction to (4.16). �

Remark 4.8. Since α = pn+1+pnG
n+1(α)

qn+1+qnGn+1(α) (see e.g. [7]), we have

1
1 + 1

an+1

1
an+2

< qn+1‖qnα‖ <
1

1 + 1
an+1+1

1
an+2+1

and
1

1 + 1
an+1+ 1

an+1

1
an+2+ 1

an+3+1

< qn+1‖qnα‖ <
1

1 + 1
an+1+ 1

an

1
an+2+ 1

an+3

.

Therefore
qkn+1‖qknα‖ → 1 ⇔ akn+1 + akn+2 → +∞

and

qkn+1‖qknα‖ → 1/2 ⇔ akn+1 = akn+2 = 1 and akn , akn+3 → +∞.
The set of excluded irrational rotations E ⊂ T in Theorem 4.7 consists of all
irrational α for which the set of limit points of the sequence (qn+1‖qnα‖)n≥1 is
{1/2, 1}. Therefore α ∈ E if and only if the set of limit points of the sequence
(an + an+1)n≥1 is {2,+∞} and if there exists a subsequence (akn)n≥1 such that
akn = akn+1 = 1 then akn−1, akn+2 → +∞.

Remark 4.9. A natural question arises whether we could apply (4.15) choosing
a sequence of pairs of denominators, say we consider qln , qkn , n ≥ 1 when α is
Liouville in the sense that the sequence of partial quotients tends to infinity. This
approach seems to fail whenever f is of bounded variation . Indeed,∣∣∣f (qln )

0 ◦ T qkn − f (qln )
0

∣∣∣ ≤ ‖qknα‖Varf (qln )
0 ≤ qkn‖qlnα‖Varf0

and qkn‖qlnα‖ → 0 whenever α is a Liouville number.

5. Piecewise polynomial roof functions

Let r ≥ 1 be an odd number and let 0 < β < 1. In this section we will study
the problem of isomorphism to the inverse for special flows T f built over irrational
rotations Tx = x+α on the circle and under Cr−1-function which are polynomials
after restriction to intervals [0, β) and [β, 1).

Let us consider a Cr−1-function f : T→ R+ such that Dr−1f is a function linear
on both intervals [0, β) and [β, 1) with slopes 1−β and −β respectively. Therefore,
Dr−1f is an absolutely continuous function whose derivative is equal to

Drf = (1− β)1[0,β) − β1[β,1) = 1[0,β) − β.
Thus f restricted to each interval [0, β) and [β, 1) is a polynomial of degree r with
leading coefficients (1 − β)/r! and −β/r! respectively. Since Dr−1f is absolutely
continuous and Drf is of bounded variation, the Fourier coefficients satisfy f̂(n) =
O(1/|n|r+1).
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If the irrational number α is slowly approximated by rationals, more precisely
lim infn→∞ qr+1−ε

n ‖qnα‖ > 0 for some ε > 0, then f is cohomologous to a constant
function, so the special flow T f is isomorphic to its inverse. In this section we deal
with rotations satisfying

0 < lim sup
n→∞

qr+1
n ‖qnα‖.

Remark 5.1. Note that we can not expect the non-reversibility of T f for any β.
Indeed, suppose that β = {kα+ β′}, where k ∈ Z and β′ = 0 or 1/2. Then

Drf(x) = 1[0,kα)(x− β′)− {kα}+ 1[0,β′)(x)− β′

and
1[0,kα)(x)− {kα} = {x− kα} − {x},

hence, the cocycle 1[0,kα)(x − β′) − {kα} is a coboundary. Denote by g : T → R,
s : T→ R the unique functions with zero mean such that Drg(x) = 1[0,kα)(x−β′)−
{kα} and Drs(x) = 1[0,β′)(x)−β′. Then f(x) = g(x)+s(x). Let Sx = 1−x. Since
Drs(Sx) = −Drs(x) and r is odd, we have s(Sx) = s(x). As Drg is a coboundary,
the cocycle g is a coboundary. It follows that the special flow T f is isomorphic to
T s. By Remark 2.3, the latter flow is reversible and hence T f is reversible.

The main result of this section (Theorem 5.3) establishes some technical condi-
tions on α that gives non-isomorphism of T f to its inverse for almost every choice
of β ∈ T.

Remark 5.2. In the proof of Theorem 5.3 we will use simple properties of the
following standard difference operator. For any h > 0 let us consider the difference
operator

∆h : R[a,b] → R[a,b−h], ∆hg(x) = g(x+ h)− g(x).

For every natural r denote by ∆r
h : R[a,b] → R[a,b−rh] the r-th iteration of the

operator ∆h. By induction and using
(
r

k−1

)
+
(
r
k

)
=
(
r+1
k

)
, we have the following

standard formula

(5.1) ∆r
hg(x) =

r∑
k=0

(−1)r−k
(
r

k

)
g(x+ kh) for x ∈ [a, b− rh].

Moreover, if g is a polynomial function of degree r with leading coefficient ar then
∆r
hg is a constant function equal to r!arhr.

Theorem 5.3. Suppose that α is an irrational number for which there exists a
subsequence of denominators (qkn)n≥1 such that

(5.2) qr+1
kn
‖qknα‖ → κ ∈

(
0,

1
2(r + 1)

)
.

Then for almost every β ∈ T the special flow T f is not isomorphic to its inverse.

Proof. By Weyl’s theorem (see Theorem 4.1 in [24]), for almost every β ∈ T the
sequence ({qknβ})n≥1 is uniformly distributed in [0, 1). It follows that there exists
γ ∈ (0, 1) \ {1/2} and a subsequence (qkln ) such that {qklnβ} → γ. To simplify
notation we will write n instead of kln . Assume also that {qnα} = ‖qnα‖. The case
where {qnα} = 1− ‖qnα‖ can be treated in a similar way.

Suppose that T f is isomorphic to its inverse. Since f̂(n) = O(1/|n|r+1), in view
of Corollary 3.1 in [1], the sequence

(
f

(qr+1
n )

0

)
n≥1

is bounded in L2. Therefore, by
passing to a further subsequence, if necessary, we can assume that(

f
((r+1)qr+1

n )
0 , f

(rqr+1
n )

0 , . . . , f
(qr+1
n )

0

)
∗
(µ)→ P in P(Rr+1).
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Since Drf = (1− β)1[0,β) − β1[β,1), by the Koksma-Denjoy inequality15 (see [24]),

|(Drf)(qn)(x)| ≤ qnD∗qn(α) Var[0,1)(Drf) ≤ 1 +
qn
qn+1

.

The function (Drf)(qn) takes values only in the set Z−qnβ and {qnβ} → γ ∈ (0, 1).
Since qn/qn+1 → 0, it follows that for all n large enough (Drf)(qn)(x) is equal to
1− {qnβ} or −{qnβ} for every x ∈ T.

Let

An := T \
( qn−1⋃
j=0

T−j [1− (r + 1)qrn‖qnα‖, 1] ∪
qn−1⋃
j=0

T−j [β − (r + 1)qrn‖qnα‖, β]
)
.

Thus, by (5.2),

(5.3) µ(An) ≥ 1− 2(r + 1)qnqrn‖qnα‖ → 1− 2(r + 1)κ > 1/2.

Moreover, for every x ∈ An the point 0 and β do not belong to any interval
T j [x, T (r+1)qr+1

n x] for all 0 ≤ j < qn. It follows that (Drf)(qn) on [x, T (r+1)qr+1
n x]

is constant and equal s − {qnβ} for some s ∈ {0, 1}. Therefore, for every y ∈
[x, T rq

r+1
n x] and 0 ≤ j < qrn we have

T jqny ∈ [T jqnx, T jqn+rqr+1
n x] ⊂ [x, T (r+1)qr+1

n x],

so

(Drf)(qr+1
n )(y) =

qrn−1∑
j=0

(Drf)(qn)(T jqny) = qrn(s− {qnβ}).

Therefore, for every x ∈ An there exists s = s(x) ∈ {0, 1} such that Dr(f (qr+1
n )

0 ) =

qrn(s − {qnβ}) on [x, x + rqrn‖qnα‖], so f
(qr+1
n )

0 restricted to [x, x + rh], with h :=
qrn‖qnα‖, is a polynomial of degree r with leading coefficient qrn(s − {qnβ})/r!. In
view of Remark 5.2, it follows that

r∑
k=0

(−1)r−k
(
r

k

)
f

(qr+1
n )

0 (T kq
r+1
n x) =

r∑
k=0

(−1)r−k
(
r

k

)
f

(qr+1
n )

0 (x+ kh)

= ∆r
hf

(qr+1
n )

0 (x) = qrn(s(x)− {qnβ})hr = (s(x)− {qnβ})
(
qr+1
n ‖qnα‖

)r
.

Moreover,
r+1∑
k=1

(−1)r+1−k
(
r + 1
k

)
f

(kqr+1
n )

0 (x)

=
r+1∑
k=1

(−1)r+1−k
(
r + 1
k

) k−1∑
l=0

f
(qr+1
n )

0 (T lq
r+1
n x)

=
r∑
l=0

f
(qr+1
n )

0 (T lq
r+1
n x)

r+1∑
k=l+1

(−1)r+1−k
(
r + 1
k

)

=
r∑
l=0

f
(qr+1
n )

0 (T lq
r+1
n x)

r+1∑
k=l+1

(−1)r+1−k
((r

k

)
+
(

r

k − 1

))
=

r∑
l=0

(−1)r−l
(
r

l

)
f

(qr+1
n )

0 (T lq
r+1
n x) = (s(x)− {qnβ})

(
qr+1
n ‖qnα‖

)r
.

15D∗qn is the discrepancy of the sequence {0, α, . . . , (qn − 1)α}.
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For s = 0, 1 set cns := (s− {qnβ})
(
qr+1
n ‖qnα‖

)r and let

Asn =
{
x ∈ An :

r+1∑
k=1

(−1)r+1−k
(
r + 1
k

)
f

(kqr+1
n )

0 (x) = cns

}
.

By passing to a further subsequence, if necessary, we can assume that

(5.4) µ(A0
n)→ ν0, µ(A1

n)→ ν1,

(5.5)
(
f

(rqr+1
n )

0 , . . . , f
(qr+1
n )

0

)
∗(µA0

n
)→ P0,

(
f

(rqr+1
n )

0 , . . . , f
(qr+1
n )

0

)
∗(µA1

n
)→ P1

in P(Rr) and

(5.6)
(
f

((r+1)qr+1
n )

0 , . . . , f
(qr+1
n )

0

)
∗(µAcn)→ P2 in P(Rr+1).

Since An = A0
n ∪A1

n, by (5.3), we have

ν0 + ν1 ≥ 1− 2(r + 1)κ > 1/2.

Set ν2 := 1− ν0 − ν1. Let us consider the following maps:

θ : Rr+1 → Rr+1, θ(x0, x1, . . . , xr) = (x0, x0 − xr, . . . , x0 − x1)

A : Rr → Rr+1, A(x1, x2, . . . , xr) =

(
r∑

k=1

(−1)k+1

(
r + 1
k

)
xk, x1, . . . , xr

)
,

Rc : Rr+1 → Rr+1, Rc(x0, x1, . . . , xr) = (x0 + c, x1, . . . , xr),

Bc : Rr → Rr, Bc(x1, . . . , xr) =

(
r∑

k=1

(−1)k+1

(
r + 1
k

)
xk − xr+1−l + c

)r
l=1

.

Then

(5.7) θ ◦Rc ◦A = R−c ◦A ◦Bc.

Indeed, equation (5.7) is valid directly for last r coordinates. The zero coordinate
of the LHS of (5.7) is

LHS0 :=
r∑

k=1

(−1)k+1

(
r + 1
k

)
xk + c.

The zero coordinate of the RHS of (5.7) is

RHS0 := −c+
r∑
l=1

(−1)l+1

(
r + 1
l

)( r∑
k=1

(−1)k+1

(
r + 1
k

)
xk − xr+1−l + c

)
.

Since r is odd,
r∑
l=1

(−1)l+1

(
r + 1
l

)
=

r+1∑
l=0

(−1)l+1

(
r + 1
l

)
+ 2 = −(1− 1)r+1 + 2 = 2,

thus

RHS0 = −c+ 2c+ 2
r∑

k=1

(−1)k+1

(
r + 1
k

)
xk −

r∑
l=1

(−1)l+1

(
r + 1
l

)
xr+1−l

= c+
r∑

k=1

(−1)k+1

(
r + 1
k

)
xk = LHS0,

which completes the proof of (5.7).
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Since(
f

((r+1)qr+1
n )

0 , f
(rqr+1

n )
0 , . . . , f

(qr+1
n )

0

)
=

(
r+1∑
k=1

(−1)k
(
r + 1
k

)
f

(kqr+1
n )

0 , 0, . . . , 0

)

+

(
r∑

k=1

(−1)k+1

(
r + 1
k

)
f

(kqr+1
n )

0 , f
(rqr+1

n )
0 , . . . , f

(qr+1
n )

0

)
,

by the definitions of maps A, Rc and the set Asn, it follows that for any x ∈ Asn and
s = 0, 1 we have(

f
((r+1)qr+1

n )
0 (x), . . . , f (qr+1

n )
0 (x)

)
= Rcns ◦A

(
f

(rqr+1
n )

0 (x), . . . , f (qr+1
n )

0 (x)
)
.

Since additionally cns → (s − γ)κr as n → ∞ for s = 0, 1, by Lemmas 4.1, 4.2, 4.3
and combined with (5.4), (5.5), (5.6), we have(

f
((r+1)qr+1

n )
0 (x), . . . , f (qr+1

n )
0 (x)

)
∗(µ)

→ ν0 · (R−γκr )∗A∗(P0) + ν1 · (R(1−γ)κr )∗A∗(P1) + ν2 · P2.

Therefore,

(5.8) P = ν0 · (R−γκr )∗A∗(P0) + ν1 · (R(1−γ)κr )∗A∗(P1) + ν2 · P2.

As T f is isomorphic to its inverse, by Corollary 3.12, θ∗(P ) = P . In view of (5.7),
it follows that the measure P is equal to

(5.9) ν0 ·(Rγκr )∗A∗(B−γκr )∗(P0)+ν1 ·(R−(1−γ)κr )∗A∗(B(1−γ)κr )∗(P1)+ν2 ·θ∗(P2).

Since ν0 + ν1 > 1/2 and (5.8) and (5.9) hold, we have

P
(
R−γκr ◦A(Rr) ∪R(1−γ)κr ◦A(Rr)

)
> 1/2,

P
(
Rγκr ◦A(Rr) ∪R−(1−γ)κr ◦A(Rr)

)
> 1/2.

(5.10)

As γ 6= 0, 1/2, the sets {−γκr, (1−γ)κr} and {γκr,−(1−γ)κr} are disjoint. Hence
the sets R−γκr ◦ A(Rr) ∪ R(1−γ)κr ◦ A(Rr) and Rγκr ◦ A(Rr) ∪ R−(1−γ)κr ◦ A(Rr)
are disjoint, contrary to (5.10). This completes the proof of non-isomorphism of T f
and its inverse. �

6. Analytic flows on T2

6.1. Non-isomorphism with the inverse. Let us recall that that analytic spe-
cial flows over irrational rotations are precisely analytic reparametrizations of two-
dimensional rotations and that (in case of ergodicity) they have simple spectra [4],
so if they are isomorphic to their inverses, they are automatically reversible.

The aim of this section is to provide analytic examples that are not reversible.
For this aim we briefly recall the AACCP16 constructions [23] (see also [29] for some
modifications).

An AACCP is given by a collection of the following parameters: a sequence
(Mk)k≥1 ⊂ N together with an infinite real matrix ((dk1, . . . , dkMk

))k≥1 satisfying
for each k ≥ 1

Mk∑
i=1

dki = 0.

Set Dk = max{|dki| : i = 1, . . . ,Mk}. Then we select a sequence (εk)k≥1 of positive
real numbers so that

∞∑
k=1

√
εkMk < +∞,

∞∑
k=1

εk < 1, εk <
1
D2
k

, k = 1, 2, . . . .

16The acronym comes from “almost analytic cocycle construction procedure”.
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Finally, the completing parameter of the AACCP is a real number A > 1.
The above AACCP is said to be realized over an irrational number α ∈ [0, 1)

having the continued fraction expansion

α = [0; a1, a2, . . .]

if there exists a strictly increasing sequence (nk)k≥1 ⊂ N such that for each k ≥ 1
we have

a2nk+1 > 2, ANk
DkMk

a2nk+1q2nk

<
1
2k
,

whereNk is the degree of a real non-negative trigonometric polynomial Pk satisfying∫ 1

0

Pk(t) dt = 1 and Pk(t) < εk for t ∈ (ηk/2, 1),

where we require the numbers ηk > 0 to satisfy

4Mkηk <
εk
q2nk

and
1

a2nk+1q2nk

<
1
2
ηk.

Recall now that

ζ2nk =
{[

0, {q2nkα}
)
, T
[
0, {q2nkα}

)
, . . . , T q2nk+1−1

[
0, {q2nkα}

)}
and

ζ2nk
=
{[
{q2nk+1α}, 1

)
, T
[
{q2nk+1α}, 1

)
, . . . , T q2nk−1

[
{q2nk+1α}, 1

)}
are two disjoint Rokhlin towers fulfilling the whole interval [0, 1). It follows that if
we set

Ik := [0, {a2nk+1q2nkα}), Jkt := T (t−1)q2nk [0, {q2nkα}), for t = 1, . . . , a2nk+1,

then

Ik =
a2nk+1⋃
t=1

Jkt

and Ik is the base of a Rokhlin tower of height q2nk occupying at least 1 − 2
a2nk+1

of the space.
Using the above parameters for α over which the AACCP can be realized, one

defines a real valued cocycle
ϕ =

∑
k=1

ϕk

as follows. In Ik we choose consecutively intervals wk,1, . . . , wk,Mk
of the same

length λk ∈ (ηk, 2ηk), each of which consists of (the same) odd number ek ≥ 3 of
(consecutive) intervals Jkt . In general, the intervals wk,i and wk,i+1 can be separated
by a certain number of intervals of the form Jks . Denote by Jksk,i the middle interval
Jkt in wk,i. Then we set

ϕk(x) =
{
dki if x ∈ Jksk,i
0 otherwise.

Note that Ik+1 ⊂ Jk1 , so the supports of ϕk, k ≥ 1 are pairwise disjoint.
The following two results have been proved in [23].

Proposition 6.1. The set of α ∈ [0, 1) over which an AACCP can be realized is
residual.

Proposition 6.2. The cocycle ϕ defined above is cohomologous to an analytic
cocycle.

Moreover, we will also make use of the following observation from [23].
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Lemma 6.3. For an arbitrary AACCP and α over which it is realized, the cocycle
ϕ is constant on each interval T iIk, i = 1, . . . , q2nk − 1, k ≥ 1. Moreover, for each
k ≥ 1

(6.1)
q2nk−1∑
i=1

ϕ|T iIk = 0.

We now proceed to our special construction. We assume that

Mk = 4M ′k →∞.

Moreover, we assume that

(6.2) a2nk+1 = ekMk

with ek ≥ 3 odd, k ≥ 1 and

(6.3)
1√
Mk

k−1∑
i=1

Mi ≤ C1

for a constant C1 > 0. The intervals wk,i are then defined as consecutive unions
of ek (consecutive) subintervals of the form Jkt . Fix t0, u0 ∈ R. For each k ≥ 1 we
then set

(6.4) (dki) =
(

(t0, u0,−u0,−t0), . . . , (t0, u0,−u0,−t0)︸ ︷︷ ︸
M ′k times

)
.

Proceeding as in [29] and using (6.1), by construction, we have

(6.5) ϕ(ekq2nk ) − ϕ(ekq2nk )

k → 0 in measure,

(6.6)(
ϕ

(2ekq2nk )

k , ϕ
(ekq2nk )

k

)
∗
→ 1

4
(
δ(t0+u0,t0) + δ(0,u0) + δ(−u0−t0,−u0) + δ(0,−t0)

)
,

so
(6.7)(

ϕ(2ekq2nk ), ϕ(ekq2nk )
)
∗
→ 1

4
(
δ(t0+u0,t0) + δ(0,u0) + δ(−u0−t0,−u0) + δ(0,−t0)

)
.

Moreover,

(6.8) {ekq2nkα} → 0 when k →∞.

We now proceed similarly as in [29] and notice that if we set C := |t0|+ |u0| then
for each k ≥ 1 we have

(6.9)
∣∣∣ϕ(ekq2nk )

k

∣∣∣ ≤ C.
Since the support of

∑
i≥k+1 ϕi is included in Ik+1 and for each x ∈ [0, 1),

# ({x, Tx, . . . , T ekq2nkx} ∩ Ik+1) ≤ 1,

we also have

(6.10)
∣∣∣ ∑
i≥k+1

ϕ
(ekq2nk )

i

∣∣∣ ≤ C.
Finally, for i = 1, . . . , k − 1 we have ϕi = 0 on Ik, so in view of (6.1), ϕ(ekq2nk )

i = 0
except for the set

[0, 1) \
q2nk−1⋃
j=0

T jIk and
ekq2nk−1⋃
j=0

T jJka2nk+1−ek .
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Moreover, by (6.1), for every x ∈ T and m ≥ 0, i ≥ 1 we have

|ϕ(m)
i (x)| ≤

Mi∑
j=1

|dij | ≤ CMi.

In view of (6.2) and (6.3), it follows that∥∥∥( k−1∑
i=1

ϕi

)(ekq2nk )∥∥∥
2
≤ C

k−1∑
i=1

Mi · µ
({
x ∈ [0, 1) :

( k−1∑
i=1

ϕi

)(ekq2nk )

(x) 6= 0
})1/2

≤ C
k−1∑
i=1

Mi

(
2

a2nk+1
+

ek
a2nk+1

)1/2

≤ 2C
1√
Mk

k−1∑
i=1

Mi ≤ const.

This together with (6.9) and (6.10) implies

(6.11)
∥∥∥ϕ(ekq2nk )

∥∥∥
2
≤ const.

The cocycle ϕ is clearly bounded (and of zero mean) and by Proposition 6.2, it is
cohomologous to an analytic function f0 : T → R (of zero mean). Then for each
sufficiently large constant d > 0 we have

ϕ+ d > 0, f := f0 + d > 0

and moreover the special flows Tϕ+d and T f are isomorphic. In view of (6.8), (6.11),
Proposition 3.7 and (6.7) we obtain that for some constant c > 0 (c =

∫
X
f dµ)

(6.12) µϕ+d

Tϕ+d
2cekq2nk

,Tϕ+d
cekq2nk

→ 1
4

(
µϕ+d

Tϕ+d
t0+u0

,Tϕ+d
t0

+ µϕ+d

Id,Tϕ+d
u0

+µϕ+d

Tϕ+d
−u0−t0

,Tϕ+d
−u0

+µϕ+d

Id,Tϕ+d
−t0

)
.

Since Tϕ+d and T f are isomorphic and (6.12) holds,
(6.13)

µf
T f2cekq2nk

,T fcekq2nk

→ 1
4

(
µf
T ft0+u0

,T ft0
+ µf

Id,T fu0

+ µf
T f−u0−t0

,T f−u0

+ µf
Id,T f−t0

)
.

Now, the limit measure

P : =
1
4
(
δ(t0+u0,t0) + δ(0,u0) + δ(−u0−t0,−u0) + δ(0,−t0)

)
= lim
k→∞

(
f

(2ekq2nk )

0 , f
(ekq2nk )

0

)
∗

(µ)

is not “symmetric” in the sense that (0, u0) is its atom, while (0,−u0) is not provided
that u0 6= 0 and t0 6= ±u0 and therefore under these additional assumptions, by
Corollary 3.13, T f is not reversible. In this way we have proved the following result.

Corollary 6.4. There is an analytic weakly mixing flow on T2 (preserving a smooth
measure) that is not reversible.

Remark 6.5. If instead of f (constructed above) we consider fε := 1 + εf for
small enough ε > 0 then the corresponding special flow T fε can be interpreted as
arbitrarily small analytic change of time in the linear flow by (α, 1) on T2.

Now, note that (fε)0 = εf0. Hence(
(fε)

(2ekq2nk )

0 , (fε)
(ekq2nk )

0

)
∗

(µ)→ (Mε)∗ P =: Pε,

where Mε(x, y) = (εx, εy). It follows that Pε has the same asymmetries as P and
therefore T fε is not reversible. Therefore, for some α irrational there are arbitrarily
small analytic changes of time in the linear flow by (α, 1) on T2 which yield weakly
mixing and non-reversible flows.
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Remark 6.6. If in (6.4), for each k ≥ 1, we consider the following pattern

(dki) =(
(a, b, c, b, b), . . . , (a, b, c, b, b)︸ ︷︷ ︸

M ′k/2 times

, (−a,−b,−c,−b,−b), . . . , (−a,−b,−c,−b,−b︸ ︷︷ ︸
M ′k/2 times

)
(6.14)

then (
f

(2ekq2nk )

0 , f
(ekq2nk )

0

)
∗

(µ)→ P

and (
f

(3ekq2nk )

0 , f
(2ekq2nk )

0 , f
(ekq2nk )

0

)
∗

(µ)→ Q.

We have

P =
1
10

(
δ(a+b,a) + δ(b+c,b) + δ(b+c,c) + δ(2b,b) + δ(a+b,b)

+ δ(−(a+b),−b) + δ(−(b+c),−b) + δ(−(b+c),−c) + δ(−2b,b) + δ(−(a+b),−b)

)
and

Q =
1
10

(
δ(a+b+c,a+b,a) + δ(2b+c,b+c,b) + δ(2b+c,b+c,c) + δ(a+2b,2b,b) + δ(a+2b,a+b,b)

+ δ(−(a+b+c),−(a+b),−b) + δ(−(2b+c),−(b+c),−b) + δ(−(2b+c),−(b+c),−c)

+ δ(−(a+2b,−2b,b) + δ(−(a+2b),−(a+b),−b)

)
.

It follows that P is invariant under the map (x, y) 7→ (x, x − y) and therefore
we cannot apply Corollary 3.13 but Q is not invariant under the map (x, y, z) 7→
(x, x− z, x− y), so by Corollary 3.12, the resulting flow is not reversible.

Note however that Corollary 3.13 is sufficient for non-reversibility of T f if instead
of (2ekq2nk , ekq2nk) we consider (4ekq2nk , 2ekq2nk).

Problem. When T = (Tt)t∈R is weakly mixing then the method of showing non-
isomorphism of T and its inverse passes to non-trivial factors (see Remark 3.10).
Since all flows non-isomorphic to their inverses considered in the paper are are
weakly mixing, in fact, their non-trivial factors are also non-isomorphic to their
inverses. A natural question arises if whenever the weak closure joining method
applies, T is disjoint with its inverse.

6.2. Absence of rational self-similarities. In this section we will show that the
construction presented in Section 6.1 can be easily modified so that we obtain an
analytic weakly mixing flow on T2 such that no rational number is its scale of self-
similarity (in particular, it is not reversible). It remains an open question whether
irrational numbers can be scales of self-similarity for analytic flows (preserving
smooth measure)17 on T2.

We will now recall a result which will ensure that a rational number is not a
scale of self-similarity of an ergodic flow.

Proposition 6.7 ([29]). Let T = (Tt)t∈R and S = (St)t∈R be flows on (X,B, µ)
and (Y, C, ν) respectively. Assume additionally that T is weakly mixing and S is
ergodic. Moreover, suppose that for a sequence (tk) ⊂ R with tk →∞

µTtk →
∫

R
µT−t dP (t) and νStk →

∫
R
νS−t dQ(t).

17In [25] it is shown that on on each compact orientable surface of genus at least 2 there
is a smooth (non-singular) non-self-similar flow. It is unknown whether these constructions are
non-reversible. It is also unknown whether a smooth non-self-similar flow can be constructed on
T2.
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If P 6= Q then the flows T and S are disjoint in the sense of Furstenberg.

Notice that when T and S are disjoint, then for each r ∈ R∗ the flows T ◦ r and
S ◦ r are also disjoint (indeed, J(T ,S) = J(T ◦ r,S ◦ r)). Therefore, the following
result holds.

Corollary 6.8. Let a, b ∈ N. Assume that T = (Tt)t∈R is a weakly mixing flow on
(X,B, µ). Assume also that for some tk →∞

µTatk →
∫

R
µT−at dP (t) and µTbtk →

∫
R
µT−bt dQ(t).

for some probability measures P and Q on R. If P 6= Q then T ⊥ T ◦ (b/a).

We will now show what sequence of numbers (dki) to use in the construction of
a weakly mixing non-reversible analytic flow (preserving a smooth measure) on T2

instead of the one in (6.4) to fulfill, for each natural a < b, the assumptions of the
above corollary. To this end we partition N = N−1,1

⋃
a<b;a,b∈N Na,b so that N−1,1

and each set Na,b is infinite. For k ∈ N−1,1 we repeat the construction described in
Section 6.1, so that the resulting flow will not be reversible.

Take (a, b) ∈ N2. By reversing the roles of a and b, we may assume that a < b.
We will consider only k ∈ Na,b. Assume that Mk = bM ′k and set

(dki) :=
((

t0,−
t0

b− 1
, . . . ,− t0

b− 1︸ ︷︷ ︸
b−1 times

)
, . . . ,

(
t0,−

t0
b− 1

, . . . ,− t0
b− 1

)
︸ ︷︷ ︸

M ′k times

)
.

It follows that for the analytic flow T = (Tt)t∈R on T2 constructed in such a way
as in Section 6.1 we have (with c =

∫
X
f dµ)

lim
k→∞,k∈Na,b

µTacekq2nk
=
∫

R
µT−t d

(a
b
δ(1− a

b−1 )t0 +
b− a
b

δ− a
b−1 t0

)
(t)

=
∫

R
µT−at d

(a
b
δ( 1

a−
1
b−1 )t0 +

b− a
b

δ− 1
b−1 t0

)
(t)

and

lim
k→∞,k∈Na,b

µTbcekq2nk
= µId =

∫
R
µT−t dδ0(t).

In view of Corollary 6.8, this yields T ⊥ T ◦ (a/b) for arbitrary natural a < b. Since
−1 /∈ I(T ) and I(T ) is a multiplicative subgroup of R∗, we have Q ∩ I(T ) = {1}.
Hence, we have proved the following result.

Corollary 6.9. There is an analytic weakly mixing flow (preserving a smooth mea-
sure) on T2 that is not reversible and such that no rational number is its scale of
self-similarity.

7. Chacon’s type automorphisms non-isomorphic to their inverses

The results of this section were essentially proved in [40] and [41] 18. We include
a detailed proof of Theorem 7.2 below to see a relationship between our methods
and earlier works by Ryzhikov.

18Formally, in [40] and [41] different sequences are considered and two limit joinings (not of the
above form) are considered, but the essence of the argument is the same. Note that Proposition 7.1
is a natural automorphism counterpart of Corollary 3.13.
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Proposition 7.1. Assume that T is an ergodic automorphism on (X,B, µ). As-
sume also that

µT 2qn ,T qn →
∫

Z2
µT−a,T−b dP (a, b)

for some probability measure P on Z2. If the measure P is not invariant under
θ(a, b) = (a, a− b) then T is not isomorphic to its inverse. In particular, T is not
reversible.

In this section we consider some rank one automorphisms in construction of
which along a subsequence we repeat a Chacon’s type construction [17]; we will
obtain non-reversible rank one automorphisms.

Recall briefly a rank one construction (see e.g. [31]). For a sequence of positive
integers (rn)n∈N with all rn ≥ 2 and (s(n)

1 , . . . , s
(n)
rn )n∈N with all s(n)

i non-negative
integers we define a rank-one transformation by giving an increasing sequence of
Rokhlin towers (Cn)n∈N such that each Cn consists of qn pairwise disjoint intervals
of the same length (each such interval is called a level of Cn). More precisely,
Cn = {Cn,1, Cn,2, . . . , Cn,qn}, the dynamics T is defined on

⋃qn−1
i=1 Cn,i so that T

sends linearly Cn,j to Cn,j+1 for j = 1, . . . , qn−1. The tower Cn+1 is obtained first
by cutting Cn into rn subcolumns, say Cn(i), 1 ≤ i ≤ rn, of equal width, placing
s

(n)
i spacers over each subcolumn Cn(i) and finally stacking each subcolumn Cn(i)
on the top of Cn(i + 1) for 1 ≤ i < rn in order to complete the definition of
Cn+1. The tower Cn+1 has the height qn+1 = rnqn +

∑rn
i=1 s

(n)
i . The ordering of

levels in Cn+1 is lexicographical from the left to the right. The dynamics T on⋃qn+1−1
i=1 Cn+1,i is completed by sending linearly Cn+1,qn to the first spacer over

the first subcolumn Cn(1), sending this spacer to the one above it, etc., and when
reaching the top spacer we send it to Cn+1,qn+1. We keep going the same procedure
for the remaining columns and stop at the top spacer over Cn(rn). In this way we
obtain a measure-preserving transformation T defined on a standard Borel space
(X,B, µ) although, in general, µ is only σ-finite. Provided that the number of
spacers is not too large [31], µ can be assumed (and this is our tacit standing
assumption) to be a probability measure.

We will now describe the details of our particular rank-one construction. Fix
an even positive integer r ≥ 4 and an increasing sequence (nk)k∈N. Suppose that
rnk = r and rnk+1 →∞19 and in the construction we place one spacer over Cnk(i)
for r/2 + 1 ≤ i ≤ r and over Cnk+1(i) for [rnk+1/2] + 1 ≤ i ≤ rnk+1.

Theorem 7.2. Under the above assumptions the constructed rank-one automor-
phism T is not reversible.

Proof. We claim that

µT 2qnk ,T
qnk
→
∫

Z2
µT−a,T−b dP (a, b),

where

(7.1) P (1, 0) =
1
r
, P (θ(1, 0)) = P (1, 1) =

1
2r

Once we have shown this, the claim will follow by Proposition 7.1. Since every

19The assumption on the spacers over the subcolumns Cnk+1(i) for
ˆ
rnk+1/2

˜
+1 ≤ i ≤ rnk+1

at step nk + 1 of the construction yields some form of “rigidity”. This condition can be modified.
What is important, is that we prevent the image of a single level of tower Cnk under T rqnk from
being “too scattered”.
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Figure 1. Illustration of the proof in the case r = 6.

measurable set can be approximated by unions of levels of sufficiently high towers,
it suffices to show that

µT 2qnk r,T
qnk

r (A[1]×A[2]×A[3])→
∫

Z2
µT−a,T−b(A[1]×A[2]×A[3]) dP (a, b),

for A[1], A[2], A[3] being single levels of the tower Ck0 for arbitrarily large k0 ∈ N
and the measure P satisfies (7.1). Since the towers are arbitrarily high, the levels
A[1], A[2], A[3] can be assumed not to be any of the first 3 bottom levels. Fix
k0 ∈ N and let A[1], A[2], A[3] be single levels of the tower Cnk0

. Without loss of
generality we may assume that Cnk0

is at least of height 4. For each k ≥ k0 the
sets A[1], A[2], A[3] become finite disjoint unions of levels of tower Cnk :

(7.2) A[1] =
lk⋃
l=1

A(k)[1, l], A[2] =
lk⋃
l=1

A(k)[2, l], A[3] =
lk⋃
l=1

A(k)[3, l]

for some lk ≥ 1. Moreover,

(7.3)
for any 1 ≤ l < l′ ≤ lk there are at least 3 levels

of tower Cnk between A(nk)[t, l] and A(nk)[t, l′] for t = 1, 2, 3.
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Figure 2. A part of Figure 1 magnified.

Let ε > 0. We claim that for k ≥ k0 sufficiently large and for A(k) being a level
of tower Cnk which is not one of the first 3 levels we have∣∣∣µT 2rqnk ,T

rqnk

(
A(k) ×A(k) ×A(k)

)
− r − 2

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
,
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rqnk

(
A(k) ×A(k) × TA(k)

)
− 1

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
,∣∣∣µT 2rqnk ,T

rqnk

(
A(k) ×A(k) × T 2A(k)

)
− 1

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
,(7.4) ∣∣∣µT 2rqnk ,T

rqnk

(
A(k) × TA(k) × TA(k)

)
− 1
r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
,∣∣∣µT 2rqnk ,T

rqnk

(
A(k) × TA(k) × T 2A(k)

)
− r − 3

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
,∣∣∣µT 2rqnk ,T

rqnk

(
A(k) × T 2A(k) × T 3A(k)

)
− 1

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
.

The proof of all of these inequalities goes along the same lines, we will prove only
the fifth of them, i.e.

(7.5)
∣∣∣µT 2rqnk ,T

rqnk

(
A(k) × TA(k) × T 2A(k)

)
− r − 3

2r
µ
(
A(k)

)∣∣∣ < εµ
(
A(k)

)
(the proof of (7.5) contains all elements of the proofs of the other inequalities
in (7.4)). To make the notation simpler we will write C for the tower Cnk and we
will also change the notation for the subcolumns. Now, tower Cnk is cut into r
subcolumns of equal width, denoted from left to right by Ci, 1 ≤ i ≤ r, with one
spacer placed spacer over subcolumns Ci for r/2+1 ≤ i ≤ r. Then each of Ci is cut
into s subcolumns of equal width, denoted from left to right by Ci,j , 1 ≤ j ≤ rnk+1,
with one spacer placed over subcolumns Cr,j for

[ rnk+1

2

]
+ 1 ≤ j ≤ rnk+1. Let

A
(k)
i := A(k) ∩ Ci, A(k)

i,j := A(k) ∩ Ci,j

for 1 ≤ i ≤ r and 1 ≤ j ≤ rnk+1.
Notice that we have

T qnkA
(k)
i = A

(k)
i+1 for 1 ≤ i ≤ r/2,

T qnkA
(k)
i = T−1A

(k)
i+1 for r/2 + 1 ≤ i ≤ r − 1

(7.6)

and

(7.7)
T qnkA

(k)
r,j = T−1A

(k)
1,j+1 for 1 ≤ j ≤

[rnk+1

2

]
,

T qnkA
(k)
r,j = T−2A

(k)
1,j+1 for

[rnk+1

2

]
+ 1 ≤ j ≤ rnk+1 − 1.

Moreover

(7.8) µ
(
A(k)\

( ⋃
1≤i≤r−1

A
(k)
i ∪

⋃
1≤j≤rnk+1−1

A
(k)
r,j

))
=µ
(
A(k)
r,rnk+1

)
=

1
rrnk+2

µ
(
A(k)

)
.

We also have

(7.9)

T 2qnkA
(k)
i = A

(k)
1,i+2 for 1 ≤ i ≤ r/2− 1,

T 2qnkA
(k)
1,r/2 = T−1A

(k)
1,r/2+2,

T 2qnkA
(k)
1,j = T−2A

(k)
1,j+2 for r/2 + 1 ≤ j ≤ r − 2

and

(7.10)
T 2qnkA

(k)
r−1,j = T−2A

(k)
1,j+1 for 1 ≤ j ≤

[rnk+1

2

]
,

T 2qnkA
(k)
r−1,j = T−3A

(k)
1,j+1 for

[rnk+1

2

]
+ 1 ≤ j ≤ rnk+1 − 1

and

(7.11)
T 2qnkA

(k)
r,j = T−1A

(k)
2,j+1 for 1 ≤ j ≤

[rnk+1

2

]
,

T 2qnkA
(k)
r,j = T−2A

(k)
2,j+1 for

[rnk+1

2

]
+ 1 ≤ j ≤ rnk+1 − 1.
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Moreover

(7.12) µ

A(k) \

 ⋃
1≤i≤r−2

A
(k)
i ∪

⋃
1≤j≤rnk+1−1

A
(k)
r−1,j ∪

⋃
1≤j≤rnk+1−1

A
(k)
r,j


= µ

(
A

(k)
r−1,rnk+1

)
+ µ

(
A(k)
r,rnk+1

)
=

2
rrnk+1

µ
(
A(k)

)
.

Using all of the ?? 7.6 and eqs. (7.7) and (7.8) we obtain

(7.13) µ

T qnkA(k) \
⋃

p2∈{0,1,2}

T−p2A(k)

 <
1

rrnk+2
µ
(
A(k)

)
and using eqs. (7.9)–(7.12)

(7.14) µ

T 2qnkA(k) \
⋃

p3∈{0,1,2,3}

T−p3A(k)

 <
2

rrnk+2
µ
(
A(k)

)
.

We will show now that (7.5) is true. We have

A(k) ∩ TT qnkA(k) ∩ T 2T 2rqnkA(k)

(∗)
'
(
A(k) ∩ TT qnk

( ⋃
1≤i≤r−1

A
(k)
i ∪

⋃
1≤j≤rnk+1−1

A
(k)
r,j

))
∩ T 2T 2qnkA(k)

(7.6),(7.7),(7.8)
=

( ⋃
r/2+1≤i≤r−1

A
(k)
i+1 ∪

⋃
1≤j≤

h rnk+1
2

iA(k)
1,j+1

)
∩ T 2T 2qnkA(k)

(∗∗)
'
( ⋃
r/2+1≤i≤r−1

A
(k)
i+1 ∪

⋃
1≤j≤

h rnk+1
2

iA(k)
1,j+1

)

∩ T 2T 2qnk

( ⋃
1≤i≤r−2

A
(k)
i ∪

⋃
1≤j≤rnk+1−1

A
(k)
r−1,j ∪

⋃
1≤j≤rnk+1−1

A
(k)
r,j

)
(7.9),(7.10),(7.11)

=
( ⋃
r/2+1≤i≤r−1

A
(k)
i+1 ∪

⋃
1≤j≤

h rnk+1
2

iA(k)
1,j+1

)

∩
( ⋃
r/2+1≤i≤r−2

A
(k)
i+2 ∪

⋃
1≤j≤

h rnk+1
2

iA(k)
1,j+1 ∪

⋃
h rnk+1

2

i
+1≤j≤rnk+1−1

A
(k)
2,j+1

)
=

⋃
r/2+3≤i≤r

A
(k)
i ∪

⋃
2≤j≤

h rnk+1
2

i
+1

A1,j ,

where (∗) and (∗∗) hold up to a set of measure 1
rrnk+2

µ(A(k)) and 2
rrnk+2

µ(A(k)),

respectively. Therefore up to an error of absolute value at most 3
rrnk+2

µ(A(k))

µT 2qnk ,T
qnk

(
A(k) × TA(k) × T 2A(k)

)
= µ

(
T−2qnkA(k) ∩ T−qnk+1A(k) ∩ T 2A(k)

)
= µ

(
A(k) ∩ TT qnkA(k) ∩ T 2T 2qnkA(k)

)
' µ

 ⋃
r/2+3≤i≤r

A
(k)
i ∪

⋃
2≤j≤

h rnk+1
2

i
+1

A
(k)
1,j
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=
r − r/2− 3 + 1

r
· µ(A(k)) +

[ rnk+1

2

]
+ 1− 2 + 1

rrnk+2
· µ(A(k))

=
r − 4

2r
· µ(A(k)) +

[ rnk+1

2

]
rrnk+2

µ(A(k)) =

{
r−3
2r µ(A(k)), 2|rnk+1

r−3
2r µ(A(k))− 1

2rrnk+1
µ(A(k)), 2 6 |rnk+1,

i.e. (7.5) indeed holds. In a similar way, all of the inequalities (7.4) hold. We
obtain∣∣∣µT 2qnk ,T

qnk

(
A[1]× TA[1]× T 2A[1]

)
− r − 3

2r
µT−2,T−1

(
A[1]× TA[1]× T 2A[1]

) ∣∣∣
(7.2)
=
∣∣∣µT 2qnk ,T

qnk

(( lk⋃
l=1

A(k)[1, l]
)
×
( lk⋃
l=1

TA(k)[1, l]
)
×
( lk⋃
l=1

T 2A(k)[1, l]
))

− r − 3
2r

µT−2,T−1

(( lk⋃
l=1

A(k)[1, l]
)
×
( lk⋃
l=1

TA(k)[1, l]
)
×
( lk⋃
l=1

T 2A(k)[1, l]
))∣∣∣

≤
lk∑
l=1

∣∣∣µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l]× T 2A(k)[1, l]

)
−r − 3

2r
µT−2,T−1

(
A(k)[1, l]× TA(k)[1, l]× T 2A(k)[1, l]

)∣∣∣∣
+

lk∑
l=1

∑
1≤l′,l′′≤lk

#{l,l′,l′′}>1

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l′′]

)

+
r − 3

2r

lk∑
l=1

∑
1≤l′,l′′≤lk

#{l,l′,l′′}>1

µT−2,T−1

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l′′]

)

=
lk∑
l=1

∣∣∣µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l]× T 2A(k)[1, l]

)
−r − 3

2r
µ
(
T 2A(k)[1, l] ∩ T 2A(k)[1, l] ∩ T 2A(k)[1, l]

)∣∣∣∣
+

lk∑
l=1

∑
1≤l′,l′′≤lk

#{l,l′,l′′}>1

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l′′]

)

+
r − 3

2r

lk∑
l=1

∑
1≤l′,l′′≤lk

#{l,l′,l′′}>1

µ
(
T 2A(k)[1, l] ∩ T 2A(k)[1, l′] ∩ T 2A(k)[1, l′′]

)

=
lk∑
l=1

∣∣∣µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l]× T 2A(k)[1, l]

)
− r − 3

2r
µ
(
A(k)[1, l]

)∣∣∣
+

lk∑
l=1

∑
1≤l′,l′′≤lk

#{l,l′,l′′}>1

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l′′]

)

(7.4)
<

lk∑
l=1

εµ
(
A(k)[1, l]

)
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+
lk∑
l=1

∑
1≤l′′≤lk
l′′ 6=l

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l]× T 2A(k)[1, l′′]

)

+
lk∑
l=1

∑
1≤l′≤lk
l′ 6=l

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l]

)

+
lk∑
l=1

∑
1≤l′,l′′≤lk
l′,l′′ 6=l

µT 2qnk ,T
qnk

(
A(k)[1, l]× TA(k)[1, l′]× T 2A(k)[1, l′′]

)
= εµ(A[1])

+
lk∑
l=1

∑
1≤l′′≤lk
l′′ 6=l

µ
(
T−2qnkA(k)[1, l] ∩ T−qnkTA(k)[1, l] ∩ T 2A(k)[1, l′′]

)

+
lk∑
l=1

∑
1≤l′≤lk
l′′ 6=l

µ
(
T−2qnkA(k)[1, l] ∩ T−qnkTA(k)[1, l′] ∩ T 2A(k)[1, l]

)

+
lk∑
l=1

∑
1≤l′,l′′≤lk
l′,l′′ 6=l

µ
(
T−2qnkA(k)[1, l] ∩ T−qnkTA(k)[1, l′] ∩ T 2A(k)[1, l′′]

)

≤ εµ(A[1]) +
lk∑
l=1

∑
1≤l′′≤lk
l′′ 6=l

µ
(
T−2qnkA(k)[1, l] ∩ T 2A(k)[1, l′′]

)

+ 2
lk∑
l=1

∑
1≤l′≤lk
l′ 6=l

µ
(
T−2qnkA(k)[1, l] ∩ T−qnkTA(k)[1, l′]

)

= εµ(A[1]) +
lk∑
l=1

∑
1≤l′′≤lk
l′′ 6=l

µ
(
A(k)[1, l] ∩ T 2qnkT 2A(k)[1, l′′]

)

+ 2
lk∑
l=1

∑
1≤l′≤lk
l′ 6=l

µ
(
A(k)[1, l] ∩ T qnkTA(k)[1, l′]

)

= εµ(A[1]) +
lk∑

l′′=1

∑
1≤l≤lk
l 6=l′′

µ
(
A(k)[1, l] ∩ T 2qnkT 2A(k)[1, l′′]

)

+ 2
lk∑
l′=1

∑
1≤l≤lk
l 6=l′

µ
(
A(k)[1, l] ∩ T qnkTA(k)[1, l′]

)

= εµ(A[1]) +
lk∑

l′′=1

µ
(( ⋃

1≤l≤lk
l 6=l′′

A(k)[1, l]
)
∩ T 2qnkT 2A(k)[1, l′′]

)
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+ 2
lk∑
l′=1

µ
(( ⋃

1≤l≤lk
l 6=l′

A(k)[1, l]
)
∩ T qnkTA(k)[1, l′]

)

(7.13),(7.14),(7.3)
≤ εµ(A[1]) +

lk∑
l′′=1

2
rrnk+2

µ(A(k)[1, l′′]) + 2
lk∑
l′=1

1
rrnk+2

µ(A(k)[1, l′])

=
(
ε+

4
rrnk+2

)
µ(A[1]).

Hence

µT 2qnk ,T
qnk

(
A[1]× TA[1]× T 2A[1]

)
→ r − 3

2r
µT−2,T−1

(
A[1]× TA[1]× T 2A[1]

)
=
r − 3

2r
µ(A[1]).

(7.15)

In a similar way

µT 2qnk ,T
qnk

(A[1]×A[1]×A[1])

→ r − 2
2r

µI,I (A[1]×A[1]×A[1]) =
r − 2

2r
µ (A[1]) ,

(7.16)

µT 2qnk ,T
qnk

(A[1]×A[1]× TA[1])

→ 1
2r
µT−1,T−1 (A[1]×A[1]× TA[1]) =

1
2r
µ (A[1]) ,

(7.17)

µT 2qnk ,T
qnk

(
A[1]×A[1]× T 2A[1]

)
→ 1

2r
µT−2,T−2

(
A[1]×A[1]× T 2A[1]

)
=

1
2r
µ (A[1]) ,

(7.18)

µT 2qnk ,T
qnk

(A[1]× TA[1]× TA[1])

→ 1
r
µT−1,I (A[1]× TA[1]× TA[1]) =

1
r
µ (A[1]) ,

(7.19)

µT 2qnk ,T
qnk

(
A[1]× T 2A[1]× T 3A[1]

)
→ 1

2r
µT−3,T−1

(
A[1]× T 2A[1]× T 3A[1]

)
=

1
2r
µ (A[1]) .

(7.20)

Let I = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 3)} . Since

r − 3
2r

+
r − 2

2r
+

1
2r

+
1
2r

+
1
r

+
1
2r

= 1,

we have

µT 2qnk ,T
qnk

 ⋃
(p2,p3)∈I

A[1]× T p2A[1]× T p3A[1]

→ µ (A[1]) .

Notice that for (p′2, p
′
3) 6∈ I such that T p

′
2A[1] and T p

′
3A[1] are levels of tower Cnk0

A[1]× T p
′
2A[1]× T p

′
3A[1] ⊂ A[1]×

 ⋃
(p2,p3)∈I

T p2A[1]× T p3A[1]

c

.
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Therefore

µT 2qnk ,T
qnk

(
A[1]× T p

′
2A[1]× T p

′
3A[1]

)
≤ µT 2qnk ,T

qnk

(
A[1]×

( ⋃
(p2,p3)∈I

T p2A[1]× T p3A[1]
)c)

= µ (A[1])− µT 2qnk ,T
qnk

(
A[1]×

( ⋃
(p2,p3)∈I

T p2A[1]× T p3A[1]
))

→ µ (A[1])− µ (A[1]) = 0.

(7.21)

Let now

P =
r − 2

2r
δ(0,0) +

1
2r
δ(1,1) +

1
2r
δ(2,2) +

1
r
δ(1,0) +

r − 3
2r

δ(2,1) +
1
2r
δ(3,1).

Notice that for (p′2, p
′
3) 6∈ I such that T p

′
2A[1], T p

′
3A[1] are levels of tower Cnk0

we
have

(7.22)
∫

Z2
µT−a,T−b

(
A[1]× T p

′
2A[1]× T p

′
3A[1]

)
dP (a, b) = 0.

Using eqs. (7.15)–(7.22) we obtain

µT 2qnk ,T
qnk

(A[1] × A[2] × A[3]) →
∫

Z2
µT−a,T−b(A[1] × A[2] × A[3]) dP (a, b).

This implies (7.1) and the claim follows. �

Remark 7.3. In the same way, one can show that some rank one flows are not
reversible. The construction of such flows is similar to the rank one automorphisms
considered in the above theorem. They are also determined by a sequence of integers
(rn)n∈N which denote the number of subcolumns at each step of the construction.
Now, the role of spacers is played by rectangles placed above the subcolumns.
The additional assumption in the “flow version” of our theorem is that along the
subsequence (nk) the rectangles are of fixed height and at steps nk, nk + 1 the are
placed over the same subcolumns as in Theorem 7.2.

Remark 7.4. A similar method can be used to show non-reversibility of the clas-
sical Chacon’s automorphism, i.e. the rank one automorphism which can be con-
structed as described in the beginning of this section, dividing the column at each
step of the construction into three subcolumns and placing a spacer above the mid-
dle one. More precisely, to show that this automorphism is not reversible, one can
use the “automorphism counterpart” of Corollary 3.12.

8. Topological self-similarities of special flows

In this section we will deal with topological self-similarities of continuous flows
T = (Tt)t∈R on a compact metric spaces. For each such flow denote by Itop(T ) the
subgroup of all s ∈ R∗ such that the flows T and T ◦ s are topologically conjugate.
If Itop(T ) * {−1, 1} then the flows T is called topologically self-similar. More
precisely we will deal with continuous time changes of minimal linear flows on the
two torus. Each such flow is topologically conjugate to the special flow T f build
over an irrational rotation Tx = x + α on the circle and under a continuous roof
function f : T→ R+.

We will show that if T f is topologically self-similar then α must be a quadratic
irrational and f is topologically cohomological to a constant function. It follows that
if a continuous time change of a minimal linear flow on the two torus is topologically
self-similar then it is topologically conjugate to a minimal linear flows on the two
torus.
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Let (X, d) be a compact connected topological manifold. Then X is locally path
connected and locally simply connected, so denote by X̃ the universal covering space
ofX and let π′ : X̃ → X be the covering map. Denote by Θ the deck transformation
group of the covering π′ : X̃ → X, i.e. Θ is the group of homeomorphisms θ : X̃ →
X̃ such that π′ ◦θ = π′. Then Θ is countable (isomorphic to the fundamental group
of X) and it acts in the properly discontinuous way, that is, for each x ∈ X there
exists an open V 3 x such that θ(V )∩V = ∅ whenever Id 6= θ ∈ Θ. In what follows
we need the following simple observation.

Lemma 8.1. Assume that Z is a topological space and let G be a countable group
(considered with the discrete topology). Assume that G acts on Z as homeomor-
phisms in the properly discontinuous way. Assume moreover that Φ : R → G and
that

R 3 t 7→ Φ(t)z ∈ Z
is continuous for each z ∈ Z. Then Φ is continuous, hence constant.

Proof. Fix t0 ∈ R and z ∈ Z. Select an open V 3 z, so that gV ∩ V = ∅ whenever
1 6= g ∈ G. By the continuity assumption, there is an open interval W 3 t0 such
that Φ(t)(z) ∈ Φ(t0)(V ) for t ∈W . Thus Φ(t) = Φ(t0). It follows directly that the
map W 3 t 7→ Φ(t) is constant, whence Φ is continuous. �

Let T : X → X be a homeomorphism and f : X → R \ {0} a continuous
function, which is globally either positive or negative. Let us consider the skew
product T−f : X×R→ X×R, T−f (x, r) = (Tx, r−f(x)) and the orbit equivalence
relation ≡ on X × R defined by (x2, r2) ≡ (x1, r1) if there exists n ∈ Z such that
(x2, r2) = Tn−f (x1, r1). Denote by Xf the quotient space (X×R)/ ≡. Then Xf is a
compact topological manifold and the canonical projection π1 = πf1 : X ×R→ Xf

is a covering map.
Let us consider the (continuous) flow (σt)t∈R on X × R given by σt(x, r) =

(x, r + t). Since Tn−f commutes with σt for every n ∈ Z and t ∈ R, each σt
transforms the equivalence classes for ≡ into the equivalence classes. Therefore
(σt)t∈R defines a continuous flow on Xf , this flow is denoted by T f . If the function
f is positive the flow T f is called the special flow built over the homeomorphism T

and under the roof function f . Of course, T ft ◦ π1 = π1 ◦ σt for every t ∈ R.
Then, the map π2 : X̃ × R→ X × R given by π2(x̃, r) = (π′(x̃), r) is a covering

map and X̃×R is the universal covering of Xf with the covering map πf = πf1 ◦π2.
For every θ ∈ Θ denote by θ : X̃ × R → X̃ × R the trivial extension θ(x̃, r) =

(θ(x̃), r). Note that θ belongs to the deck group of the universal covering πf .
Let T̃ : X̃ → X̃ be a lift of T : X → X. Recall that T̃ : X̃ → X̃ is a

homeomorphism. Let us consider the group automorphism γ : Θ→ Θ given by

γ(θ) = T̃ ◦ θ ◦ T̃−1

and the semidirect product Θ oγ Z with multiplication

(θ,m) · (θ′,m′) = (θ ◦ γm(θ′),m+m′).

Denote by T̃− ef : X̃ × R → X̃ × R the skew product T̃− ef (x̃, r) = (T̃ (x̃), r − f̃(x̃)),
where f̃ = f ◦ π′.

Proposition 8.2 (Proposition 1.1 in [20]). The deck transformation group Θf of
the universal covering πf : X̃ × R→ Xf is equal to

{θ ◦ T̃m− ef : θ ∈ Θ, m ∈ Z}

and (θ,m) 7→ θ ◦ T̃m
− ef establishes the group isomorphism of Θ oγ Z and Θf .
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We will identify the groups Θ oγ Z and Θf .
For any s ∈ R∗ \ {1} let us consider the flow T f ◦ (s−1) = (T fs−1t)t∈R on Xf .

This flow is topologically isomorphic to the flow (T sft )t∈R on Xsf . Indeed, the
homeomorphism U : X × R→ X × R given by U(x, r) = (x, sr) satisfies

U ◦ T−f = T−sf ◦ U and U ◦ σs−1t = σt ◦ U.

Therefore, U induces a homeomorphism U ′ : Xf → Xsf with U ′ ◦T fs−1t = T sft ◦U ′.
Suppose that s ∈ Itop(T f ) \ {1}. As the flows T f and T f ◦ (s−1) on Xf are

topologically isomorphic, the flows (T ft )t∈R on Xf and (T sft )t∈R on Xsf are also
topologically isomorphic. Thus there exists a homeomorphism S : Xf → Xsf such
that S ◦ T ft = T sft ◦ S. Let S̃ : X̃ × R → X̃ × R be a lift of S. Then S̃ is a
homeomorphism such that S ◦ πf = πsf ◦ S̃. Since S−1 ◦ T sf−t ◦ S ◦ T

f
t = idXf , its

lift S̃−1 ◦ σ−t ◦ S̃ ◦ σt is an element of the deck transformation group Θf , so there
exists a map R 3 t 7→ (θ(t),m(t)) ∈ Θ oγ Z such that

S̃−1 ◦ σ−t ◦ S̃ ◦ σt = θ(t) ◦ T̃m(t)

− ef .

Now, for each (x̃, r) ∈ X̃ × R the map

R 3 t 7→ S̃−1 ◦ σ−t ◦ S̃ ◦ σt(x̃, r) ∈ X̃ × R
is continuous. By Lemma 8.1 applied to Θf we obtain that the map t 7→ (θ(t),m(t))
is constant. Moreover, (θ(0),m(0)) = (idX , 0), so

(8.1) S̃ ◦ σt = σt ◦ S̃.

For every θ̃ ∈ Θf the homeomorphism S̃ ◦ θ̃ ◦ S̃−1 is a deck transformation of πsf ,
so there exists A : Θf → Θsf such that

(8.2) S̃ ◦ θ̃ ◦ S̃−1 = A(θ̃).

Moreover, A : Θf → Θsf is a group isomorphism which can be identified with the
automorphism A : Θ oγ Z→ Θ oγ Z.

Let S̃ = (S1, S2), where S1 : X̃×R→ X̃ and S2 : X̃×R→ R. Let A = (A1, A2),
where A1 : Θ oγ Z→ Θ and A2 : Θ oγ Z→ Z. In view of (8.1),

S̃(x̃, t) = S̃ ◦ σt(x̃, 0) = σt ◦ S̃(x̃, 0) = (S1(x̃, 0), S2(x̃, 0) + t).

Therefore
S̃(x̃, t) = (V (x̃), t+ g(x̃)),

where V : X̃ → X̃ is a homeomorphism and g : X̃ → R is a continuous function.
Note that if (θ,m) denotes θ ◦ T̃m

− ef then

S̃ ◦ (θ,m)(x̃, r) = S̃(θ ◦ T̃m(x̃), r − f̃ (m)(x̃))

= (V ◦ θ ◦ T̃m(x̃), r − f̃ (m)(x̃) + g(θ ◦ T̃m(x̃))),

while if we set (θ,m) = θ ◦ T̃m
−s ef then

(θ,m) ◦ S̃(x̃, r) = (θ,m)(V (x̃), r + g(x̃))

= (θ ◦ T̃m ◦ V (x̃), r + g(x̃)− sf̃ (m)(V (x̃)))

Therefore, in view of (8.2), we have

V ◦ θ ◦ T̃m(x̃) = A1(θ,m) ◦ T̃A2(θ,m) ◦ V (x̃)

g(θ ◦ T̃m(x̃))− f̃ (m)(x̃) = g(x̃)− sf̃ (A2(θ,m))(V (x̃)).

Let us consider the action of the group ΘoγZ on X̃ defined by (θ,m)(x̃) = θ◦T̃m(x̃).
Then as a conclusion we have the following.
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Theorem 8.3. The number s ∈ Itop(T f ) \ {1} if and only if there exist a home-
omorphism V : X̃ → X̃, a group automorphism A : Θ oγ Z → Θ oγ Z and a
continuous function g : X̃ → R such that for every (θ,m) ∈ Θ oγ Z

V ◦ (θ,m)(x̃) = A(θ,m) ◦ V (x̃)

sf̃ (A2(θ,m))(V (x̃))− f̃ (m)(x̃) = g(x̃)− g((θ,m)(x̃)).

Remark 8.4. If T is uniquely ergodic, then so is T f and therefore in this case
Itop(T f ) ⊂ IT f .

8.1. Special flows over irrational rotations. Suppose that T is the rotation by
an irrational number α ∈ R on the additive circle X = T = R/Z. Then X̃ = R and
the deck transformation group is the group of translations of R by integer numbers,
so Θ = Z with n(x) = x + n. As each such translation commutes with the lift
T̃ : R → R, T̃ x = x + α, γ = idZ. Thus Θf = Z × Z and the action of this group
on X̃ = R is given by

(8.3) (n,m)x = x+ n+mα.

We will now prove the following result describing topological self-similarities of
T f whose second part is to be compared with Remark 2.3.

Proposition 8.5. Let α ∈ R\Q and let f : T→ R be a continuous positive function.
Then s ∈ Itop(T f ) \ {1} if and only if there exist a matrix [aij ] = A ∈ GL2(Z),
δ ∈ R and a continuous function g : R→ R such that

a12 + a22α = (a11 + a21α)α,(8.4)

a11 + a21α = σs = σ(a22 − a21α)−1(8.5)

sf̃ (a21n+a22m)(σsx+ δ)− f̃ (m)(x) = g(x)− g(x+ n+mα),(8.6)

for all m,n ∈ Z, where σ = detA.
Moreover, −1 ∈ Itop(T f ) if and only if there exist a continuous map g : T → R

and δ ∈ T such that

(8.7) f(δ − x)− f(x) = g(x)− g(x+ α).

Proof. By Theorem 8.3 and (8.3), s ∈ Itop(T f ) \ {1} if and only if there exist a
homeomorphism V : R→ R, a group automorphism

A : Z2 → Z2, A(n,m) = (a11n+ a12m, a21n+ a22m) with A := [aij ] ∈ GL2(Z)

and a continuous function g : R→ R such that for every (n,m) ∈ Z2 and x ∈ R

V (x+ n+mα) = V (x) + (a11n+ a12m) + (a21n+ a22m)α(8.8)

sf̃ (a21n+a22m)(V (x))− f̃ (m)(x) = g(x)− g(x+ n+mα).(8.9)

Let us consider v : R → R, v(x) = V (x) − (a11 + a21α)x. In view of (8.8), we
obtain

v(x+ n+mα) = V (x+ n+mα)− (a11 + a21α)(x+ n+mα)

= v(x) + (a12 + a22α− (a11 + a21α)α)m.

It follows that v is Z-periodic, so v : T→ R. Moreover (by taking n = 0 and m = 1
above), v(x+ α) = v(x) + a12 + a22α− (a11 + a21α)α, so∫

T
v(x) dx =

∫
T
v(x+ α) dx =

∫
T
v(x) dx+ a12 + a22α− (a11 + a21α)α.

Thus a12 +a22α = (a11 +a21α)α, so (8.4) holds. Moreover, v is a constant function
and V (x) = γx+ δ with γ := a11 + a21α and some real δ.
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Case 1. Suppose that a12 or a21 is equal to zero. As α is irrational and by (8.4),
a12 + (a22 − a11)α− a21α

2 = 0, it follows that a12 = a21 = 0 and a11 = a22 = ±1.
Hence V (x) = ±x+ δ and, by (8.9),

sf̃ (±m)(±x+ δ)− f̃ (m)(x) = g(x)− g(x+ n+mα).

Setting m = 0 we have g(x + n) = g(x), so g is Z-periodic. Therefore, g can be
treated as a map on T and taking m = 1 we have

sf (±1)(±x+ δ)− f(x) = g(x)− g(x+ α) for all x ∈ T.

Recalling that f (−1)(y) = −f(y − α), it follows that

(±s− 1)
∫

T
f(x) dx = s

∫
T
f (±1)(±x+ δ) dx−

∫
T
f(x) dx

=
∫

T
g(x) dx−

∫
T
g(x+ α) dx = 0.

Since s 6= 1 and f is positive, it follows that s = −1 and a11 = a22 = −1. Therefore,
(8.5), (8.6) and (8.7) hold.

Case 2. Suppose that both a12 and a21 are non-zero. Since a12 + (a22− a11)α−
a21α

2 = 0, the irrational number α is a quadratic irrational. In view of (8.9) (by
substitutingm by 0, and by substituting n by −a22m andm by a21m, respectively),
we obtain

(8.10) sf̃ (a21n)(γx+ δ) = g(x)− g(x+ n),

(8.11) − f̃ (a21m)(x) = g(x)− g(x+ (a21α− a22)m).

It follows that for every x ∈ R

(8.12) lim
|y|→∞

g(x)− g(x+ y)
y

= sa21

∫
T
f dx.

Indeed, if |y| is large enough

g(x)− g(x+ y)
y

=
g(x)− g(x+ {y})

y
+
g(x+ {y})− g(x+ {y}+ [y])

[y]
[y]
y

(8.10)
=

g(x)− g(x+ {y})
y

+ sa21
f (a21[y])(V (x+ {y}))

a21[y]
[y]
y
.

Since |g(x) − g(x + {y})| ≤ 2‖g‖C[x,x+1], f (n)/n tends to
∫

T f dx uniformly and
[y]/y → 1 as |y| → ∞, we get (8.12). Furthermore (by taking y = (a21α − a22)m
in (8.12)),

−
∫

T f dx

a21α− a22
←−f̃

(a21m)(x)/a21m

(a21α− a22)
(8.11)

=
g(x)− g(x+ (a21α− a22)m)

a21(a21α− a22)m
→ s

∫
T
f dx,

hence s = (a22 − a21α)−1.
In view of (8.4), (1, α)A = γ(1, α), so (1, α)A−1 = γ−1(1, α). Moveover,

A−1 = σ

(
a22 −a12

−a21 a11

)
, where σ := detA = ±1.

It follows that γ−1 = σ(a22 − a21α), hence γ = σs, this yields (8.5). Therefore,
V (x) = σsx+ δ, so (8.9) gives (8.6).

It follows that if −1 ∈ Itop(T f ) then a12 or a21 is equal to zero. Otherwise, using
Case 2 we have a11 + αa21 = γ = −σ, so a21 = 0, a contradiction. Moreover, by
Case 1, this yields the second part of the proposition. �
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Corollary 8.6. If α ∈ R \Q is not a quadratic irrational then Itop(T f ) ⊂ {1,−1}.

Corollary 8.7. There exists a continuous time change (ϕt)t∈R of a minimal linear
flow on T2 such that I((ϕt)t∈R) = R∗ and Itop((ϕt)t∈R) = {1}.

Proof of Corollary 8.7. On the modular space Γ\PSL2(R), Γ = PSL2(Z), by
Corollary 1.1 and Corollary 1.2, I((ht)t∈R) = R∗ and C((ht)t∈R) = {ht : t ∈ R}.
As it was shown in [36] that this flow is loosely Bernoulli, so (ht)t∈R is isomorphic
to a special flow over any irrational rotation Tx = x+α on the circle, see [18], [34].
Moreover, the roof function f : T→ R+ can be chosen continuous, see [22].

If α is not a quadratic irrational, then Itop(T f ) ⊂ {−1, 1}. On the other hand,
since T f is measure-theoretically isomorphic with (ht)t∈R, we have I(T f ) = R∗ and
C(T f ) = {T ft : t ∈ R}. Moreover, T f is a special representation of a continuous
time change of a minimal linear flow on T2.

Now we will see that f can be chosen so that −1 /∈ Itop(T f ) which will finish
the proof. Suppose that there exists a special representation T f of the horocycle
flow (ht)t∈R such that −1 ∈ Itop(T f ). Then we can construct another continuous
function f ′ : T→ R such that T f

′
is isomorphic to T f and −1 /∈ Itop(T f

′
).

Since −1 ∈ Itop(T f ), by Proposition 8.5, there exist δ ∈ T and g : T → R
continuous such that

(8.13) f(δ − x)− f(x) = g(x)− g(x+ α).

Let j : T → R be a measurable map such that x 7→ j(x) − j(x + α) is continuous
and

(8.14) x 7→ j(x) + j(δ − x) is not a.e. equal to any continuous function;

the existence of such a map will be discussed at the end of the proof.
We claim that if f ′ = f + j − j ◦ T then −1 /∈ Itop(T f

′
). Otherwise, by Proposi-

tion 8.5, there exist δ′ ∈ T and g′ : T→ R continuous such that

f ′(δ′ − x)− f ′(x) = g′(x)− g′(x+ α).

In view of (8.13), it follows that

f(δ − x)− f(δ′ − x) = (f(δ − x)− f(x))− (f ′(δ′ − x)− f ′(x))

− (j(x)− j(x+ α)) + (j(δ′ − x)− j(δ′ − x+ α))

= ((g − g′ − j)(x)− (g − g′ − j)(x+ α)) + (j(δ′ − x)− j(δ′ − x+ α)).

Replacing x by δ′ − x we have

f(x+ δ − δ′)− f(x) = h(x)− h(x+ α),

with
h(x) = (j + g′ − g)(δ′ − x+ α) + j(x).

Since C(T f ) = {T ft : t ∈ R}, in view of Lemma 2.6, there exist k ∈ Z and t0 ∈ R
such that δ − δ′ = kα and h = t0 − f (k) a.e. Therefore

j(δ′ − x+ α) + j(x) = (g − g′)(δ′ − x+ α) + t0 − f (k)(x) a.e.

Moreover,

j(δ − x)− j(δ′ − x+ α) = j(δ − x)− j(δ − x− (k − 1)α)

= (f ′)(−k+1)(δ − x)− f (−k+1)(δ − x),

Adding both equations we obtain that the map x 7→ j(δ− x) + j(x) is a.e. equal to
a continuous map, contrary to (8.14).
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Finally we point out a measurable map j : T→ R such that j−j◦T is continuous
and satisfies (8.14). Let (qn)n≥1 be a subsequence of denominators of α such that
qn+1 ≥ 2qn for n ≥ 1. Let us consider an L2 map j : T→ R with the Fourier series

j(x) =
∑
n≥1

1
n

cos 2πqn(x− δ/2).

Since

j(x)− j(x+ α) =
∑
n≥1

2
n

sin 2πqn(x+ α/2− δ/2) sinπqnα

with | sinπqnα| ≤ ‖qnα‖ < 1/qn+1 < 1/2n for n ≥ 1, we can choose j such that
j − j ◦ T is continuous. Moreover, j(δ − x) = j(x) for a.e. x ∈ T. Therefore, we
need to show that j (or equivalently jδ(x) = j(x + δ/2)) is not a.e. equal to any
continuous function. Some elementary arguments show that the Fourier series of
jδ is not Cesàro summable at 0. Then, by classical Fejer’s theorem, jδ is not a.e.
equal to any continuous function, which completes the proof. �

The following lemma is easily obtained by induction.

Lemma 8.8. Let 0 < |ρ| < 1 and let (xn)n≥0 be a real sequence such that

|ρxn+1 − xn| ≤M for n ≥ 0.

Then

|ρnxn − x0| ≤
1− |ρ|n

1− |ρ|
M ≤ M

1− |ρ|
for n ≥ 0.

Theorem 8.9. If there exists s ∈ Itop(T f ) \ {−1, 1} then f is cohomologous to a
constant function via a continuous transfer function.

Proof. Without loss of generality we can assume that |s| < 1. By Proposition 8.5,
there exist a matrix [aij ] = A ∈ GL2(Z), δ ∈ R and a continuous function g : R→ R
satisfying (8.4)-(8.6). Let us consider

F (x) := f̃(x)−
∫

T
f(t) dt and G(x) := g(x) + xsa21

∫
T
f(t) dt.

In view of (8.6) and (8.5),

sF (a21n+a22m)(σsx+ δ)− F (m)(x) = G(x)−G(x+ n+mα).(8.15)

with (remembering that F is 1-periodic)
∫

T F (t) dt = 0.
Choose any x0 ∈ [0, 1] and m0 ≥ 2|sa21|

1−|s| . Let us define inductively three se-
quences: (xk)k≥0 taking values in [0, 1) and two other integer-valued sequences
(mk)k≥0, (nk)k≥0 so that:

nk := −[xk +mkα], mk+1 := a21nk + a22mk, xk+1 := {σsxk + δ}

for all k ≥ 0. In view of (8.15), it follows that

sF (mk+1)(xk+1)− F (mk)(xk) = G(xk)−G(xk + nk +mkα)

and xk + nk +mkα = {xk +mkα} ∈ [0, 1). Therefore,

|sF (mk+1)(xk+1)− F (mk)(xk)| ≤ C := 2 max
x∈[0,1]

|G(x)|.

By Lemma 8.8,

(8.16) |skF (mk)(xk)− F (m0)(x0)| ≤ C

1− |s|
for k ≥ 0.
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Moreover, as s(a22 − a21α) = 1 (see (8.5)), we have

smk+1 −mk = sa21nk + (sa22 − 1)mk = −sa21[xk +mkα] + (sa22 − 1)mk

= −sa21(xk +mkα) + (sa22 − 1)mk + sa21{xk +mkα}
=
(
s(a22 − a21α)− 1

)
mk + sa21

(
{xk +mkα} − xk

)
= sa21

(
{xk +mkα} − xk

)
.

Hence |smk+1 −mk| ≤ |sa21| for k ≥ 0. In view of Lemma 8.8, it follows that

|skmk −m0| ≤
|sa21|
1− |s|

,

so the sequence (skmk)k≥0 is bounded and (by the lower bound of m0) bounded
away from zero. Thus |mk| → ∞ as k →∞.

By the unique ergodicity of the rotation T , the sequence F (n)/n tends uniformly
to
∫

T F (t) dt = 0 as |n| → ∞. It follows that,

skF (mk)(xk) = skmk
F (mk)(xk)

mk
→ 0.

Therefore, passing to k → ∞ in (8.16), we have |F (m0)(x0)| ≤ C/(1 − |s|). Con-
sequently, ‖F (m)‖sup ≤ C/(1 − |s|) for every m ≥ 1. In view of the classical
Gottschalk-Hedlund theorem (Theorem 14.11 in [14]), F = f −

∫
T f(t) dt is a

coboundary with a continuous transfer function. �

Remark 8.10. Consider the quadratic number α ∈ (0, 1) satisfying 1
α = α+1. Let

T = (Tt)t∈R be the linear flow on T2 given by (α, 1), that is Tt(x, y) = (x+tα, y+t).
Then 1/α ∈ Itop(T ). Indeed, the rescaled flow S = (St)t∈R is given by the formula
St(x, y) = (x+ t, y+ 1

α t) and it is easy to see that the homeomorphism A : T2 → T2

given by the matrix A =
[

0 1
1 1

]
satisfies A ◦ Tt = St ◦A for each t ∈ R.
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