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DENSITY OF MILD MIXING PROPERTY FOR VERTICAL

FLOWS OF ABELIAN DIFFERENTIALS

KRZYSZTOF FR�CZEK

Abstract. We prove that if g ≥ 2 then the set of all Abelian di�erentials
(M, ω) for which the vertical �ow is mildly mixing is dense in every stratum
of the moduli space Hg . The proof is based on a su�cient condition due to
Fr¡czek, Lema«czyk, and Lesigne guaranteeing mild mixing property of certain
special �ows over irrational rotations.

1. Abelian differentials and direction flows

For every natural g ≥ 2 let Hg stand for the moduli space of equivalence classes
of pairs (M,ω) whereM is a compact Riemann surface of genus g and ω is a nonzero
holomorphic 1-form on M (an Abelian di�erential). Two pairs (M,ω) and (M ′, ω′)
are identi�ed if they are mapped to one another by a conformal homeomorphism.
The space Hg is naturally strati�ed by the subsets Hg(m1, . . . ,mκ) of Abelian
di�erentials whose zeros have multiplicities m1, . . . ,mκ. By the Euler-Poincaré
formula m1 + . . . + mκ = 2g − 2. Every stratum Hg(m1, . . . ,mκ) is a complex-
analytic orbifold of dimension 2g + κ − 1. Moreover, Hg(m1, . . . ,mκ) possesses a
natural Lebesgue measure ν. Let us denote by (Us)s∈R the periodic continuous �ow
on Hg de�ned by Us(ω) = eisω.

For every θ ∈ C such that |θ| = 1, the Abelian di�erential ω determines the
direction �eld vθ : M → TM so that ω(vθ) = θ for all points of M except the
zeros of ω which are singular for vθ. By the direction �ow we will mean the �ow
Fθ = Fω,θ generated by vθ. The �ows F1 and F i are called horizontal and vertical
respectively. Direction �ows preserve the volume form i

2ω∧ω onM which vanishes
only at zeros of ω. This form determines a �nite volume measure µω which is
invariant for all direction �ows.

A separatrix of Fθ joining two singularities (not necessarily distinct) is called a
saddle connection of Fθ. Recall that in every stratum for a.e. Abelian di�erential
(M,ω) the vertical and the horizontal �ows have no saddle connections.

We are interested in ergodic (mixing) properties of the vertical �ow F i for g ≥ 2.
Avila and Forni proved in [1] that for ν-almost all (M,ω) ∈ Hg(m1, . . . ,mκ) the
vertical �ow is weakly mixing with respect to the measure µω. It follows from
Katok's result in [5] that direction �ows are never strongly mixing.
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In this paper we will restrict our attention to the mild mixing property for F i. A
�nite measure�preserving dynamical system is mildly mixing (see [4]) if its Carte-
sian product with an arbitrary ergodic conservative (�nite or in�nite) measure-
preserving dynamical system remains ergodic. It is an immediate observation that
the strong mixing of a dynamical system implies its mild mixing and mild mixing
implies weak mixing. Recall that a measure-preserving �ow (Tt)t∈R on (X,B, µ)
is rigid if there exists tn → +∞ such that µ(T−1

tn
A4A) → 0 for all A ∈ B. It

was proved in [4] that a �nite measure�preserving �ow is mildly mixing if and only
if it has no non-trivial rigid factors. Using the same methods as in the proof of
Theorem 1.3 in [10], one can prove that for almost every (M,ω) ∈ Hg(m1, . . . ,mκ)
the vertical �ow is rigid. It follows that the set Hmm of (M,ω) ∈ Hg(m1, . . . ,mκ)
for which the vertical �ow is mildly mixing is of measure zero. Nevertheless, we
prove that Hmm is dense in every stratum Hg(m1, . . . ,mκ) (see Theorem 16).

The proof of the density of Hmm is based on three components: a polygonal
representation of Abelian di�erentials described in Section 2 where we follow [12],
the Rauzy-Veech induction (Section 3) and a su�cient condition in [3] for special
�ows built over irrational rotations and under piecewise constant roof functions to
be mildly mixing (see Proposition 12). The proof consists of two main steps. In
the �rst step, using the Rauzy-Veech induction, we prove that a typical Abelian
di�erential is approximated by Abelian di�erentials whose vertical �ows are isomor-
phic to step special �ows built over three intervals exchange transformations and
under roof functions constant on the exchanged intervals (see Lemma 14). In the
second step we apply the main result of [3]. It says that a special �ow built over an
irrational circle rotation by α and under a three steps roof function (with one jump
at 1−α and one jump at some point ξ) is mildly mixing for a dense set of the data
(α, ξ and heights of the steps). Using the Rauzy-Veech induction again, it follows
that the same result holds for step special �ows over exchanges of three intervals,
i.e. such special �ows are mildly mixing for a dense set of data (see Corollary 13).

2. Interval exchange transformations and a construction of Abelian

differentials

In this section we brie�y describe a standard construction of Abelian di�erentials.
For more details we refer the reader to [12] and [13].

2.1. Interval exchange transformations. Let A be a d-element alphabet and
let π = (π0, π1) be a pair of bijections πε : A → {1, . . . , d} for ε = 0, 1. We adopt
the notation from [12]. The set of all such pairs we will denote by PA. Denote by
P0
A the subset of irreducible pairs, i.e. such that π1 ◦π−1

0 {1, . . . , k} 6= {1, . . . , k} for
1 ≤ k < d. Let P∗A stand for the set of irreducible pairs such that π1 ◦π−1

0 (k+1) 6=
π1 ◦ π−1

0 (k) + 1 for 1 ≤ k < d.
Let us consider λ = (λα)α∈A ∈ RA

+ \ {0}, where R+ = [0,+∞). Let

|λ| =
∑
α∈A

λα, I = [0, |λ|) and Iα =

 ∑
π0(β)<π0(α)

λβ ,
∑

π0(β)≤π0(α)

λβ

 .
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Then |Iα| = λα. Let Ωπ stand the matrix [Ωα β ]α,β∈A given by

Ωα β =

 +1 if π1(α) > π1(β) and π0(α) < π0(β)
−1 if π1(α) < π1(β) and π0(α) > π0(β)
0 in all other cases.

Given (λ, π) ∈ RA
+×P0

A let T(λ,π) : [0, |λ|) → [0, |λ|) stand for the interval exchange
transformation (IET) on d intervals Iα, α ∈ A, which are rearranged according to
the permutation π, i.e. T(π,λ)x = x+ wα for x ∈ Iα, where w = Ωπλ.

De�nition 1. Let ∂Iα stand for the left end point of the interval Iα. A pair (λ, π)
satis�es the Keane condition if Tm

(λ,π)∂Iα 6= ∂Iβ for all m ≥ 1 and for all α, β ∈ A
with π0(β) 6= 1.

It was proved by Keane in [6] that if π ∈ P0
A then for almost every λ the pair

(λ, π) satis�es the Keane condition.

2.2. Construction of Abelian di�erentials. For each π ∈ P0
A denote by T +

π

the set of vectors τ = (τα)α∈A ∈ RA such that

(2.1)
∑

π0(α)≤k

τα > 0 and
∑

π1(α)≤k

τα < 0 for all 1 ≤ k < d.

Denote by T +
π,λ the set of τ ∈ T +

π for which

(2.2) λπ−1
ε (k) = λπ−1

ε (k+1) = 0 =⇒ τπ−1
ε (k) · τπ−1

ε (k+1) > 0 for 1 ≤ k < d, ε = 0, 1.

Of course, T +
π and T +

π,λ are open convex cones.

Assume that τ ∈ T +
π,λ and set ζα = λα + iτα ∈ C for each α ∈ A. Let Γ(π, λ, τ)

stand for the closed curve on C formed by concatenation of vectors

ζπ−1
0 (1), ζπ−1

0 (2), . . . , ζπ−1
0 (d),−ζπ−1

1 (d),−ζπ−1
1 (d−1), . . . ,−ζπ−1

1 (1)

with starting point at zero. The curve Γ(π, λ, τ) determines a polygon P (π, λ, τ) on
C with 2d sides which has d pairs of parallel sides with the same length. Condition

(2.1) means that the �rst d−1 vertices of the polygon
∑j

k=1 ζπ−1
0 (k), j = 1, . . . , d−1

are on the upper half-plane and the last d−1 vertices
∑j

k=1 ζπ−1
1 (k), j = 1, . . . , d−1

are on the lower half-plane.

De�nition 2. (see [12] and [15]) The suspension surface M(π, λ, τ) is a compact
surface obtained by the identi�cation of the sides of the polygon P (π, λ, τ) in each
pair of parallel sides. The surface M(π, λ, τ) possesses a natural complex structure
inherited from C and a holomorphic 1-form ω determined by the form dz. Therefore
M(π, λ, τ) can be treated as an element of a moduli space.

The zeros of ω correspond to the vertices of the polygon P (π, λ, τ) and the
vertical �ow F i moves up each point of P (π, λ, τ) vertically at the unit speed. Note
that for every s ∈ R, taking λs + iτs = eis(λ+ iτ),

(2.3) if λs ∈ RA
+ and τs ∈ T +

π then M(π, λs, τs) = UsM(π, λ, τ).
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2.3. Zippered rectangles and a special representation of the vertical �ow.
Suspension surfaces can be de�ned in the terms of zippered rectangles introduced
by Veech [9]. For every (π, λ, τ) with τ ∈ T +

π,λ let us consider the vector h = h(τ) =
−Ωπτ . In view of (2.1), h ∈ RA

+. Here the surface M(π, λ, τ) is obtained from the
rectangles Iα× [0, hα], α ∈ A by an appropriate identi�cation of parts of their sides.
For example, the interval Iα×{hα} is identi�ed by a translation with T(π,λ)Iα×{0}
for all α ∈ A (see [9] for details).

In this representation the vertical �ow F i moves up each point of zippered rect-
angles vertically at the unit speed which yields the following fact.

Lemma 3. If τ ∈ T +
π,λ then the vertical �ow on M(π, λ, τ) has a special represen-

tation over the interval exchange transformation T(π,λ) and under the roof function

fh : I → R+, fh =
∑
α∈A

hαχIα
,

i.e. the vertical �ow and the special �ow T fh

(π,λ) are isomorphic as measure-preserving

systems.

We will also need the following results.

Proposition 4 (see Proposition 3.30 in [13] or [11]). If mi > 0 for i = 1, . . . , κ
then ν-almost every (M,ω) ∈ Hg(m1, . . . ,mκ) may be represented in the form

M(π, λ, τ), where #A = 2g + κ− 1.

Remark 1. By the proof of Proposition 3.30 in [13], we can choose π from P∗A.
Proposition 5 (see [9] and [11]). For �xed π all Abelian di�erentials M(π, λ, τ)
lie in the same stratum Hg(m1, . . . ,mκ) and the map

Ĥ(π) = {π} × (R+ \ {0})A × T +
π 3 (π, λ, τ) 7→M(π, λ, τ) ∈ Hg(m1, . . . ,mκ)

is continuous.

3. Rauzy-Veech induction

In this section we describe the Rauzy-Veech induction renormalization procedure
introduced for IETs by Rauzy in [8] and extended to zippered rectangles by Veech
in [9].

Let (π, λ) ∈ P0
A × (RA

+ \ {0}) be a pair such that λπ−1
0 (d) 6= λπ−1

1 (d). Set

ε(λ, π) =

{
0 if λπ−1

0 (d) > λπ−1
1 (d)

1 if λπ−1
0 (d) < λπ−1

1 (d).

We say that (π, λ) has type ε(λ, π). For ε = 0, 1 let Rε : P0
A → P0

A be de�ned by
Rε(π0, π1) = (π′0, π

′
1), where

π′ε(α) = πε(α) for all α ∈ A and

π′1−ε(α) =

 π1−ε(α) if π1−ε(α) ≤ π1−ε ◦ π−1
ε (d)

π1−ε(α) + 1 if π1−ε ◦ π−1
ε (d) < π1−ε(α) < d

π1−επ
−1
ε (d) + 1 if π1−ε(α) = d.

Moreover, let Θπ,ε = [Θα β ]α,β∈A stand for the matrix

Θα β =


1 if α = β
1 if α = π−1

1−ε(d) and β = π−1
ε (d)

0 in all other cases.
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The Rauzy-Veech induction of T(λ,π) is the �rst return map T ′ of T(λ,π) to the
interval [

0, |λ| −min(λπ−1
0 (d), λπ−1

1 (d))
)
.

As it was shown by Rauzy in [8], T ′ is also an IET on d-intervals, hence T ′ = T(λ′,π′)

for some (λ′, π′) ∈ P0
A × (RA

+ \ {0}). Moreover,

(λ′, π′) = (Rεπ,Θ−1∗
π,ε λ), where ε = ε(π, λ),

and B∗ denotes the conjugate transpose of B. This renormalization procedure
determines the transformation

R̂ : P0
A ×

(
RA

+ \ {0}
)
→ P0

A ×
(
RA

+ \ {0}
)
, R̂(π, λ) = (Rε(π,λ)π,Θ−1∗

π,ε(π,λ)λ)

whenever λπ−1
0 (d) 6= λπ−1

1 (d). Therefore the map R̂ is well de�ned for all (π, λ)

satisfying the Keane condition. Moreover, R̂(π, λ) ful�lls the Keane condition for

each such (π, λ). Consequently, R̂n(π, λ) is well de�ned for all n ≥ 1 and for all
(π, λ) satisfying the Keane condition (see [14] for details).

3.1. Rauzy graphs and Rauzy-Veech cocycle.

De�nition 6. Let us consider the relation ∼ on P0
A for which π ∼ π′ if there exists

(ε1, . . . , εk) ∈ {0, 1}∗ such that π′ = Rεk
◦ . . . ◦ Rε1π. Then ∼ is an equivalence

relation; its equivalence classes are called Rauzy classes.

Of course, for each Rauzy class C ⊂ P0
A, the set C × RA

+ is R̂�invariant.

De�nition 7. A pair π ∈ P0
A is called standard if π1◦π−1

0 (1) = d and π1◦π−1
0 (d) =

1.

Proposition 8 (see [8]). Every Rauzy class contains a standard pair.

Denote by Θ : C × RA
+ → GL(d,Z) the Rauzy-Veech cocycle

Θ(π, λ) = Θπ,ε(π,λ).

If (π′, λ′) = R̂n(π, λ) then λ′ = Θ(n)(π, λ)−1∗λ, where

Θ(n)(π, λ) = Θ(R̂n−1(π, λ)) ·Θ(R̂n−2(π, λ)) · . . . ·Θ(R̂(π, λ)) ·Θ(π, λ)

Remark 2. For every λ ∈ (R+ \ {0})A we have ε(π,Θ∗
π,ελ) = ε. Indeed,(

Θ∗
π,ελ

)
π−1

ε (d)
=

∑
α∈A

(Θπ,ε)α π−1
ε (d)λα = λπ−1

ε (d) + λπ−1
1−ε(d),(

Θ∗
π,ελ

)
π−1
1−ε(d)

=
∑
α∈A

(Θπ,ε)α π−1
1−ε(d)λα = λπ−1

1−ε(d),

and hence
(
Θ∗

π,ελ
)
π−1

ε (d)
>

(
Θ∗

π,ελ
)
π−1
1−ε(d)

. Therefore R̂(π,Θ∗
π,ελ) = (Rεπ, λ).

Now assume that (π′, λ′) = R̂(π, λ). Then for every λ′′ ∈ (R+ \ {0})A,

R̂(π,Θ(π, λ)∗λ′′) = R̂(π,Θ∗
π,ε(π,λ)λ

′′) = (Rε(π,λ), λ
′′) = (π′, λ′′).

It follows that for every (π, λ), n ≥ 1 and λ′′ ∈ (R+ \ {0})A

(π′, λ′) = R̂n(π, λ) implies R̂n(π,Θ(n)(π, λ)∗λ′′) = (π′, λ′′).
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3.2. Extended Rauzy-Veech induction. For every Rauzy class C ⊂ P0
A let

Ĥ(C) = {(π, λ, τ) : π ∈ C, λ ∈ RA
+ \ {0}, τ ∈ T +

π }.

By the extended Rauzy-Veech induction we mean the map R̂ : Ĥ(C) → Ĥ(C),

R̂(π, λ, τ) = (Rε(π,λ)π,Θ−1∗
π,ε(π,λ)λ,Θ

−1∗
π,ε(π,λ)τ) = (R̂(π, λ),Θ−1∗(π, λ)τ).

By Lemma 18.1 in [12], if (π′, λ′) = R̂(π, λ) then Θ−1∗(π, λ)τ ∈ T +
π′ , and hence

R̂ : Ĥ(C) → Ĥ(C) is well de�ned almost everywhere. Moreover, for every n ≥ 1

if (π′, λ′, τ ′) = R̂n(π, λ, τ) then λ′ = Θ(n)(π, λ)−1∗λ and τ ′ = Θ(n)(π, λ)−1∗τ.

Lemma 9 (see e.g. Section 18 in [12]). M(R̂n(π, λ, τ)) andM(π, λ, τ) are the same

elements of the moduli space.

Denote by (T̂s)s∈R the Teichmüller �ow on Ĥ(C),

T̂s(π, λ, τ) = (π, esλ, e−sτ).

The set H(C) = {(π, λ, τ) ∈ Ĥ(C) : |λ| = 1} is a global cross-section for (T̂s)s∈R.

Let tR : Ĥ(C) → R+ be de�ned by

tR(π, λ, τ) = − log
(
1− λπ−1

1−ε(d)/|λ|
)

whenever (π, λ) has type ε.

If R̂(π, λ, τ) = (π′, λ′, τ ′) then tR(π, λ, τ) = − log(|λ′|/|λ|) and |λ| = etR(π,λ,τ)|λ′|.
Let us consider the Rauzy-Veech renormalization map R : H(C) → H(C) given by

R = R̂ ◦ T̂tR(π,λ,τ)(π, λ, τ) = (π′, λ′/|λ′|, τ ′|λ′|).

Let m stand for the restriction of the measure dπ d1λ dτ to the set H(C), where dπ
is the counting measure on P0

A, d1λ is the Lebesgue measure on

ΛA = {λ ∈ (R+ \ {0})A : |λ| = 1}

and dτ is the Lebesgue measure on RA.

Theorem 10 (see Corollary 27.3 in [12]). For every Rauzy class C ⊂ P0
A the

measure m is an R-invariant ergodic conservative measure on H(C).

3.3. Di�erent special representations of the vertical �ow. Fix (π, λ, τ) ∈
Ĥ(C). Recall that the vertical �ow F i on M(π, λ, τ) has the special representation
over T(π,λ) and under fh : I → R+, where h = h(π, λ, τ) = −Ωπτ ∈ RA

+. Let

(π′, λ′, τ ′) = R̂(π, λ, τ) and h′ = −Ωπ′τ
′. In view of Ωπ′ = Θ(π, λ) Ωπ Θ∗(π, λ) (see

Lemma 10.2 in [12]),

h′ = −Ωπ′τ
′ = −Ωπ′ Θ−1∗(π, λ)τ = −Θ(π, λ) Ωπτ = Θ(π, λ)h.

Since M(π, λ, τ) and M(π′, λ′, τ ′) are the same elements of the moduli space, the

special �ows T fh

(π,λ) and T
fh′
(π′,λ′) are isomorphic. In fact, a more general result holds.

We leave the proof of the following simple lemma to the reader.

Lemma 11. For every interval exchange transformation T(π,λ) and h ∈ RA
+ the

special �ows T fh

(π,λ) and T
fΘ(π,λ)h

R̂(π,λ)
are isomorphic.
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4. Special flows over irrational rotations and exchanges of three

intervals

Let A ⊂ R be an additive subgroup. A collection of real numbers x1, . . . , xk

is called independent over A if a1x1 + . . . + akxk = 0 for a1, . . . , ak ∈ A implies
a1 = . . . = ak = 0.

Remark 3. Let Tα : [0, 1) → [0, 1) be an ergodic rotation Tαx = x + α. Since the
set Q + Qα is countable, the set of all (x1, . . . , xk) ∈ Rk such that x1, . . . , xk are
independent over Q + Qα is Gδ and dense. Denote by DC1 the set of irrational
numbers α ∈ [0, 1) which satisfy the following Diophantine condition: there exists
c > 0 such that |p− qα| > c/q for all p ∈ Z and q ∈ Z \ {0}. Since DC1 is dense in
[0, 1), the set

M = {(α, ξ) ∈ [0, 1)2 : α ∈ DC1, ξ ∈ (Q + Qα) \ (Z + Zα)}

is dense in [0, 1)2.

Given S = (St)t∈R a measure-preserving �ow and s > 0, we denote by Ss the
�ow (Sst)t∈R. As a consequence of Theorem 1.1 in [3] and Corollary 23 in [2] we
obtain the following.

Proposition 12. Let (α, ξ) ∈ M and let a1, a2, a3 ∈ R be independent over Q+Qα
and such that f = a1 + a2χ[0,ξ) + a3χ[0,1−α) > 0. Then the special �ow built over

Tα and under the roof function f is mildly mixing. Moreover, the �ows T f
α and

(T f
α )s are not isomorphic for all positive s 6= 1.

Let A = {a, b, c},

πs =
(
a b c
c b a

)
, πl =

(
a b c
b c a

)
, πr =

(
a b c
c a b

)
and

Λl
A = Λr

A = ΛA, Λ0
A = {λ ∈ ΛA : λa < λc}, Λ1

A = {λ ∈ ΛA : λa > λc}.

Let us consider four functions ργ : Λγ
A → [0, 1]2, γ ∈ {l, r, 0, 1} de�ned by

ρl(xa, xb, xc) = (1− xa, 1− xc), ρr(xa, xb, xc) = (xc, xa),

ρ0(xa, xb, xc) =
(
xc − xa

1− xa
,

xa

1− xa

)
, ρ1(xa, xb, xc) =

(
1− xa

1− xc
,

xa

1− xc

)
.

Obviously, ργ : Λγ
A → ρ(Λγ

A) is a C∞�di�eomorphism and ργ(Λγ
A) ⊂ [0, 1]2 is open

for γ = l, r, 0, 1. Let

γ(π, λ) =


l if π = πl

r if π = πr

0 if π = πs and λ ∈ Λ0
A

1 if π = πs and λ ∈ Λ1
A.

Let us consider ρ : P0
A × ΛA → [0, 1]2 given by ρ(π, λ) = ργ(π,λ)(λ). We will use

the notation (α(π, λ), ξ(π, λ)) for ρ(π, λ).

Corollary 13. For every π ∈ P0
A, λ ∈ ΛA and h ∈ RA

+ if ρ(π, λ) ∈ M and h1, h2, h3

are independent over Q + Qα(π, λ) then the special �ow T fh

(π,λ) is mildly mixing.
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Proof. We will prove the claim for the cases r and 0. In the remaining cases the
proof is similar, and we leave it to the reader.

Suppose that π = πr, λ ∈ ΛA and h ∈ RA
+. Then T(π,λ) is isomorphic to the

circle rotation by λc = α(π, λ) and

fh = ha + (hb − ha)χ[0,λa) + (hc − hb)χ[0,1−λc)

= ha + (hb − ha)χ[0,ξ(π,λ)) + (hc − hb)χ[0,1−α(π,λ)).

Suppose that ρ(π, λ) = (α(π, λ), ξ(π, λ)) ∈ M and ha, hb, hc are independent over
Q + Qα(π, λ). Then ha, hb − ha, hc − hb are independent over Q + Qα(π, λ). Now
Proposition 12 implies the mild mixing of T fh

(π,λ).

Next, suppose that π = πs, λ ∈ Λ0
A, h ∈ RA

+. Then (π, λ) has type 0. Let

(π′, λ′) = R̂(π, λ) and h′ = Θ(π, λ)h. Thus π′ = πr,

λ′ = Θ(π, λ)−1∗λ = (λa, λb, λc − λa) and h′ = (ha + hc, hb, hc).

By Lemma 11, the special �ows T fh

(π,λ) and T
fh′
(πr,λ′) are isomorphic. Note that

ρ(πr, λ
′/|λ′|) = ρr(λ′/|λ′|) = ρr

(
λa

1− λa
,

λb

1− λa
,
λc − λa

1− λa

)
= ρ0(λ) = ρ(π, λ).

Suppose that ρ(π, λ) ∈ M and ha, hb, hc are independent over Q + Qα(π, λ). It
follows that ha+hc, hb, hc are independent over Q+Qα(π, λ). Since ρ(πr, λ

′/|λ′|) =
ρ(π, λ) and α(πr, λ

′/|λ′|) = α(π, λ), we have ρ(πr, λ
′/|λ′|) ∈ M and h′a, h

′
b, h

′
c are

independent over Q + Qα(πr, λ
′/|λ′|). By the �rst part of the proof, the special

�ow T
fh′
(πr,λ′/|λ′|) is mildly mixing. It follows that T

fh′
(πr,λ′), and hence T fh

(π,λ), is mildly

mixing. �

5. Mild mixing of vertical flows

Let ‖x‖ =
∑

α∈A |xα| for every x ∈ RA. For every matrix B = [bα β ]α β∈A with
positive entries let ν(B) = maxα,β,γ∈A bα β/bα γ . Then

(5.1)

∥∥∥∥ Bλ′|Bλ|
− Bλ

|Bλ|

∥∥∥∥ ≤ ν(B)2‖λ− λ′‖ for all λ, λ′ ∈ ΛA.

We will denote by Arg : C \ {0} → (−π, π] the principal argument function.
Recall that for every z1, z2 with nonnegative real parts we have Arg(z1 + z2) =
Arg z1 + Arg z2 and Arg(z1) = −Arg(z1).

Let A = {1, . . . , d}, d ≥ 4. Assume that π ∈ P0
A is a standard pair such that π̄0

is the identity. Let

Z(π̄) = {(π̄, λ, τ) : λ1 = . . . = λd−3 = 0, (π̄, λ, τ) ∈ Ĥ(C), τ ∈ T +
π,λ}.

Lemma 14. The set {M(π̄, λ, τ) : (π̄, λ, τ) ∈ Z(π̄)} is dense in M(Ĥ(C)).

Proof. The proof consists of four steps. In the �rst step, using the extended Veech-
Rauzy induction, for almost every (π, λ, τ) ∈ H(C) we �nd a representation of

M(π, λ, τ) which is given by (π̄, λ(n), τ (n)) = R̂kn(π, λ, τ) so that the �rst d −
3 sides of the polygon P (π̄, λ(n), τ (n)) are almost parallel. In the second step,
(π̄, λ(n), τ (n)) is perturbed to get (π̄, λp (n), τ (n)) such that the �rst d − 3 sides of
the polygon P (π̄, λp (n), τ (n)) are parallel. To describe this perturbation we will
need two auxiliary substeps passing by

(λ̃(n), τ̃ (n)) = (λ(n)/|λ(n)|, τ (n)|λ(n)|), (λ̃p (n), τ̃ (n)) = (λp (n)/|λ(n)|, τ (n)|λ(n)|).
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In the third step, (π̄, λp (n), τ (n)) is rotated by an angle θn (θn → 0 as n → ∞)

to obtain (π̄, λr (n), τ r (n)) ∈ Ĥ(C) so that the �rst d − 3 sides of the polygon
P (π̄, λr (n), τ r (n)) are vertical, hence (π̄, λr (n), τ r (n)) ∈ Z(π̄). In the �nal step,
we show that M(π̄, λr (n), τ r (n)) → M(π, λ, τ). In order to do this, applying the
inverse of the renormalization, we prove that

(π, λb (n), τ) = R̂−kn(π̄, λp (n), τ (n)) → (π, λ, τ).

In view of (2.3), it follows that

M(π̄, λr (n), τ r (n)) = UθnM(π̄, λp (n), τ (n)) = UθnM(π, λb (n), τ) →M(π, λ, τ).

Step 1. Let An stand for the set of (π̄, λ, τ) ∈ H(C) such that

(5.2) λj > 0,
τ1
λ1

> 1, −
∑

π̄1(k)≤j

τk >
λ1

τ1
for j = 1, . . . , d,

(5.3)

∣∣∣∣ τ1λ1
− τj
λj

∣∣∣∣ < 1
n
for j = 2, . . . , d− 3, τj < 0 for j = d− 2, d− 1, d,

(5.4)
λ1

τ1

d−3∑
k=1

τk + λd−2 + λd−1 < 1.

Note that if (π̄, λ, τ) ∈ An then the �rst d − 3 sides of the polygon P (π̄, λ, τ)
are almost parallel. Setting λ = (1/d, . . . , 1/d), τj = 2/d for j = 1, . . . , d − 3,
τd−2 = τd−1 = −1/2d and τd = −3, since π is a standard pair, we get (π̄, λ, τ) ∈ An.
It follows that An is a nonempty open subset of H(C) and hence m(An) > 0.

By Theorem 10, using standard Veech arguments (see [10, Ch. 3]), there exists
Γ > 0 and a measurable subset B ⊂ H(C) such that m(Bc) = 0 and for every
(π, λ, τ) ∈ B there exists a sequence kn → +∞ such that Rkn(π, λ, τ) ∈ An,
Θ(kn)(π, λ) has positive entries and ν(Θ(kn)(π, λ)∗) ≤ Γ. Let (π̄, λ(n), τ (n)) =
R̂kn(π, λ, τ) and

(π̄, λ̃(n), τ̃ (n)) = Rkn(π, λ, τ) = (π̄, λ(n)/|λ(n)|, τ (n)|λ(n)|).

Since (π̄, λ̃(n), τ̃ (n)) ∈ An, we have

(5.5) λ̃
(n)
j > 0,

τ̃
(n)
1

λ̃
(n)
1

> 1, −
∑

π̄1(k)≤j

τ̃
(n)
k >

λ̃
(n)
1

τ̃
(n)
1

for j = 1, . . . , d,

(5.6)

∣∣∣∣∣ τ̃ (n)
1

λ̃
(n)
1

−
τ̃

(n)
j

λ̃
(n)
j

∣∣∣∣∣ < 1
n
for j = 2, . . . , d− 3, τ̃

(n)
j < 0 for j = d− 2, d− 1, d,

(5.7)
λ̃

(n)
1

τ̃
(n)
1

d−3∑
k=1

τ̃
(n)
k + λ̃

(n)
d−2 + λ̃

(n)
d−1 < 1.

Moreover, τ (n) ∈ H+
π̄ . From (5.5) and (5.6), we have τ̃

(n)
j > 0 for j = 1, . . . , d− 3.
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Step 2. Let us consider λ̃p (n) ∈ RA with

λ̃
p (n)
j =


λ̃

(n)
1

τ̃
(n)
1

τ̃
(n)
j if j = 1, . . . , d− 3

λ̃
(n)
j if j = d− 2, d− 1

1−
∑d−1

j=1 λ̃
p (n)
j if j = d.

It follows from (5.7) that λ̃p (n) ∈ ΛA. Since

∣∣∣∣ τ̃
(n)
j

λ̃
p (n)
j

− τ̃
(n)
j

λ̃
(n)
j

∣∣∣∣ < 1
n and

λ̃
(n)
1

τ̃
(n)
1

< 1, we

obtain

|λ̃p (n)
j − λ̃

(n)
j | < 1

n

λ̃
p (n)
j λ̃

(n)
j

τ̃
(n)
j

=
λ̃

(n)
j

n

λ̃
(n)
1

τ̃
(n)
1

<
λ̃

(n)
j

n
for j = 1, . . . , d− 3,

and hence |λ̃p (n)
d − λ̃

(n)
d | < 1/n. Therefore, ‖λ̃p (n) − λ̃(n)‖ < 2/n. Moreover, by

(5.5),

(5.8) −
∑

π̄1(k)≤j τ̃
(n)
k∑

π̄1(k)≤j λ̃
p (n)
k

> −
∑

π̄1(k)≤j

τ̃
(n)
k >

λ̃
(n)
1

τ̃
(n)
1

for j = 1, . . . , d.

Let λp (n) = |λ(n)|λ̃p (n). As τ (n) ∈ H+
π̄ , we have (π̄, λp (n), τ (n)) ∈ Ĥ(C). Since

τ (n) = τ̃ (n)/|λ(n)|, by (5.5), (5.6) and (5.8), we obtain

(5.9)
τ

(n)
j

λ
p (n)
j

=
τ

(n)
1

λ
(n)
1

>
1

|λ(n)|2
for j = 1, . . . , d− 3, τ

(n)
j < 0 for j = d− 2, d− 1, d

and

−
∑

π̄1(k)≤j τ
(n)
k∑

π̄1(k)≤j λ
p (n)
k

= −
∑

π̄1(k)≤j τ̃
(n)
k∑

π̄1(k)≤j λ̃
p (n)
k

1
|λ(n)|2

>
λ̃

(n)
1

τ̃
(n)
1

1
|λ(n)|2

=
λ

(n)
1

τ
(n)
1

1
|λ(n)|4

>
λ

(n)
1

τ
(n)
1

(5.10)

for j = 1, . . . , d.
Step 3. Let

θn = π/2−Arg(λ(n)
1 + iτ

(n)
1 ) = Arg(τ (n)

1 + iλ
(n)
1 ) > 0.

Since |λ(n)| → 0, by (5.9), we obtain θn → 0. Let

λr (n) + iτ r (n) = eiθn(λp (n) + iτ (n)).

In this step we will prove that (π̄, λr (n), τ r (n)) ∈ Z(π̄). As Arg(λp (n)
j + iτ

(n)
j ) =

Arg(λ(n)
1 + iτ

(n)
1 ) for j = 1, . . . , d − 3 and −π/2 < Arg(λp (n)

j + iτ
(n)
j ) < 0 for

j = d− 2, d− 1, d, we have

Arg(λr (n)
j + iτ

r (n)
j ) = Arg(λp (n)

j + iτ
(n)
j ) + π/2−Arg(λ(n)

1 + iτ
(n)
1 ) = π/2

for j = 1, . . . , d− 3 and

−π/2 < Arg(λr (n)
j + iτ

r (n)
j ) = Arg(λp (n)

j + iτ
(n)
j ) + π/2−Arg(λ(n)

1 + iτ
(n)
1 ) < π/2

for j = d− 2, d− 1, d. It follows that
(5.11)

λ
r (n)
j = 0, τ r (n)

j > 0 for j = 1, . . . , d− 3 and λ
r (n)
j > 0 for j = d− 2, d− 1, d.
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Since τ (n) ∈ H+
π̄ , we have 0 < Arg(

∑j
k=1 λ

p (n)
k + iτ

(n)
k ) < π/2, and hence

Arg(
j∑

k=1

λ
r (n)
k + iτ

r (n)
k ) = Arg(

j∑
k=1

λ
p (n)
k + iτ

(n)
k ) + θn > Arg(

j∑
k=1

λ
p (n)
k + iτ

(n)
k ) > 0

for j = 1, . . . , d− 1. Therefore,
∑j

k=1 τ
r (n)
j > 0 for j = 1, . . . , d− 1. By (5.10),

0 > Arg(
∑

π̄1(k)≤j

λ
p (n)
k + iτ

(n)
k ) + Arg(τ (n)

1 + iλ
(n)
1 )

= Arg(
∑

π̄1(k)≤j

λ
p (n)
k + iτ

(n)
k ) + θn = Arg(

∑
π̄1(k)≤j

λ
r (n)
k + iτ

r (n)
k )

and hence
∑

π̄1(k)≤j τ
r (n)
k < 0 for all j = 1, . . . , d. Therefore, (π̄, λr (n), τ r (n)) ∈

Ĥ(C). In view of (5.11), it follows that (π̄, λr (n), τ r (n)) ∈ Z(π).
Step 4. Let

λb (n) = Θ(kn)(π, λ)∗λp (n) = |λ(n)|Θ(kn)(π, λ)∗λ̃p (n) =
Θ(kn)(π, λ)∗λ̃p (n)

|Θ(kn)(π, λ)∗λ̃(n)|
.

Since ν(Θ(kn)(π, λ)∗) ≤ Γ, by (5.1),

‖λb (n)−λ‖ =

∥∥∥∥∥Θ(kn)(π, λ)∗λ̃p (n)

|Θ(kn)(π, λ)∗λ̃(n)|
− Θ(kn)(π, λ)∗λ̃(n)

|Θ(kn)(π, λ)∗λ̃(n)|

∥∥∥∥∥ ≤ Γ2‖λ̃p (n)− λ̃(n)‖ ≤ 2Γ2

n
.

Moreover, by Remark 2,

R̂kn(π, λb (n)) = (π̄,Θ(kn)(π, λ)−1∗λb (n)) = (π̄, λp (n))

and

R̂kn(π, λb (n), τ) = (π̄,Θ(kn)(π, λ)−1∗λb (n),Θ(kn)(π, λ)−1∗τ) = (π̄, λp (n), τ (n)).

Hence M(π̄, λp (n), τ (n)) = M(π, λb (n), τ). In view of (2.3), it follows that

M(π̄, λr (n), τ r (n)) = UθnM(π̄, λp (n), τ (n)) = UθnM(π, λb (n), τ).

Since ‖λb (n)−λ‖ < 2/n and θn → 0, by the continuity of the map M (see Proposi-
tion 5) and the �ow (Us)s∈R, it follows that M(π̄, λr (n), τ r (n)) →M(π, λ, τ) in the
moduli space for every (π, λ, τ) ∈ B ⊂ H(C). Furthermore, for every real s > 0 we
have M(π̄, sλr (n), τ r (n)) →M(π, sλ, τ).

Let B̃ = {(π, sλ, τ) ∈ Ĥ(C) : (π, λ, τ) ∈ B}. Since the topological support of m
is H(C) and m(Bc) = 0, the set B is dense in H(C), and hence B̃ is dense in Ĥ(C).
As (π̄, sλr (n), τ r (n)) ∈ Z(π̄), it follows that M(Z(π̄)) is dense in M(Ĥ(C)). �

Lemma 15. Suppose that A = {1, . . . , d} with d ≥ 4 and π̄ ∈ P∗A is a standard

pair such that π̄0 = id. Assume that τ1, . . . , τd are independent over an additive

subgroup A ⊂ R. Let h = −Ωπτ . Then hd−2, hd−1, hd are also independent over A.

Proof. Suppose that a1hd−2 +a2hd−1 +a3hd = 0 and a1, a2, a3 ∈ A. Since π̄ ∈ P∗A,
we have π̄1(d − 1) 6= π̄1(d − 2) + 1. Hence there exists 1 < s < d − 1 such that
Ωs (d−2) 6= Ωs (d−1). Since π is a standard pair,

hd−2 = τ1 + . . .+ Ωs (d−2)τs + . . .− τd

hd−1 = τ1 + . . .+ Ωs (d−1)τs + . . .− τd

hd = τ1 + . . .+ τs + . . .+ τd−1,
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and hence

(a1 + a2 + a3)τ1 + . . .+ (a1Ωs (d−2) + a2Ωs (d−1) + a3)τs + . . .+ (−a1 − a2)τd = 0.

Therefore

a1 + a2 + a3 = a1Ωs (d−2) + a2Ωs (d−1) + a3 = a1 + a2 = 0.

Since Ωs (d−2) 6= Ωs (d−1), it follows that a1 = a2 = a3 = 0. �

Theorem 16. If g ≥ 2 then for every stratum Hg(m1, . . . ,mκ) there exists a dense

subset Hmm ⊂ Hg(m1, . . . ,mκ) such that for every (M,ω) ∈ Hmm its vertical �ow

is mildly mixing.

Proof. By Proposition 4 and Remark 1, there exists a �nite family C of Rauzy
classes in P∗A (#A = d = 2g + κ − 1 ≥ 4) such that

⋃
C∈CM(Ĥ(C)) is dense in

Hg(m1, . . . ,mκ).
Let A = {1, . . . , d}. In view of Proposition 8 and Lemma 14, it su�ces to show

that for every π̄ standard pair in C such that π̄0 = id and for every (π̄, λ, τ) ∈ Z(π̄)
there exists a sequence {(π̄, λn, τn)}n∈N in Z(π) such that (λn, τn) → (λ, τ) and the
vertical �ow for M(π̄, λn, τn) is mildly mixing. Without loss of generality we can
assume that |λ| = 1. Moreover, we can also assume that λd−2, λd−1,λd are positive
and λd−2 6= λd, because the set of all (π̄, λ, τ) ∈ Z(π̄) satisfying this condition is
dense in Z(π̄).

Suppose that (π̄, λ, τ) is an element of Z(π̄) such that λd−2, λd−1,λd are positive
and λd−2 6= λd. Let h = h(τ) = −Ωπτ . Since (π̄, λ, τ) ∈ Z(π̄) and π is a standard
pair, by Lemma 3, the vertical �ow for M(π̄, λ, τ) is isomorphic to the special �ow

T
fh̃

(π̃,λ̃)
, where T(π̃,λ̃) is an exchange on three intervals such that π̃ ∈ P0

{d−2,d−1,d} is

equal to

πr =
(
d− 2 d− 1 d
d d− 2 d− 1

)
or πs =

(
d− 2 d− 1 d
d d− 1 d− 2

)
,

λ̃ = (λd−2, λd−1, λd) ∈ Λ{d−2,d−1,d} and fh̃ is determined by h̃ = (hd−2, hd−1, hd).
Let γ = γ(π̃, λ̃). Since ργ : Λγ

{d−2,d−1,d} → ργ(Λγ
{d−2,d−1,d}) ⊂ [0, 1]2 is a di�eo-

morphism and M is dense in [0, 1]2, we can �nd a sequence {(λn
d−2, λ

n
d−1, λ

n
d )}n∈N

in Λγ
{d−2,d−1,d} such that

(λn
d−2, λ

n
d−1, λ

n
d ) → λ̃ and ρ(π̃, (λn

d−2, λ
n
d−1, λ

n
d )) = ργ(λn

d−2, λ
n
d−1, λ

n
d ) ∈ M.

Setting λn = (0, . . . , 0, λn
d−2, λ

n
d−1, λ

n
d ) ∈ ΛA, we have λ̃n = (λn

d−2, λ
n
d−1, λ

n
d ) and

λn → λ. Since T +
π,λn is open, there exists a sequence {τn}n∈N such that τn ∈

T +
π,λn , τn → τ and τn

1 , . . . , τ
n
d are independent over Q + Qα(π̃, λ̃n). In view of

Lemma 15, hd−2(τn), hd−2(τn), hd(τn) are also independent over Q+Qα(π̃, λ̃n). By

Corollary 13, it follows that T
fh̃(τn)

(π̃,λ̃n)
is mildly mixing. Consequently, the vertical �ow

of M(π, λn, τn) is also mildly mixing. As (π, λn, τn) ∈ Z(π) and (λn, τn) → (λ, τ),
the theorem follows. �

Corollary 17. If g ≥ 2 then the set of Abelian di�erentials in Hg for which the

vertical �ow is mildly mixing is dense in Hg.
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6. Measure-theoretical equivalence of Abelian differentials and

some orbits of the Teichmüller flow

De�nition 18. Two Abelian di�erentials (M,ω) and (M ′, ω′) are measure-theoretical
isomorphic if there exists a measure-preserving invertible map ψ : (M,ω) → (M ′, ω′)
such that ψ ◦ Fω,θ

s = Fω′,θ
s ◦ ψ for every θ ∈ S1 and s ∈ R.

For every stratum Hg(m1, . . . ,mκ) let (Tt)t∈R stand for the Teichmüller geodesic
�ow on Hg(m1, . . . ,mκ). As a consequence of results from previous sections we
obtain the following.

Theorem 19. If g ≥ 2 then there exists a dense subset H′ ⊂ Hg(m1, . . . ,mκ) such
that for every (M,ω) ∈ H′ the Abelian di�erentials (M,ω) and Ts(M,ω) are not

measure-theoretically equivalent for every real s 6= 0.

Proof. By Proposition 12 and the proof of Theorem 16, there exists a dense subset
H′ ⊂ Hg(m1, . . . ,mκ) such that for every (M,ω) ∈ H′ if F stands for its vertical
�ow then the �ows F t and F are not isomorphic for every positive t 6= 1. Moreover,
every element of H′ can be represented in the form M(π, λ, τ). Fix (M,ω) ∈ H′

and real s 6= 0. By F̃ denote the vertical �ow for Ts(M,ω). Let (π, λ, τ) ∈ Ĥ(C)
be a triple such that M(π, λ, τ) = (M,ω). Then

Ts(M,ω) = TsM(π, λ, τ) = M(Ts(π, λ, τ)) = M(π, esλ, e−sτ).

It follows that F̃ is isomorphic to the special �ow T
fh(e−sτ)

(π,esλ) = T
e−sfh(τ)

(π,esλ) . Moreover,

T
e−sfh(τ)

(π,esλ) is isomorphic to
(
T

fh(τ)

(π,λ)

)es

via the map (x, y) 7→ (e−sx, esy). It follows

that F̃ is isomorphic to Fes

. Therefore F̃ is not isomorphic to F . �
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