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Abstract. In this paper we introduce the notion of degree for C1-cocycles over irrational rotations
on the circle with values in the group SU�2�. It is shown that if a C1-cocycle ' : T! SU�2� over an
irrational rotation by � has nonzero degree, then the skew product

T� SU�2� 3 �x; g� 7! �x� �; g '�x�� 2 T� SU�2�
is not ergodic and the group of essential values of ' is equal to the maximal Abelian subgroup of
SU�2�. Moreover, if ' is of class C2 (with some additional assumptions) the Lebesgue component in
the spectrum of the skew product has countable multiplicity. Possible values of degree are discussed,
too.

2000 Mathematics Subject Classi®cation: 37A05.
Key words: Skew products, degree of cocycles, Lebesgue spectrum

1. Introduction

Assume that T : �X;B; �� ! �X;B; �� is an ergodic measure-preserving
automorphism of standard Borel space. Let G be a compact Lie group, � its
Haar measure. For a given measurable function ' : X ! G we study spectral
properties of the measure-preserving automorphism of X � G (called skew product)
de®ned by

T' : �X � G; �
 �� ! �X � G; �
 ��; T'�x; g� � �Tx; g'�x��:
A measurable function ' : X ! G determines a measurable cocycle over the
automorphism T given by

'�n��x� �
'�x�'�Tx� . . .'�Tnÿ1x�
e

�'�Tnx�'�Tn�1x� . . .'�Tÿ1x��ÿ1

for n> 0

for n � 0

for n< 0;

8<:
which we will identify with the function '. Then Tn

'�x; g� � �Tx; g'�n��x�� for any

integer n. Two cocycles ';  : X ! G are cohomologous if there exists a measur-
able map p : X ! G such that

'�x� � p�x�ÿ1 �x�p�Tx�:
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In this case, p will be called a transfer function. If ' and  are cohomologous, then
the map �x; g� 7! �x; p�x�g� establishes a metrical isomorphism of T' and T .

By T we will mean the circle group fz 2 C; jzj � 1g which most often will be
treated as the group R=Z;� will denote Lebesgue measure on T. We will identify
functions on T with periodic functions of period 1 on R. Assume that � 2 T is
irrational. We will deal with the case where T is the ergodic rotation on T given by
Tx � x� �.

In the case where G is the circle and ' is a smooth cocycle, spectral properties
of T' depend on the topological degree d�'� of '. For example, in [5], Iwanik,
LemanÂczyk, Rudolph have proved that if ' is a C2-cocycle with d�'� 6� 0, then T'
is ergodic and it has countable Lebesgue spectrum on the orthocomplement of the
space of functions depending only on the ®rst variable. On the other hand, in [3],
Gabriel, LemanÂczyk and Liardet have proved that if ' is absolutely continuous with
d�'� � 0, then T' has singular spectrum.

The aim of this paper is to ®nd a spectral equivalent of topological degree in
case G � SU�2�.

2. Degree of Cocycle

In this section we introduce the notion of degree in case G � SU�2�. For a

given matrix A � �aij�i; j�1;...;d 2 Md�C� de®ne kAk �
��������������������������
1
d

Pd
i; j�1 jaijj2

q
. Observe

that if A is an element of the Lie algebra su�2�, i.e.

A � ia

ÿb� ic

b� ic

ÿia

� �
;

where a; b; c 2 R, then kAk � ����������
det A
p

. Moreover, if B is an element of the group
SU�2�, i.e.

B � z1

ÿz2

z2

z1

� �
;

where z1; z2 2 C; jz1j2 � jz2j2 � 1, then AdBA � BABÿ1 2 su�2� and kAdBAk �
kAk.

Consider the scalar product of su�2� given by

hA;Bi � ÿ 1

8
tr�adA � adB�:

Then kAk � ������������hA;Aip
. By L2�X; su�2�� we mean the space of all functions

f : X ! su�2� such that

k fkL2 �
���������������������������

X

k f �x�k2
dx

s
<1:

For two f1; f2 2 L2�X; su�2�� set

h f1; f2iL2 �
�

X

h f1�x�; f2�x�idx:

The space L2�X; su�2�� endowed with the above scalar product is a Hilbert space.
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By L1�X; su�2�� we mean the space of all functions f : X ! su�2� such that

k fkL1 �
�

X

k f �x�kdx<1:
The space L1�X; su�2�� endowed with the norm k kL1 is a Banach space.

For a given measurable cocycle ' : T! SU�2� consider the unitary operator

U : L2�T; su�2�� ! L2�T; su�2��; Uf �x� � Ad'�x� f �Tx�: �1�
Then Unf �x� � Ad'�n��x� f �Tnx� for any integer n.

Lemma 2.1. There exists an operator P : L2�T; su�2�� ! L2�T; su�2�� such that

1

n

Xnÿ1

j�0

U jf ! Pf in L2�T; su�2��

for any f 2 L2�T; su�2�� and U � P � P. Moreover, kPfk is constant �-a.e..

Proof. The ®rst claim of the lemma follows from the von Neuman ergodic
theorem. Since U � P � P, we have Ad'�x�Pf �Tx� � Pf �x�, for �-a.e. x 2 T. It
follows that kPf �Tx�k � kPf �x�k, for �-a.e. x 2 T. Hence kPf �x�k � c, for �-a.e.
x 2 T, by the ergodicity of T . &

Lemma 2.2. For every f 2 L2�T; su�2�� the sequence 1
n

Pnÿ1
j�0 Ujf converges �-

almost everywhere.

Proof. Let ~f 2 L2�T� SU�2�; su�2�� be given by ~f �x; g� � Adg f �x�. Then

~f �Tn
'�x; g�� � Adg�Unf �x��

for any integer n. By the Birkhoff ergodic theorem, the sequence

1

n

Xnÿ1

j�0

~f �Tn
'�x; g�� � Adg

1

n

Xnÿ1

j�0

Ujf �x�
 !

converges for �
 �-a.e. �x; g� 2 T� SU�2�. Hence there exists g 2 SU�2� such
that Adg�1n

Pnÿ1
j�0 U jf �x�� converges for �-a.e. x 2 T, and the proof is complete. &

Recall that, if a function ' : T! SU�2� is of class C1, then D'�x�'�x�ÿ1 2
su�2� for every x 2 T.

Lemma 2.3. For every C1-cocycle ' : T! SU�2�, there exists  2 L2�T; su�2��
such that

1

n
D'�n��'�n��ÿ1 !  in L2�T; su�2�� and �-almost everywhere:

Moreover, k k is a constant function �-a.e. and '�x� �Tx�'�x�ÿ1 �  �x� for �-
a.e. x 2 T.

Proof. Since

D'�n��x� �
Xnÿ1

j�0

'�x� . . .'�T jÿ1x�D'�T jx�'�T j�1x� . . .'�T nÿ1x�;
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we have

D'�n��x��'�n��x��ÿ1

�
Xnÿ1

j�0

'�x� . . .'�T jÿ1x�D'�T jx�'�T jx�ÿ1'�T jÿ1x�ÿ1 . . .'�x�ÿ1

�
Xnÿ1

j�0

'� j��x�D'�T jx�'�T jx�ÿ1�'� j��x��ÿ1

�
Xnÿ1

j�0

U j�D''ÿ1��x�;

where U is the unitary operator given by (1). Put  � P�D''ÿ1�. Applying
Lemmas 2.1 and 2.2, we conclude that

1

n
D'�n��'�n��ÿ1 !  in L2�T; su�2�� and �-almost everywhere:

Moreover,

U � U � P�D''ÿ1� � P�D''ÿ1� �  
and k k � kP�D''ÿ1�k is a constant function �-a.e., by Lemma 2.1, which
completes the proof. &

De®nition 1. The number k k will be called the degree of the cocycle ' and
denoted by d�'�.

Lemma 2.3 shows that

1

n
kD'�n��'�n��ÿ1kL1 ! d�'�:

On the other hand, kD'�n��'�n��ÿ1kL1 is the length of the curve '�n�. Geometrically
speaking, the degree of ' is the limit of length �'�n��=n.

A measurable cocycle � : T! SU�2� is said to be diagonal if there exists a
measurable function 
 : T! T such that

��x� � 
�x�
0

0


�x�
� �

:

Theorem 2.4. Suppose that ' : T! SU�2� is a C1-cocycle with d�'� 6� 0.
Then ' is cohomologous to a diagonal cocycle.

Proof. For every nonzero A 2 su�2� there exists BA 2 SU�2� such that

BAA�BA�ÿ1 � ikAk
0

0

ÿikAk
� �

:

Indeed, if A � ia

ÿb� ic

b� ic

ÿia

� �
, then we can take
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BA �

i

����������������
kAk � a

2kAk

s
bÿ ic

jb� icj

ÿ
����������������
kAk ÿ a

2kAk

s
����������������
kAk ÿ a

2kAk

s

ÿi

����������������
kAk � a

2kAk

s
b� ic

jb� icj

266664
377775

0

1

ÿ1

0

� �
1

0

0

1

� �

if jaj 6� kAk;

if a � ÿkAk;

if a � kAk:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
Set p�x� � B �x�. Then p : T! SU�2� is a measurable function and

 �x� � p�x�ÿ1 i d�'�
0

0

ÿi d�'�
� �

p�x�:

Since '�x� �Tx�'�x�ÿ1 �  �x�, we have

'�x�p�Tx�ÿ1 i d�'�
0

0

ÿi d�'�
� �

p�Tx�'�x�ÿ1 � p�x�ÿ1 i d�'�
0

0

ÿi d�'�
� �

p�x�:

Hence

p�x�'�x�p�Tx�ÿ1 i d�'�
0

0

ÿi d�'�
� �

� i d�'�
0

0

ÿi d�'�
� �

p�x�'�x�p�Tx�ÿ1:

Since d�'� 6� 0, we see that the cocycle � : T! SU�2� de®ned by ��x� �
p�x�'�x�p�Tx�ÿ1

is diagonal. &

For a given C1-cocycle ' : T! SU�2� with nonzero degree let 
 � 
�'� :

T! T be a measurable cocycle such that the cocycles ' and


0

0




� �
are

cohomologous. It is easy to check that the choice of 
 is unique up to a measurable
cohomology with values in the circle and up to the complex conjugacy.

Theorem 2.4 shows that if d�'� 6� 0, then the skew product T' is metrically
isomorphic to a skew product of an irrational rotation on the circle and a diagonal
cocycle. It follows that T' is not ergodic. However, in the next sections we show
that if d�'� 6� 0, then ' is not cohomologous to a constant cocycle. Moreover, the
skew product T
 : T� T! T� T is ergodic and it is mixing on the ortho-
complement of the space of functions depending only on the ®rst variable. We will
prove also that (with some additional assumptions on ') the Lebesgue component
in the spectrum of T
 has countable multiplicity. It follows that if d�'� 6� 0, then:
± all ergodic components of T' are metrically isomorphic to T
 ,
± the spectrum of T' consists of two parts: discrete and mixing,
± (with some additional assumptions on ') the Lebesgue component in the

spectrum of T' has countable multiplicity.

In case G � T, the topological degree of each C1-cocycle is an integer number.
An important question is: what can one say on values of degree in case G � SU�2�?
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If a cocycle ' is cohomologous to a diagonal cocycle via a smooth transfer func-
tion, then d�'� 2 2�N0 � 2��N [ f0g�.

We call a function f : T! SU�2� absolutely continuous if fij : T! C is
absolutely continuous for i; j � 1; 2. Suppose that ' is cohomologous to a diagonal
cocycle via an absolutely continuous transfer function. Then ' can be represented
as '�x� � p�x�ÿ1��x�p�Tx�, where �; p : T! SU�2� are absolutely continuous
and � is diagonal. Since '�n��x� � p�x�ÿ1��n��x�p�T nx�, we have

1

n
D'�n��x��'�n��x��ÿ1 � 1

n
�ÿp�x�ÿ1

Dp�x� � '�n��x�p�T nx�ÿ1
Dp�T nx��'�n��x��ÿ1

� p�x�ÿ1
D��n��x����n��x��ÿ1

p�x��:

On the other hand, ��x� � 
�x�
0

0


�x�
� �

, where 
 : T! T is an absolutely

continuous cocycle of the form 
�x� � exp 2�i�~
�x� � kx�, where k is the topo-
logical degree of 
 and ~
 : T! R is an absolutely continuous function. Then

1

n
D
�n��x��
�n��x��ÿ1 � 2�i

1

n

Xnÿ1

j�0

D~
�T jx� � k

 !
! 2�ik

in L1�T;R�, by the Birkhoff ergodic theorem. It follows that

1

n
D'�n��x��'�n��x��ÿ1 ! p�x�ÿ1 2�ik

0

0

ÿ2�ik

� �
p�x�

in L1�T; su�2��. Hence d�'� � 2�jd�
�j 2 2�N0.
In Section 7, it is shown that if � is the golden ratio, then the degree of every

C2-cocycle belongs to 2�N0, too.

3. Notation and Facts From Spectral Theory

Let U be a unitary operator on a separable Hilbert space H. By the cyclic
space generated by f 2H we mean the space Z� f � � spanfUnf ; n 2 Zg. By the
spectral measure �f of f we mean a Borel measure on T determined by the
equalities

�̂f �n� �
�

T

e2�inxd�f �x� � hUnf ; f i

for n 2 Z. Recall that there exists a sequence f fngn2N in H such that

H � �1n�1Z� fn� and �f1
� �f2 � . . . : �2�

Moreover, for any sequence f f 0ngn2N in H satisfying (2) we have �f1 � �f 0
1
; �f2 �

�f 0
2
; . . .. The above decompositions of H are called spectral decompositions of U.
The spectral type of �f1 (the equivalence class of measures) will be called the

maximal spectral type of U. We say that U has Lebesgue (continuous singular,
discrete) spectrum if �f1

is equivalent to Lebesgue (continuous singular, discrete)
measure on the circle. An operator U is called mixing if

�̂f �n� � hUnf ; f i ! 0
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for any f 2H. We say that the spectrum of U has uniform multiplicity if either
�fn � �f1

or �fn � 0 for all natural n. We say that the Lebesgue component in the
spectrum of U has countable multiplicity if �� �fn for every natural n or
equivalently if there exists a sequence fgngn2N in H such that the cyclic spaces
Z�gn� are pairwise orthogonal and �gn

� � for every natural n.
For a skew product T' consider its Koopman operator

UT' : L2�T� G; �
 �� ! L2�T� G; �
 ��;UT' f �x; g� � f �Tx; g'�x��:
Denote by Ĝ the set of all equivalence classes of unitary irreducible represen-
tations of the group G. For any unitary irreducible representation � : G! U�H��
by f�ijgd�

i; j�1 we mean the matrix elements of �, where d� � dimH�. Let us
decompose

L2�T� G� �
M
�2Ĝ

Md�

i�1

H�
i ;

where

H�
i �

Xd�
j�1

�ij�g� fj�x�; fj 2 L2�T; ��; j � 1; . . . ; d�

( )

' L2�T; �� � . . .� L2�T; ��
z���������������������}|���������������������{d�

:

Observe that H�
i is a closed UT'-invariant subspace of L2�T� G� and

Un
T'

Xd�
j�1

�ij�g� fj�x�
 !

�
Xd�
j;k�1

�ik�g��kj�'�n��x�� fj�Tnx�:

Consider the unitary operator M�
i : H�

i !H�
i given by

M�
i

Xd�
j�1

�ij�g� fj�x�
 !

�
Xd�
j�1

e2�ix�ij�g� fj�x�:

Then

Un
T'

M�
i f � e2�in�M�

i Un
T'

f �3�
for any f 2H�

i . It follows that�
T

e2�inxd�M�
i

f �x� � hUn
T'

M�
i f ;M�

i f i � e2�in�hUn
T'

f ; f i �
�

T

e2�inxd�T��f ��x�

for any f 2H�
i . Hence �M�

i
f � T��f .

Lemma 3.1. For every � 2 Ĝ and i � 1; . . . ; d� if the operator UT' :
H�

i !H�
i has absolutely continuous spectrum, then it has Lebesgue spectrum of

uniform multiplicity.
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Proof. Let H�
i �

L1
n�1 Z� fn� be a spectral decomposition. Then

H�
i � �M�

i �mH�
i �

M1
n�1

Z��M�
i �mfn�

is a spectral decomposition for any integer m. Therefore �fn � ��M�
i
�mfn
� � for

every natural n and integer m. Suppose that there exists a Borel set A � T such that
�fn�A� � 0 and ��A�> 0. Then

�fn

[
m2Z

TmA

 !
� 0 and �

[
m2Z

TmA

 !
� 1;

by the ergodicity of T . It follows that �fn
� � or �fn � 0 for every natural n. &

Lemma 3.2. If X
n2Z

�
T

� jj�'�n��x��dx

���� ����2 <1
for j � 1; . . . ; d�, then UT' has Lebesgue spectrum of uniform multiplicity on H�

i

for i � 1; . . . ; d�.

Proof. Fix 14 i4 d�. Note that

hUn
T'

�ij;�iji �
Xd�

k�1

�
T

�
G

h�ik�g��kj�'�n��x��;�ij�g�idgdx � 1

d�

�
T

�jj�'�n��x��dx:

Since X
n2Z

jhUn
T'

�ij;�ijij2 <1;

we have ��ij
� � for j � 1; . . . ; d�. From (3) we get ��M�

i
�m�ij
� � for any integer

m. Since f f 2H�
i ; �f � �g is a closed linear subspace of L2�T� G� and the set

f�M�
i �m�ij; j � 1; . . . ; d�;m 2 Zg generates the space H�

i , it follows that UT' has
absolutely continuous spectrum on H�

i . By Lemma 3.1, UT' has Lebesgue

spectrum of uniform multiplicity on H�
i . &

Corollary 3.3. For any � 2 Ĝ, ifX
n2Z

k
�

T

��'�n��x��dxk2 <1;

then UT' has Lebesgue spectrum of uniform multiplicity on �d�

i�1H
�
i .

Similarly one can prove the following result.

Theorem 3.4. For any � 2 Ĝ, if

lim
n!1

�
T

��'�n��x��dx � 0;

then UT' is mixing on �d�
i�1H

�
i .
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4. Representations of SU�2�
In this section, some basic information about the theory of representations of the

group SU�2� are presented. By Pk we mean the linear space of all homogeneous
polynomials of degree k 2 N0 in two variables u and v. Denote by �k the
representation of the group SU�2� in Pk given by

�k
z1

ÿz2

z2

z1

� �� �
f

� �
�u; v� � f �z1uÿ z2v; z2u� z1v�:

Of course, all �k are unitary (under an appropriate inner product on Pk) and the
family f�0;�1;�2; . . .g is a complete family of continuous unitary irreducible
representations of SU�2�. In the Lie algebra su�2�, we choose the following basis:

h � 1

0

0

ÿ1

� �
; e � 0

0

1

0

� �
; f � 0

1

0

0

� �
:

Let Vk be a k � 1-dimension linear space. For every natural k there exists a basis
v0; . . . ; vk of Vk such that the corresponding representation ��k of su�2� in Vk has
the following form:

��k �e�vi � i�k ÿ i� 1�viÿ1;

��k � f �vi � vi�1;

��k �h�vi � �k ÿ 2i�vi

for i � 0; . . . ; k. Then

kAk4 k��k �A�k4 k2kAk �4�
for any A 2 su�2�.

For abbreviation, we will write �2k ÿ 1�!! instead of 1 � 3 � 5 � . . . � �2k ÿ 3��
�2k ÿ 1� for any natural k.

Lemma 4.1.

det ��2kÿ1�A� � ��2k ÿ 1�!!�2�det A�k

for any A 2 su�2� and k 2 N.

Proof. For every A 2 su�2� there exists B 2 SU�2� and d 2 R such that

A � AdB
id

0

0

ÿid

� �
. Then

��2kÿ1�A� � ��2kÿ1 AdB
id

0

0

ÿid

� �� �
� Ad�2kÿ1�B��

�
2kÿ1

id

0

0

ÿid

� �� �
:

It follows that

det ��2kÿ1�A� � det ��2kÿ1

id

0

0

ÿid

� �� �
� ��2k ÿ 1�!!�2d2k � ��2k ÿ 1�!!�2�det A�k: &
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Lemma 4.2. For any nonzero A 2 su�2� the matrix ��2kÿ1�A� is invertible.
Moreover, for every natural k there exists a real constant Kk > 0 such that

k��2kÿ1�A�ÿ1k4KkkAkÿ1

for every nonzero A 2 su�2�.
Proof. The ®rst claim of the lemma follows from Lemma 4.1. Set

C � ��2kÿ1�A�. Then

j�C�ijj4 �2k�4k�2k ÿ 1�!kAk2kÿ1

for i; j � 1; . . . ; 2k. It follows that

j�Cÿ1�ijj �
j�C�ijj

det ��2kÿ1�A�
4
�2k�4k�2k ÿ 1�!kAk2kÿ1

��2k ÿ 1�!!�2kAk2k
� �2k�4k�2k ÿ 1�!
��2k ÿ 1�!!�2 kAk

ÿ1:

Hence

kCÿ1k4 �2k�4k�1�2k ÿ 1�!
��2k ÿ 1�!!�2 kAkÿ1: &

5. Ergodicity and Mixing of T


Lemma 5.1. Suppose that f fngn2N is a sequence in L2�T;C� such that� x

0
fn�y�dy! 0 for any x 2 T. Let g : T! C be a bounded measurable function.

Then

lim
n!1

�
T

fn�y�g�Tny�dy � 0 and lim
n!1

�x

0

fn�y�g�y�dy � 0

for any x 2 T.

Proof. By assumption, the sequence f fngn2N tends to zero in the weak topology
in L2�T;C�, which implies immediately the second claim of the lemma. Since
ffngn2N converges weakly to zero, for every integer m we have

lim
n!1

�
T

fn�Tÿny� exp 2�imy dy � lim
n!1

�
T

fn�y� exp 2�im�y� n��dy � 0:

It follows that the sequence f fn � Tÿngn2N converges weakly to zero. Therefore

lim
h!1

�
T

fn�y�g�Tny�dy � lim
h!1

�
T

fn�Tÿny�g�y�dy � 0: &

This gives immediately the following conclusion.

Corollary 5.2. Suppose that f fngn2N is a sequence in L2�T;Mk�C�� (k is a
natural number) such that

� x

0
fn�y�dy! 0 for any x 2 T. Let g : T! Mk�C� be a

bounded measurable function. Then

lim
n!1

�
T

fn�y�g�Tny�dy � 0 and lim
n!1

�x

0

fn�y�g�y�dy � 0

for any x 2 T.
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Theorem 5.3. Let ' : T! SU�2� be a C1-cocycle with nonzero degree. Then
the skew product T
�'� : T� T! T� T is ergodic and it is mixing on the
orthocomplement of the space of functions depending only on the ®rst variable.

Proof. By Theorem 3.4, it suf®ces to show that

lim
n!1

�
T

�
�n��x��kdx � 0

for every nonzero integer k. Fix k 2 N. Denote by  : T! su�2� the limit (in
L2�T; su�2��) of the sequence f1

n
D'�n��'�n��ÿ1gn2N. Let p : T! SU�2� be a

measurable function such that


�x�
0

0


�x�
� �

� p�x�'�x�p�Tx�ÿ1
and Adp�x�� �x�� � id

0

0

ÿid

� �
;

where d is the degree of ' (see the proof of Theorem 2.4). Then

�
�n��k
�
�n��kÿ2

0

. .
.

0

�
�n��ÿk�2

�
�n��ÿk

26666664

37777775
� �k�p��k�'�n���k�p � Tn�ÿ1 �5�

for any natural n and

Ad�k�p�x���
�
k � �x�� � ��k �Adp�x� �x��

� ��k
id

0

0

ÿid

� �� �

�

kid

�k ÿ 2�id

0

. .
.

0

�ÿk � 2�id ÿkid

26666664

37777775: �6�

Recall that for any differentiable function � : T! SU�2� and for any representa-
tion � of SU�2� we have

D����x������x��ÿ1 � ���D��x���x�ÿ1�:
Therefore�x

0

1

n
��k �D'�n��y��'�n��y��ÿ1��k�'�n��y��dy �

�x

0

1

n
D��k'

�n��y��dy

� 1

n
��k�'�n��x�� ÿ�k�'�n��0���
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tends to zero for any x 2 T. Since

1

n
��k �D'�n��'�n��ÿ1� ! ��k  

in L2�T;Mk�1�C��, it follows that�x

0

��k � �y���k�'�n��y��dy! 0

for any x 2 T. By Corollary 5.2,�
T

�k�p�y����k � �y���k�'�n��y���k�p�Tny��ÿ1
dy! 0:

On the other hand,

�k�p�y����k � �y���k�'�n��y���k�p�Tny��ÿ1

�
ikd�
�n��y��k

0

. .
.

0

ÿikd�
�n��y��ÿk

264
375;

by (5) and (6). Therefore

lim
n!1

�
T

�
�n��y��mdy � 0

for any nonzero m 2 fÿk;ÿk � 2; . . . ; k ÿ 2; kg, which completes the proof. &

6. Spectral Analysis of Cocycles with Nonzero Degree

In this section, it is shown that for every cocycle ' : T! SU�2� if d�'� 6� 0
and if it satis®es some additional assumptions, then the Lebesgue component in the
spectrum of T' has countable multiplicity.

Now we introduce a notation that is necessary to prove the main theory. Let
f ; g : T! Mk�C� be functions of bounded variation (i.e. fij; gij : T! C have
bounded variation for i; j � 1; . . . ; k) and let one of them be continuous. We will
use the symbol

�
T

f dg to denote the k � k-matrix given by�
T

f dg

� �
ij

�
Xk

l�1

�
T

fil dglj

for i; j � 1; . . . ; d. It is clear that if g is absolutely continuous, then�
T

f dg �
�

T

f �x�Dg�x�dx: �7�

Moreover, applying integration by parts, we have�
T

f dg � ÿ
�

T

gT df T

� �T

: �8�
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Theorem 6.1. Let ' : T! SU�2� be a C2-cocycle with d�'� 6� 0. Suppose
that the sequence f1

n
D'�n��'�n��ÿ1gn2N is uniformly convergent and

fD�1
n

D'�n��'�n��ÿ1�gn2N is bounded in L1�T; su�2��. Then the Lebesgue
component in the spectrum of T' has countable multiplicity. Moreover, the
Lebesgue component in the spectrum of T
�'� has countable multiplicity, too.

Proof. First, observe that it suf®ces to show that for every natural k there exists
a real constant Ck > 0 such that�

T

�2kÿ1�'�n��x��dx





 



4 Ck

n
�9�

for large enough natural n. Indeed, let p : T! SU�2� be a measurable function
such that

p�x�'�x�p�Tx�ÿ1 � ��x� � 
�x�
0

0


�x�
� �

:

Consider the unitary operator V : H�2kÿ1

1 !H�2kÿ1

1 given by

V
Xd�2kÿ1

i�1

�1i�g� fi�x�
 !

�
Xd�2kÿ1

i; j�1

�1i�g��ji� p�x�ÿ1� fi�x�:

Then

Vÿ1UT'V
Xd�2kÿ1

i�1

�1i�g� fi�x�
 !

�
Xd�2kÿ1

i; j;l;m�1

�1m�g��ml� p�x���lj�'�x���ji�p�Tx�ÿ1� fi�Tx�

�
Xd�2kÿ1

i�1

�1i�g��ii���x�� fi�Tx�:

From (9), UT' : H�2kÿ1

1 !H�2kÿ1

1 has Lebesgue spectrum of uniform multiplicity,
by Corollary 3.3. Hence Vÿ1UT'V has Lebesgue spectrum of uniform multiplicity
and it is the product of the operators Uj : L2�T;C� ! L2�T;C� given by Uj f �x� �
�
�x��2kÿ2j�1

f �Tx� for j � 1; . . . ; 2k. Therefore Uj has absolutely continuous
spectrum for j � 1; . . . ; 2k. By Lemma 3.1, Uj has Lebesgue spectrum for all
j � 1; . . . ; 2k and k 2 N. It follows that the Lebesgue component in the spectrum
of T
�'� has countable multiplicity.

By assumption,

1

n
D'�n��'�n��ÿ1





 



! d�'�

uniformly. Therefore

1

n
D'�n��x��'�n��x��ÿ1





 



5 d�'�=2 �10�
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for large enough natural n. For all A;B 2 Mk�C� we have kABk4 ���
k
p kAk kBk.

Applying these facts, (7) and (8) we get�
T

�2kÿ1�'�n��x��dx





 




�

�
T

�2kÿ1�'�n��x���D�2kÿ1�'�n��x���ÿ1
d�2kÿ1�'�n��x��





 




�

�
T

���2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1
d�2kÿ1�'�n��x��





 




�

�
T

��2kÿ1�'�n��x���T d����2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1�T




 





�




 �

T

h
��2kÿ1�'�n��x���T����2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1�T

���2kÿ1D�D'�n��x��'�n��x��ÿ1��T����2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1�T �dx






4 2k

�
T

�k���2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1k2

k��2kÿ1D�D'�n��x��'�n��x��ÿ1�k�dx:

By Lemma 4.2, we have

k���2kÿ1�D'�n��x��'�n��x��ÿ1��ÿ1k4KkkD'�n��x��'�n��x��ÿ1kÿ1:

From this, (4) and (10) we obtain�
T

�2kÿ1�'�n��x��dx





 




4

K2
k �2k�3

n

�
T

1

n
D'�n��x��'�n��x��ÿ1�





 



ÿ2

D
1

n
D'�n��x��'�n��x��ÿ1

� �



 




" #

dx

4
1

n

8Kkk2

d�'�
� �2

D
1

n
D'�n��'�n��ÿ1

� �



 




L1

for large enough natural n. By assumption, there exists a real constant M> 0 such
that kD�1

n
D'�n��'�n��ÿ1�kL1 4M. Then�

T

�2kÿ1�'�n��x��dx





 



4 Ck

n

for large enough natural n, where Ck � �8Kkk2

d�'� �2M. &

In this section we also present a class of cocycles satisfying the assumptions of
Theorem 6.1. For r � 1; 2 let Lr

��T;R� � f f 2 Lr�T;R�; f 5 0g. We will need
the following lemma.

Lemma 6.2. Let f fn : T! Cd; n 2 Ng be a sequence of absolutely continuous
functions. Assume that the sequence f fngn2N converges in L1�T;Cd� to a function
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f and it is bounded for the sup norm. Suppose that there is a sequence fhngn2N

convergent in L2
��T;R� and a sequence fkngn2N bounded in L2

��T;R� such
that

kDfn�x�k4 hn�x�kn�x� for �-a:e: x 2 T

and for any natural n. Then f fngn2N converges to f uniformly.

Proof. Denote by h 2 L2
��T;R� the limit of the sequence fhngn2N. Let M> 0

be a real number such that kknkL2 4M for all natural n. First, observe that
the sequence f fngn2N is equicontinuous. Fix "> 0. Take n0 2 N such that
khn ÿ hkL2 <"=2M for any n5 n0. Then for all x; y 2 T and n5 n0 we have

k fn�x� ÿ fn�y�k �
�y

x

Dfn�t�dt





 



4 �y

x

kDfn�t�kdt

4
�y

x

hn�t�kn�t�dt4 kknkL2

��������������������y

x

h2
n�t�dt

s

4M

��������������������y

x

h2�t�dt

s
� khn ÿ hkL2

 !
4M

��������������������y

x

h2�t�dt

s
� "

2M

 !
:

Choose �1 > 0 such that jxÿ yj<�1 implies
� y

x
h2�t�dt< �"=2M�2. Hence if

jxÿ yj<�1, then k fn�x� ÿ fn�y�k<" for any n5 n0. Next choose 0<�4 �1 such
that jxÿ yj<� implies k fn�x� ÿ fn�y�k<" for any n4 n0. It follows that if
jxÿ yj<�, then k fn�x� ÿ fn�y�k<" for every natural n.

By the Arzela-Ascoli theorem, for any subsequence of f fngn2N there exists a
subsequence convergent to f uniformly. Consequently, the sequence f fngn2N con-
verges to f uniformly. &

This gives the following corollary.

Corollary 6.3. Let f fn : T! Cd; n 2 Ng be a sequence of absolutely con-
tinuous functions. Assume that the sequence ffngn2N converges in L1�T;Cd� to a
function f and it is bounded in the sup norm. Suppose that there is a sequence
fhngn2N convergent in L2

��T;R�, a sequence fkngn2N bounded in L2
��T;R� and a

sequence flngn2N convergent in L1
��T;R� such that

kDfn�x�k4 ln�x� � hn�x�kn�x� for �-a:e: x 2 T

and for any natural n. Then f fngn2N converges to f uniformly.

We will denote by BV2�T; SU�2�� the set of all functions f : T! SU�2� of
bounded variation such that Df �f �ÿ1 2 L2�T; su�2��.

Lemma 6.4. Let ' : T! SU�2� be a C2-cocycle. Suppose that ' is coho-
mologous to a diagonal cocycle with a transfer function in BV2�T; SU�2��.
Then the sequence f1

n
D'�n��'�n��ÿ1�gn2N is uniformly convergent and

fD�1
n

D'�n��'�n��ÿ1�gn2N is bounded in L1�T; su�2��.
Proof. By Corollary 6.3, it suf®ces to show that there exist a sequence fhngn2N

convergent in L2
��T;R�, a sequence fkngn2N bounded in L2

��T;R� and a sequence
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flngn2N convergent in L1
��T;R� such that

D
1

n
D'�n��x��'�n��x��ÿ1

� �



 



4 ln�x� � hn�x�kn�x� for �-a:e: x 2 T:

By assumption, there exist �; p 2 BV2�T; SU�2�� such that '�x� �
p�x�ÿ1��x�p�Tx�, where � is a diagonal cocycle. Then

D'�x�'�x�ÿ1 � ÿp�x�ÿ1
Dp�x� � p�x�ÿ1

D��x���x�ÿ1
p�x�

� '�x�p�Tx�ÿ1
Dp�Tx�'�x�ÿ1

for �-a.e. x 2 T. Set

~'�x� � D'�x�'�x�ÿ1; ~p�x� � p�x�ÿ1
Dp�x� and ~��x� � p�x�ÿ1

D��x���x�ÿ1
p�x�:

Then ~'�x� � ÿ~p�x� � U~p�x� � ~��x�, where ~p; ~� 2 L2�T; su�2��. We adopt the
convention that

Pÿ1
j�0 � 0. Since

1

n
D'�n��'�n��ÿ1 � 1

n

Xnÿ1

k�0

'�k� ~' � Tk�'�k��ÿ1;

we have

D
1

n
D'�n��'�n��ÿ1

� �
� 1

n

Xnÿ1

k�0

Xkÿ1

j�0

�Ad'� j� �~' � T j�Ad'�k� �~' � T k� ÿ Ad'�k� �~' � T k�Ad'�j� �~' � T j��

� 1

n

Xnÿ1

k�0

Ad'�k� �D~' � Tk�

� 1

n

Xnÿ1

k�0

Xkÿ1

j�0

�U j ~';Uk ~'� � 1

n

Xnÿ1

k�0

Uk�D~'�:

However,Xnÿ1

k�0

Xkÿ1

j�0

�U j ~';Uk ~'� �
Xnÿ1

k�0

Xkÿ1

j�0

�U j�1~pÿ U j~p� U j ~�;Uk ~'�

�
Xnÿ1

k�0

�Uk~pÿ ~p;Uk ~'� �
Xnÿ1

k�0

Xkÿ1

j�0

�U j ~�;Uk�1~pÿ Uk~p� Uk ~��

�
Xnÿ1

k�0

�Uk~pÿ ~p;Uk ~'� �
Xnÿ1

k�0

Xkÿ1

j�0

�U j ~�;Uk ~��

�
Xnÿ2

j�0

�U j ~�;Un~pÿ U j�1~p�:
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Since

U j ~��x� � Ad'�n��x�p�T nx�ÿ1�D��T nx���T nx�ÿ1�
� Adp�x�ÿ1��n��x��D��T nx���T nx�ÿ1�
� Adp�x�ÿ1�D��T nx���T nx�ÿ1�;

we have �U j ~�;Uk ~�� � 0 for any integers j; k. Observe that k�A;B�k4 2kAk kBk for
any A;B 2 su�2�. It follows that

D
1

n
D'�n��'�n��ÿ1

� �



 




4

2

n

Xnÿ1

k�0

�kD~' � Tkk � k ~p � Tkk k~' � Tkk � k ~pk k~' � Tkk

� k~� � Tkk k ~p � Tk�1k� � k ~p � T nk 2

n

Xnÿ1

k�0

k~� � Tkk:

Set

hn � 2

n

Xnÿ1

k�0

k~� � Tkk

kn � k ~p � T nk

ln � 2

n

Xnÿ1

k�0

�kD~' � Tkk � k ~p � Tkk k~' � Tkk � k ~pk k~' � Tkk

� k~� � Tkk k ~p � Tk�1k�:
By the Birkhoff ergodic theorem, the sequence fhngn2N converges in L2

��T;R�
and the sequence flngn2N converges in L1

��T;R�. This completes the proof. &

Theorem 6.1 and Lemma 6.4 lead to the following conclusion.

Corollary 6.5. Let ' : T! SU�2� be a C2-cocycle with d�'� 6� 0. Suppose
that ' is cohomologous to a diagonal cocycle with a transfer function in
BV2�T; SU�2��. Then the Lebesgue component in the spectrum of T' has
countable multiplicity. Moreover, the Lebesgue component in the spectrum of T
�'�
has countable multiplicity, too.

The following result will be useful in the next section of the paper.

Proposition 6.6. For every C2-cocycle ' : T! SU�2�, the sequence

1

n2
D�D'�n��'�n��ÿ1�

converges to zero in L1�T; su�2��.
The following lemmas are some simple generalizations of some classical

results. Their proofs are left to the reader.
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Lemma 6.7. Let fangn2N be an increasing sequence of natural numbers and let
f fngn2N be a sequence in the Banach space L2�T;M2�C��. Then

fn�1 ÿ fn

an�1 ÿ an

! g in L2�T;M2�C���) fn

an

! g in L2�T;M2�C��:

Lemma 6.8. Let fgn
k ; n 2 N; 04 k< ng be a triangular matrix of elements

from L2�T;M2�C�� such that kgn
kk � O�1=n� and

gn
0 � gn

1 � � � � � gn
nÿ1 ! g in L2�T;M2�C��:

Then fn ! f in L2�T;M2�C�� impliesXnÿ1

k�0

gn
k fk ! g f and

Xnÿ1

k�0

fkgn
k ! f g in L1�T;M2�C��:

Proof of Proposition 6.6. First, recall that

1

n2
D�D'�n��'�n��ÿ1� � 1

n2

Xnÿ1

k�0

Xkÿ1

j�0

�U j ~';Uk ~'� � 1

n2

Xnÿ1

k�0

Uk�D~'�;

where ~' � D'�'�ÿ1
and

1

n

Xnÿ1

k�0

Uk ~'!  in L2�T; su�2��:

Since 1
n2

Pnÿ1
k�0 Uk�D~'� uniformly converges to zero, it suf®ces to show that

lim
n!1

1

n2

Xnÿ1

k�0

Xkÿ1

j�0

Uj ~'Uk ~' � lim
n!1

1

n2

Xnÿ1

k�0

Xkÿ1

j�0

Uk ~'U j ~' � 1

2
  in L2�T;M2�C��:

Set fn �
Pnÿ1

k�0�nÿ k�Uk ~' and an � n2. Then

fn�1 ÿ fn

an�1 ÿ an

�
Pn

k�0�n� 1ÿ k�Uk ~'ÿPnÿ1
k�0�nÿ k�Uk ~'

�n� 1�2 ÿ n2
�
Pn

k�0 Uk ~'

2n� 1
! 1

2
 

in L2�T;M2�C��. Applying Lemma 6.7, we get

1

n2

Xnÿ1

k�0

�nÿ k�Uk ~'! 1

2
 in L2�T;M2�C��:

Therefore

1

n2

Xnÿ1

k�0

kUk ~' � 1

n

Xnÿ1

k�0

Uk ~'ÿ 1

n2

Xnÿ1

k�0

�nÿ k�Uk ~'!  ÿ 1

2
 � 1

2
 

in L2�T;M2�C��. Applying Lemma 6.8 with gn
k � k

n2 Uk ~' and fk � 1
k

Pkÿ1
j�0 U j ~', we

conclude that Xnÿ1

k�0

gn
k fk � 1

n2

Xnÿ1

k�0

Xkÿ1

j�0

Uk ~'U j ~'! 1

2
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and Xnÿ1

k�0

fkgn
k �

1

n2

Xnÿ1

k�0

Xkÿ1

j�0

U j ~'Uk ~'! 1

2
  

in L2�T;M2�C��, which completes the proof. &

7. Possible Values of Degree

One may ask what we know about the set of possible values of degree. For
G � T the degree of each smooth cocycle is an integer number. Probably, in the
case of cocycles with values in SU�2� the set of possible values of degree is more
complicated. However, in this section, we show that if � is the golden ratio, then
the degree of each smooth cocycle belongs to 2�N0. The idea of renormalization,
which is used to prove this result is due to Rychlik [8].

Let � be the golden ratio (i.e. the positive root of the equation �2 � � � 1). It
will be advantageous for our notation to consider the interval �ÿ�2; �� to be the
model of the circle. Then the map T : �ÿ�2; �� ! �ÿ�2; �� given by

T�x� � x� � for x 2 �ÿ�2; 0�
xÿ �2 for x 2 �0; ��

�
is the rotation by �. Let X � �ÿ�2; �3�. Then the ®rst return time to X, which we
call � , satis®es the following formula

��x� � 1 for x 2 �0; �3�
2 for x 2 �ÿ�2; 0�

�
and the ®rst return map TX : X ! X is equal to T up to a linear scaling. Indeed, if
M : T! X is the map given by M�x� � ÿ�x, then TX �M � M � T .

By W1 we mean the space of all cocycles ' : T! SU�2� such that the
functions ' : �ÿ�2; 0� ! SU�2�; ' : �0; �� ! SU�2� are both of class C1 and

lim
x!0ÿ

D'�x�'�x�ÿ1
and lim

x!�ÿ D'�x�'�x�ÿ1

exist. The topology of W1 is induced from C1��ÿ�2; 0� [ �0; ���. Consider the
renormalization operator � : W1 ! W1 de®ned by

�'�x� � '���Mx���Mx�:
Then

�n'�x� � '�qn�1��Mnx� for x 2 �ÿ�2; 0�
'�qn�2��Mnx� for x 2 �0; ��

�
for any natural n, where fqngn2N is the Fibonacci sequence. By W1

0 we mean the
set of all cocycles ' 2 W1 such that '�2� is continuous at 0. The set W1

0 is a closed
subset of W1 and

��W1
0 � � W1

0 �11�
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(see [8]). It is easy to check that ' 7! kD'�'�ÿ1kL1 is a Lyapunov function for the
renormalization map �, i.e. kD��'���'�ÿ1kL1 4 kD'�'�ÿ1kL1 for any ' 2 W1.
The following result is due to Rychlik [8].

Proposition 7.1. If kD��k'���k'�ÿ1kL1 � kD'�'�ÿ1kL1 for all natural k, then

D'�x��'�x��ÿ1 � �Ad'�x��D'�Tx��'�Tx��ÿ1�
for every x 2 �ÿ�2; 0�.

Lemma 7.2. Let ' : T! SU�2� be a C2-cocycle. Assume that

1

n
D'�n��0��'�n��0��ÿ1 ! H 2 su�2�

and there is an increasing sequence fnkgk2N of even numbers such that

lim
k!1

�nk

��nk

0

jD�D'�qnk�i��x��'�qnk�i��x��ÿ1�jdx � 0

for i � 1, 2. Then kHk 2 2�N0.

Proof. First, note that

D�n'�x���n'�x��ÿ1 � �nD'�qn�1��Mnx��'�qn�1��Mnx��ÿ1

�nD'�qn�2��Mnx��'�qn�2��Mnx��ÿ1
for x 2 �ÿ�2; 0�
for x 2 �0; ��

�
for any even n. Since

1

qn�i

D'�qn�i��Mnx��'�qn�i��Mnx��ÿ1 ÿ 1

qn�i

D'�qn�i��0��'�qn�i��0��ÿ1

���� ����
4

1

qn�i

��nx

0

jD�D'�qn�i��'�qn�i��ÿ1�jd�

4
1

qn�i�n
�n

��n

0

jD�D'�qn�i��'�qn�i��ÿ1�jd�

for all even n; i � 1, 2 and

lim
n!1�

nqn�1 � 1=�1� �2�; lim
n!1�

nqn�2 � 1=��� �3�;
it follows that

lim
k!1

D�nk'�x���nk'�x��ÿ1 � lim
k!1

�nk qnk�1
1

qnk�1

D'�qnk�1��0��'�qnk�1��0��ÿ1

� 1

1� �2
H

uniformly on �ÿ�2; 0� and

lim
k!1

D�nk'�x���nk'�x��ÿ1 � lim
k!1

�nk qnk�2
1

qnk�2

D'�qnk�2��0��'�qnk�2��0��ÿ1

� 1

�� �3
H
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uniformly on �0; ��. Therefore we can assume that there exists v 2 W1 such that

�nk'! v and D�nk'��nk'�ÿ1 ! Dv vÿ1

uniformly. Then

Dv�x��v�x��ÿ1 � �A for x 2 �ÿ�2; 0�
A for x 2 �0; ��;

�
where A � 1=��� �3�H 2 su(2). Therefore

v�x� � e�xAB for x 2 �ÿ�2; 0�
exAC for x 2 �0; ��;

�
where B � vÿ�0� and C � v��0�. Since the set W1

0 � W1 is closed and �-
invariant, v 2 W1

0 . It follows that

Ceÿ�
3AB � Be�AC: �12�

Since v is a limit point of the sequence f�n'gn2N and ' 7! kD'�'�ÿ1kL1 is a
Lyapunov function for the renormalization map �, we have kD�kv��kv�ÿ1kL1 �
kDvvÿ1kL1 for any natural k. By Proposition 7.1,

lim
x!0ÿ

Dv�x��v�x��ÿ1 � �Advÿ�0� lim
x!�ÿ Dv�x��v�x��ÿ1:

Hence

�A � �AdB�A�
and ®nally AB � BA. Therefore

�v�x� � eÿ�xAC for x 2 �ÿ�2; 0�
eÿxA��ABC for x 2 �0; ��:

�
By Proposition 7.1,

lim
x!0ÿ

D�v�x���v�x��ÿ1 � �Ad�vÿ�0� lim
x!�ÿ D�v�x���v�x��ÿ1:

Hence

ÿ�A � �AdC�ÿA�
and ®nally AC � CA. It follows that B and C commute, by (12). From (12), we
obtain e����

3�A � Id. Therefore kHk � k��� �3�Ak 2 2�N0. &

Theorem 7.3. Suppose that � is the golden ratio. Then for every C2-cocycle
' : T! SU�2�, we have d�'� 2 2�N0.

Proof. Fix n 2 N such that 2�2n�1=2�2n�5 4=5. Set Ij � �2� jÿ 1��2n; 2j�2n�
for j 2 E � f1; . . . ; �1=2�2n�g and "n � 1

q2
n

�
T
jD�D'�qn��'�qn��ÿ1�jd�. By Proposi-

tion 6.6, "n tends to zero. For i � 1, 2 de®ne

Ei � j 2 E;
1

2�2nq2
2n�i

�
Ij

jD�D'�q2n�i��'�q2n�i��ÿ1�jd�4 10"2n�i

( )
:
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Then

"2n�i � 1

q2
2n�i

�
T

jD�D'�q2n�i��'�q2n�i��ÿ1�jd�

5
1

q2
2n�i

X
j2EnEi

�
Ij

jD�D'�q2n�i��'�q2n�i��ÿ1�jd�

5 20�2n"2n�i��1=2�2n� ÿ#Ei�

:

Hence

#Ei 5 �1=2�2n� 1ÿ 1

10

1=2�2n

�1=2�2n�
� �

5
7

8
�1=2�2n�

for i � 1, 2. Therefore

#�E1 \ E2�5#E1 �#E2 ÿ#E 5
3

4
�1=2�2n�:

De®ne

Gn �
[

j2E1\E2

��2jÿ 2��2n; �2jÿ 1��2n�:

Observe that y 2 Gn implies

1

2�2nq2
2n�i

�y��2n

y

jD�D'�q2n�i��'�q2n�i��ÿ1�jd�4 10"2n�i

for i � 1, 2 and

��Gn�5�2n#�E1 \ E2�5 3

8
2�2n�1=2�2n�5 3

10
:

Set G0 � Tn2N

S
k> n Gk. Then ��G0�5 3=10. Since 1

n
D'�n��'�n��ÿ1 !  almost

everywhere, we see that the set

G � x 2 G0;
1

n
D'�n��x��'�n��x��ÿ1 !  �x�

� �
has positive measure.

For every y 2 T denote by 'y : T! SU�2� the C2-cocycle 'y�x� � '�x� y�.
Suppose that y 2 G. Then 1

n
D'�n�y �0��'�n�y �0��ÿ1 !  �y� and there exists an

increasing sequence fnkgk2N of natural numbers such that y 2 Gnk
for any natural

k. Hence

�2nk

��2nk

0

jD�D'�q2nk�i�
y �'�q2nk�i�

y �ÿ1�jd�4 20��2nk q2nk�i�2"2nk�i

for i � 1, 2. Since the sequence f�nqn�ign2N converges for i � 1, 2 and "n tends to
zero, letting k!1 we have

lim
k!1

�2nk

��2nk

0

jD�D'�q2nk�i�
y �'�q2nk�i�

y �ÿ1�jd� � 0
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for i � 1, 2. By Lemma 7.2, k �y�k 2 2�N0 for every y 2 G. Since d�'� � k �y�k
for a.e. y 2 T, we conclude that d�'� 2 2�N0. &

8. The 2-Dimensional Case

This section will deal with properties of smooth cocycles over ergodic rotations
on the 2-dimensional torus with values in SU(2). By T2 we will mean the group
R2=Z2. We will identify functions on T2 with functions on R2 periodic in each co-
ordinate with period 1. Suppose that T�x1; x2� � �x1 � �; x2 � �� is an ergodic
rotation on T2. Let ' : T2 ! SU�2� be a C1-cocycle over the rotation T . Analysis
similar to that in Section 2 shows that there exists  i 2 L2�T2; su�2��, i � 1, 2
such that

1

n

@

@xi

'�n��'�n��ÿ1 !  i in L2�T2; su�2��:

Moreover, k ik is a �
 �-a.e. constant function and '��x� i�T �x�'��x�ÿ1 �  i��x�
for �
 �-a.e. �x 2 T� T for i � 1, 2.

De®nition 2. The pair

�k 1k; k 2k� � lim
n!1

1

n

@

@x1

'�n��'�n��ÿ1





 




L1

;
@

@x2

'�n��'�n��ÿ1





 




L1

� �
will be called the degree of the cocycle ' : T2 ! SU�2� and denoted by d�'�.

Similarly, one can prove the following

Theorem 8.1. If d�'� 6� 0, then ' is cohomologous to a diagonal cocycle

T2 3 �x 7! 
��x�
0

0


��x�
� �

2 SU�2�, where 
 : T2 ! T is measurable. Moreover,

the skew product T
 : T2 � T! T2 � T is ergodic and it is mixing on the ortho-
complement of the space of functions depending only on the ®rst two variables.

Analysis similar to that in the proof of Theorem 6.1 gives

Theorem 8.2. Let ' : T2 ! SU�2� be a C2-cocycle with d�'� 6� 0. Suppose
that the sequence f1

n
@
@xi
'�n��'�n��ÿ1gn2N is uniformly convergent and

f @@xi
�1

n
@
@xi
'�n��'�n��ÿ1�gn2N is bounded in L2�T2; su�2�� for i � 1, 2. Then the

Lebesgue component in the spectrum of T' has countable multiplicity.

By BVR�T2; SU�2�� we mean the set of all measurable functions f : T!
SU�2� such that
� the functions f �x; ��; f ��; x� : T! SU�2� are of bounded variation for any

x 2 T;
� the functions @

@x1
f � f �ÿ1; @

@x2
f � f �ÿ1 : T2 ! su�2� are Riemann integrable for

i � 1, 2.
Then we immediately get the following

Lemma 8.3. Let ' : T2 ! SU�2� be a C2-cocycle. Suppose that ' is
cohomologous to a diagonal cocycle with a transfer function in BVR�T2; SU�2��.
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Then the sequence f1
n

@
@xi
'�n��'�n��ÿ1gn2N is uniformly convergent and

f @@xi
�1

n
@
@xi
'�n��'�n��ÿ1�gn2N is uniformly bounded for i � 1, 2.

It is easy to check that if ' is cohomologous to a diagonal cocycle via a C1

transfer function, then d�'� 2 2��N0 �N0�. However, in the next section we
show that for every ergodic rotation T�x1; x2� � �x1 � �; x2 � �� there exists a
smooth cocycle whose degree is equal to 2��j�j; j�j�.

9. Cocycles Over Flows

Let ! be an irrational number. By S : R� T2 ! T2 we mean the ergodic ¯ow
de®ned by

St�x1; x2� � �x1 � t!; x2 � t�: �13�
Let ' : R� T2 ! SU�2� be a smooth cocycle over S, i.e.

't�s��x� � 't��x�'s�St�x�
for all t; s 2 R;�x 2 T2 or equivalently, ' is the fundamental matrix solution for a
linear differential system

d

dt
y�t� � y�t�A�St�x�;

where A : T2 ! su(2), i.e. ' satis®es

d
dt
't��x� � 't��x�A�St�x�

'0��x� � Id:

�
Then

@

@xi

't�s��x�'t�s��x�ÿ1 � @

@xi

't��x�'t��x�ÿ1 � Ad't��x�
@

@xi

's�St�x�'s�St�x�ÿ1:

Hence

@

@xi

't�s�'t�s�ÿ1





 




L1

4
@

@xi

't�'t�ÿ1





 




L1

� @

@xi

's�'s�ÿ1





 




L1

:

It follows that the limit

lim
t!1

1

jtj
@

@xi

't�'t�ÿ1





 




L1

exists for i � 1, 2.

De®nition 3. The pair

lim
t!1

1

jtj
@

@x1

't�'t�ÿ1





 




L1

;
@

@x2

't�'t�ÿ1





 




L1

� �
will be called the degree of the cocycle ' : R� T2 ! SU�2� and denoted by d�'�.

For a given cocycle ' : R� T2 ! SU�2� over the ¯ow S, by '̂ : T! SU�2�
we will mean the cocycle over the rotation Tx � x� ! de®ned by '̂�x� � '1�x; 0�.
Then '̂�n��x� � 'n�x; 0�.

Lemma 9.1. d�'� � �1; j!j�d�'̂�.
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Proof. First, observe that

'x2
�x1 ÿ x2!; 0�'n�x1; x2� � 'n�x2

�x1 ÿ x2!; 0�
� 'n�x1 ÿ x2!; 0�'x2

�x1 ÿ x2!� n!; 0�:
Hence

'n�x1; x2� � 'x2
�x1 ÿ x2!; 0�ÿ1'̂�n��x1 ÿ x2!�'x2

�x1 ÿ x2!� n!; 0�
for all x1; x2 2 R and n 2 N. Fix �x1; x2� 2 �0; 1� � �0; 1�. Then

@

@x1

'n�x1; x2�'n�x1; x2�ÿ1

� ÿ'x2
�x1 ÿ x2!; 0�ÿ1 @

@x1

'x2
�x1 ÿ x2!; 0�

� Ad'x2
�x1ÿx2!;0�ÿ1�D'̂�n��x1 ÿ x2!�'̂�n��x1 ÿ x2!�ÿ1�

� Ad'x2
�x1ÿx2!;0�ÿ1'̂�n��x1ÿx2!�
@

@x1

'x2
�x1 ÿ x2!� n!; 0�'x2

�x1 ÿ x2!� n!; 0�ÿ1

� �
:

It follows that

@

@x1

'n�'n�ÿ1





 




L1

ÿ D'̂�n��'̂�n��ÿ1


 



L1

���� ����
� @

@x1

'n�'n�ÿ1





 




L1

ÿ
�1

0

�1

0

D'̂�n��x1 ÿ x2!�'̂�n��x1 ÿ x2!�ÿ1


 

dx1dx2

���� ����
4 2

�1

0

�1

0

@

@x1

'x2
�x1 ÿ x2!; 0�'x2

�x1 ÿ x2!; 0�ÿ1





 



dx1dx2:

Therefore

lim
n!1

1

n

@

@x1

'n�'n�ÿ1





 




L1

� lim
n!1

1

n
kD'̂�n��'̂�n��ÿ1kL1 � d�'̂�:

Similarly,

@

@x2

'n�x1; x2�'n�x1; x2�ÿ1

� ÿ'x2
�x1 ÿ x2!; 0�ÿ1 @

@t
'x2
�x1 ÿ x2!; 0�

� !'x2
�x1 ÿ x2!; 0�ÿ1 @

@x1

'x2
�x1 ÿ x2!; 0�

ÿ !Ad'x2
�x1ÿx2!;0�ÿ1�D'̂�n��x1 ÿ x2!�'̂�n��x1 ÿ x2!�ÿ1�
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� Ad'x2
�x1ÿx2!;0�ÿ1'̂�n��x1ÿx2!�
@

@t
'x2
�x1 ÿ x2!� n!; 0�'x2

�x1 ÿ x2!� n!; 0�ÿ1

� �
ÿ !Ad'x2

�x1ÿx2!;0�ÿ1'̂�n��x1ÿx2!�
@

@x1

'x2
�x1 ÿ x2!� n!; 0�'x2

�x1 ÿ x2!� n!; 0�ÿ1

� �
:

It follows that

@

@x2

'n�'n�ÿ1





 




L1

ÿj!jkD'̂�n��'̂�n��ÿ1kL1

���� ����
4 2

�1

0

�1

0

@

@t
'x2
�x1 ÿ x2!; 0�'x2

�x1 ÿ x2!; 0�ÿ1





 



dx1dx2

� 2j!j
�1

0

�1

0

@

@x1

'x2
�x1 ÿ x2!; 0�'x2

�x1 ÿ x2!; 0�ÿ1





 



dx1dx2:

Therefore

lim
n!1

1

n

@

@x2

'n�'n�ÿ1





 




L1

� j!j lim
n!1

1

n
D'̂�n��'̂�n��ÿ1


 



L1� j!jd�'̂�;

and the proof is complete. &

Lemma 9.2. For any C2-cocycle  : T! SU�2� over the rotation T there
exists a C2-cocycle ' : R� T2 ! SU�2� over the ¯ow S such that '̂ �  .

Proof. Since the fundamental group of SU�2� is trivial, we can choose a C2-
homotopy  : �0; 1� � T! SU�2� such that

 �t; x� � Id for t 2 �0; 1=4�
 �x� for t 2 �3=4; 1�:

�
By ' : R� T! SU�2� we mean the C2-function determined by

 �n� t; x� �  �n��x� �t; x� n!�
for any t 2 �0; 1� and n 2 Z. Then it is easy to check that

 �n� t; x� �  �n��x� �t; x� n!� �14�
for any t 2 R and n 2 Z. Let ' : R� R2 ! SU�2� be de®ned by

't�x1; x2� �  �x2; x1 ÿ x2!�ÿ1 �t � x2; x1 ÿ x2!�:
It is easy to see that 't�x1 � 1; x2� � 't�x1; x2� and 't�x1; x2 � 1� � 't�x1; x2�, by
(14). Then ' : R� T2 ! SU�2� is a C2-function and

't�s��x� �  �x2; x1 ÿ x2!�ÿ1 �t � s� x2; x1 ÿ x2!�
�  �x2; x1 ÿ x2!�ÿ1 �t � x2; x1 ÿ x2!� �x2 � t; �x1 � t!� ÿ �x2 � t�!�ÿ1

�  �s� �x2 � t�; �x1 � t!� ÿ �x2 � t�!�
� 't��x�'s�St�x�:
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Moreover,

'̂�x� � '1�x; 0� �  �0; x�ÿ1 �1; x� �  �x�;
which completes the proof. &

Suppose that �; �; 1 are independent over Q. Set ! � �=�.

Theorem 9.3. For every ergodic rotation T�x1; x2� � �x1 � �; x2 � �� and for
every natural k there exists a C2-cocycle over T whose degree is equal to
2�k�j�j; j�j�.

Proof. Let S denote the ergodic ¯ow given by (13). Suppose that ' : R� T2 !
SU�2� is a C2-cocycle over S such that d�'̂� � 2�k. Consider the cocycle
'� : T2 ! SU�2� over the rotation T � S�. Then '

�n�
� � '�n

and

lim
n!1

1

n

@

@xi

'
�n�
� �'�n�� �ÿ1





 




L1

� j�j lim
n!1

1

j�jn
@

@xi

'�n�'�n�ÿ1





 




L1

:

It follows that

d�'�� � j�jd�'� � j�j�1; j!j�d�'̂� � �j�j; j�j�d�'̂�;
which proves the theorem. &

Suppose that � 2 �0; 1�. Let ' : R� T2 ! SU�2� be a C2-cocycle over S such
that '̂ is a diagonal C2-cocycle with nonzero degree. Set T � S� and  � '�. Let
p : T2 ! SU�2� be a BVR-function such that

p�x1; x2� � 'x2
�x1 ÿ x2!; 0�ÿ1

for �x1; x2� 2 R� �0; 1�. Then

p�T�x1; x2�� � 'x2���x1 ÿ x2!; 0�ÿ1
for x2 2 �0; 1ÿ ��

'x2��ÿ1�x1 ÿ �x2 ÿ 1�!; 0�ÿ1
for x2 2 �1ÿ �; 1�:

�
Moreover,

'x2���x1 ÿ x2!; 0� � 'x2
�x1 ÿ x2!; 0�'��x1; x2�

and

'x2��ÿ1�x1 ÿ �x2 ÿ 1�!; 0� � 'ÿ1�x1 ÿ �x2 ÿ 1�!; 0�'x2���x1 ÿ x2!; 0�
� '1�x1 ÿ x2!; 0�ÿ1'x2���x1 ÿ x2!; 0�:

It follows that  ��x� � p��x����x�p�T �x�ÿ1
, where � : T2 ! SU�2� is the diagonal

BVR-cocycle given by

��x1; x2� � Id for x2 2 �0; 1ÿ ��
'̂�x1 ÿ x2!� for x2 2 �1ÿ �; 1�:

�
Lemma 9.4. Let � : T2 ! T be a cocycle over the rotation T�x1; x2� �

�x1 � �; x2 � ��. Suppose that �jT� �0; 
�; �jT� �
; 1� are C1-functions, where

 is irrational. If d����; 0�� 6� d����; 
��, then � is not a coboundary.
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Proof. Set I1 � �0; 
�; I2 � �
; 1�; a1 � d����; 0�� and a2 � d����; 
��. Then
there exists a function ~� : T2 ! R such that ~�jT� Ij is of class C1 for j � 1, 2 and
��x1; x2� � exp 2�i� ~��x1; x2� � ajx1� for any �x1; x2� 2 T� Ij.

Clearly, it suf®ces to show that�
T2

��n��x1; x2�dx1dx2 ! 0:

Next note that

��n��x1; x2� � exp 2�i� ~��n��x1; x2� � �a1Sn
1�x2� � a2Sn

2�x2��x1 � cn�x2��;
where Sn

i �x� �
Pnÿ1

k�0 1Ii
�x� k�� and cn�x� �

Pnÿ1
k�0 k��a11I1

� a21I2
��x� k��.

Since the rotation by � is uniquely ergodic,

1

n
�a1Sn

1 � a2Sn
2� ! a1
 � a2�1ÿ 
�

uniformly. Since a1 6� a2 and 
 is irrational, there exists S> 0 and n0 2 N such
that ja1Sn

1�x� � a2Sn
2�x�j5 nS for all x 2 T and n5 n0. Applying integration by

parts, we get�
T2

��n��x1; x2�dx1dx2

���� ����
4
�1

0

�1

0

e2�i� ~��n��x1;x2���a1Sn
1
�x2��a2Sn

2
�x2��x1�dx1

���� ����dx2

�
�1

0

1

2�ja1Sn
1�x2� � a2Sn

2�x2�j
�1

0

e2�i ~��n��x1;x2�de2�i�a1Sn
1
�x2��a2Sn

2
�x2��x1

���� ����dx2

�
�1

0

1

2�ja1Sn
1�x2� � a2Sn

2�x2�j
�1

0

e2�i�a1Sn
1
�x2��a2Sn

2
�x2��x1de2�i ~��n��x1;x2�

���� ����dx2

4
�1

0

1

nS

�1

0

e2�i� ~��n��x1;x2���a1Sn
1
�x2��a2Sn

2
�x2��x1� @

@x1

~��n��x1; x2�dx1

���� ����dx2

4
1

nS

�
T2

@

@x1

~��n��x1; x2�
���� ����dx1dx2:

Since @
@x1

~� 2 L1�T2;C�,
1

n

@

@x1

~��n� !
�

T2

@

@x1

~��x1; x2�dx1dx2 � 0

in L1�T2;C�, by the Birkhoff ergodic theorem, and the proof is complete. &

This leads to the following conclusion.

Corollary 9.5. For every ergodic rotation T on T2 there exists a C2-cocycle
 with nonzero degree such that the Lebesgue component in the spectrum of
T has countable multiplicity and  is not cohomologous to any diagonal C1-
cocycle.
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Proof. Let �' : T! T be a C2-function with nonzero topological degree. Let

' : R� T2 ! SU�2� be a C2-cocycle over S such that '̂ � �'
0

0

��'�ÿ1

� �
. De®ne

 � '�. Then d� � � 2��j�j; j�j�jd��'�j 6� 0. Moreover,  and the diagonal
cocycle � : T2 ! SU�2� given by

��x1; x2� � Id for x2 2 �0; 1ÿ ��
'̂�x1 ÿ x2!� for x2 2 �1ÿ �; 1�

�
are cohomologous with a transfer function in BVR�T2; SU�2��. Applying Theorem
8.2 and Lemma 8.3, we get the ®rst part of our claim.

Next suppose that  is cohomologous to a diagonal C1-cocycle. Then it is easy
to see that the cocycle � : T2 ! T given by

��x1; x2� � Id for x2 2 �0; 1ÿ ��
�'�x1 ÿ x2!� for x2 2 �1ÿ �; 1�:

�
is cohomologous to a C1-cocycle g : T2 ! T. Applying Lemma 9.4 for � � �gÿ1

and 
 � 1ÿ � we ®nd that �gÿ1 is not a coboundary, which completes the
proof. &
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