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Abstract. In this paper we introduce the notion of degree for C!-cocycles over irrational rotations
on the circle with values in the group SU(2). It is shown that if a C'-cocycle ¢ : T — SU(2) over an
irrational rotation by « has nonzero degree, then the skew product

TxSUQ2) > (x,8)— (x+a,g px)) € T xSU_2)

is not ergodic and the group of essential values of ¢ is equal to the maximal Abelian subgroup of
SU(2). Moreover, if ¢ is of class C? (with some additional assumptions) the Lebesgue component in
the spectrum of the skew product has countable multiplicity. Possible values of degree are discussed,
too.
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1. Introduction

Assume that T : (X,%,)\) — (X,%,)\) is an ergodic measure-preserving
automorphism of standard Borel space. Let G be a compact Lie group, p its
Haar measure. For a given measurable function ¢ : X — G we study spectral
properties of the measure-preserving automorphism of X x G (called skew product)
defined by

T, : (X XGA@pu) = (XxGA@ ), Ty(x,8) = (Tx, gp(x)).

A measurable function ¢ : X — G determines a measurable cocycle over the
automorphism 7 given by

0(x)(Tx) ... o(T" 'x) for n>0
M (x) =< e for n=0
(o(Tx) (T ') ... (T %)) for n<0,

which we will identify with the function . Then T7(x, g) = (Tx, g™ (x)) for any

integer n. Two cocycles ¢, v : X — G are cohomologous if there exists a measur-
able map p : X — G such that

p(x) = plx) " P(x)p(Tx).

Research partly supported by KBN grant 2 PO3A 002 14(1998), by FWF grant P12250-MAT and
by Foundation for Polish Science.
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In this case, p will be called a transfer function. If ¢ and ) are cohomologous, then
the map (x, g) — (x,p(x)g) establishes a metrical isomorphism of T, and 7.

By T we will mean the circle group {z € C;|z| = 1} which most often will be
treated as the group R/Z; A will denote Lebesgue measure on T. We will identify
functions on T with periodic functions of period 1 on R. Assume that o € T is
irrational. We will deal with the case where T is the ergodic rotation on T given by
Tx =x+ .

In the case where G is the circle and ¢ is a smooth cocycle, spectral properties
of T, depend on the topological degree d(¢) of ¢. For example, in [5], Iwanik,
Lemarnczyk, Rudolph have proved that if ¢ is a C>-cocycle with d(ip) # 0, then T,
is ergodic and it has countable Lebesgue spectrum on the orthocomplement of the
space of functions depending only on the first variable. On the other hand, in [3],
Gabriel, Lemanczyk and Liardet have proved that if ( is absolutely continuous with
d(y) = 0, then T, has singular spectrum.

The aim of this paper is to find a spectral equivalent of topological degree in
case G = SU(2).

2. Degree of Cocycle

In this section we introduce the notion of degree in case G = SU(2). For a

given matrix A = [ay];;_; 4 € My(C) define [|A| = \/525{]:1 |a;|>. Observe

that if A is an element of the Lie algebra su(2), i.e.

A:{ ia ‘ b—l—.zc]7
—b+ic —ia

where a,b,c € R, then ||A|| = v/detA. Moreover, if B is an element of the group
SU(2), ie.
B — | 22
-2 )

where z1,2; € C, |z1])* + |z2|* = 1, then AdzA = BAB™' € su(2) and ||AdA| =
1Al
Consider the scalar product of s1(2) given by
1
(A,B) = — gtr(adA o adB).

Then ||A|| = \/(A,A). By L*(X,su(2)) we mean the space of all functions
f: X — su(2) such that

£l = J 1 () |Pdx < 0.
X
For two fi, f» € L*(X,su(2)) set

(fi o) = Jx<f1 (x), fa(x))dx.

The space L*(X, 511(2)) endowed with the above scalar product is a Hilbert space.
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By L'(X,s1(2)) we mean the space of all functions f : X — s11(2) such that
11 = | Ll <cs.

The space L' (X, s1(2)) endowed with the norm || ||,, is a Banach space.
For a given measurable cocycle ¢ : T — SU(2) consider the unitary operator

U:L*(T,su(2)) — L*(T,su(2)), Uf(x) = Adg f(Tx). (1)
Then U"f(x) = Adu ) f(T"x) for any integer n.
Lemma 2.1. There exists an operator P : L*(T,su(2)) — L*(T,su(2)) such that

n—1

—ZUJf—>Pf in L*(T,su(2))

for any f € L*(T,su(2)) and U o P = P. Moreover,

Proof. The first claim of the lemma follows from the von Neuman ergodic
theorem. Since U o P = P, we have Ad,)Pf(Tx) = Pf(x), for A-a.e. x € T. It
follows that ||Pf(Tx)|| = ||Pf(x)||, for A-a.e. x € T. Hence |Pf(x)|| = ¢, for M-a.e.
x € T, by the ergodicity of T.

Lemma 2.2. For every f € L*(T,su(2)) the sequence %ZJ";OI U’f converges \-
almost everywhere.

Proof. Let f € L>(T x SU(2), su(2)) be given by f(x,g) = Ad,f(x). Then
F(Th(x,8)) = Adg(U"f (x))

for any integer n. By the Birkhoff ergodic theorem, the sequence
1 n—1 1 n—1 )
—_ n _ ]
nz F(T(x,8)) dg<nZUf(x)>
Jj=0 j=0
converges for A ® p-a.e. (x,g) € T x SU(2). Hence there exists g € SU(2) such
that Ad, (L Z]" 01 U’f(x)) converges for M\-a.e. x € T, and the proof is complete. []

n

Recall that, if a function ¢ : T — SU(2) is of class C', then Do(x)p(x) ' €
su(2) for every x € T.

Lemma 2.3. For every C'-cocycle ¢ : T — SU(2), there exists ¢ € L*(T,su(2))
such that

1
D™ (™) — 4 in L*(T,su(2)) and A-almost everywhere.
n

Moreover, ||| is a constant function M-a.e. and ©(x)(Tx)p(x)"" = ¥(x) for A-
ae xeT.

Proof. Since

DA () = 3 () p(THDATR) (T x) . p(T" ),



282 K. Fraczek

we have

=D _UDpp (),

where U is the unitary operator given by (1). Put ¢ = P(Dpyp~'). Applying
Lemmas 2.1 and 2.2, we conclude that

1 -
—Dp" (™)' — 4 in L*(T, su(2)) and A-almost everywhere.
n

Moreover,

Up=UoP(Dpp™ ') = P(Dpp™") =4

and ||9|| = [|[P(Dpp~")|| is a constant function A\-a.e., by Lemma 2.1, which
completes the proof. O

Definition 1. The number ||¢|| will be called the degree of the cocycle ¢ and
denoted by d(¢p).

Lemma 2.3 shows that

Lo o
— 1D (") Uy — d(e).

On the other hand, ||De™ (™) "||,, is the length of the curve ©). Geometrically
speaking, the degree of ¢ is the limit of length (o) /n.

A measurable cocycle 6 : T — SU(2) is said to be diagonal if there exists a
measurable function v : T — T such that

0
o(x) = (%) ]
W= &
Theorem 2.4. Suppose that ¢ : T — SU(2) is a C'-cocycle with d(p) # 0.
Then ¢ is cohomologous to a diagonal cocycle.

Proof. For every nonzero A € su(2) there exists By € SU(2) such that

-1 A 0
mamy” = [0y
ia b—+ic

Indeed, if A = . .
—b+ic —ia

}, then we can take
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; lAll +a b—ic Al —a
20|l 16 + ic| 2|jAfl _
Al —a Al +a b+ic | lal# Al
- —i
B, — 2)jA] 2(|All [b + icl
0 -1
1 0 if a=—||Al],
1 0 .
[O 1} if a=J|A].
Set p(x) = By(y). Then p : T — SU(2) is a measurable function and
~ ot 14) 0
w0 =p) |49 0 o,
Since @ (x)1(Tx)p(x) "' = 1(x), we have

o I N O B K )

Hence

T B N B L B Y S P

Since d(p) # 0, we see that the cocycle 6: T — SU(2) defined by 6(x) =
P(x)ﬂﬂ(x)p(Tx)*l is diagonal. 0

For a given C'-cocycle ¢ : T — SU(2) with nonzero degree let v = () :

T — T be a measurable cocycle such that the cocycles ¢ and [g g] are
cohomologous. It is easy to check that the choice of + is unique up to a measurable
cohomology with values in the circle and up to the complex conjugacy.
Theorem 2.4 shows that if d(¢) # 0, then the skew product T, is metrically
isomorphic to a skew product of an irrational rotation on the circle and a diagonal
cocycle. It follows that T, is not ergodic. However, in the next sections we show
that if d(p) # 0, then ¢ is not cohomologous to a constant cocycle. Moreover, the
skew product 7, : T x T — T x T is ergodic and it is mixing on the ortho-
complement of the space of functions depending only on the first variable. We will
prove also that (with some additional assumptions on () the Lebesgue component
in the spectrum of 7', has countable multiplicity. It follows that if d(¢) # 0, then:
— all ergodic components of T, are metrically isomorphic to T,
— the spectrum of T, consists of two parts: discrete and mixing,
— (with some additional assumptions on ¢) the Lebesgue component in the
spectrum of T, has countable multiplicity.

In case G = T, the topological degree of each C'-cocycle is an integer number.
An important question is: what can one say on values of degree in case G = SU(2)?
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If a cocycle ¢ is cohomologous to a diagonal cocycle via a smooth transfer func-
tion, then d(p) € 27Ny = 27(N U {0}).

We call a function f: T — SU(2) absolutely continuous if fj: T — C is
absolutely continuous for i,j = 1, 2. Suppose that ¢ is cohomologous to a diagonal
cocycle via an absolutely continuous transfer function. Then ¢ can be represented
as o(x) = p(x)"'6(x)p(Tx), where 6,p: T — SU(2) are absolutely continuous
and 6 is diagonal. Since ) (x) = p(x)”'6") (x)p(T"x), we have

D) (6 () = (plx)” Dp<x>+so"<>p<r"> 'Dp(172) (" ()
D8 (x)(6) (1) plo).

(x
+p(x)”

On the other hand, 6(x) = [VE)X) 0
continuous cocycle of the form ~(x) = exp 27i((x) + kx), where k is the topo-

logical degree of v and 7 : T — R is an absolutely continuous function. Then

, where 7v: T — T is an absolutely

n—1
lDy (xX) (Y (x))~ —2m<lzm fo)+k> — 27k

Jj=0
in L'(T, R), by the Birkhoff ergodic theorem. It follows that

LD ) =0t 2D [t

in L'(T, su(2)). Hence d(p) = 27|d(7)| € 27No.
In Section 7, it is shown that if « is the golden ratio, then the degree of every
C?-cocycle belongs to 2N, too.

3. Notation and Facts From Spectral Theory

Let U be a unitary operator on a separable Hilbert space /. By the cyclic
space generated by f € # we mean the space Z(f) = span{U"f;n € Z}. By the
spectral measure oy of f we mean a Borel measure on T determined by the
equalities

67(n) = j oy (x) = (U, f)

for n € Z. Recall that there exists a sequence {f,},cy in # such that
H = @,OliIZ(fn) and of > 05> .. .. (2)

Moreover, for any sequence {f,},cn in # satisfying (2) we have oy, = o7/, 07, =
Offy - The above decompositions of # are called spectral decompositions of U.

The spectral type of oy, (the equivalence class of measures) will be called the
maximal spectral type of U. We say that U has Lebesgue (continuous singular,
discrete) spectrum if oy, is equivalent to Lebesgue (continuous singular, discrete)
measure on the circle. An operator U is called mixing if

or(n) = (U'f, f) = 0
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for any f € #. We say that the spectrum of U has uniform multiplicity if either
oy, = oy, or oy, = 0 for all natural n. We say that the Lebesgue component in the
spectrum of U has countable multiplicity if A\ < oy, for every natural n or
equivalently if there exists a sequence {g,},cn in # such that the cyclic spaces
Z(g,) are pairwise orthogonal and o,, = A for every natural n.

For a skew product T, consider its Koopman operator

Ur, : LIX(T x G,A® p) — L*(T x G,A® p), Uz, f(x,8) = f(Tx, gp(x)).

Denote by G the set of all equivalence classes of unitary irreducible represen-
tations of the group G. For any unitary irreducible representation I : G — % (#'11)
by {H,]}l _i=1 we mean the matrix elements of II, where dif = dims#y;. Let us
decompose

2T xG) @@%

MeG i=

where

d7r
= {Znij(g)ﬁ(x);fj c LT, \),j=1,... ,dn}
j=1

dn

~LA(TN) @ ... oL (T, ).

Observe that ' is a closed Uy, -invariant subspace of L*(T x G) and

d; dy
Ur, (Z HU(g)ﬁx)) = ; ()T (") (x)) f(T").

Consider the unitary operator M : #1' — # given by

MH <Z Hlj fj‘ ) Z meHtj fj‘ )

Then
Uy MIf = ey f ()
for any f € H IH It follows that

J eZ'/rinde_MHf( ) <Un MH ,MHf> 27rma<Un f, f> J 627Tinxd(T*O_f)(x)
T i T

for any f € #}'. Hence oyl = T*oy.
Lemma 3.1. For every Il € G and i= 1,. = Iif the operator Ur, :

H, o H,; T has absolutely continuous spectrum, then it has Lebesgue spectrum of
umform multlplzczly
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Proof. Let #" = @°°, Z(f,) be a spectral decomposition. Then

A= (M)A = éZ«M}T)mf”)

is a spectral decomposition for any integer m. Therefore o7, = = oy, K A for
every natural n and integer m. Suppose that there exists a Borel set A C T such that
0, (A) =0 and A(A) >0. Then

afn<LéJZT'"A> =0 and A(LGJZT'"A> =1,

by the ergodicity of T. It follows that o, = A or oy, = 0 for every natural n. []
Lemma 3.2. If

2
S| e | <oc
nez 9T
Jorj=1,...,dn then Ur, has Lebesgue spectrum of uniform multiplicity on %lH

fori=1,... dn.
Proof. Fix 1 < i < dp. Note that

dn
n 1 n
(Ur, I, 1T ZJ J ie(8) (") (x), sz(g)>dgdx—%L II;(p" (x))dx.
1
Since
n 2
> (U Ty, Thy) [P < o,
neZ
we have oy, < Aforj=1,...,dn. From (3) we get oy, K A for any integer

m. Since {f € #; 0 < /\} is a closed linear subspace of L2('|T x G) and the set
{(MMY"TL;; j=1,...,dn,m € Z} generates the space #7, it follows that Ur, has
absolutely contmuous spectrum on %H By Lemma 3 1, Ur, has Lebesgue

spectrum of uniform multiplicity on %H ]

Corollary 3.3. For any 11 € G, if

S 1l <o,

neZ

then Ur, has Lebesgue spectrum of uniform multiplicity on @?21% IH
Similarly one can prove the following result.

Theorem 3.4. For any 11 € G, if

lim J (™ (x))dx = 0,
T

n—oo

then Ur, is mixing on @?21,7/?.
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4. Representations of SU(2)

In this section, some basic information about the theory of representations of the
group SU(2) are presented. By £, we mean the linear space of all homogeneous
polynomials of degree k € Ny in two variables u and v. Denote by II; the
representation of the group SU(2) in % given by

[Hk <[ o Z_ZDJ”} (u,v) = f(z1u — 220, 22u + Z1v).
—22 2

Of course, all IT; are unitary (under an appropriate inner product on &;) and the

family {IIy,I1;,TI,,...} is a complete family of continuous unitary irreducible

representations of SU(2). In the Lie algebra su(2), we choose the following basis:

1 0 0 1 0 0
S e R A ]
Let Vi be a k + 1-dimension linear space. For every natural k there exists a basis

v, - - - , U of V. such that the corresponding representation H,’f of su(2) in V; has
the following form:

I (e)v; = i(k — i + 1)v;_y,
H:(f)vi = Vi+1,
I (h)v; = (k — 2i)v;
for i =0,...,k Then
IAIF < I (A) ]| < K2]|A]| (4)

for any A € su(2).
For abbreviation, we will write (2k — 1)!! instead of 1-3-5-...-(2k — 3)-
(2k — 1) for any natural k.

Lemma 4.1.
det TT%,_ | (A) = ((2k — 1)!1)*(det A)
forany A € su(2) and k € N.
Proof. For every A € su(2) there exists B € SU(2) and d € R such that

id 0
0 —id} Then

id 0 id 0
H;k—1<A) = 1_I;<l<—1 (AdB |: 0 —id:|> = AdHZk—l(B>H;kk—1 <|: 0 —id:| ) .

It follows that
id 0
detIT*  (A) = det IT*
etlly, (A) € 2k1<|:0 —id])
= ((2k — )N)2d* = ((2k — 1)!1)*(det A)F. O

A:Adg[
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Lemma 4.2. For any nonzero A € su(2) the matrix I15,_,(A) is invertible.
Moreover, for every natural k there exists a real constant K >0 such that
* -1 —1
[Ty (A) || < Ki[|A]l
for every nonzero A € su(2).

Proof. The first claim of the lemma follows from Lemma 4.1. Set
C =113, ,(A). Then

€Tl < (k)™ 2k — )1jA*!
fori,j=1,...,2k It follows that
[l _ k)% 2k — DA 2% 2k — 1)

~1
= Al

B TN R T T P L (S

Hence
(2K 2k — 1)1
((2k — 1)I1)?

lcl < 2\ O
5. Ergodicity and Mixing of T,

Lemma 5.1. Suppose that {f,},n is a sequence in L*(T,C) such that
fg fu(y)dy — 0 for any x € T. Let g : T — C be a bounded measurable function.
Then

lim Lfn(y)g(T"y)dy ~0 and lim J £i()8()dy =0

n—oo n—oo 0
for any x € T.

Proof. By assumption, the sequence { f, },cy tends to zero in the weak topology
in L?(T,C), which implies immediately the second claim of the lemma. Since
{fa},en converges weakly to zero, for every integer m we have

lim J Jo(T7"y) exp 2mimy dy = lim J Ja(y) exp2mim(y + na)dy = 0.

n—oo T n—oo T

It follows that the sequence {f, o 7"}, converges weakly to zero. Therefore
Jim J Ja(0)g(T"y)dy = lim J Ja(T7"y)g(y)dy = 0. O
—00 )T —00 )T

This gives immediately the following conclusion.

Corollary 5.2. Suppose that {f,},cy is a sequence in L*(T,My(C)) (k is a
natural number) such that [ f,(y)dy — 0 for any x € T. Let g : T — My(C) be a
bounded measurable function. Then

lim L fo(»)g(T"y)dy =0 and  lim J fu(¥)g(y)dy =0

n—o00o n—oo 0

for any x € T.
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Theorem 5.3. Let ¢ : T — SU(2) be a C'-cocycle with nonzero degree. Then
the skew product Ty : T x T — T X T is ergodic and it is mixing on the
orthocomplement of the space of functions depending only on the first variable.

Proof. By Theorem 3.4, it suffices to show that

lim L (" (x))*dx =0

n—oo

for every nonzero integer k. Fix k € N. Denote by ¢ : T — su(2) the limit (in
L2(T,su(2))) of the sequence {%Dd")(gp("))*l}neN. Let p: T — SU(2) be a
measurable function such that

[786) 7?x)}:1,,()C)SD(JC)I,J(T)C)‘ and Adp(x)(@/)(x)):[lg _(3-51}’

where d is the degree of ¢ (see the proof of Theorem 2.4). Then

(y™)
()2 0
0 (,Y(n))—k+2 -
i (7))~ ]
= e (p) (") (p o T~ (5)
for any natural n and
Adry, (pon I (1(x)) =TI (Ady ) 0(x) )
(Lo Sl
p— Hk .
0 —id
kid
_ (k- 2)id 0 »
0 —k+2)id
i (k2 ia

Recall that for any differentiable function £ : T — SU(2) and for any representa-
tion II of SU(2) we have

D(TIE(x))(TE(x)) ™" = T (DE(x)&(x) ™).
Therefore

X

[ 1@ ) 0) I 1)y = | DT )

= % (T (™ (x)) — (™ (0)))
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tends to zero for any x € T. Since

1 W) () —

I (D (")) — Ty
in L?(T, M4, (C)), it follows that

j I (0L (0 (3))dy — 0

for any x € T. By Corollary 5.2,

L T (p ()T ()T () ()T (p (7))~ dy — 0.
On the other hand,

I (p ()L (2h(3) T (0" () i (p(T"y)) ™
ikd (") (y))* 0

0 ikd(y ()
by (5) and (6). Therefore

n—oo

lim J (V" (v)"dy =0
T
for any nonzero m € {—k,—k +2,...,k —2,k}, which completes the proof. []

6. Spectral Analysis of Cocycles with Nonzero Degree

In this section, it is shown that for every cocycle ¢ : T — SU(2) if d(p) # 0
and if it satisfies some additional assumptions, then the Lebesgue component in the
spectrum of T, has countable multiplicity.

Now we introduce a notation that is necessary to prove the main theory. Let
f,g: T — Mi(C) be functions of bounded variation (i.e. fij,g;: I — C have
bounded variation for i, j = 1,..., k) and let one of them be continuous. We will
use the symbol [ fdg to denote the k x k-matrix given by

() 5]

y =1

for i, j=1,...,d. It is clear that if g is absolutely continuous, then
| rag=] reometoar 7)

Moreover, applying integration by parts, we have

o= r)’
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Theorem 6.1. Ler o : T — SU(2) be a C?-cocycle with d(p) # 0. Suppose
that  the sequence {anp ) (M)~ } en IS uniformly  convergent and
{D(%D(p(”)(ap") Vhen is bounded in L'(T,su(2)). Then the Lebesgue
component in the spectrum of T, has countable multiplicity. Moreover, the
Lebesgue component in the spectrum of T, ) has countable multiplicity, too.

Proof. First, observe that it suffices to show that for every natural k there exists
a real constant Cj; > 0 such that

j Ty (o) (x) ) 9)
)

for large enough natural n. Indeed, let p : T — SU(2) be a measurable function
such that

<

Cy
n

pppm) ! =0t = |75 .

Consider the unitary operator V : 9{?1112“ — Jfllhk*' given by

diy_ Ay,
(Z Hll ﬁ > Z Hll l ) l)ﬁ(x)

Then
iy
v'UT,v< > Hli(g)fl(x)>
i=1
iy
= Y (@) p ()T ()T () ™) (T5)
i,j,l,m=1
ity
= Z IT1;(g)ILi(8(x)) fi( Tx).
i=1
From 9), Uz, : A That-1 — A Tt has Lebesgue spectrum of uniform multiplicity,

by Corollary 3 3. Hence % 1UT V has Lebesgue spectrum of uniform multiplicity
and it is the product of the operators U; : L*(T,C) — L*(T,C) given by U, f(x) =
()P ¥ f(Tx) for j=1,...,2k Therefore U; has absolutely continuous
spectrum for j =1,...,2k. By Lemma 3.1, U; has Lebesgue spectrum for all
j=1,...,2k and k € N. It follows that the Lebesgue component in the spectrum
of T, has countable multiplicity.

By assumption,

1
2D | = (o)
n

uniformly. Therefore

Do) | > a2 (10)
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for large enough natural n. For all A, B € M;(C) we have ||AB|| < vk||A| ||B].
Applying these facts, (7) and (8) we get

L My (6 ()

=), e (") (0) (DIt (9" (x))) ™ o1 () (1)) H

= ||| (M1 (0" () (5 (D™ () (0" (x)) ) )"

T

= [ [ ) s 0 )

- ﬂné‘k_l<Dso<"><x><so<")<x>>*‘>>”dmk_1<so<"><x>>

(I3 DD (6) (" ()™ ) (I3 (D™ (6) (" () 1) ™) e

j (T (D™ () (o () ™)) 2
1T, DD (x) (o (1)) [l

By Lemma 4.2, we have

1T, (D™ () ("™ (x)) ™) ™| < Kill D™ (x) (0" ()~ 7
From this, (4) and (10) we obtain

} M1 (0 ()
)

<@j L D () (0 () )
n 7lln

1 /8Kk2\?|| /1 .
< - DIl =Do™ (o™
2 (ar) o Goee
for large enough natural n. By assumption, there exists a real constant M > 0 such
that ||D(2 D™ (M)~ "||1 < M. Then

-2

‘ 1

p(; 06" ) ) M ax

n

L

C
[
T n
for large enough natural n, where C, = (SKka)zM . N

d(p)
In this section we also present a class of cocycles satisfying the assumptions of
Theorem 6.1. For r = 1,2 let L’ (T,R) = {f € L'(T,R); f > 0}. We will need
the following lemma.

Lemma 6.2. Let { f, : T — C%;n € N} be a sequence of absolutely continuous
functions. Assume that the sequence { f,},.x converges in L' (T,C?) to a function
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f and it is bounded for the sup norm. Suppose that there is a sequence {hy},
convergent in L% (T,R) and a sequence {k,} bounded in L2 (T,R) such
that

neN

IDf ()| < hn(x)kyn(x) for M-a.e. x €T
and for any natural n. Then {f,},.n converges to f uniformly.

Proof. Denote by h € L2 (T, R) the limit of the sequence {/,},cy. Let M >0
be a real number such that ||k,|[,» <M for all natural n. First, observe that
the sequence {f,},.n is equicontinuous. Fix &>0. Take ny € N such that
|hy, — hl|;» <e/2M for any n > ny. Then for all x,y € T and n > ny we have

1) — )] = Jnyn(t)dt < j 10, (1) e

X

'y 'y
< | @k 0dr < ol | B0

X X

<M< Jyhz(t)dt—l— th—hHLz) SM(”Jyhz(t)dt—Fﬁ).

Choose 6 >0 such that |[x—y| <& implies [ A*(t)dt< (¢/2M)*. Hence if
|x — y| < 6y, then || f,,(x) — fn(¥)|| < & for any n = ny. Next choose 0 < § < 6; such
that |x —y| < ¢ implies ||f,(x) —f,(y)|| <e for any n < no. It follows that if
|x —y| <6, then || f(x) — fu(y)|| <& for every natural n.

By the Arzela-Ascoli theorem, for any subsequence of {f,},cy there exists a
subsequence convergent to f uniformly. Consequently, the sequence { f, },.y con-
verges to f uniformly. ]

This gives the following corollary.

Corollary 6.3. Let {f, : T — C%n e N} be a sequence of absolutely con-
tinuous functions. Assume that the sequence {f,},.x converges in L'(T,C?) to a
function f and it is bounded in the sup norm. Suppose that there is a sequence
{hn},cn convergent in L2 (T, R), a sequence {ky},cn bounded in L2 (T, R) and a
sequence {l,},cn convergent in L' (T, R) such that

|Dfn(x)]| < Li(x) + hu(x)kn(x) for A-a.e. x €T
and for any natural n. Then {f,},.n converges to f uniformly.

We will denote by BV*(T,SU(2)) the set of all functions f: T — SU(2) of
bounded variation such that Df(f)" ' € L2(T, su(2)).

Lemma 6.4. Let o : T — SU(2) be a C*-cocycle. Suppose that ¢ is coho-
mologous to a diagonal cocycle with a transfer function in BV?*(T,SU(2)).
Then the sequence {%Dcp(”)(cp(”))fl)}neN is uniformly convergent and
(DEDE™ (M)}, is bounded in L'(T, su(2)).

Proof. By Corollary 6.3, it suffices to show that there exist a sequence {,},,cx
convergent in L2 (T, R), a sequence {k, },.y bounded in L2 (T, R) and a sequence
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{,} e convergent in L! (T, R) such that

< L (x) + hy(x)k, (x) for A-a.e. x € T.

(Lo ey )|

By assumption, there exist §&,p € BV?(T,SU(2)) such that ¢(x)=
p(x)7'6(x)p(Tx), where § is a diagonal cocycle. Then

De(x)(x) " = —p(x)"'Dp(x) + p(x) "' Dé(x)8(x) 'p(x)
+ @(x)p(Tx) ' Dp(Tx)p(x) '
for MA-a.e. x € T. Set
B(x) = Do(x)p(x) ", p(x) = p(x) 'Dp(x) and 6(x) = p(x) "' DE(x)6(x) " 'p(x).

Then $(x) = —p(x) + Up(x) 4 6(x), where p,6 € L*(T,su(2)). We adopt the
convention that Zj_:lo = 0. Since

1 1 n—1
1 pmipmy-1 1 B3 o Th( 0!
— D" (o) n;soch(@),

1 n—1 k-1
= (Ad) (@ 0 T))Adw (@ 0 T*) — Adyw (@ o TH)Ad (¢ o TY))
k=0 j=0
1n—1
+ - Adcp(k) (D(p oT )
=0
1n71 k—1 1 n—1
=N SR U+ Y UKDg)
k=0 j=0 =0
However,
n—1 k—1 n—1 k—1 ) ) .
DU, U =Y Y U p - Ulp + U6, UM
k=0 j=0 k=0 j=0
n—1 n1 k=1 3
=Y U —p UG+ DD (U6, U p— Up+ U
k=0 =0 j=0
n—1 n—1 k—1
= [Up—p, UGl + [U76, U*§]
k=0 =0 j=0
n—2 )
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Since
U/8(x) = Ad o) () (rmy - (DO(T"x )6(T"x) ")
= Ad, 150 (DS(T"x)8(T"x) ")
— Adpm,l( 5(T”x)(5(T"x)_1),

we have [U/6, U*6] = 0 for any integers j, k. Observe that ||[A, B]|| < 2||A]| ||B|| for
any A, B € su(2). It follows that

oo

n

<= (D@ o T+ 1o T @ o T+ [1All 1@ o |
k=0

\S)

. ~ o2l
+ 6o T | o T )+ |poT ||;Z||50T"II~
k=0
Set
2n—1 B
=N |lfo 1Y

Ly

ko =1poT"

n—

==Y (ID@oT | + (o T @ T + |1l |3 o |
k=0

+ 6o THI | B o T

[\

S

By the Birkhoff ergodic theorem, the sequence {h,},. converges in L? (T, R)
and the sequence {l,},cn converges in L (T, R). This completes the proof. []

Theorem 6.1 and Lemma 6.4 lead to the following conclusion.

Corollary 6.5. Let ¢ : T — SU(2) be a C*-cocycle with d(p) # 0. Suppose
that ¢ is cohomologous to a diagonal cocycle with a transfer function in
BV*(T,SU(2)). Then the Lebesgue component in the spectrum of T, has
countable multiplicity. Moreover, the Lebesgue component in the spectrum of T,
has countable multiplicity, too.

The following result will be useful in the next section of the paper.

Proposition 6.6. For every C*-cocycle ¢ : T — SU(2), the sequence

1 o
— DD ("))

converges to zero in L'(T,su(2)).

The following lemmas are some simple generalizations of some classical
results. Their proofs are left to the reader.
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Lemma 6.7. Let {a, },. be an increasing sequence of natural numbers and let
{f,} e be a sequence in the Banach space L*(T,M(C)). Then

fn+1 fn ~gin Lz(—ﬂ—,Mz(C)) — fi —gin LZ(—UUMZ(C)).
apt1 — An

Lemma 6.8. Ler {g};n € N,0 < k<n} be a triangular matrix of elements
from L*(T,M,(C)) such that ||gk|| = O0(1/n) and

go+gi+-+g_ —g in LT,M(C)).
Then f, — f in L*(T,M,(C)) implies

n—1 n—1
Y gifi—ef and > figi—fg in L'(T,My(C)).
k=0 k=0

Proof of Proposition 6.6. First, recall that

._.
»
._.

1 o 1& 1 & N
L Do (o)) = L3 S wis, v + = 3 UAD),
n n- ¢ . n- =

Il
o
Iy
o

where @ = Dy(¢) " and

1 n—1
- Y Ue—v in L(T,su(2)).
k=0

Since nlz =0 Uk (D@) uniformly converges to zero, it suffices to show that
n—1 k— n—1 k—1
1
o j k~ _ - k JH — — 2
nlgg@ - kEO JEO UpU'p = ’}Lnolc p kgo JEO UpU’¢ ¢¢ in L°(T,M,(C)).

Set f, = S1=4(n — k)U*@ and a, = n®. Then
Jot1 = Ja Zko(”+1_ U =3 ( )USDiEk o U9 lw
A1 — ay (n+1)2—n2 i+l 2
in L?(T,M,(C)). Applying Lemma 6.7, we get

LN -0 -ty i 2T, M(0).
n® 2
Therefore
1 &L 1 =L 1 L
P LM E=LS VS - U - =50

in L*(T,M>(C)). Applying Lemma 6.8 with g} = % U*@ and f; = Zk L Uip, we
conclude that
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and
n—1 1 n—1 k—1 1
n o__ Jayrk ~
8t = — U'QOUSO—’EW/J
=0 Ly, Sy
in L?(T,M;(C)), which completes the proof. O

7. Possible Values of Degree

One may ask what we know about the set of possible values of degree. For
G = T the degree of each smooth cocycle is an integer number. Probably, in the
case of cocycles with values in SU(2) the set of possible values of degree is more
complicated. However, in this section, we show that if « is the golden ratio, then
the degree of each smooth cocycle belongs to 27Ny. The idea of renormalization,
which is used to prove this result is due to Rychlik [8].

Let a be the golden ratio (i.e. the positive root of the equation o + o = 1). It
will be advantageous for our notation to consider the interval [—a?, ) to be the

model of the circle. Then the map T : [-a?, ) — [—a?,a) given by

2

_[x+a forxe[-a?0)
) {x—a for x € [0, )

is the rotation by a. Let X = [—a?, a?). Then the first return time to X, which we
call 7, satisfies the following formula

(x) = 1 forx e [0,0°)
|2 forxe€[-a?0)

and the first return map Ty : X — X is equal to T up to a linear scaling. Indeed, if
M : T — X is the map given by M(x) = —ax, then TyoM = Mo T.

By W! we mean the space of all cocycles ¢ : T — SU(2) such that the
functions ¢ : [—a?,0) — SU(2),¢ : [0,a) — SU(2) are both of class C' and

-1 -1

]ir(1)1 Dy (x)p(x) and  lim Dp(x)p(x)

exist. The topology of W! is induced from C'((—a?,0) U (0,«)). Consider the
renormalization operator ® : W' — W! defined by

Dp(x) = M) (Mx).
Then

(q;m)(M"x) for x¢€ [—042 0)
p(x) =3 ¢ 7
o(x) {Qp(qHz)(M"x) for x€[0,a)

for any natural n, where {g,},y is the Fibonacci sequence. By W{ we mean the
set of all cocycles ¢ € W' such that ¢ is continuous at 0. The set W, is a closed
subset of W' and

d(Wy) C W, (11)
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(see [8]). It is easy to check that ¢ +— ||Dp(p ) Ml is a Lyapunov function for the
renormalization map ®, i.e. [|D(®p)(®p) ||, < [[De(p) '], for any ¢ € W'
The following result is due to Rychlik [8].

Proposition 7.1. If | D(®*0) (D p) ||, = |Dp ()" ||1 for all natural k, then
Dp(x)(p(x)) ™" = o Ad, [Dp(Tx) ((Tx)) ']
for every x € [—a?,0).
Lemma 7.2. Let ¢ : T — SU(2) be a C*-cocycle. Assume that

%Dgo(”)(O)(go(”)(O))_l — H € su(2)

and there is an increasing sequence {ny} ..y of even numbers such that

ak
lim o/ J |D(Dg@<q”k“)(x) (Sa(anﬂ’) (x))il) |dx =0

k—o00 0
fori=1,2. Then |H|| € 2mNy.
Proof. First, note that

" . o1 anD@(an)(Mnx)(So(qnﬂ)(Mnx))—l for x € [~a2,0)
D) (@"e(x)) = {a"Dgo(q"“)(M”x)(90<‘7"+2)(M"x))1 for x € [0, &)

for any even n. Since

1 e ] _ ey
p +.D(p(qn+,)(M x)((p(qnﬂ)(M X)) 1 _ p +'D(p(qﬁ,)(o)((p(%,)(o)) 1

n

1 X .
< J |D(D¢(Qn+l)(g0 Gnri) ) )|d)\
qn+i

n

1 Ja .
< Oén D D(,O(qlzﬂ) 90<qn+1 d)\
o[ Ip@ge gty )

for all even n,i = 1, 2 and
lim o1 = 1/(1 +a2), lim g, = 1/(a + o?),

it follows that

_ 1 _
Jim DO p(x) (" (x)) " = lim 0" 1 1Dso(""k*‘)(0)(s0(""k“)(0)) '
—00 0 e+
142
uniformly on [—a?,0) and
fim DR o) (8" p(x)) " = Him o gs2 ——Dipl 2 (0) (92 (0))
ng

- 1
Ca+add
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uniformly on [0, ). Therefore we can assume that there exists v € W' such that
d%p — v and D@"Hp((I)""cp)*] — Dyv!
uniformly. Then

Du(x)(v(x)) "' = {f;A ig;;é [[(;70;2)’70)

where A = 1/(a + o®)H € su(2). Therefore

o(x) = e B for x € [-a?,0)
| eAC forx€[0,a),

where B =v_(0) and C = v,(0). Since the set W} c W! is closed and ®-
invariant, v € W}. It follows that

Ce B = Be™C. (12)

Since v is a limit point of the sequence {®"¢},  and ¢+ ||Dy(p ) ”{‘] is a
Lyapunov function for the renormalization map ®, we have ||D®*v(®*v) " ||, =
|Dvv!|,: for any natural k. By Proposition 7.1,

xlir(r){ Du(x)(v(x)) "' = aAd, () lim Du(x)(v(x)) "

Hence
aA = aAdB (A)
and finally AB = BA. Therefore
_ J e c for x € [-a?,0)
Pu(x) = {eXAMABC for x € [0, ).
By Proposition 7.1,

lim DPu(x)(Pu(x)) ™" = aAdg, (o) lim DPv(x)(Pv(x)) ™"

X—o~
Hence
—CKA = OéAdc(—A)

and finally AC = CA. It follows that B and C commute, by (12). From (12), we
obtain e(®t2)4 = 1d. Therefore ||H|| = ||(a 4 o?)A| € 2aNj. O

Theorem 7.3. Suppose that o is the golden ratio. Then for every C*-cocycle
¢: T — SU(2), we have d(p) € 2mN.

Proof. Fix n € N such that 2a2”[1/2a2”] 4/5. Set I; = [2(] —1)a?, 2ja?
forje E=1{1,...,[1/2a*]} and ¢, = 2 Jr ID(Dy (@) (p@))~")|d\. By Proposi-
tion 6.6, ¢, tends to zero. Fori =1, 2 deﬁne

1
Ei = {.] e E 72 o J |D<Dcp(42n+i) (4'0(‘17n+1 ) )|d)\ 1052n+i}-
Don+i
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Then
1 ‘
Eonti = —— J | D(D'92+) (o2 ) 1 | g\
2n+i JT
1
> 3 | Do) i
Don+ti jerE;
> 2007"e2,4([1/20%"] — #E)
Hence

#E; > [1/207"] (1 - 1—10 %) %[1 /207"

for i = 1, 2. Therefore

#(E\NEy) > #E| + #E) — #E > %[1/202"].
Define
Go= |J [2—2)e™ (2 —1)a™].

JEEINE
Observe that y € G, implies
1 Yo B
R J | (D) (@) ™|\ < 102,44
2n+i

fori=1, 2 and

y

3
MNG,) = ®"#(E\ NEy) > g2052"[1/2&"] > 1o
Set G' = Nyen Ug s n G Then M(G') = 3/10. Since 1 D™ (o)™ — 4 almost
everywhere, we see that the set

G { € G2 Dyl () () — w(x)}

has positive measure.

For every y € T denote by ¢, : T — SU(2) the C?-cocycle ¢, (x) = p(x +Y).
Suppose that y € G. Then 1Dgp( )(0)(g0§")( )" = 4(y) and there exists an
increasing sequence {ny } . of natural numbers such that y € G, for any natural
k. Hence

(Man

aznk JO |D(D<,0§q2"k+i)(g0(q2""+' ) )|d>\ < ZO(a q2n;\+z)252nk+l

for i = 1, 2. Since the sequence {"qy},cn converges for i = 1, 2 and €, tends to
zero, letting k — oo we have

(12”/\'
lim aZ"kJ ID(D ) (L) |dx = 0

k—00 0
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fori = 1,2. By Lemma 7.2, ||¢(y)|| € 27N, for every y € G. Since d(p) = ||¢(y)]|
for a.e. y € T, we conclude that d(p) € 27N. O

8. The 2-Dimensional Case

This section will deal with properties of smooth cocycles over ergodic rotations
on the 2-dimensional torus with values in SU(2). By T? we will mean the group
R? / 7*. We will identify functions on T2 with functions on R? periodic in each co-
ordinate with period 1. Suppose that T(x;,x;) = (x| + «,x, + 3) is an ergodic
rotation on T2. Let ¢ : T? — SU (2) be a C'-cocycle over the rotation T. Analysis
similar to that in Section 2 shows that there exists ; € L>(T?,su(2)), i = 1, 2
such that

1 0

M (oMY o in T2(T2
S s i (T su(2)

Definition 2. The pair

|| is a A ® A-a.e. constant function and @(j)d,i(Tx)@(x)—l — (3
9 0
(I, o]l = tim ~ (

for \@ dae.xeT xTfori=1,2.
8)61 Ll”a_)@ Ll)

will be called the degree of the cocycle ¢ : T> — SU(2) and denoted by d(¢).

(n) (¢(n) )*1 (p(n) ((p<n))*1

Similarly, one can prove the following

Theorem 8.1. If d() # 0, then ¢ is cohomologous to a diagonal cocycle
T>>x— {W(X) L] € SU(2), where y: T?> — T is measurable. Moreover,

0 1
the skew product T, : T2 x T — T2 x T is ergodic and it is mixing on the ortho-
complement of the space of functions depending only on the first two variables.

Analysis similar to that in the proof of Theorem 6.1 gives

Theorem 8.2. Let ap Tz —> SU(2) be a C2-cocycle with d(p) # 0. Suppose
that the sequence L —Xga ) ()~ } ey IS uniformly convergent and
{ax 12 P 0 ()~ )} cn 15 bounded in L*(T? su(2)) for i =1, 2. Then the
Lebesgue component in the spectrum of T, has countable multiplicity.

By BV#(T?,SU(2)) we mean the set of all measurable functions f: T —
SU(2) such that

e the functions f(x,-), f(-,x) : T — SU(2) are of bounded variation for any
xeT;

e the functions 3/ A 3 f(f )~': T2 — su(2) are Riemann integrable for
i=1,2.
Then we immediately get the following

Lemma 8.3. Let ¢:T? — SU(2) be a C*-cocycle. Suppose that o is
cohomologous to a diagonal cocycle with a transfer function in BVZ(T? SU(2)).
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Then the sequence %%gp(”)(go("))*l}ne,\J is uniformly convergent and

{d% @ %(p(”)(np(”))_l)}ne,\, is uniformly bounded for i = 1, 2.

It is easy to check that if ¢ is cohomologous to a diagonal cocycle via a C!
transfer function, then d(p) € 2m(Ny x Ny). However, in the next section we
show that for every ergodic rotation T(x1,x;) = (x; + a, x, + [3) there exists a

smooth cocycle whose degree is equal to 27 (|5], |]).

9. Cocycles Over Flows

Let w be an irrational number. By S : R x T? — T2 we mean the ergodic flow
defined by

Si(x1,x2) = (X1 + tw,xp +1). (13)
Let ¢ : R x T> — SU(2) be a smooth cocycle over S, i.e.
Pris(X) = @1(X)ps(Si%)
for all #,s € R,% € T? or equivalently, ¢ is the fundamental matrix solution for a
linear differential system

Ey(t) = y(1)A(S:x),
where A : T? — su(2), i.e. o satisfies

{%%@zwﬁmma
wo(x) = Id.
Then

P N 0 o
aﬁm@%d@'=ayMMﬂW+A%®ayﬁw%@ﬂl

Hence

aixi Pr+ts (‘PtJrs) !

‘ 0

B . B .
< a. a. ¥Fs s
y Haxi o) L1+H8xi ws(eps)

Ll
It follows that the limit

0 _
%Sﬁz(%) :

im—
=00 [t| L
exists fori =1, 2.
Definition 3. The pair
1 0 . 0 _1 >
lim — | ||— s l=—
1—00 |t| <’ (9 1 @t(@t) Ll ax2 gpt((pt) Ll

will be called the degree of the cocycle o : R x T?> — SU(2) and denoted by d(y).

For a given cocycle ¢ : R x T?> — SU(2) over the flow S, by ¢ : T — SU(2)
we will mean the cocycle over the rotation Tx = x + w defined by ¢(x) = ;(x,0).
Then ¢ (x) = ¢,(x,0).

Lemma 9.1. d(¢) = (1, |w])d(p).
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Proof. First, observe that
P, (X1 — 22w, 0)n (X1, %2) = Py, (X1 — X2w, 0)
= pn(x1 — x2w, 0)py, (x1 — Xow + nw, 0).
Hence
n(x1,%2) = @x, (X1 — 12w, 0) ' 2" () — X2w)epy, (X1 — Xow + nw, 0)
for all x;,x, € R and n € N. Fix (x,x2) € [0,1] x [0, 1]. Then

0

a_xlSDn(xla)Q)‘Pn(xl,xz)il
1 0
=~y (x1 — 1w, 0) aTcl@xz(xl — xw,0)
+Ad, )! (DP™ (x1 — x2w)p™ (2 — xow) ™)

vy (X1 —%2w,0
+ Ad

Pu (X1 =10,0) 1 0 (31 —x0)

0 _
<8x ©r, (X1 — Xow + nw, 0)py, (X1 — Xow + nw, 0) l) .
1

It follows that

0 1 7
O oM llpe® @y
o™ | ~IDe e,
_ |2 -1 ipe 5(n) -1
= a—(pn((pn) — HDQD (xl—xzw)cp (xl—xzw) Hd)ﬂd)(z
X1 o JoJo
1l
<2J J —(pr(xl—xzw,O)gon(xl—xzw,O)fl dxdx;.
0oJo 8XI
Therefore
1| 0 1 1 _
lim ~ | == ,(p,)""|| = lim = [DE™ ("), = d(@).
Mmooy #n(n) ; Jim —{IDS™ ()l = d(@)
Similarly,
0 _
%‘Pn(xl,xZ)‘Pn(xlaXZ) :

10
=~ (01 = 120,0)”' 20 (11 = 1,0)

. 0
+ wey, (X1 — xw, 0) ! g@n (x1 — xw,0)
1

— WA, (1 u0)! (D™ (x1 — xpw)p™ (x; — xzw)_l)

x2

303
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+ Asz (1 —x20,0) ' 5 (3 —xpw)

0 _
(E ©x, (X1 — Xow + nw, 0)¢y, (X1 — xw + nw, 0) 1)

— wAd

Pu, (X1 =2w,0) ™' G0 (31 —x2)

0 _
<8x ©Ox, (X1 — Xow + 1w, 0) ¢y, (X1 — Xow + nw, 0) 1) )
1

It follows that

0 -1
‘a_xz@n(@n)

1 pl
]
0J0

—LllDE (),
L

acp,(z(xl — xw, 0)py, (x1 — xow, 0)71 dx;dx,

1 ¢l
+ 2|w|J J — Oy, (X1 — Xw, 0) ¢y, (11 —xzw,O)fl dxidx;.
0 Jol[Ox1
Therefore
tim {1 guon) ™| = [l tim (Do) (0|, = feld(@),
n—oon ||Oxa L n—oon L
and the proof is complete. |

Lemma 9.2. For any C?-cocycle 1 : T — SU(2) over the rotation T there
exists a C?-cocycle ¢ : R x T? — SU(2) over the flow S such that ¢ = 1.

Proof. Since the fundamental group of SU(2) is trivial, we can choose a C>-
homotopy ¢ : [0,1] x T — SU(2) such that

f1d for t € 0,1/4]
P(t,x) = {w(x) for t € [3/4,1].

By ¢ : R x T — SU(2) we mean the C2-function determined by
Y+ 1,x) = P (x)a(t, x + nw)
for any ¢t € [0, 1] and n € Z. Then it is easy to check that
Y(n+1,x) = P (x)a(t, x + nw) (14)
for any € R and n € Z. Let ¢ : R x R*> — SU(2) be defined by
or(x1,x2) = (X2, %1 — xzw)_lw(t + X2, X1 — Xw).

It is easy to see that ¢ (x1 + 1,x2) = ¢ (x1,x2) and p,(x1,x2 + 1) = @(x1,x2), by
(14). Then ¢ : R x T?> — SU(2) is a C>-function and

Gras(X) = P(xa, X1 — x2w) Yt + 5 + X2, X1 — Xow)
= (X2, X1 — xow) Yt + X2, X1 — Xow) (X2 + 1, () + w) — (X2 + 1w)
X P(s+ (x2 + 1), (x1 + tw) — (x2 + H)w)
= @i (X)ps(S1x).

1
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Moreover,

(tb(x) = (,01(X, 0) = ¢(0ax)7]¢(17x) = w(x)7
which completes the proof. ]
Suppose that «, 3, 1 are independent over Q. Set w = «/f.

Theorem 9.3. For every ergodic rotation T(x1,x;) = (x1 + a,x2 + 3) and for
every natural k there exists a C>-cocycle over T whose degree is equal to

27k (|81, la).

Proof. Let S denote the ergodic flow given by (13). Suppose that ¢ : R x T? —
SU(2) is a C*-cocycle over S such that d(p) = 2mk. Consider the cocycle
@5 : T — SU(2) over the rotation T = Sj. Then gpgn) = g, and

1

lim —
n—oon

9wy, 1|0 1
axl SO ((pﬂ ) L |ﬂ| lm |ﬁ|l’l Haxi ()0371 (@ﬂn) L

It follows that
d(pp) = |Bld(w) = |8I(1, lw)d(@) = (18], |a)d(2),
which proves the theorem. O

Suppose that 3 € (0,1). Let ¢ : R x T> — SU(2) be a C?-cocycle over S such
that ¢ is a diagonal C?-cocycle with nonzero degree. Set T = Sj and 1) = @p. Let
p: T? — SU(2) be a BV”-function such that

P(x1,%2) = @, (31 — 32w, 0) "
for (x1,x) € R x [0,1). Then

Ouy (X1 — X2w,0) " for x, €[0,1—7)
p(Tx,x)) = {cpx2+gl(x1 (1w, 0 for mel-B1).
Moreover,
Pr+8(X1 — 32w, 0) = oy, (x1 — 12w, 0)p5(x1, x2)
and

Prp-1(x1 — (2 = Dw,0) = @_1(x1 — (x2 = 1w, 0) ¢y, 15(x1 — Xow, 0)
= (pl(xl — XoW, O)il(pxz-‘rﬂ(xl — Xw, 0)

It follows that ¢ (x) = p(x)8(x)p(Tx)~', where & : T — SU(2) is the diagonal
BV”-cocycle given by

51, x2) = {Id for x, €[0,1-0)

P(x; —xw) for x €[l -0, 1).

Lemma 94. Let ¢:T> — T be a cocycle over the rotation T(x;,x;) =
(x1 + o, x2 + (3). Suppose that ¢|T x [0,7),¢|T x [y,1) are C'-functions, where
~v is irrational. If d(¢(-,0)) # d(¢(-,7)), then ¢ is not a coboundary.
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Proof. Set I =[0,7),I, =[v,1),a1 =d(¢(-,0)) and a, = d(4(-,7)). Then
there exists a function ¢ : T? — R such that ¢|T x I is of class C'forj=1,2and

@(x1,x2) = exp 2mi(p(x1,x2) + ajx;) for any (x1,x2) € T x ;.
Clearly, it suffices to show that

J gb(”) (x1,x2)dxydx; — 0.
-ﬂ'2
Next note that

" (x1,x2) = exp 27i(¢" (x1,x2) + (@18} (x2) + @S4(x2))x1 + €alx2)),

where §7(x) = Y{Zg 1, (x + kB) and ¢, (x) = S2p=g ka(aily, + axly,)(x + kB).
Since the rotation by (3 is uniquely ergodic,

1

;(alS’l’ + azSg) — ayy + az(l — ’7)

uniformly. Since a; # a and +y is irrational, there exists S >0 and ny € N such
that |a, S} (x) + a,85(x)| = nS for all x € T and n > ny. Applying integration by
parts, we get

J , ¢<”) (xl,xg)dxldxg
T

1) ¢l B
< J eZm'(zD(”)(xl,xz)+(a|S’]'(xz)+a2S;(xz))x])dxl dx,
0(Jo
! 1 Jl 2mig™ (x; xz)d 27i(a) S} (x2)+a285(x2))x1 d
= e “2)de x
0 2ma18}(x2) + axS3(x2)| [ Jo ?
1 1
1 (a1 (x2) +asS3 2) e 127 (x132)
— e milay 1 X2 ay > X2 dee Tl X1,X2 dx
0 2|18} (x2) + @283 (x2))| J ’
1 1
1 i 7(n) n n a ~
< | = mi( S (x1 ,%2)+ (a1 7 (x2)+a2 S (x2) )x1) (n) dxi |d
Jons Joe 8x1¢ (lexz) X1 |axy
1 0 -~
< —| |z—o" dxydx;.
nSJTz oy (-xlaxZ) X1axp

: a7 172
Since 5-¢ € L'(T7,C),
1 0 - 0 -
—— — dxidx; =0
n O, P — Lz oy B(x1, x2)dx1dx,
in L! ('[Fz, C), by the Birkhoff ergodic theorem, and the proof is complete. O
This leads to the following conclusion.

Corollary 9.5. For every ergodic rotation T on T? there exists a C*-cocycle
1 with nonzero degree such that the Lebesgue component in the spectrum of
T, has countable multiplicity and 1) is not cohomologous to any diagonal C'-
cocycle.
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Proof. Let ¢ : T — T be a C>-function with nonzero topological degree. Let

¢ : R x T? — SU(2) be a C2-cocycle over S such that ¢ = {(g ((;;,1 ] . Define
Y = g. Then d(vp) =2n(|f],|c])|d(@)| # 0. Moreover, ¢ and the diagonal
cocycle 6 : T> — SU(2) given by

8(x1, %) = {Id for x, € [0,1 — 3)

o(x1 —xw) forx, € [1—0,1)
are cohomologous with a transfer function in BV# (T2, SU(2)). Applying Theorem
8.2 and Lemma 8.3, we get the first part of our claim.
Next suppose that 1/ is cohomologous to a diagonal C'-cocycle. Then it is easy
to see that the cocycle 77 : T> — T given by

(1, xs) = {Id for x, € [0, 1 — )

@(x1 —xw) forx, € [1 —(,1).
is cohomologous to a C'-cocycle g : T> — T. Applying Lemma 9.4 for ¢ = ng~!
and vy =1—( we find that ng~! is not a coboundary, which completes the
proof. ]

References

[1] Cornfeld IP, Fomin SW, Sinai JG (1982) Ergodic Theory. Berlin: Springer

[2] Furstenberg H (1961) Strict ergodicity and transformations on the torus. Amer J Math 83: 573—
601

[3] Gabriel P, Lemanczyk M, Liardet P (1991) Esemble d’invariants pour les produits croisés de
Anzai. Mém Soc Math France 47

[4] Helson H (1986) Cocycles on the circle. J Operator Th 16: 189—-199

[5] Iwanik A, Lemaniczyk M, Rudolph D (1993) Absolutely continuous cocycles over irrational
rotations. Israel J Math 83: 73-95

[6] Kuipers L, Niederreiter H (1974) Uniform Distribution of Sequences. New York: Wiley

[7] Parry W (1981) Topics in Ergodic Theory. Cambridge: Univ Press

[8] Rychlik M (1992) Renormalization of cocycles and linear ODE with almost-periodic coefficients.
Invent Math 110: 173-206

Author’s address: Faculty of Mathematics and Computer Science, Nicholas Copernicus University,
ul. Chopina 12/18, 87-100 Torun, Poland, e-mail: fraczek @mat.uni.torun.pl



