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Abstract We consider volume-preserving flows (Φ f
t )t∈R on S × R, where S is a

compact connected surface of genus g ≥ 2 and (Φ f
t )t∈R has the form Φ

f
t (x, y) =

(φt x, y + ∫ t
0 f (φs x) ds) where (φt )t∈R is a locally Hamiltonian flow of hyperbolic

periodic type on S and f is a smooth real valued function on S. We investigate ergodic
properties of these infinite measure-preserving flows and prove that if f belongs to
a space of finite codimension in C 2+ε(S), then the following dynamical dichotomy
holds: if there is a fixed point of (φt )t∈R on which f does not vanish, then (Φ f

t )t∈R

is ergodic, otherwise, if f vanishes on all fixed points, it is reducible, i.e. isomorphic
to the trivial extension (Φ0

t )t∈R. The proof of this result exploits the reduction of

(Φ
f

t )t∈R to a skew product automorphism over an interval exchange transformation
of periodic type. If there is a fixed point of (φt )t∈R on which f does not vanish,
the reduction yields cocycles with symmetric logarithmic singularities, for which we
prove ergodicity.
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K. Frączek (B)
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
ul. Chopina 12/18, 87-100 Toruń, Poland
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1 Introduction

In this paper we investigate ergodic properties for a class of infinite measure preserving
extensions of area-preserving flows on compact surfaces of higher genus. Let (S, ω)
be a compact connected oriented symplectic smooth surface of genus g ≥ 2 and con-
sider a symplectic flow (φt )t∈R on S given by the vector field X . Let f : S → R

be a C 2+ε-function. Following [8] we will consider a system of coupled differential
equations on S × R of the form

{
dx
dt = X (x),
dy
dt = f (x),

for (x, y) ∈ S ×R. The flow given by these equations is a skew-product extension of
(φt )t∈R which we will denote by (Φ f

t )t∈R.
We consider locally Hamiltonian flows (φt )t∈R, which are a natural class of sym-

plectic flows (in dimension 2 locally Hamiltonian and symplectic are both equivalent
to area preserving) introduced and studied by S.P. Novikov and his school (see for
example [29,50] and also [3] for the toral case) and are also known as flows given by
a multivalued Hamiltonian. We now recall their definition.
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Ergodic properties of infinite extensions of area-preserving flows 1291

Let η be a closed 1-form on S. Denote by π : Ŝ → S the universal cover of S
and by η̂ the pullback of η by π : Ŝ → S. Since Ŝ is simply connected and η̂ is
also a closed form, there exists a smooth function Ĥ : Ŝ → R, called a multivalued
Hamiltonian, such that d Ĥ = η̂. We will assume that Ĥ is a Morse function. Denote
by X : S → T S the smooth vector field determined by

η = iXω = ω(X, · ).

Let (φt )t∈R stand for the smooth flow on S associated to the vector field X . Since
dη = 0, the flow (φt )t∈R preserves the symplectic form ω and hence it preserves the
associated measure ν obtained by integrating the form ω. Moreover, it is by construc-
tion locally Hamiltonian and it has finitely many fixed points, which coincide with
the image of the critical points set of the multivalued Hamiltonian Ĥ by the map π .
Denote by 	 the set of fixed points. Since we assume that Ĥ is a Morse function, the
points in 	 are either centers or non-degenerate saddles. We will assume throughout
that the flow has no saddle connections, i.e. that there are no saddles which belong to
the closure of the same separatrix of the flow. This assumption implies that the flow
on S\	 is minimal (see [25]) and that all points in 	 are saddles.

Given a C 2+ε-function f : S → R, the extension (Φ f
t )t∈R of the locally Hamilto-

nian flow (φt )t∈R has the following form

Φ
f

t (x, y) =
⎛

⎝φt x, y +
t∫

0

f (φs x) ds

⎞

⎠ ,

i.e. (Φ f
t )t∈R is a skew product flow over the base flow (φt )t∈R on S. In particular, it

follows that (Φ f
t )t∈R preserves the infinite product measure ν × Leb, where ν is the

invariant measure for (φt )t∈R and Leb here is the Lebesgue measure on R.
A basic question in ergodic theory is the description of ergodic components. Let us

recall that a flow (Φt )t∈R preserving a measure μ (finite or infinite) is ergodic if for
any measurable set A which is invariant, i.e. such that μ(A�
t A) = 0 for all t ∈ R,
either μ(A) = 0 or μ(Ac) = 0 where Ac denotes the complement. The problem of
ergodicity for locally Hamiltonian flows on compact surfaces is well understood.
A typical locally Hamiltonian flow (φt )t∈R on S with no saddle connection is
(uniquely) ergodic, by a celebrated theorem by Masur and Veech [28,43]. More-
over, mixing properties of locally Hamiltonian flows have been investigated in
[22,23,34,38–40]. On the other hand, very little is understood in the case of non-
compact extensions with the exception of the special case of g = 1 (see [8,10]) and
the case where f vanishes on the set of fixed points of the flow (φt )t∈R (see [5,11,26]).

In the setting of extensions, a property completely opposite to ergodicity is reduc-
ibility. Let us note that if f = 0, the phase space S × R for the corresponding
trivial extension given by Φ0

t (x, y) = (φt x, y) is foliated in invariant sets of the
form S × {y}, y ∈ R. In this sense, the dynamics is reduced to the dynamics of
the surface flow (φt )t∈R. We say that (Φ f

t )t∈R is (topologically) reducible if it is
isomorphic to (Φ0

t )t∈R and the isomorphism G : S × R → S × R is of the form
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G(x, y) = (x, y + G(x)), where G : S → R is continuous (and automatically its
inverse G−1(x, y) = (x, y−G(x)) is also continuous). In this case, the phase space is
again foliated into invariant sets for (Φ f

t )t∈R of the form {(x, y+G(x)), x ∈ S}, y ∈
R. On each leaf the action of (Φ f

t )t∈R is conjugated to (φt )t∈R on S.
We will consider extensions of a special class of ergodic flows (φt )t∈R on surfaces

of genus g ≥ 2. For these extensions, we will completely describe ergodic behavior
and prove a dichotomy between ergodicity and reducibility.

Let us define the special class of locally Hamiltonian flows (φt )t∈R. Consider the
foliation F determined by orbits of the locally Hamiltonian flow (φt )t∈R on S. The
foliation F is a singular foliation with simple saddles at the set	. It comes equipped
with a transverse measure νF , i.e. a measure on arcs γ transverse to the flow, given
by νF (γ ) =

∫
γ
η. The pair (F , νF ) is a measured foliation in the sense of Thurston

(see [7,37]). We say that (φt )t∈R is of periodic type if there exists a diffeomorphism
Ψ : S → S which fixes the foliation F and rescales the transverse measure, i.e. there
exists ρ < 1 such that Ψ (νF ) = ρ νF (νF (Ψ ◦ γ ) = ρνF (γ ) for all transverse arcs
γ ). For example, Ψ could be a pseudo-Anosov diffeomorphism such that the stable
foliation for Ψ is the measured foliation (F , νF ). Remark that flows of periodic type
have no saddle connections. The diffeomorphism Ψ induces a linear action Ψ∗ on the
homology H1(S,R). We say that a locally Hamiltonian flow (φt )t∈R is of hyperbolic
periodic type if it is of periodic type and additionally Ψ∗ : H1(S,R) → H1(S,R)
is hyperbolic, i.e. all eigenvalues have absolute value different from one. Explicit
examples of locally Hamiltonian flow of hyperbolic periodic type can be constructed
following §7 in [5].

We can now state our main result. For any 0 < ε < 1 denote by C 2+ε(S) the
Hölder space of functions on S having continuous derivatives up to order 2 and such
that the second partial derivatives are Hölder continuous with exponent ε.

Theorem 1.1 Let (φt )t∈R be a locally Hamiltionian flow of hyperbolic periodic type
on a compact surface S of genus g ≥ 2. There exists a closed (φt )t∈R-invariant sub-
space K ⊂ C 2+ε(S) with codimension g in C 2+ε(S), where g is the genus of S, such
that if f ∈ K we have the following dichotomy:

– If
∑

z∈	 | f (z)| 	= 0 then the extension (Φ f
t )t∈R is ergodic;

– If
∑

z∈	 | f (z)| = 0 then the extension (Φ f
t )t∈R is reducible.

Moreover, for every f ∈ C 2+ε(S) we can write f = fK + f	 where fK ∈ K and
f	 vanishes on 	 and belongs to a g dimensional subspace of C 2+ε(S, 	) = { f ∈
C 2+ε(S),

∑
z∈	 | f (z)| = 0}.

Thus, in the setting of flows of periodic type there is an infinite dimensional subspace
of functions f ∈ C 2+ε(S) on which we have a full understanding of ergodic behavior
of (Φ f

t )t∈R and no behavior other than ergodicity or reducibility can arise. We do not
have any results about ergodicity when f /∈ K . The space K will be defined as the
kernel of finitely many invariant C 2+ε(S)-distributions. A similar space arises also
in the works of Forni [11,12], where it is shown that in the context of area-preserv-
ing flows on surfaces there are finitely many distributional obstructions to solve the
cohomological equation.
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Ergodic properties of infinite extensions of area-preserving flows 1293

1.1 Skew products over interval exchange transformations

A standard technique to study a flow on a surface is to choose a transversal arc γ on the
surface and consider the Poincaré first return map on the transversal. When the flow
is area-preserving, this map, in suitably chosen coordinates, is an interval exchange
transformation. The original flow (φt )t∈R can be represented as a special flow over
the interval exchange transformation (see Definition 1.2 below) and the study of the
ergodic properties of the surface flow are then reduced to the study of the ergodic
properties of the special flow. Similarly, choosing a transversal surface of the form
γ × R one gets a two dimensional section of S × R. In this case the Poincaré map
of the extension (Φ f

t )t∈R, in suitable coordinates, is a skew product automorphism
over an interval exchange transformation. The main Theorem 1.1 will follow from a
result about ergodicity for skew products with logarithmic singularities over interval
exchange transformations (Theorem 1.2). In this section we recall basic definitions
and formulate the main result in the setting of skew products. The relation with the
main Theorem 1.1 is explained in Sect. 1.2 (see Theorem 1.3).

Interval exchange transformations (IETs) are a generalization of rotations, well
studied both as simple examples of dynamical systems and in connection with flows
on surfaces and Teichmüller dynamics (e.g. see for an overview [45,46,48,51]). To
define an IET we adopt the notation from [46] introduced in [26]. Let A be a d-element
alphabet and letπ = (π0, π1) be a pair of bijectionsπε : A→ {1, . . . , d} for ε = 0, 1.
Let us consider λ = (λα)α∈A ∈ RA+ , where R+ = (0,+∞). Set |λ| =∑

α∈A λα and
I = [0, |λ|) and

Iα = [lα, rα), where lα =
∑

π0(β)<π0(α)

λβ, rα =
∑

π0(β)≤π0(α)

λβ.

I ′α = [l ′α, r ′α), where l ′α =
∑

π1(β)<π1(α)

λβ, r ′α =
∑

π1(β)≤π1(α)

λβ.

The interval exchange transformation T = T(π,λ) given by the data (π, λ) is the ori-
entation preserving piecewise isometry T(π,λ) : [0, |λ|) → [0, |λ|) which, for each
α ∈ A, maps the interval Iα isometrically onto the interval I ′α . Clearly T preserves
the Lebesgue measure on I . If d = 2, the IET is a rotation.

Each measurable function ϕ : I → R determines a cocycle ϕ( · ) for T by the
formula

ϕ(n)(x) =
⎧
⎨

⎩

ϕ(x)+ ϕ(T x)+ · · · + ϕ(T n−1x) if n > 0
0 if n = 0
−(ϕ(T n x)+ ϕ(T n+1x)+ · · · + ϕ(T−1x)) if n < 0.

(1.1)

The function ϕ will be called a cocycle, as well. We also call ϕ(n) the nth Birkhoff sum
of ϕ over T . The skew product associated to the cocycle is the map Tϕ : I×R→ I×R

Tϕ(x, y) = (T x, y + ϕ(x)).
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1294 K. Frączek, C. Ulcigrai

Clearly Tϕ preserves the Lebesgue measure on I × R. We will denote by Leb the
Lebesgue measure on I .

While there is large literature about cocycles for rotations (see [2,4,9,24,30–32,
35]), very little is known in general about cocycles for IETs. Another motivation to
study skew products over IETs, in addition to extensions of locally Hamiltonian flows,
comes also from rational billiards on non-compact spaces (for example the Ehrenfest
wind-tree model) and Zd -covers of translation surfaces (see [13]). The cocycles that
arise in this setting are piecewise constant functions with values in Zd . First results in
these geometric settings were only recently proved in [6,14,15,17,18].

The class of skew products over IETs which we consider in this paper appear as
Poincaré maps of extensions of locally Hamiltonian flows on surfaces of genus g ≥ 1,
which typically yield cocycles which have logarithmic singularities. Ergodicity in a
particular case of extensions of locally Hamiltonian flows which yield cocycles with-
out logarithmic singularities was recently considered by the first author and Conze
in [5]. Cocycles with logarithmic singularities have been previously investigated only
over rotations of the circle (see [8,10]), which correspond to the case g = 1.

Let {·} denotes the fractional part, that is the periodic function of period 1 on R
defined by {x} = x if 0 ≤ x < 1.

Definition 1.1 We say that a cocycle ϕ : I → R for an IET T(π,λ) has logarithmic
singularities if there exist constants C+α ,C−α ∈ R, α ∈ A, and gϕ : I → R absolutely
continuous on each Iα with derivative of bounded variation, such that

ϕ(x) = −
∑

α∈A
C+α log

(|I |{(x − lα)/|I |}
)

−
∑

α∈A
C−α log

(|I |{(rα − x)/|I |})+ gϕ(x). (1.2)

We say that the logarithmic singularities are of geometric type if at least one among
C−
π−1

0 (d)
and C−

π−1
1 (d)

is zero and at least one among C+
π−1

0 (1)
or C+

π−1
1 (1)

is zero. We

denote by LG(α∈A Iα) the space of functions with logarithmic singularities of geo-
metric type.

Cocycles in LG(α∈A Iα) appear naturally from extensions of locally Hamiltonian
flows,1 see Sect. 6. Notice that the coefficients C±α can have different signs (while if
ϕ ≥ 0 is the roof function of a special flow, all constants C±α are non negative).

If f ∈ LG(α∈A Iα) has the form (1.2) we say that the logarithmic singularities are
symmetric if in addition the constants satisfy

∑

α∈A
C−α −

∑

α∈A
C+α = 0. (1.3)

1 The condition on constants which are zero, which seems rather technical, is automatically satisfied by
functions which have this geometric origin. This condition is used in the proof of ergodicity (see Lemma 3.1
and Lemma 5.5).
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Ergodic properties of infinite extensions of area-preserving flows 1295

We will denote by LSG(α∈A Iα) the subspace of elements of LG(α∈A Iα)which have
logarithmic symmetric singularities. The definition (1.3) of symmetry appears often
in the literature, for example in [22,34,40]. In this paper we need a more restrictive
notion of symmetry: we give in Sect. 2.3 the definition of strong symmetric logarithmic
singularities (see Definition 2.4 in Sect. 2.3.1) and we denote by LSSG(α∈A Iα) ⊂
LSG(α∈A Iα) the corresponding space of functions with strong symmetric logarith-
mic singularities of geometric type. Even if the notion of strong symmetric singularities
is more restrictive than (1.3), it is automatically satisfied for functions which arise from
extensions of locally Hamiltonian flows (see Sect. 6.2).

We will restrict our attention to interval exchange transformation of periodic type
(see [36]), which are analogous to rotation whose rotation number is a quadratic irratio-
nal (or equivalently, has periodic continued fraction expansion). The precise definition
(also of hyperbolic periodic type) will be given in Sect. 2.2 (Definitions 2.1 and 2.2).
The class of hyperbolic periodic type IETs arises as Poincaré maps of area-preserving
flows (φt )t∈R of hyperbolic periodic type.

Our main result in the context of skew products over IETs is the following.

Theorem 1.2 Let T be an interval exchange transformation of hyperbolic periodic
type. For every cocycleϕ for T withϕ ∈ LSSG(α∈A Iα) such that L (ϕ) 	= 0 (i.e. with
at least one logarithmic singularity) there exists a correction function χ , piecewise
constant on each Iα , such that the skew product Tϕ−χ is ergodic.

Let us remark that the correction χ belongs to a finite dimensional space and cocycles
for which χ = 0 are the natural counterpart, at the level of IETs, of the subspace K
in Theorem 1.1. A similar correction procedure was introduced in [26] to solve the
cohomological equation for IETs.

1.2 Methods and outline

Let us first recall the definition of special flow and explain how Theorem 1.1 is related
to Theorem 1.2.

Definition 1.2 The special flow T τ build over the base transformation T : (X, μ)→
(X, μ) and under the roof τ : X → R+ is the quotient of the unit speed flow vt (x, y) =
(x, y+ t) on X×R by the equivalence relation (x, y+τ (n)(x)) ∼ (T n(x), y), n ∈ Z.

Theorem 1.3 Let f : S → R be a C 2+ε-function and (φt )t∈R be a locally Hamil-
tonian flow with no saddle connections. The extension (Φ f

t )t∈R is measure-theoreti-
cally isomorphic to a special flow built over a skew product Tϕ f for an IET T where
ϕ f = ϕ1

f + ϕ2
f and ϕ1

f ∈ LSSG(α∈A Iα) and ϕ2
f is absolutely continuous on each

Iα with (ϕ2
f )
′ ∈ LSSG(α∈A Iα).

If additionally we assume that (φt )t∈R is a locally Hamiltonian flow of hyperbolic
periodic type, then we can choose T to be an IET of hyperbolic periodic type and
ϕ f ∈ LSSG(α∈A Iα).
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1296 K. Frączek, C. Ulcigrai

Theorem 1.3 allows to reduce Theorem 1.1 to Theorem 1.2. While the fact that (Φ f
t )t∈R

can be reduced to a skew product Tϕ f where ϕ f has logarithmic singularities is rather
known, we need to show that ϕ f has the precise form given in Theorem 1.3.2

In order to prove ergodicity of the skew product in Theorem 1.2, we use the tech-
nique of essential values, which was developed by Schmidt [35] and Conze [4]. We
recall all the definitions that we use in Sect. 2.1. To control essential values, we
investigate the behavior of Birkhoff sums ϕ(n) (defined in (1.1)) of a function ϕ ∈
LG(α∈A Iα). As a standard tool to study Birkhoff sums over IETs, we use Rauzy–
Veech induction, a renormalization operator on the space of IETs first developed by
Rauzy and Veech in [33,43] (see Sect. 2.2). In order to prove ergodicity, we need to
show that the Birkhoff sums are tight and at the same time have enough oscillation
(in a sense which will be made precise in Sect. 5) on a subsequence of partial rigidity
times (nk)k∈N for the IET (defined in Sect. 5.1).

It is in order to achieve tightness (see Proposition 5.1) that we need to correct the
function ϕ by a piecewise constant function χ (see the statement of Theorem 1.2). The
idea of correction was introduced by Marmi, Moussa and Yoccoz in order to solve
the cohomological equation for IETs in the breakthrough paper [26]. The correction
operator that we use is closely related to the correction operator used by the first author
and Conze in [5]. The additional difficulty that we have to face to achieve tightness is
the presence of logarithmic singularities. Here the assumption that the singularities are
symmetric is crucial to exploit the cancellation mechanism introduced by the second
author in [40] in order to show that locally Hamiltonian flows are typically not mixing.

On the other hand the presence of logarithmic singularities helps in order to prove
that Birkhoff sums display enough oscillation (see Corollary 5.1 and Proposition 5.2).
Our mechanism to achieve oscillations is similar to the one used by the second author
in [39] to prove that locally Hamiltonian flows are typically weakly mixing, with the
novelty that in this context we cannot exploit, as in [39], that all constants C±α are
non-negative.

Structure of the paper

Let us outline the structure of the paper. In Sect. 2.1 we summarize the tools from the
theory of essential values that we will use to prove ergodicity. In Sect. 2.2 we recall the
definition of Rauzy–Veech induction and give the definition of IETs of periodic type.
The definition of cocycles with strong symmetric logarithmic singularities appears in
Sect. 2.3, where we also prove basic properties of these cocycles. In Sect. 3 we exploit
Rauzy–Veech induction to define a renormalization operator on cocycles in LSSG. In
Sect. 3.2 we formulate results on the growth of Birkhoff sums based on the work of
the second author in [40]. The correction operator, which is crucial to define the cor-
rection χ in Theorem 1.2, is constructed in Sect. 4. In Sect. 5 we formulate and prove
the tightness and oscillation properties needed for ergodicity and prove Theorem 1.2.

2 The reduction to ϕ f ∈ LSSG(α∈A Iα) when (φt )t∈R is of periodic type requires the proof that when

the IET is of periodic type, a cocycle as ϕ2
f in Theorem 1.3, i.e. absolutely continuous on each Iα and with

derivative (ϕ2
f )
′ ∈ LSSG(α∈A Iα), is cohomologous to a piecewise linear function (see Proposition 4.1).
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Ergodic properties of infinite extensions of area-preserving flows 1297

The proof of Theorem 1.1 is given in Sect. 6 and, as already mentioned, exploits the
reduction via Theorem 1.3, which is also proved in Sect. 6 (see also Appendix A).

2 Preliminary material

2.1 Ergodicity of cocycles

We give here a brief overview of the tools needed to prove ergodicity. For further back-
ground material concerning skew products and infinite measure-preserving dynamical
systems we refer the reader to [1] and [35].

Two cocycles ϕ,ψ : X → R for T : (X, μ)→ (X, μ) are called cohomologous if
there exists a measurable function g : X → R (called the transfer function) such that
ϕ = ψ+g−g◦T . Ifϕ andψ are cohomologous then the corresponding skew products
Tϕ and Tψ are measure-theoretically isomorphic via the maps (x, y) �→ (x, y+g(x)),
where g is a transfer function. A cocycle ϕ : X → R is a coboundary if it is coho-
mologous to the zero cocycle.

Denote by R the one point compactification of the group R. An element r ∈ R is
said to be an essential value of ϕ, if for each open neighborhood Vr of r in R and an
arbitrary set B ∈ B, μ(B) > 0, there exists n ∈ Z such that

μ(B ∩ T−n B ∩ {x ∈ X : ϕ(n)(x) ∈ Vr }) > 0. (2.1)

The set of essential values of ϕ will be denoted by E(ϕ). Let E(ϕ) = R∩ E(ϕ). Then
E(ϕ) is a closed subgroup of R. We recall below some properties of E(ϕ) (see [35]).

Proposition 2.1 (see [35]) Suppose that T : (X, μ) → (X, μ) is an ergodic auto-
morphism. The skew product Tϕ is ergodic if and only if E(ϕ) = R. The cocycle ϕ is
a coboundary if and only if E(ϕ) = {0}.

Let (X, d) be a compact metric space. Let B stand for the σ -algebra of all Borel sets
and letμ be a probability Borel measure on X . For every B ∈ B withμ(B) > 0 denote
by μB the conditional probability measure, i.e. μB(A) = μ(A ∩ B)/μ(B). Suppose
that T : (X,B, μ)→ (X,B, μ) is an ergodic measure-preserving automorphism and
there exist an increasing sequence of natural numbers (qn) and a sequence of Borel
sets (Ξn) such that

μ(Ξn)→ δ > 0, μ(Ξn�T−1Ξn)→ 0 and sup
x∈Ξn

d(x, T qn x)→ 0. (2.2)

Let ϕ : X → R be a Borel integrable cocycle for T . Its mean value
∫

X ϕ dμ we will
denote by μ(ϕ). Suppose that μ(ϕ) = 0 and the sequence (

∫
Ξn
|ϕ(qn)(x)|dμ(x))n∈N

is bounded. As the family of distributions {(ϕ(qn))∗(μΞn ) : n ∈ N} is uniformly tight,
by passing to a further subsequence if necessary we can assume that there exists a
probability Borel measure ν on R such that
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1298 K. Frączek, C. Ulcigrai

(ϕ(qn))∗(μΞn )→ ν

weakly in the set of probability Borel measures on R.

Proposition 2.2 (see [5]) The topological support of the measure ν is included in the
group E(ϕ) of essential values of the cocycle ϕ.

The following result is a general version of Proposition 12 in [24].

Proposition 2.3 Let ϕ : X → R be a cocycle such that the sequence
( ∫
Ξn
|ϕ(qn)(x)|

dμ(x)
)

n∈N
is bounded, where (Ξn), (qn) and δ > 0 are as in (2.2). If there exists

0 < c < δ such that for all k large enough

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π ikϕ(qn )(x) dμ(x)

∣
∣
∣
∣
∣
∣
∣
≤ c

then the skew product Tϕ is ergodic.

Proof Let e : R → T stand for the character e(x) = e2π i x . Suppose that ϕ is not
ergodic, so by Proposition 2.1, E(ϕ) 	= R. Thus, since E(ϕ) is a closed subgroup,
E(ϕ) = rZ for some r ∈ R. By Proposition 2.2, the limit measure ν of the sequence(
(ϕ(qn))∗(μΞn )

)
is concentrated on rZ, and hence ν is a discrete measure. It follows

that the measure e∗ν on T is as well a discrete measure and hence it is a Dirichlet
measure (see [16]). Therefore one has

lim sup
k→∞

∣
∣
∣
∣
∣
∣

∫

R

e2π ikt dν(t)

∣
∣
∣
∣
∣
∣
= lim sup

k→∞

∣
∣
∣
∣
∣
∣

∫

T

zk d(e∗ν)(z)

∣
∣
∣
∣
∣
∣
= lim sup

k→∞
|ê∗ν(k)| = 1.

(2.3)

By assumption, there exists k0 such that

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π ikϕ(qn )(x) dμ(x)

∣
∣
∣
∣
∣
∣
∣
≤ c for k ≥ k0.

It follows that for all k ≥ k0, since c < δ and μ(Ξn)→ δ, we have

∣
∣
∣
∣
∣
∣

∫

R

e2π ikt dν(t)

∣
∣
∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π ikϕ(qn )(x) dμΞn (x)

∣
∣
∣
∣
∣
∣
∣

= lim
n→∞

1

μ(Ξn)

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π ikϕ(qn )(x) dμ(x)

∣
∣
∣
∣
∣
∣
∣
≤ c

δ
< 1,

contrary to (2.3). �
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2.2 IET of periodic type

In this section we briefly summarize the Rauzy–Veech algorithm and the properties
that we need later and we give the definition of IETs of hyperbolic periodic type.
For further background material concerning interval exchange transformations and
Rauzy–Veech induction we refer the reader to the excellent lecture notes [46–48].

Let T be the IET given by (π, λ). Denote by S0
A the subset of irreducible pairs, i.e.

such that π1 ◦ π−1
0 {1, . . . , k} 	= {1, . . . , k} for 1 ≤ k < d. We will always assume

that π ∈ S0
A. The IET T(π,λ) is explicitly given by T (x) = x +wα for x ∈ Iα , where

w = �πλ and �π is the matrix [�α β ]α,β∈A given by

�α β =
⎧
⎨

⎩

+1 if π1(α) > π1(β) and π0(α) < π0(β),

−1 if π1(α) < π1(β) and π0(α) > π0(β),

0 in all other cases.

Note that for every α ∈ A with π0(α) 	= 1 there exists β ∈ A such that π0(β) 	= d
and lα = rβ . It follows that

{lα : α ∈ A, π0(α) 	= 1} = {rα : α ∈ A, π0(α) 	= d}. (2.4)

Let Î = (0, |I |] and by T̂(π,λ) : Î → Î denote the exchange of the intervals Îα :=
(lα, rα], α ∈ A, i.e. T(π,λ)x = x+wα for x ∈ (lα, rα]. Let End(T ) = {lα, rα, α ∈ A}
stand for the set of end points of the intervals Iα : α ∈ A.

A pair (π, λ) satisfies the Keane condition (see [21]) if T m
(π,λ)lα 	= lβ for all m ≥ 1

and for all α, β ∈ A with π0(β) 	= 1.

2.2.1 Rauzy–Veech induction

Let T = T(π,λ), (π, λ) ∈ S0
A × RA+ be an IET satisfying the Keane condition. Then

λ
π−1

0 (d) 	= λπ−1
1 (d). Let

Ĩ =
[
0,max

(
l
π−1

0 (d), lπ−1
1 (d)

))

and denote by R(T ) = T̃ : Ĩ → Ĩ the first return map of T to the interval Ĩ . Set

ε(π, λ) =
{

0 if λ
π−1

0 (d) > λπ−1
1 (d),

1 if λ
π−1

0 (d) < λπ−1
1 (d).

(2.5)

Let us consider a pair π̃ = (π̃0, π̃1) ∈ S0
A, where

π̃ε(α) = πε(α) for all α ∈ A and

π̃1−ε(α) =
⎧
⎨

⎩

π1−ε(α) if π1−ε(α) ≤ π1−ε ◦ π−1
ε (d),

π1−ε(α)+ 1 if π1−ε ◦ π−1
ε (d) < π1−ε(α) < d,

π1−επ−1
ε (d)+ 1 if π1−ε(α) = d.
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1300 K. Frączek, C. Ulcigrai

As it was shown by Rauzy in [33], T̃ is also an IET on d-intervals

T̃ = T(π̃ ,̃λ) with λ̃ = Θ−1(π, λ)λ,

where

Θ(T ) = Θ(π, λ) = I + E
π−1
ε (d) π−1

1−ε(d)
∈ SL(ZA).

Moreover,

Θ t (π, λ) ·�π ·Θ(π, λ) = �π̃ . (2.6)

Therefore ker�π = Θ(π, λ) ker�π̃ . Thus taking Hπ = �π(RA) = ker�⊥π we get
Hπ̃ = Θ t (π, λ)Hπ . Moreover, dim Hπ = 2g and dim ker�π = κ − 1, where g is
the genus of the translation surface associated to π and κ the number of singularities
(for more details we refer the reader to [46]).

The IET T̃ fulfills the Keane condition as well. Therefore we can iterate the ren-
ormalization procedure and generate a sequence of IETs (Rn(T ))n≥0. Denote by
πn = (πn

0 , π
n
1 ) ∈ S0

A and λn = (λn
α)α∈A respectively the pair and the vector which

determine Rn(T ). Then Rn(T ) is the first return map of T to the interval I n = [0, |λn|)
and

λ = Θ(n)(T )λn with Θ(n)(T ) = Θ(T ) ·Θ(R(T )) · · ·Θ(Rn−1(T )).

We denote by I n
α = [ln

α, r
n
α) the intervals exchanged by Rn(T ).

Let T : I → I be an arbitrary IET satisfying the Keane condition. Suppose that
(nk)k≥0 is an increasing sequence of natural numbers with n0 = 0 and set

Z(k + 1) := Θ(Rnk (T )) ·Θ(Rnk+1(T )) · · ·Θ(Rnk+1−1(T )) (2.7)

Since λnk = Z(k + 1)λnk+1 , if for each k < k′ we let

Q(k, k′) = Z(k + 1) · Z(k + 2) · · · Z(k′) (2.8)

then we have λnk = Q(k, k′)λnk′ . We will write Q(k) for Q(0, k). By definition,
Rnk′ (T ) : I nk′ → I nk′ is the first return map of Rnk (T ) : I nk → I nk to the interval
I nk′ ⊂ I nk . Moreover, Qαβ(k, k′) is the time spent by any point of I

nk′
β in I nk

α until it
returns to I nk′ . It follows that

Qβ(k, k
′) =

∑

α∈A
Qαβ(k, k

′)

is the first return time of points of I
nk′
β to I nk′ .

In what follows, the norm of a vector is defined as the largest absolute value of the
coefficients and for any matrix B = [Bαβ ]α,β∈A we set ‖B‖ = maxβ∈A

∑
α∈A |Bαβ |.
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2.2.2 IETs of periodic type

We can now define IETs of periodic type.

Definition 2.1 (see [36]) An IET T is of periodic type if there exists p > 0 (called a
period of T ) such thatΘ(Rn+p(T )) = Θ(Rn(T )) for every n ≥ 0 and A = A(T ) :=
Θ(p)(T ) (called a period matrix of T ) has strictly positive entries.

Since the set S0
A is finite, up to taking a multiple of the period p if necessary, we

can assume that π p = π . We will always assume that the period p is chosen so that
π p = π . Explicit examples of IETs of periodic type appear in [36]. The procedure
to construct them is based on choosing closed paths on Rauzy classes and using the
following Remark.

Remark 2.1 Suppose that T = T(π,λ) is of periodic type with period matrix A =
Θ(p)(T ). It follows that λ = Anλpn ∈ An

R
A+ and hence λ belongs to

⋂
n≥0 An

R
A+

which is a one-dimensional convex cone (see [43]). Therefore λ is a positive right
Perron–Frobenius eigenvector of the matrixΘ(p)(T ). It follows that (π p, λp/|λp|) =
(π, λ/|λ|) and |λ|/|λp| is the Perron–Frobenius eigenvector of the matrix A.

Remark 2.2 IETs of periodic type automatically satisfy the Keane condition. Indeed,
T satisfies the Keane condition if and only if the orbit of T under R is infinite (see
[26]) and IETs of periodic type by definition have an infinite (periodic) orbit under
R. Moreover, using the methods in [42] (see also [46]) one can show that every IET
of periodic type is uniquely ergodic.

Suppose that T = T(π,λ) is of periodic type and let A = Θ(p)(T ). By (2.6),

At�π A = �π and hence ker�π = A ker�π and Hπ = At Hπ .

Moreover, multiplying the period p if necessary, we can assume that A|ker�π = I d
(see Remark 2.5 for details). Denote by Sp(A) the set of complex eigenvalues of A,
including multiplicities. Let us consider the set of Lyapunov exponents {log |ρ| : ρ ∈
Sp(A)}. It consists of the numbers

θ1 > θ2 ≥ θ3 ≥ · · · ≥ θg ≥ 0 = · · · = 0 ≥ −θg ≥ · · · ≥ −θ3 ≥ −θ2 > −θ1,

where 2g = dim Hπ and 0 occurs with the multiplicity κ − 1 = dim ker�π (see e.g.
[49]). Moreover, ρ1 := exp θ1 is the Perron–Frobenius eigenvalue of A.

Definition 2.2 An IET T(π,λ) is of hyperbolic periodic type if it is of periodic type
and At : Hπ → Hπ is a hyperbolic linear map, or equivalently θg > 0.

Convention When T is of periodic type, we will always consider iterates of R cor-
responding to the sequence (pk)k≥0, where p is a period of T and A the associated
periodic matrix, chosen so that π p = π and A|ker�π = I d.
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1302 K. Frączek, C. Ulcigrai

Definition 2.3 Suppose that T = T(π,λ) is of periodic type with period p and period
matrix A = Θ(p)(T ) as above. In this case we will denote by T (k) = (π(k), λ(k))

the IET Rpk(T ), by I (k) = [0, |λkp|) the interval on which T (k) is defined and by
I (k)α = [l(k)α , r (k)α ) the intervals exchanged by T (k).

Convention In the rest of the paper, when T is of periodic type, the matrices Z(k) and
Q(k)will denote by the matrices associated to the sequence (pk)k≥0 by (2.7) and (2.8)
respectively. Clearly Z(k) = A and Q(k, k′) = Ak′−k = Q(k′ −k) for all 0 ≤ k ≤ k′.

In the spirit of [44], we set

ν1(A) = max{Aαγ /Aβγ : α, β, γ ∈ A},
ν2(A) = ν1(A

T ) = max{Aγα/Aγβ : α, β, γ ∈ A},
ν(A) = max{ν1(A), ν2(A)}.

Since λ(k) = Aλ(k+1) and for any k ≥ 1 we have Q(k) = Q(k − 1)A, we have

|I (k)β |
ν(A)

≤ |I (k)α | ≤ ν(A)|I (k)β |,
Qβ(k)

ν(A)
≤ Qα(k) ≤ ν(A)Qβ(k) (2.9)

for all α, β ∈ A. From the above relation, it also follows that Rohlin towers have
comparable areas, that is, since by Pigeon Hole principle there exists β such that
Qβ(k)|I (k)β | ≥ |I |/d, one has

|I (0)|
dν(A)2

≤ Qα(k)|I (k)α | ≤ |I (0)| for all α ∈ A. (2.10)

A basis of Hπ

Let p : {0, 1, . . . , d, d + 1} → {0, 1, . . . , d, d + 1} stand for the permutation

p( j) =
{
π1 ◦ π−1

0 ( j) if 1 ≤ j ≤ d
j if j = 0, d + 1.

Following [43,44], denote by σ = σπ the corresponding permutation on {0, 1, . . . , d},

σ( j) = p−1(p( j)+ 1)− 1 for 0 ≤ j ≤ d.

Then T̂(π,λ)rπ−1
0 ( j) = T(π,λ)rπ−1

0 (σ j) for all j 	= 0, p−1(d). Denote by 	(π) the set

of orbits for the permutation σ . Let 	0(π) stand for the subset of orbits that do not
contain zero.

Remark 2.3 If T is obtained from a minimal flow (φt )t∈R on a surface S as Poincaré
first return map to a transversal, then the orbits O ∈ 	(π) are in one to one corre-
spondence with saddle points of (φt )t∈R. Hence #	(π) = κ , where κ is the number
of saddle points of (φt )t∈R.
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For every O ∈ 	(π) denote by b(O) ∈ RA the vector given by

b(O)α = χO(π0(α))− χO(π0(α)− 1) for α ∈ A, (2.11)

where χO( j) = 1 iff j ∈ O and 0 otherwise. Moreover, for every O ∈ 	(π), we
denote by

A−O = {α ∈ A, π0(α) ∈ O}, A+O = {α ∈ A, π0(α)− 1 ∈ O}. (2.12)

If α ∈ A+O (respectively α ∈ A−O ) then the left (respectively right) endpoint of Iα
belongs to a separatrix of the saddle represented by O.

Lemma 2.1 (see Remark 2.8 in [43] and Proposition 5.2 in [44]) For every irreduc-
ible pair π we have

∑
O∈	(π) b(O) = 0, the vectors b(O), O ∈ 	0(π) are linearly

independent and the linear subspace generated by them is equal to ker�π . Moreover,
h ∈ Hπ if and only if 〈h, b(O)〉 = 0 for every O ∈ 	(π). �
Remark 2.4 Let �π : RA → R

	0(π) stand for the linear transformation given by
(�πh)O = 〈h, b(O)〉 for O ∈ 	0(π). By Lemma 2.1, Hπ = ker�π and if RA =
F⊕ Hπ is a direct sum decomposition then�π : F → R

	0(π) establishes an isomor-
phism of linear spaces. It follows that there exists KF > 0 such that

‖h‖ ≤ KF‖�πh‖ for all h ∈ F.

Lemma 2.2 (see [44]) Suppose that T(π̃ ,̃λ) = R(T(π,λ)). Then there exists a bijection

ξ : 	(π) → 	(π̃) that depends only on (π, λ) such that Θ(π, λ)−1b(O) = b(ξO)
for O ∈ 	(π). �

Moreover, analyzing the explicit correspondence given by ξ (we refer the reader
for example to the formulas in [46], §2.4) one can check that we have the following.
For υ = 0, 1, let αυ ∈ A be such that πυ(αυ) = d. Define the orbits O0,O1 ∈ 	(π)
(where possibly O0 = O1) as follows. Let ε = ε(π, λ) is as in (2.5) and let Oε ∈ 	(π)
such that d ∈ Oε. Remark that α0, α1 ∈ A−Oε

since π0(α0) = π1(α1) = d ∈ Oε. Let

O1−ε be such that α1−ε ∈ A+O1−ε . Denote by Ã±O, O ∈ 	(π̃) the corresponding sets
for the pair π̃ .

Lemma 2.3 For each O ∈ 	(π), Ã+
ξOε

= A+Oε
. For each O /∈ {O0,O1} or if

O = O0 = O1, then Ã−
ξO = A−O. If O0 	= O1, then Ã−

ξOε
= A−Oε

\{αε} and

Ã−
ξO1−ε = A−O1−ε ∪ {αε}.

An example of these correspondence of orbits is illustrated in Fig. 1.

Remark 2.5 If T is of periodic type, let us remark that 	(π(k)) = 	(π(k′)) = 	(π)
for every k′ ≥ k ≥ 0. Up to replacing the period p by a multiple, we can assume that
Q(k, k′)b(O) = b(O) for each O ∈ 	(π(k)) and 0 ≤ k ≤ k′.
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(a) (b)
Fig. 1 Rauzy Veech induction

2.3 Cocycles with logarithmic singularities

Denote by BV(α∈A I (k)α ) the space of functions ϕ : I (k)→ R such that the restriction
ϕ : I (k)α → R is of bounded variation for every α ∈ A. Let us denote by Var( f )|J the
total variation of f on the interval J ⊂ I . Then set

Var ϕ =
∑

α∈A
Var(ϕ)|

I (k)α
. (2.13)

The space BV(α∈A I (k)α ) is equipped with the norm ‖ϕ‖BV = ‖ϕ‖sup+Var ϕ. Denote

by BV0(α∈A I (k)α ) the subspace of all functions in the space BV(α∈A I (k)α )with zero
mean.

For every function ϕ ∈ BV(α∈A Iα) and x ∈ I we will denote by ϕ+(x) and ϕ−(x)
the right-handed and left-handed limit of ϕ at x respectively. Denote by AC(α∈A Iα)
the space of functions ϕ : I → R which are absolutely continuous on the interior of
each Iα, α ∈ A and by AC0(α∈A Iα) its subspace of zero mean functions. For any
ϕ ∈ AC(α∈A Iα) let

s(ϕ) =
∫

I

ϕ′(x) dx =
∑

α∈A
(ϕ−(rα)− ϕ+(lα)).

Denote by BV1(α∈A Iα) the space of functions ϕ ∈ AC(α∈A Iα) such that ϕ′ ∈
BV(α∈A Iα) and by BV1∗(α∈A Iα) its subspace of functions ϕ for which s(ϕ) = 0.

Theorem 2.1 (see [26] and [27]) If T : I → I satisfies a Roth type condition then
each cocycle ϕ ∈ BV1∗(α∈A Iα) for T is cohomologous (via a continuous transfer
function) to a cocycle which is constant on each interval Iα, α ∈ A. Moreover, the
set of IETs satisfying this Roth type condition has full measure and contains all IETs
of periodic type.

The prove of the above result uses the following consequence of the classical Gotts-
chalk–Hedlund theorem (see §3.4 in [27]).
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Proposition 2.4 Let T be an IET satisfying the Keane condition. If ϕ ∈ AC0(α∈A Iα)
is a function such that the sequence (ϕ(n))n≥0 is uniformly bounded then ϕ is a
coboundary with a continuous transfer function.

Denote by PL(α∈A Iα) the set of functions ϕ : I → R such that ϕ(x) = sx + cα
for x ∈ Iα . As a consequence of Theorem 2.1 we have the following.

Corollary 2.1 If the IET T : I → I is of periodic type then each cocycle ϕ ∈
BV1(α∈A Iα) is cohomologous (via a continuous transfer function) to a cocycle
ϕpl ∈ PL(α∈A Iα) with s(ϕpl) = s(ϕ).

2.3.1 Strong symmetric logarithmic singularities

In the Introduction Sect. 1 we defined the space LG(α∈A Iα) of functions with
logarithmic singularities of geometric type (see Definition 1.1) and the subspace
LSG(α∈A Iα) ⊂ LG(α∈A Iα) of functions satisfying the symmetry condition (1.3).
We denote by LG0(α∈A Iα) and LSG0(α∈A Iα) the corresponding spaces of func-
tions with zero mean.

Definition 2.4 A function ϕ ∈ LG(α∈A Iα) of the form (1.2) has strong symmetric
logarithmic singularities if for every O ∈ 	(π) we have

∑

α∈A−
O

C−α −
∑

α∈A+
O

C+α = 0, (2.14)

where A−O,A+O are the sets defined in (2.12).

Denote by LSSG(α∈A Iα) the space of functions with strong symmetric loga-
rithmic singularities of geometric type and let LSSG0 := LSSG∩LG0. Clearly
LSSG(α∈A Iα) ⊂ LSG(α∈A Iα) since the condition (2.14) implies the weaker sym-
metry condition (1.3) by summing over O ∈ 	. Strong symmetric singularities of
geometric type appear naturally from extensions of locally Hamiltonian flows, see
Sect. 6. This stronger condition of symmetry is important in the proof of ergodicity.

We will also use the space LG(α∈A Iα) = LG(α∈A Iα)+ BV(α∈A Iα) (respec-
tively LSSG(α∈A Iα) = LSSG(α∈A Iα) + BV(α∈A Iα)), i.e. the space of all
functions with logarithmic singularities (respectively strong symmetric logarithmic
singularities) of geometric type and zero mean of the form (1.2) for which we require
only that gϕ ∈ BV(α∈A Iα). We will denote by LG0 and LSSG0 their subspaces of
zero mean functions.

Note that the space BV (BV1 resp.) coincides with the subspace of functionsϕ ∈ LG
(LG resp.) as in (1.2) such that C±α = 0 for all α ∈ A.

Definition 2.5 For every ϕ ∈ LG(α∈A Iα) of the form (1.2) set

L (ϕ) =
∑

α∈A
(|C+α | + |C−α |) and L V (ϕ) := L (ϕ)+ Var gϕ.
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The quantity L V (ϕ) will play throughout the paper an essential role to bound func-
tions LG, since it controls simultaneously the logarithmic singularities, through the
logarithmic constants L (ϕ), and the part of bounded variation.

The spaces LSSG(α∈A Iα) and LSSG0(α∈A Iα) equipped with the norm

‖ϕ‖L V = L (ϕ)+ ‖gϕ‖BV

become Banach spaces for which LSSG(α∈A Iα) or LSSG0(α∈A Iα) respectively
are dense subspaces.

2.3.2 Properties of cocycles in LG

In this subsection we present a basic property of LG functions; see Proposition 2.5.
All proves are elementary and the reader might choose to skip it and continue to
Sect. 2.3.3.

For every integrable function f : I → R and a subinterval J ⊂ I let m( f, J ) stand
for the mean value of f on J , i.e.

m( f, J ) = 1

|J |
∫

J

f (x) dx .

For a locally absolutely continuous function ϕ : I \End(T )→ R, this is absolutely
continuous on each compact subset of its domain, set

los(ϕ) = ess sup

{

min
x̄∈End(T )

|ϕ′(x)(x − x̄)| : x ∈ I \ End(T )

}

.

Of course, every function ϕ ∈ LG(α∈A Iα) is locally absolutely continuous and

los(ϕ) ≤ L (ϕ)+ |I |‖g′ϕ‖sup and L (ϕ) ≤ 2d los(ϕ). (2.15)

Lemma 2.4 Let f : (x0, x1] → R be a locally absolutely continuous function such
that | f ′(x)(x − x0)| ≤ C for a.e. x ∈ (x0, x1]. For every J = [a, b] ⊂ [x0, x1] we
have

|m( f, J )− f (b)| ≤ 2C and
| f (b)− f (a)|

b − a
≤ C

a − x0
if a > x0.

Proof If a > x0 then using integration by parts we get

b∫

a

( f (x)− f (b)) dx = (a − x0)( f (b)− f (a))−
b∫

a

(x − x0) f ′(x) dx .
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Moreover, by assumption,
∣
∣
∣
∫ b

a (x − x0) f ′(x) dx
∣
∣
∣ ≤ ∫ b

a |(x − x0) f ′(x)| dx ≤ C |J |.
Furthermore,

| f (b)− f (a)| =
∣
∣
∣
∣
∣
∣

b∫

a

f ′(x) dx

∣
∣
∣
∣
∣
∣
≤

b∫

a

C

x − x0
dx = C log

b − x0

a − x0

= C log

(

1+ b − a

a − x0

)

≤ C
b − a

a − x0
= C |J |

a − x0
.

It follows that

∣
∣
∣
∣
∣
∣

1

b − a

b∫

a

f (x) dx − f (b)

∣
∣
∣
∣
∣
∣
= 1

|J |

∣
∣
∣
∣
∣
∣

b∫

a

( f (x)− f (b)) dx

∣
∣
∣
∣
∣
∣
≤ 2C.

Letting a → x0, we also have |m( f, J )− f (b)| ≤ C if J = [x0, b]. �
Lemma 2.5 Let ϕ ∈ LG(α∈A Iα) and J ⊂ I α for some α ∈ A. Then

|m(ϕ, J )− m(ϕ, Iα)| ≤ los(ϕ)

(

4+ |Iα||J |
)

; (2.16)

1

|J |
∫

J

|ϕ(x)− m(ϕ, J )| dx ≤ 8los(ϕ). (2.17)

Proof Let I α = [x0, x2] and x1 = (x0 + x2)/2. Suppose that J = [a, b] ⊂ [x0, x1].
In view of Lemma 2.4,

|m(ϕ, J )− ϕ(b)| ≤ 2los(ϕ), |m(ϕ, [x0, x1])− ϕ(x1)| ≤ 2los(ϕ) (2.18)

and

|ϕ(x1)− ϕ(b)| ≤ los(ϕ)
x1 − b

b − x0
≤ los(ϕ)

x1 − x0

b − a
= los(ϕ)

2

|Iα|
|J | .

Applying Lemma 2.4 to ϕ : [x1, x2)→ R we also have

|m(ϕ, [x1, x2])− ϕ(x1)| ≤ 2los(ϕ).

Since m(ϕ, [x0, x2]) = (m(ϕ, [x0, x1])+ m(ϕ, [x1, x2]))/2, it follows that

|m(ϕ, Iα)− ϕ(x1)| ≤ 2los(ϕ).

Therefore

|m(ϕ, J )− m(ϕ, Iα)| ≤ 4los(ϕ)+ los(ϕ)

2

|Iα|
|J | . (2.19)
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1308 K. Frączek, C. Ulcigrai

Let us consider the function ϕ̄ : (x0, x1] → R, ϕ̄(x) = |ϕ(x)−m(ϕ, J )|. The function
ϕ̄ is locally absolutely continuous with |ϕ̄′(x)| ≤ |ϕ′(x)| almost everywhere, hence
los(ϕ̄) ≤ los(ϕ). Therefore, by Lemma 2.4,

1

|J |
∫

J

|ϕ(x)− m(ϕ, J )| dx = m(ϕ̄, J ) ≤ |m(ϕ̄, J )− ϕ̄(b)| + |ϕ̄(b)|

= |m(ϕ̄, J )− ϕ̄(b)| + |ϕ(b)− m(ϕ, J )| ≤ 2los(ϕ̄)+ 2los(ϕ),

hence

1

|J |
∫

J

|ϕ(x)− m(ϕ, J )| dx ≤ 4los(ϕ). (2.20)

By symmetric arguments, (2.19), (2.20) and

|m(ϕ, J )− ϕ(a)| ≤ 2los(ϕ) (2.21)

hold when J ⊂ [x1, x2]. If x1 ∈ (a, b) then we can split J into two intervals J1 =
[a, x1] and J2 = [x1, b] for which (2.19) and (2.20) hold. Since

m(ϕ, J ) = |J1|
|J | m(ϕ, J1)+ |J2|

|J | m(ϕ, J2), (2.22)

it follows that

|m(ϕ, J )− m(ϕ, Iα)| ≤ los(ϕ)

( |J1|
|J |

(

4+ |Iα|
2|J1|

)

+ |J2|
|J |

(

4+ |Iα|
2|J2|

))

= los(ϕ)

(

4+ |Iα||J |
)

.

By (2.18) and (2.21), |m(ϕ, J1)− ϕ(x1)| ≤ 2los(ϕ), |m(ϕ, J2)− ϕ(x1)| ≤ 2los(ϕ).
Moreover, by (2.22), |m(ϕ, J )− ϕ(x1)| ≤ 2los(ϕ), hence

|m(ϕ, J1)− m(ϕ, J )| ≤ 4los(ϕ) and |m(ϕ, J2)− m(ϕ, J )| ≤ 4los(ϕ).

In view of (2.20) applied to J1 and J2, it follows that

1

|J1|
∫

J1

|ϕ(x)− m(ϕ, J )| dx ≤ 8los(ϕ),

1

|J2|
∫

J2

|ϕ(x)− m(ϕ, J )| dx ≤ 8los(ϕ),

and hence 1
|J |

∫
J |ϕ(x)− m(ϕ, J )| dx ≤ 8los(ϕ). �
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Proposition 2.5 If ϕ ∈ LG(α∈A Iα) and J ⊂ Iα for some α ∈ A, then

|m(ϕ, J )− m(ϕ, Iα)| ≤ L V (ϕ)

(

4+ |Iα||J |
)

(2.23)

and

1

|J |
∫

J

|ϕ(x)− m(ϕ, J )| dx ≤ 8L V (ϕ). (2.24)

Proof First note that if g ∈ BV(α∈A Iα) then

|g(x)− m(g, J )| ≤ Var g for each x ∈ Iα. (2.25)

Let ϕ = ϕ0 + gϕ be the decomposition of the form (1.2). Since L (ϕ0) = L (ϕ) and
gϕ0 = 0, by (2.16), (2.17) and (2.15), we have

|m(ϕ0, J )− m(ϕ0, Iα)| ≤ L (ϕ)

(

4+ |Iα||J |
)

,

1

|J |
∫

J

|ϕ0(x)− m(ϕ0, J )| dx ≤ 8L (ϕ).

Moreover, in view of (2.25),

|m(gϕ, J )− m(gϕ, Iα)| ≤ Var gϕ,
1

|J |
∫

J

|gϕ(x)− m(gϕ, J )| dx ≤ Var gϕ.

Combining these inequalities completes the proof. �

2.3.3 Properties of cocycles in LSSG

Definition 2.6 For every ϕ ∈ LSSG(α∈A Iα) and O ∈ 	(π) set

O(ϕ) = lim
x→0+

⎛

⎝
∑

α∈A,π0(α)∈O
ϕ(rα − x)−

∑

α∈A,π0(α)−1∈O
ϕ(lα + x)

⎞

⎠ .

In order to prove that O(ϕ) is finite, we need the strong symmetry condition (2.14).

Lemma 2.6 For every ϕ ∈ LSSG(α∈A Iα) and O ∈ 	(π), O(ϕ) is finite. Moreover,
if ϕ ∈ LSSG(α∈A Iα) then

|O(ϕ)| ≤ 2dν(A)
1

|I |
∫

I

|ϕ(x)| dx + 2dL V (ϕ).
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1310 K. Frączek, C. Ulcigrai

Proof Let a := min{|Iα| : α ∈ A}/2. Then for x ∈ (0, a) we have

ϕ(rα − x) = −C−α log(x)+ g−α (x) and ϕ(lα + x) = −C+α log(x)+ g+α (x),

where g±α : [0, a] → R is of bounded variation for α ∈ A. Therefore, using the
symmetry condition (2.14)

Δ(x) :=
∑

α∈AO−
ϕ(rα − x)−

∑

α∈A+
O

ϕ(lα + x)

=−
∑

α∈A−
O

C−α log(x)+
∑

α∈A−
O

g−α (x)+
∑

α∈A+
O

C+α log(x)−
∑

α∈A+
O

g+α (x)

=
∑

α∈A−
O

g−α (x)−
∑

α∈A+
O

g+α (x).

It follows that O(ϕ) is finite and given by

O(ϕ) = Δ+(0) =
∑

α∈A−
O

(g−α )+(0)−
∑

α∈A+
O

(g+α )+(0). (2.26)

Suppose now that ϕ ∈ LSSG(α∈A Iα) is of the form (1.2). Then g±α are absolutely
continuous and |(g+α )′(x)| ≤ L (ϕ)/a + |g′ϕ(lα + x)| and |(g−α )′(x)| ≤ L (ϕ)/a +
|g′ϕ(rα − x)|, and hence

|Δ′(x)| ≤ 2dL (ϕ)

a
+

∑

α∈A
(|g′ϕ(lα + x)| + |g′ϕ(rα − x)|) for x ∈ [0, a].

Therefore, for x, y ∈ [0, a],

|Δ(x)−Δ(y)| ≤ 2dL (ϕ)+
∑

α∈A
(

y∫

x

|g′ϕ(lα + t)|dt +
y∫

x

|g′ϕ(rα − t)|dt)

≤ 2dL (ϕ)+
∑

α∈A
(

lα+a∫

lα

|g′ϕ(t)|dt +
rα∫

rα−a

|g′ϕ(t)|dt)

≤ 2dL (ϕ)+
∫

I

|g′ϕ(t)|dt = 2dL (ϕ)+ Var gϕ. (2.27)
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Moreover, using the definition of a and (2.9), one has

|m(Δ, [0, a])| ≤
∑

α∈A,π0(α)∈O
|m(ϕ, [rα, rα − a])|

+
∑

α∈A,π0(α)−1∈O
|m(ϕ, [lα, lα + a])|

≤ 1

a

∫

I

|ϕ(x)| dx ≤ 2dν(A)
1

|I |
∫

I

|ϕ(x)| dx .

In view of the previous equation and (2.27), it follows that for all x ∈ [0, a],

|Δ(x)| ≤ sup
y∈[0,a]

|Δ(x)−Δ(y)| + m(Δ, [0, a])

≤ 2dν(A)

|I |
∫

I

|ϕ(x)| dx + 2dL (ϕ)+ Var gϕ,

which completes the proof. �

Remark that if ϕ ∈ BV(α∈A Iα) and O ∈ 	(π)

O(ϕ) =
∑

α∈A,π0(α)∈O
ϕ−(rα)−

∑

α∈A,π0(α)−1∈O
ϕ+(lα). (2.28)

Hence, Definition 2.6 extends the definition of the operator O used by [5] for ϕ ∈
BV(α∈A Iα). Moreover, if ϕ ∈ AC(α∈A Iα) then

∑

O∈	(π)
O(ϕ) =

∑

α∈A
ϕ−(rα)−

∑

α∈A
ϕ+(lα) = s(ϕ). (2.29)

Remark 2.6 If we identify the piecewise constant function h =∑
α hαχIα (where χIα

is the characteristic function of Iα) with the vector h = (hα)α∈A, note also that

O(h) =
∑

π0(α)∈O
hα −

∑

π0(α)−1∈O
hα

=
∑

α∈A
(χO(π0(α))− χO(π0(α)− 1))hα = 〈h, b(O)〉,

where b(O), O ∈ 	 are the vectors defined in (2.11). In particular, Lemma 2.1 can
be restated saying that the vector h ∈ Hπ if and only if for the corresponding function
h we have O(h) = 0 for every O ∈ 	(π).
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1312 K. Frączek, C. Ulcigrai

3 Renormalization of cocycles

Assume that T is of periodic type and recall that we denote by T (k) = Rkp(T ) the
sequence or Rauzy iterates corresponding to multiples of the period p > 0.

Remark 3.1 The definitions and Lemmas in Sect. 3.1 hold more in general for any IET
satisfying the Keane condition and any subsequence (T (k))k≥0 which is of the form
(Rnk (T ))k≥0 for some subsequence (nk)k≥0 of iterates of Rauzy–Veech induction.

3.1 Special Birkhoff sums

For every measurable cocycle ϕ : I (k)→ R for the IET T (k) : I (k)→ I (k) and k′ > k
denote by S(k, k′)ϕ : I (k

′)→ R the renormalized cocycle for T (k
′) given by

S(k, k′)ϕ(x) =
∑

0≤i<Qβ (k,k′)
ϕ((T (k))i x) for x ∈ I (k

′)
β .

We write S(k)ϕ for S(0, k)ϕ and we use the convention that S(k, k)ϕ = ϕ. Sums of
this form are usually called special Birkhoff sums. If ϕ is integrable then

‖S(k, k′)ϕ‖L1(I (k′)) ≤ ‖ϕ‖L1(I (k)) and (3.1)
∫

I (k′)

S(k, k′)ϕ(x) dx =
∫

I (k)

ϕ(x) dx . (3.2)

Note that the operator S(k, k′) maps LG(α∈A I (k)α ) into LG(α∈A I (k
′)

α ). In view

of (3.2), S(k, k′) maps LG0(α∈A I (k)α ) into LG0(α∈A I (k
′)

α ). Moreover, we will

show below (Lemma 3.2) that it also maps LSSG(α∈A I (k)α ) into LSSG(α∈A I (k
′)

α ).
If g ∈ BV(α∈A I (k)α ) then

Var S(k, k′)g ≤ Var g. (3.3)

The following three Lemmas (Lemmas 3.1, 3.2 and 3.3) allow us to compare the
singularities of S(k, k′)ϕ with the singularities of ϕ.

Lemma 3.1 For each k′ ≥ k ≥ 0 and for each ϕ ∈ LG(α∈A I (k)α ) of the form

ϕ(x) = −
∑

α∈A

(

C+α log

(

|I (k)|
{

x − l(k)α
|I (k)|

})

+ C−α log

(

|I (k)|
{

r (k)α − x

|I (k)|

}))

there exists a permutation χ : A → A such that
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S(k, k′)ϕ(x) = −
∑

α∈A
C+α log(|I (k′)|{(x − l(k

′)
α )/|I (k′)|})

−
∑

α∈A
C−χ(α) log(|I (k′)|{(r (k′)α − x)/|I (k′)|} + g(x),

where g ∈ BV1(α∈A I (k
′)

α ). In particular, L (S(k, k′)ϕ) = L (ϕ).

Proof We will prove the Lemma for special Birkhoff sums corresponding to one sin-
gle step of Rauzy induction. The proof then follows by induction on Rauzy steps. Let
α0 := π−1

0 (d) and α1 := π−1
1 (d). Let write C− = C (ϕ) = (C−α )α∈A for the vector in

R
A whose components are the constants C−α . For υ = 0, 1 let

Gυ(π,λ) = {C− = (C−α )α∈A ∈ RA : C−αυ = 0}.

Let us consider R : G0
(π,λ) ∪ G1

(π,λ)→ Gε(π,λ)R(π,λ) be given by

R(C−)α =
⎧
⎨

⎩

C−α if α 	= α0, α1,

C−α0
+ C−α1

if α = α1−ε(π,λ),
0 if α = αε(π,λ).

(3.4)

Recall that for (π1, λ1) = R(π, λ) we have

π1
ε(π,λ)(αε(π,λ)) = πε(π,λ)(αε(π,λ)) = d,

so R(C−) ∈ Gε(π,λ)R(π,λ). If ϕ ∈ LG(α∈A Iα) is of the form

ϕ(x) = −
∑

α∈A
(C+α log(|I |{(x − lα)/|I |})+ C−α log(|I |{(rα − x)/|I |})),

then since the singularities are of geometric type, C− = (C−α )α∈A ∈ Gυ(π,λ) for some

υ = 0, 1. Denote by S1ϕ the special Birkhoff sum corresponding to one step of
Rauzy–Veech induction, given by

S1ϕ(x) =
∑

0≤i<Θ(T )β

ϕ(T i (x)), for x ∈ I 1
β . (3.5)

Analyzing the effect of one step of Rauzy induction, one can then verify that

S1ϕ(x) = −
∑

α∈A

(
C+α log(|I 1|{(x − l1

α)/|I 1|})

+ R(C−)α log(|I 1|{(r1
α − x)/|I 1|})

)
+ g1(x), (3.6)
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1314 K. Frączek, C. Ulcigrai

(a) (b)
Fig. 2 The two top figures show an example of a function ϕ ∈ LG in both cases (a) λα0 > λα1 and (b)
λα0 < λα1 ; the bottom figures show the corresponding special Birkoff sums S1ϕ

where g1 ∈ BV1(α∈A I 1
α). See Fig. 2. For υ = 0, 1, define the permutation χυ(π,λ) :A→ A by

χυ(π,λ)(αε(π,α)) = αυ, χυ(π,λ)(α1−ε(π,α)) = α1−υ, χυ(π,λ)(α) = α

for α /∈ {α0, α1}. Remark then that since C−(ϕ) ∈ Gυ, αυ ∈ {α0, α1} is such that
C−αυ = 0. Thus, one can verify that R(C−)α = C−χ(α) for allα ∈ A. For 0 ≤ k < k′ and

C−(ϕ) ∈ Gυ , if we denote by ε j = ε(π j , λ j ), we can let χ := χυ(k, k′) : A → A
stand for the permutation

χ := χυ(k, k′) = χυ
(π pk ,λpk )

◦ χεpk

(π pk+1,λpk+1)
◦ · · · ◦ χεpk′−2

(π pk′−1,λpk′−1)
.

Then one can prove by induction on Rauzy steps that R p(k′−k)(C−)α = C−χ(α). This
together with p(k′ − k) iterations of (3.6) concludes the proof. �

Consider the operator O(ϕ) defined in Definition 2.6.
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Lemma 3.2 For each k′ ≥ k ≥ 0 the operator S(k, k′) maps the space

LSSG(α∈A I (k)α ) into LSSG(α∈A I (k
′)

α ) and maps LSSG(α∈A I (k)α ) into LSSG

(α∈A I (k
′)

α ). Moreover, for every ϕ ∈ LSSG(α∈A I (k)α ) and O ∈ 	(π), we have
O(S(k, k′)ϕ) = O(ϕ).
Proof Let T = Tπ,λ, ϕ ∈ LSSG(α∈A Iα) and consider the special Birkhoff sum
ϕ̃ = S1ϕ given by one step of Rauzy–Veech induction (see (3.5)). Let ξ be the corre-
spondence between 	(π) and 	(π1) given by Lemma 2.2 and let A±O, O ∈ 	(π),
the sets defined in (2.12) and Ã±O, O ∈ 	(π1), the corresponding sets for (π̃, λ̃) =
(π1, λ1). We will show that

∑

α∈A+
O

C+α =
∑

α∈Ã+
ξO

C+α (3.7)

∑

α∈A−
O

C−α =
∑

α∈Ã−
ξO

R(C−)α, (3.8)

where R is the operator defined in (3.4) in the proof of Lemma 3.1. Since by (3.6)
the logarithmic constants for S1ϕ are the ones which appear in the right hand side,
these two equations show that if the symmetry condition (2.14) holds for ϕ for all
O ∈ 	(π), since ξ : 	(π)→ 	(π1) is a bijection, the symmetry condition holds also
for S1ϕ for all O ∈ 	(π1). By induction on Rauzy steps, this shows that S(k, k′)ϕ ∈
LSSG(α∈A I (k

′)
α ) for each k′ ≥ k. Let us prove (3.7, 3.8). Since Ã+

ξO = A+O by
Lemma 2.3, (3.7) holds trivially. From the definition (3.4) of R, one immediately sees
that if A′ ⊂ A is a subset such that either {α0, α1} ⊂ A′ or {α0, α1} ∩ A′ = ∅,
then

∑
α∈A′ C−α −

∑
α∈A′ R(C−)α = 0. Since {α0, α1} ⊂ A−Oε

(recall that π0(α0) =
π1(α1) = d ∈ Oε by definition of Oε) and thus {α0, α1} ∩A−O = ∅ for all O 	= Oε ,
it follows that

∑

α∈A−
O

C−α −
∑

α∈A−
O

R(C−)α = 0 for each O ∈ 	(π).

Thus, (3.8) holds also for O /∈ {O0,O1} (where O0,O1 were defined before
Lemma 2.3) or if O = O0 = O1, since in these cases by Lemma 2.3 we can have
A−O = Ã−

ξO. Thus, we are left to consider the case in which O ∈ {O0,O1} and at the

same time O0 	= O1. In these cases, since by Lemma 2.3 we have Ã−
ξOε

= A−Oε
\{αε}

and Ã−
ξO1−ε = A−O1−ε ∪{αε}, we can add or subtract R(C−)αε , which by (3.4) is equal

to zero, to get respectively

∑

α∈A−
Oε

C−α −
∑

α∈Ã−
ξOε

R(C−)α =
∑

α∈A−
Oε

(C−α − R(C−)α)+ R(C−)αε = 0,

∑

α∈A−
O1−ε

C−α −
∑

α∈Ã−
ξO1−ε

R(C−)α =
∑

α∈A−
O1−ε

(C−α − R(C−)α)− R(C−)αε = 0,
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which concludes the proof of (3.8). This, together with Lemma 3.1, is enough to

conclude that S(k, k′) maps the space LSSG(α∈A I (k)α ) into LSSG(α∈A I (k
′)

α ) and

LSSG(α∈A I (k)α ) into LSSG(α∈A I (k
′)

α ).
Assume now that ϕ ∈ LSSG(α∈A I (k)α ). Let us now prove that for each O ∈ 	(π),

we have (ξO)(ϕ̃) = O(ϕ), where ξ is the bijection given by Lemma 2.2. Let g±α , α ∈
A, be the absolutely continuous functions defined as in the proof of Lemma 2.6.
Similarly, define also for ϕ̃ = S1ϕ the absolutely continuous functions

g̃−α (x) := ϕ̃(r1
α − x)+ R(C−)α log(x), g̃+α (x) := ϕ̃(l1

α + x)+ C+α log(x).

In virtue of (2.26) and the analogous equality for the function ϕ̃, to prove that
(ξO)(ϕ̃) = O(ϕ) it is enough to prove that

∑

α∈A−
O

g−α (0)−
∑

α∈A+
O

g+α (0) =
∑

α∈Ã−
ξO

g̃−α (0)−
∑

α∈Ã+
ξO

g̃+α (0), (3.9)

where A±O are the sets defined in (2.12). The analysis of one step of Rauzy–Ve-
ech induction shows that for all α 	= α0, α1, we have g̃±α (x) = g±α (x), while for
α ∈ {α0, α1}, if ε = ε(π, λ) (see (2.5)), we have

g̃+αε (x) = g+αε (x), g̃−αε (x) = ϕ ◦ T−ε(|λ1| − x);
g̃+α1−ε (x) = g+α1−ε (x)+ ϕ ◦ T−ε(|λ1| + x), g̃−α1−ε (x) = g−α1−ε (x)+ g−αε (x).

Combining these expressions with the relations between A±O and Ã±
ξO given by

Lemma 2.3 and recalling the definition of O1 and O2, one can verify case by case that
(3.9) holds and thus (ξO)(ϕ̃) = O(ϕ). By induction on Rauzy steps and in view of
Remark 2.5 and one gets O(S(k, k′)ϕ) = O(ϕ). �

The last lemma allows us to keep track of how discontinuities of T (k
′) are related

to discontinuities of T (k). Let α(k)0 := (π(k)0 )−1(d) and α(k)1 := (π(k)1 )−1(d).

Lemma 3.3 For each k′ ≥ k ≥ 0, for each α ∈ A, we have

l(k)α ∈ {(T (k)) j l(k
′)

α , 0 ≤ j < Qα(k, k
′)}. (3.10)

Moreover, if χ : A → A is one of the permutations3 given by Lemma 3.1,

r (k)χ(α) ∈ {(̂T (k)) j r (k
′)

α , 0 ≤ j < Qα(k, k
′)} if α 	= α(k′)

ε(π pk′−1,λpk′−1)
, (3.11)

3 Let us point out that there are two permutations χ = χ0(k, k′), χ = χ1(k, k′), given by Lemma 3.1. In
Lemma 3.1 we are given ϕ ∈ LG and if C−(ϕ) ∈ Gυ (see Lemma 3.1) the function χ for which the Lemma
hold is χυ . On the other hand, both χ = χ0(k, k′), χ = χ1(k, k′) satisfy the conclusion of Lemma 3.3.

123



Ergodic properties of infinite extensions of area-preserving flows 1317

while there exists α∗ ∈ A \ {α(k′)
ε(π pk′−1,λpk′−1)

} such that

r (k)
α
(k)
0

, r (k)
α
(k)
1

∈ {(̂T (k)) j r (k
′)

α∗ , 0 ≤ j < Qα(k, k
′)}. (3.12)

Moreover, if C−χ(α) 	= 0 then α 	= α(k′)
ε(π pk′−1,λpk′−1)

and (3.11) holds.

Proof Let us prove the Lemma for one step of Rauzy induction. We refer the reader
to Fig. 1. Let χ = χ(π,λ),υ : A→ A by the permutation for one step of Rauzy–Veech
induction defined in the proof of Lemma 3.1. Let ε = ε(π, λ). Then χ(αε) = αυ .
By the definition of Rauzy–Veech induction, if l1

α and r1
α denote the endpoints of

T 1 = R(T ), we have lα = l1
α for α 	= α1−ε and lα1−ε = T εl1

α1−ε . Moreover, rα = r1
α

for α 	= α0, α1, and rα0 = T̂ r1
α1−ε , rα1 = r1

α1−ε . Since Θ(T )α = 1 for α 	= α1−ε and

Θ(T )α1−ε = 2, it follows that for every α ∈ A we have lα = T j l1
α for some 0 ≤ j <

Θ(T )α and for every α 	= αε (equivalently χ(α) 	= αυ ) we have rχ(α) = T̂ j r1
α for

some 0 ≤ j < Θ(T )α . Moreover, rαυ = T̂ j r1
α, for some 0 ≤ j < Θ(T )α′ , where

χ(α′) = α1−υ . The proof of the formulas in the Lemma then follows by induction on
Rauzy steps. We are left to prove the last remark.

If C−
χυ(k,k′)(α) 	= 0 then since R p(k′−k)(C−)α = C−

χυ(k,k′)(α) (see the end of

the proof of Lemma 3.1) also R p(k′−k)(C−)α 	= 0. Since R p(k′−k) maps the space

G0
(π(k),λ(k))

∪ G1
(π(k),λ(k))

to Gε(π
pk′−1,λpk′−1)

(π(k
′),λ(k′)) , which is the space of vectors with

R p(k′−k)(C−)
α
(k′)
ε(π pk′−1,λpk′−1)

= 0, this shows that α 	= α(k′)
ε(π pk′−1,λpk′−1)

. �

3.2 Cancellations for symmetric singularities

The following property of cocycles with symmetric logarithmic singularities was
proved by the second author in [40] (see Proposition 4.1) and will play a crucial
role to renormalize cocycles with symmetric logarithmic singularities and in the proof
of ergodicity.

Proposition 3.1 ([40]) Let π ∈ S0
A. For a.e. λ ∈ RA+ , |λ| = 1 there exist a constant

M and sequence of induction times (nk)k∈N for the corresponding IET T(π,λ) such

that for each ϕ ∈ LSG(α∈A Iα) with g′ϕ = 0, whenever x ∈ I (nk )
β for some k ≥ 0

and 0 < r ≤ Qβ(nk), we have4

∣
∣
∣
∣
∣
(ϕ′)(r)(x)−

∑

α∈A

C+α
xl
α

+
∑

α∈A

C−α
xr
α

∣
∣
∣
∣
∣
≤ ML (ϕ)r, (3.13)

4 In the statement of Proposition 4.1 [40], only (ϕ′)(r)(x) appears in the absolute value, while
∑
α∈A

C+α
xl
α

and
∑
α∈A

C−α
xr
α

appear as bounds. In the proof, though, the contribution of the closest points is subtracted

first and the statement here given is proved. The explicit dependence of the constant M in Proposition 4.1
[40] on ϕ (via L (ϕ)) can also be easily extrapolated from the proof.
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1318 K. Frączek, C. Ulcigrai

where xl
α and xr

α are the closest points respectively to lα and rα , which, denoting by
(x)+ the positive part of x (i.e. (x)+ = x if x ≥ 0 and (x)+ = ∞ if x < 0, so that if
x < 0 then 1/(x)+ is zero) are given by

xl
α = min

0≤i<r
(T i x − lα)

+, xr
α = min

0≤i<r
(rα − T i x)+.

Remark 3.2 One can check that if T is of periodic type, the estimate in Proposition 3.1
holds and furthermore one can take as (nk)k∈N simply the multiples of a period of
Rauzy–Veech induction,5 i.e. one can take nk = pk where p is the period. Moreover,
the constant M depends only on the period matrix of Rauzy Veech induction.

In virtue of the Remark, applying the estimate (3.13) to each renormalized iterate of
Rauzy–Veech induction for a IET of periodic type, we get the following.

Corollary 3.1 If T is of periodic type, there exist a constant M such that the following
hold. For all 0 ≤ k < k′ and for each ϕ ∈ LSG(α∈A I (k)α ) with g′ϕ = 0, whenever

x ∈ I (k
′)

β , β ∈ A and 0 < r ≤ Qβ(k, k′), we have

∣
∣
∣
∣
∣
∣

∑

0≤ j<r

ϕ′((T (k)) j x)−
∑

α∈A

C+α
(xl
α)
(k)
+

∑

α∈A

C−α
(xr
α)
(k)

∣
∣
∣
∣
∣
∣
≤ 1

|I (k)|ML (ϕ)r, (3.14)

where (xl
α)
(k) and (xr

α)
(k) are given by

(xl
α)
(k) = min

0≤i<r
((T (k))i x − l(k)α )

+, (xr
α)
(k) = min

0≤i<r
(r (k)α − (T (k))i x)+.

Proof Let us denote by T
(k) : I (0) → I (0) (I (0) = [0, 1)) the normalized IET asso-

ciated to T (k), i.e. T
(k)

x = |I (k)|−1
T (k)(|I (k)|x). As T is of periodic type, T

(k) = T .
Let us consider ϕk : I (0)→ R given by ϕk(x) = ϕ(|I (k)|x). Then one can check that
ϕk ∈ LSG(α∈A I (0)α ) with L (ϕk) = L (ϕ) and g′ϕk

= 0. By Proposition 3.1 and

Remark 3.2, whenever y ∈ I (k
′−k)

β , β ∈ A and 0 < r ≤ Qβ(k − k′), we have

∣
∣
∣
∣
∣
(ϕ′k)(r)(y)−

∑

α∈A

C+α
yl
α

+
∑

α∈A

C−α
yr
α

∣
∣
∣
∣
∣
≤ ML (ϕ)r. (3.15)

Fix x ∈ I (k
′)

β and 0 < r ≤ Qβ(k, k′) = Qβ(k − k′). Since l( j)
α = |I ( j)|lα, r ( j)

α =
|I ( j)|rα for all α ∈ A and j ≥ 0, we have y := x/|I (k)| ∈ I (k

′−k)
β and

(T (k))i x − l(k)α = |I (k)|((T (k))i y − lα), r (k)α − (T (k))i x = |I (k)|(rα − (T (k))i y).

5 The interested reader can patiently go through the definitions of further accelerations of Rauzy-induction
in [40] which lead to the construction of sequence (nk )k∈N in Proposition 3.1 and check that if T is of
periodic type the period multiples satisfies all the assumptions without need of extracting subsequences.
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Therefore, |I (k)|yl
α = (xl

α)
(k) and |I (k)|yr

α = (xr
α)
(k). As

ϕ′k(y) = |I (k)|ϕ′(|I (k)|y) = |I (k)|ϕ′(x),
in view of (3.15), it follows that

∣
∣
∣
∣
∣
∣

∑

0≤ j<r

ϕ′((T (k)) j x)−
∑

α∈A

C+α
(xl
α)
(k)
+

∑

α∈A

C−α
(xr
α)
(k)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

∑

0≤ j<r

ϕ′k((T
(k)
) j y)

|I (k)| −
∑

α∈A

C+α
|I (k)|yl

α

+
∑

α∈A

C−α
|I (k)|yr

α

∣
∣
∣
∣
∣
∣
≤ ML (ϕ)r

|I (k)| ,

which completes the proof. �
Let us show that functions with logarithmic singularities of geometric type behave

well under the renormalization given by taking special Birkhoff sums.

Proposition 3.2 If T has periodic type then there exists c > 0 such that if ϕ ∈
LSG(α∈A I (k)α ) and

ϕ(x) = −
∑

α∈A

(

C+α log

(

|I (k)|
{

x − l(k)α
|I (k)|

})

+ C−α log

(

|I (k)|
{

r (k)α − x

|I (k)|

}))

,

then for every k′ ≥ k we have S(k, k′)ϕ = ϕ + ϕ̃, where

ϕ(x) = −
∑

α∈A

(
C+α log(|I (k′)|{(x − l(k

′)
α )/|I (k′)|})

+ C−χ(α) log(|I (k′)|{(r (k′)α − x)/|I (k′)|})
)
, (3.16)

χ : A→ A is a permutation and ϕ̃ ∈ BV1(α∈A I (k
′)

α ) with ‖ϕ̃′‖sup ≤ cL (ϕ)

|I (k′)| .

Proof Let χ : A → A be the permutation given by Lemma 3.1. If ϕ is defined by

(3.16), Lemma 3.1 gives that S(k, k′)ϕ = ϕ + ϕ̃ where ϕ̃ ∈ BV1(α∈A I (k
′)

α ) (where
ϕ̃ is the g in Lemma 3.1). Thus, we need to estimate ‖ϕ̃′‖sup. By differentiating
ϕ̃ = S(k, k′)ϕ − ϕ, we have

ϕ̃′(x) = S(k, k′)ϕ′(x)−
∑

α∈A

C+α
|I (k′)|{ x−l(k

′)
α

|I (k′)|
} +

∑

α∈A

C−χ(α)

|I (k′)|{ r (k
′)

α −x
|I (k′)|

} . (3.17)

From Corollary 3.1, if x ∈ I (k
′)

β then

∣
∣
∣
∣
∣
S(k, k′)ϕ′(x)−

∑

α∈A

C+α
(xl
α)
(k)
+

∑

α∈A

C−α
(xr
α)
(k)

∣
∣
∣
∣
∣
≤ ML (ϕ)Qβ(k, k′)

|I (k)| , (3.18)
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1320 K. Frączek, C. Ulcigrai

where

(xl
α)
(k) = min

0≤i<Qβ (k,k′)
((T (k))i x − l(k)α )

+, (xr
α)
(k) = min

0≤i<Qβ(k,k′)
(r (k)α − (T (k))i x)+.

Recall that, by (2.9), |I (k′)β | ≥ |I (k′)|/dν(A) for any symbol β ∈ A and from (2.10)

|I (k′)|Qβ(k, k′) ≤ |I (k)|. (3.19)

Let us now show that for each α ∈ A,

∣
∣
∣
∣
∣
∣
∣
∣

C+α
(xl
α)
(k)
− C+α

|I (k′)|
{

x−l(k
′)

α

|I (k′)|

}

∣
∣
∣
∣
∣
∣
∣
∣

≤ 2dν(A)L (ϕ)

|I (k′)| , (3.20)

∣
∣
∣
∣
∣
∣
∣
∣

C−χ(α)
(xr
χ(α))

(k)
− C−χ(α)

|I (k′)|
{

r (k
′)

α −x
|I (k′)|

}

∣
∣
∣
∣
∣
∣
∣
∣

≤ 2dν(A)L (ϕ)

|I (k′)| . (3.21)

By (3.10) in Lemma 3.3, for every α ∈ A there exists 0 ≤ jα < Qα(k, k′) such that

(T (k)) jα l(k
′)

α = l(k)α . Assume that x ∈ I (k
′)

β . Since the iterates (T (k)) j x for 0 ≤ j <

Qβ(k, k′) each belong to a T j I (k
′)

β , which, for the j considered are all disjoint, we
have that

(xl
β)
(k) = min

0≤i<Qβ (k,k′)
((T (k))i x − l(k)β )

+ = (T (k)) jβ x − l(k)β .

Moreover, since (T (k)) jβ is an isometry on I (k
′)

β

(xl
β)
(k) = (T (k)) jβ x − (T (k)) jβ l(k

′)
β = x − l(k

′)
β = |I (k′)|{(x − l(k

′)
β )/|I (k′)|},

which shows that in this case the left hand side of (3.20) is zero and (3.20) holds
trivially for α = β. Let α ∈ A \ {β}. Since only (T (k)) jα I (k

′)
α contains l(k)α as left

endpoint and it is disjoint from (T (k)) j I (k
′)

β for 0 ≤ j < Qβ(k, k′), we have that both

|I (k′)|{(x − l(k
′)

α )/|I (k′)|} and (xl
α)
(k) are greater than |I (k′)α | ≥ |I (k′)|/dν(A). This

concludes the proof of the upper bound in (3.20) for all α ∈ A.
To prove (3.21), recall that Lemma 3.3 gives that whenever C−χ(α) 	= 0

r (k)χ(α) ∈ {(̂T (k)) j r (k
′)

α , 0 ≤ j < Qα(k, k
′)}. (3.22)

Thus, when C−χ(α) 	= 0, (3.21) can be proved using (3.22) in a completely analogous

way. On the other hand, if C−χ(α) = 0, there is nothing to prove, since the left hand
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side of (3.21) is identically zero. We now get ‖ϕ̃′‖sup ≤ CL (ϕ)

|I (k′)| by combining (3.17),

(3.18) and (3.19) with the sum over α ∈ A of (3.20, 3.21). �
Proposition 3.3 If T has periodic type then there exists C > 0 such that, for all
0 ≤ k ≤ k′, if ϕ ∈ LSG(α∈A I (k)α ) then

L V (S(k, k′)ϕ) ≤ CL V (ϕ). (3.23)

Proof Let ϕ = ϕ0 + g be the decomposition with g ∈ BV(α∈A I (k)α ) and

ϕ0(x) = −
∑

α∈A

(

C+α log

(

|I (k)|
{

x − l(k)α
|I (k)|

})

+ C−α log

(

|I (k)|
{

r (k)α − x

|I (k)|

}))

.

By Proposition 3.2, S(k, k′)ϕ0 = ϕ + ϕ̃, where

ϕ(x) = −
∑

α∈A

(

C+α log

(

|I (k′)|
{

x − l(k
′)

α

|I (k′)|

})

+ C−χ(α)log

(

|I (k′)|
{

r (k
′)

α − x

|I (k′)|

}))

for a permutation χ : A → A, and a function ϕ̃ ∈ BV1(α∈A I (k
′)

α ) with ‖ϕ̃′‖sup ≤
cL (ϕ)/|I (k′)|. Thus,

Var ϕ̃ =
∑

α∈A

∫

I (k
′)

α

|ϕ̃′(x)| dx ≤ c L (ϕ).

Since Var(S(k, k′)g) ≤ Var g and L (ϕ) = L (ϕ), it follows that

L V (S(k, k′)ϕ) = L (ϕ)+ Var(ϕ̃ + S(k, k′)g)
≤ (c + 1)L (ϕ)+ Var g ≤ (c + 1)L V (ϕ).

�

4 Correction operators

In this section we define two correction operators. The correction operator in Sect. 4.1
allows us to correct a cocycle with symmetric logarithmic singularities by a piece-
wise constant function, so that the special Birkhoff sums of the corrected cocycle
have controlled growth in L1 norm. In Sect. 4.2, we define a similar correction oper-
ator for piecewise absolutely continuous functions whose derivative has logarithmic
singularities. The correction operator in Sect. 4.1 is used in the proof of ergodicity
in Sect. 5, while in Sect. 4.2 we use the other correction operator to prove a result
(Proposition 4.1) needed for the proof of Theorem 1.3.

We remark that a similar operator appears in [27], based on the correction procedure
introduced in [26]. In our setting, we need to use the L1 norm, since the L∞ norm is
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unbounded due to the presence of singularities. We control the contribution coming
from the singularities through the results in Sect. 3.2.

4.1 Correction operator for cocycles with logarithmic singularities

Recall that LSSG0(α∈A Iα) = LSSG0(α∈A Iα) + BV0(α∈A Iα) (see Sect. 2.3).
The proof of the following crucial result is given later at the end of the section.

Theorem 4.1 Assume that T is of periodic type. There exists a bounded linear opera-
tor h : LSSG0(α∈A I (0)α )→ Γ , where Γ is the space of functions which are constant
on each Iα , whose image is a g − 1 dimensional space and such that:

(1) There exist C1,C2 > 0 such that, if ϕ ∈ LSSG0(α∈A I (0)α ) and h(ϕ) = 0, then
for each k ≥ 1 we have

1

|I (k)| ‖S(k)(ϕ)‖L1(I (k)) ≤ C1L V (ϕ)k M + C2
1

|I (0)| ‖ϕ‖L1(I (0))k
M−1,

where M is the maximal size of Jordan blocks in the Jordan decomposition of
the period matrix of T .

(2) If additionally T is of hyperbolic periodic type and the function ϕ ∈
LSSG0(α∈A I (0)α ) satisfies h(ϕ) = 0, then for each k ≥ 0 we have

1

|I (k)| ‖S(k)(ϕ)‖L1(I (k)) ≤ C1L V (ϕ)+ C2
1

|I (0)| ‖ϕ‖L1(I (0)).

Part (2) will be used to prove ergodicity of Tϕ in Sect. 5, while part (1) will be used in
the cohomological reduction in Sect. 4.2. We prove them in parallel since the proofs
have similar structure.

Let Γ (k) be the space of real valued functions on I (k) which are constant on each
I (k)α , α ∈ A and Γ (k)0 is the subspace of functions with zero mean. Then

S(k, k′)Γ (k) = Γ (k′) and S(k, k′)Γ (k)0 = Γ (k′)0 .

Let us identify every function
∑
α∈A hαχI (k)α

in Γ (k) with the vector h = (hα)α∈A ∈
R

A. Clearly Γ (k) is isomorphic to RA (� Rd). Under the identification,

Γ
(k)

0 = Ann(λ(k)) := {h = (hα)α∈A ∈ RA : 〈h, λ(k)〉 = 0}

and the operator S(k, k′) is the linear automorphism ofRA whose matrix in the canon-
ical basis is Q(k, k′)t (see for example [26]). Thus S(k, k′)−1 : Γ (k′) → Γ (k) is well
defined.

Suppose now that T is of periodic type, with period matrix A. Then the L1-norm
on Γ (k) is equivalent to the vector norm and, by (2.9),

1

dν(A)
|I (k)|‖h‖ ≤ min

α∈A
|I (k)α |‖h‖ ≤ ‖h‖L1(I (k)) ≤ |I (k)|‖h‖. (4.1)
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Let us consider the linear subspaces

Γ (k)cs = {h ∈ Γ (k) : lim sup
j→+∞

log ‖S(k, j)h‖
j

= lim sup
j→+∞

log ‖(At ) j−kh‖
j

≤ 0},

Γ (k)s = {h ∈ Γ (k) : lim sup
j→+∞

log ‖S(k, j)h‖
j

= lim sup
j→+∞

log ‖(At ) j−kh‖
j

< 0},

Γ (k)u = {h ∈ Γ (k) : lim sup
j→+∞

log ‖(At )k− j h‖
j

< 0}.

Let M be the maximal size of Jordan blocks in the Jordan decomposition of the period
matrix A. Note that for every natural k the subspace Γ (k)cs (respectively Γ (k)s , Γ

(k)
u ) ⊂

R
A is the direct sum of invariant subspaces associated to Jordan blocks of At with

non-positive (respectively negative, positive) Lyapunov exponents. It follows that there
exist C, θ+, θ− > 0 such that

‖(At )nh‖ ≤ CnM−1‖h‖ for all h ∈ Γ (k)cs and n ≥ 0. (4.2)

‖(At )nh‖ ≤ C exp(−nθ−)‖h‖ for all h ∈ Γ (k)s and n ≥ 0. (4.3)

‖(At )−nh‖ ≤ C exp(−nθ+)‖h‖ for all h ∈ Γ (k)u and n ≥ 0. (4.4)

It is easy to show that Γ (k)cs ⊂ Γ (k)0 . Denote by

U (k) : LSSG(α∈A I (k)α )→ LSSG(α∈A I (k)α )/Γ
(k)

cs

the projection on the quotient space. Let us consider two linear operators C (k) :
LSSG0(α∈A I (k)α ) → Γ

(k)
0 and P(k)0 : LSSG0(α∈A I (k)α ) → LSSG0(α∈A I (k)α )

given by

C (k)ϕ =
∑

α∈A
m(ϕ, I (k)α )χI (k)α

and P(k)0 ϕ = ϕ − C (k)ϕ.

Then m(P(k)0 ϕ, I (k)α ) = 0 for each α ∈ A. Moreover,

‖C (k)ϕ‖L1(I (k)) ≤ ‖ϕ‖L1(I (k)) (4.5)

and, by equation (2.24) in Proposition 2.5,

‖P(k)0 ϕ‖L1(I (k)) ≤ 8|I (k)|L V (ϕ). (4.6)

Since S(k, k′)Γ (k)cs = Γ (k′)cs and S(k, k′) : Γ (k)→ Γ (k
′) is invertible (see [26]), the

quotient linear transformation

Su(k, k
′) : LSSG(α∈A I (k)α )/Γ

(k)
cs → LSSG(α∈A I (k

′)
α )/Γ (k

′)
cs

is well defined and Su(k, k′) : Γ (k)/Γ (k)cs → Γ (k
′)/Γ (k

′)
cs is invertible. Moreover,
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1324 K. Frączek, C. Ulcigrai

Su(k, k
′) ◦U (k)ϕ = U (k′) ◦ S(k, k′)ϕ for ϕ ∈ LSSG(α∈A I (k)α ). (4.7)

Since RA = Γ (0) = Γ
(0)

cs ⊕ Γ (0)u , the linear operators At : Γ (0)u → Γ
(0)

u and
At : Γ (0)/Γ (0)cs → Γ (0)/Γ

(0)
cs are isomorphic. In view of (4.4), it follows that there

exists C ′ > 0 such that

‖(At )−n(h + Γ (0)cs )‖ ≤ C ′ exp(−nθ+)‖h + Γ (0)cs ‖

for all h + Γ (0)cs ∈ Γ (0)/Γ (0)cs and n ≥ 0. Consequently,

‖(Su(k, k
′))−1(h + Γ (k′)cs )‖ ≤ C ′ exp(−(k′ − k)θ+)‖h + Γ (k)cs ‖ (4.8)

for h + Γ (k′)cs ∈ Γ (k′)/Γ (k′)cs , 0 ≤ k < k′.

Lemma 4.1 For every function ϕ ∈ LSSG0(α∈A I (k)α ), the following limit exists in
Γ
(k)

0 /Γ
(k)

cs :

ΔP(k)ϕ = lim
k′→∞

U (k) ◦ S(k, k′)−1 ◦
(

S(k, k′) ◦ P(k)0 − P(k
′)

0 ◦ S(k, k′)
)
ϕ. (4.9)

Moreover, there exists K > 0 such that

‖ΔP(k)ϕ‖ ≤ KL V (ϕ) for every ϕ ∈ LSSG0(α∈A I (k)α ) and k ≥ 0. (4.10)

Proof Let us first show that given ϕ ∈ LSSG0(α∈A I (k)α ), one has

(S(k, k′) ◦ P(k)0 − P(k
′)

0 ◦ S(k, k′))ϕ = C (k
′) ◦ S(k, k′) ◦ P(k)0 ϕ ∈ Γ (k′)0 . (4.11)

As ϕ = P(k)0 ϕ + C (k)ϕ, we have

P(k
′)

0 ◦ S(k, k′)ϕ = P(k
′)

0 ◦ S(k, k′) ◦ P(k)0 ϕ + P(k
′)

0 ◦ S(k, k′) ◦ C (k)ϕ.

Since S(k, k′) ◦ C (k)ϕ ∈ Γ (k′)0 , we obtain P(k
′)

0 ◦ S(k, k′) ◦ C (k)ϕ = 0, and hence

S(k, k′) ◦ P(k)0 ϕ − P(k
′)

0 ◦ S(k, k′)ϕ

= S(k, k′) ◦ P(k)0 ϕ − P(k
′)

0 ◦ S(k, k′) ◦ P(k)0 ϕ

= C (k
′) ◦ S(k, k′) ◦ P(k)0 ϕ ∈ Γ (k′)0 .
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In view of (4.11), for 0 ≤ k ≤ k′, using the telescopic nature of the expression below,
we have

S(k, k′) ◦ P(k)0 − P(k
′)

0 ◦ S(k, k′)

=
∑

k≤r<k′

(
S(r, k′) ◦ P(r)0 ◦ S(k, r)− S(r + 1, k′) ◦ P(r+1)

0 ◦ S(k, r + 1)
)

=
∑

k≤r<k′

(
S(r + 1, k′)

(
S(r, r + 1) ◦ P(r)0 − P(r+1)

0 ◦ S(r, r + 1)
)

S(k, r)
)

=
∑

k≤r<k′
S(r + 1, k′) ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)

and the operator takes values in the subspace Γ (k
′)

0 which is included in the domain
of the operator S(k, k′)−1. Thus, in view of (4.7),

U (k) ◦ S(k, k′)−1 ◦ (S(k, k′) ◦ P(k)0 − P(k
′)

0 ◦ S(k, k′))

=
∑

k≤r<k′
U (k) ◦ S(k, r + 1)−1 ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)

=
∑

k≤r<k′
Su(k, r + 1)−1 ◦U (r+1) ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r).

Moreover, using (4.5), (3.1), (4.6) and (3.23) consecutively we obtain for k ≤ r < k′,

‖C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)ϕ‖L1(I (r+1))

≤ ‖S(r, r + 1) ◦ P(r)0 ◦ S(k, r)ϕ‖L1(I (r+1)) ≤ ‖P(r)0 ◦ S(k, r)ϕ‖L1(I (r))

≤ 8|I (r)| ·L V (S(k, r)ϕ) ≤ 8C |I (r)|L V (ϕ).

By (4.1),

‖C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)ϕ‖
≤ 8dν(A)C

|I (r)|
|I (r+1)|L V (ϕ) ≤ 8dν(A)‖A‖CL V (ϕ).

Next let consider the series in Γ (k)0 /Γ
(k)

cs given by
∑

r≥k

(Su(k, r + 1))−1 ◦U (r+1) ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)ϕ. (4.12)

Since‖U (r+1)‖ = 1 and U (r+1)◦C (r+1)◦S(r, r+1)◦P(r)0 ◦S(k, r)ϕ ∈ Γ (r+1)
0 /Γ

(r+1)
cs ,

by (4.8), the norm of the r -th element of the series (4.12) is bounded from above by
8dC ′Cν(A)‖A‖ exp(−(r − k)θ+)L V (ϕ). As
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1326 K. Frączek, C. Ulcigrai

K :=
∑

r≥k

8dC ′Cν(A)‖A‖ exp(−(r − k)θ+) < +∞,

the series (4.12) converges in Γ (k)0 /Γ
(k)

cs . Since, as shown above, the limit in (4.9) is
the limit of the sequence of partial sums of the series (4.12), this gives thatΔP(k)ϕ is
well defined. Moreover, since the constant K is independent on k, we get (4.10). The
proof is complete. �
Definition 4.1 Let P(k) : LSSG0(α∈A I (k)α ) → LSSG0(α∈A I (k)α )/Γ

(k)
cs be the

operator given by P(k) = U (k) ◦ P(k)0 −ΔP(k).

Remark 4.1 Note that if ϕ ∈ Γ (k)0 then P(k
′)

0 (S(k, k′)ϕ) = 0 for all k′ ≥ k, hence
ΔP(k)ϕ = 0 and P(k)ϕ = 0.

The correction ΔP(k) is defined so that P(k) has the crucial property of commuting
with the special Birkhoff sums operators, as shown by the next Lemma.

Lemma 4.2 For all 0 ≤ k ≤ k′ and ϕ ∈ LSSG0(α∈A I (k)α ) we have

Su(k, k
′) ◦ P(k)ϕ = P(k

′) ◦ S(k, k′)ϕ. (4.13)

Moreover,

‖P(k)ϕ‖
L1(I (k))/Γ (k)cs

≤ (8+ K )|I (k)|L V (ϕ). (4.14)

Proof For k ≤ k′ ≤ r , one can verify that

S(k, k′) ◦
(

P(k)0 − S(k, r)−1 ◦
(

S(k, r) ◦ P(k)0 − P(r)0 ◦ S(k, r)
))

=
(

P(k
′)

0 − S(k′, r)−1 ◦
(

S(k′, r) ◦ P(k
′)

0 − P(r)0 ◦ S(k′, r)
))
◦ S(k, k′).

In view of (4.7), it follows that

Su(k, k
′) ◦U (k) ◦

(
P(k)0 − S(k, r)−1

(
S(k, r) ◦ P(k)0 − P(r)0 ◦ S(k, r)

))

= U (k′) ◦ S(k, k′) ◦
(

P(k)0 − S(k, r)−1
(

S(k, r) ◦ P(k)0 − P(r)0 ◦ S(k, r)
))

= U (k′)
(

P(k
′)

0 − S(k′, r)−1
(

S(k′, r) ◦ P(k
′)

0 − P(r)0 ◦ S(k′, r)
))

S(k, k′).

Taking the limit as r →∞, since for j = k and j = k′ one has

lim
r→∞U ( j) ◦

(
P( j)

0 − S( j, r)−1 ◦
(

S( j, r) ◦ P( j)
0 − P(r)0 ◦ S( j, r)

))
ϕ = P( j)ϕ

we get Su(k, k′) ◦ P(k)ϕ = P(k
′) ◦ S(k, k′)ϕ, i.e. (4.13).
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Moreover, from Definition 4.1, ‖U (k)‖ = 1, (4.6) and (4.10), we get

‖P(k)ϕ‖
L1(I (k))/Γ (k)cs

≤ ‖P(k)0 ϕ‖L1(I (k)) + |I (k)|‖ΔP(k)ϕ‖
≤ (8+ K )|I (k)|L V (ϕ),

which proves (4.14) and completes the proof. �
Assume additionally that T is of hyperbolic periodic type, i.e. θg > 0. By

Lemma 2.2, there exists a bijection ξ : 	(π)→ 	(π) such that A−1b(O) = b(ξO)
for O ∈ 	(π). Moreover, by Remark 2.5, we can assume that Ab(O) = b(O)
for each O ∈ 	(π), and hence A|ker�π = I d. It follows that the Jordan canon-
ical form of At has κ − 1 simple eigenvalues 1 as A, hence the dimension of
Γ
(0)

c = {h ∈ RA : At h = h} is greater or equal than κ − 1. Since θg > 0 and

2g + κ − 1 = d, it follows that dim Γ (0)s = dim Γ (0)u = g, dim Γ (0)c = κ − 1 and

R
A = Γ (0) = Γ (0)s ⊕ Γ (0)c ⊕ Γ (0)u

is an At -invariant decompositions. As Γ (0)s ⊕ Γ (0)c = Γ (0)cs ⊂ Γ (0)0 , we also have

Γ
(0)

0 = Γ (0)s ⊕ Γ (0)c ⊕ (Γ (0)u ∩ Γ (0)0 ).

Recall that Γ (0)s ⊕ Γ (0)u ⊂ Hπ . Thus, when T is of hyperbolic periodic type these
subspace have the same dimension, so they are equal. It follows that

Γ (k) = Γ (k)s ⊕ Γ (k)c ⊕ Γ (k)u , Hπ = Γ (k)s ⊕ Γ (k)u ,

Γ
(k)

0 = Γ (k)s ⊕ Γ (k)c ⊕ (Γ (k)u ∩ Γ (k)0 )
(4.15)

for k ≥ 0 is a family of decomposition invariant with respect to the renormalization
operators S(k, k′) for 0 ≤ k < k′.

Proof of Theorem 4.1 The proof is split into two parts.

Part I: Estimates of Birkhoff sums for corrected cocycles

We first prove that there exist C1,C2 > 0 such that for every ϕ ∈ LSSG0(α∈A I (0)α )
if ϕ̂ + Γ (0)cs = P(0)ϕ then ϕ̂ − ϕ ∈ Γ (0)0 and for any k ≥ 1 we have

1

|I (k)| ‖S(k)(ϕ̂)‖L1(I (k)) ≤ C1L V (ϕ)k M + C2

|I (0)| ‖ϕ̂‖L1(I (0))k
M−1. (4.16)

If additionally T is of hyperbolic periodic type and ϕ ∈ LSSG0(α∈A I (0)α ) then for
any k ≥ 0

1

|I (k)| ‖S(k)(ϕ̂)‖L1(I (k)) ≤ C1L V (ϕ)+ C2

|I (0)| ‖ϕ̂‖L1(I (0)). (4.17)
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Let us first show that ϕ̂ − ϕ ∈ Γ (0)0 and (4.16). Since U (0)ϕ̂ = ϕ̂ + Γ (0)cs = P(0)ϕ,

U (0)ϕ̂ = U (0) ◦ P(0)0 ϕ −ΔP(0)ϕ = U (0)ϕ −U (0) ◦ C (0)ϕ −ΔP(0)ϕ,

we have ϕ − ϕ̂ ∈ U (0) ◦ C (0)ϕ +ΔP(0)ϕ ⊂ Γ (0)0 . In view of (4.7) and (4.13),

U (k) ◦ S(k)ϕ̂ = Su(k) ◦U (0)ϕ̂ = Su(k) ◦ P(0)ϕ = P(k) ◦ S(k)ϕ.

Therefore, from (4.14) and (3.23), we have

‖U (k) ◦ S(k)ϕ̂‖
L1(I (k))/Γ (k)cs

= ‖P(k)(S(k)ϕ)‖
L1(I (k))/Γ (k)cs

≤ (8+ K )C |I (k)|L V (ϕ).

It follows from the definition of ‖ · ‖
L1(I (k))/Γ (k)cs

on the quotient space that for every

k ≥ 0 there exists ϕk ∈ LSSG0(α∈A I (k)α ) and hk ∈ Γ (k)cs such that

S(k)ϕ̂ = ϕk + hk and ‖ϕk‖L1(I (k)) ≤ (8+ K )C |I (k)|L V (ϕ). (4.18)

Next note that

ϕk+1 + hk+1 = S(k + 1)ϕ̂ = S(k, k + 1)S(k)ϕ̂ = S(k, k + 1)ϕk + At hk, (4.19)

so setting Δhk+1 = hk+1 − At hk (Δh0 = h0) we have Δhk+1 = −ϕk+1 + S(k, k +
1)ϕk . Moreover, by (3.1) and (4.18), for k ≥ 1,

‖Δhk‖L1(I (k)) = ‖ϕk + S(k − 1, k)ϕk−1‖L1(I (k))

≤ ‖ϕk‖L1(I (k)) + ‖S(k − 1, k)ϕk−1‖L1(I (k))

≤ ‖ϕk‖L1(I (k)) + ‖ϕk−1‖L1(I (k−1))

≤
(

1+ |I
(k−1)|
|I (k)|

)
(8+ K )C |I (k)|L V (ϕ)

≤ (1+ ‖A‖)(8+ K )C |I (k)|L V (ϕ).

It follows from (4.1) that ‖Δhk‖ ≤ dν(A)(1+‖A‖)(8+ K )CL V (ϕ) for k ≥ 1 and

‖Δh0‖ ≤ dν(A)

|I (0)| ‖h0‖L1(I (0)) =
dν(A)

|I (0)| ‖ϕ̂ − ϕ0‖L1(I (0))

≤ dν(A)
(
‖ϕ̂‖L1(I (0))/|I (0)| + (8+ K )CL V (ϕ)

)
.
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Since hk =∑
0≤l≤k(A

t )lΔhk−l and Δhl ∈ Γ (k′)cs , by (4.2),

‖hk‖ ≤
∑

0≤l≤k

‖(At )lΔhk−l‖ ≤
∑

0≤l≤k

Cl M−1‖Δhk−l‖

≤ C ′1L V (ϕ)k M + C2‖ϕ̂‖L1(I (0))/|I (0)|k M−1

for some C ′1,C2 > 0. Setting C1 := C ′1 + (8+ k)C , in view of (4.18), it follows that
for k ≥ 1,

‖S(k)ϕ̂‖L1(I (k)) ≤ ‖ϕk‖L1(I (k)) + |I (k)|‖hk‖
≤ |I (k)|

(
C1L V (ϕ)k M + C2‖ϕ̂‖L1(I (0))/|I (0)|k M−1

)
.

This concludes the proof of (4.16).
Let us now prove (4.17), assuming that T is of hyperbolic periodic type and ϕ ∈

LSSG0(α∈A I (0)α ). Then, as shown just before the proof, Γ (k)cs = Γ
(k)

c ⊕ Γ (k)s and
Hπ = Γ (k)s ⊕Γ (k)u are invariant direct sum decompositions. Let hk = hs

k + hc
k , where

hc
k ∈ Γ (k)c and hs

k ∈ Γ (k)s ⊂ Hπ . By Remark 2.4,�π(hs
k) = 0. In view of Lemma 3.2,

(4.18) and Remark 2.6, it follows that O(hs
k) = 0 and

O(ϕ̂) = O(S(k)ϕ̂) = O(ϕk)+O(hc
k) for every O ∈ 	(π).

Suppose that

ϕ(x) = −
∑

α∈A
(C+α log(|I |{(x − lα)/|I |})+ C−α log(|I |{(rα − x)/|I |}))+ g(x),

where g ∈ BV1∗(α∈A Iα). Then ϕ̂ = ϕ + h for some h ∈ Γ (0)0 . Thus L (ϕ̂) = L (ϕ)
and since Var(g + h) = Var(g) we have L V (ϕ̂) = L V (ϕ). Thus, by Proposi-
tion 3.3, L V (S(k)ϕ̂) ≤ CL V (ϕ̂) = CL V (ϕ). Similarly, since ϕk = S(k)ϕ̂ − hk ,
it follows that L V (ϕk) = L V (S(k)ϕ̂) ≤ CL V (ϕ). Thus, by Lemma 2.6, for every
O ∈ 	(π) we can estimate O(ϕk) and O(ϕ̂) respectively by

|O(ϕk)| ≤ 2dν(A)
1

|I (k)|
∫

I (k)

|ϕk(x)| dx + 2dL V (ϕk)

≤ 2dν(A)
1

|I (k)| ‖ϕk‖L1(I (k)) + 2dCL V (ϕ),

|O(ϕ̂)| ≤ 2dν(A)
1

|I (0)| ‖ϕ̂‖L1(I (0)) + 2dL V (ϕ).
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Hence, by (4.18), |O(ϕk)| ≤ 2dC(ν(A)(8 + K ) + 1)L V (ϕ). It follows that there
exist K1, K2 > 0 such that, for every O ∈ 	(π),

|O(hc
k)| ≤ |O(ϕk)| + |O(ϕ̂)| = K1L V (ϕ)+ K2

1

|I (0)| ‖ϕ̂‖L1(I (0)),

so, by Remark 2.6,

‖�π(hc
k)‖ = max

O∈	(π)
|O(hc

k)| ≤ K1L V (ϕ)+ K2‖ϕ̂‖L1(I (0))/|I (0)|.

Since, by Remark 2.4,�π : Γ (k)c → R
	0(π) is an isomorphism of linear spaces, there

exists K ′ ≥ 1 such that ‖h‖ ≤ K ′‖�πh‖ for every h ∈ Γ (k)c . It follows that

‖hc
k‖ ≤ K ′

(

K1L V (ϕ)+ K2
1

|I (0)| ‖ϕ̂‖L1(I (0))

)

. (4.20)

Let Δhs
k+1 = hs

k+1 − At hs
k for k ≥ 0 and Δhs

0 = hs
0. Then from (4.19), we have

Δhs
k+1 = −ϕk+1 + S(k, k + 1)ϕk − hc

k+1 + At hc
k

= −ϕk+1 + S(k, k + 1)ϕk − hc
k+1 + hc

k .

Therefore, by (3.1), (4.1), (4.18) and (4.20), for all k ≥ 1,

‖Δhs
k‖L1(I (k)) ≤ ‖ϕk + hc

k‖L1(I (k)) + ‖S(k − 1, k)(ϕk−1 + hc
k−1)‖L1(I (k))

≤ ‖ϕk‖L1(I (k)) + ‖hc
k‖L1(I (k)) + ‖ϕk−1‖L1(I (k−1)) + ‖hc

k−1‖L1(I (k−1))

≤ |I (k)| (1+ ‖A‖)
(
((8+ K )C + K ′K1)L V (ϕ)+ K ′K2

|I (0)| ‖ϕ̂‖L1(I (0))

)
.

It follows from (4.1) that there exist constants K ′
1, K ′

2 > 0 such that for k ≥ 1

‖Δhs
k‖ ≤ K ′

1L V (ϕ)+ K ′
2‖ϕ̂‖L1(I (0))/|I (0)|,

while for k = 0 we have

‖Δhs
0‖ = ‖hs

0‖ = ‖ϕ̂ − ϕ0 − hc
0‖

≤ ‖hc
0‖ +

dν(A)

|I (0)|
(‖ϕ̂‖L1(I (0)) + ‖ϕ0‖L1(I (0))

)

≤ K ′
1L V (ϕ)+ K ′

2‖ϕ̂‖L1(I (0))/|I (0)|.
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Since hs
k =

∑
0≤l≤k(A

t )lΔhs
k−l and Δhs

l ∈ Γ (l)s , it follows from (4.3) that

‖hs
k‖ ≤

∑

0≤l≤k

‖(At )lΔhs
k−l‖ ≤

∑

0≤l≤k

C exp(−lθ−)‖Δhs
k−l‖

≤ K ′
1L V (ϕ)+ K ′

2‖ϕ̂‖L1(I (0))/|I (0)|
1− exp(−θ−) . (4.21)

Combining (4.18), (4.20) and (4.21), we find that for some C1,C2 > 0

1

|I (k)| ‖S(k)ϕ̂‖L1(I (k)) ≤
1

|I (k)| ‖ϕk‖L1(I (k)) + ‖hc
k‖ + ‖hs

k‖
≤ C1L V (ϕ)+ C2‖ϕ̂‖L1(I (0))/|I (0)|.

Part II: Correction operator

Let us first show that for every ϕ ∈ LSSG0(α∈A Iα) there exists a unique h ∈
Γ
(0)

u ∩ Γ (0)0 such that ϕ − h ∈ P(0)ϕ, where P(0) is the operator in Definition 4.1.

Since ϕ̂−ϕ ∈ Γ (0)0 = (Γ (0)u ∩Γ (0)0 )⊕Γ (0)cs , there exist h ∈ Γ (0)u ∩Γ (0)0 and h′ ∈ Γ (0)cs

such that ϕ − h = ϕ̂ + h′. As ϕ̂ ∈ P(0)ϕ, it follows that

ϕ − h ∈ ϕ̂ + Γ (0)cs = P(0)ϕ.

Suppose that h1, h2 ∈ Γ (0)u ∩ Γ (0)0 are vectors such that

ϕ − h1 + Γ (0)cs = ϕ − h2 + Γ (0)cs = P(0)ϕ.

Then ‖S(k)(ϕ− h1)‖L1(I (k))/|I (k)| and ‖S(k)(ϕ− h2)‖L1(I (k))/|I (k)| grow polynomi-
ally in k by (4.16). Thus,

‖(At )k(h1 − h2)‖ ≤ ‖S(k)(h1 − h2)‖L1(I (k))/|I (k)|

grows polynomially as well, so h1 − h2 ∈ Γ (0)cs . Since h1 − h2 ∈ Γ (0)u and Γ (0)cs ∩
Γ
(0)

u = {0}, it follows that h1 = h2. Thus, there exists a unique linear operator
h : LSSG0(α∈A Iα)→ Γ

(0)
u ∩ Γ (0)0 , called the correction operator, such that

ϕ − h(ϕ)+ Γ (0)cs = P(0)(ϕ).

Note that, by Remark 4.1, P(0)(h) = 0 for each h ∈ Γ (0)0 , so

h(h) = h if h ∈ Γ (0)u ∩ Γ (0)0 and h(h) = 0 if h ∈ Γ (0)cs . (4.22)

In particular, the image of h is Γ (0)u ∩ Γ (0)0 which has dimension g − 1.
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In view of (4.14) the operator

P(0) : LSSG0(α∈A Iα)→ LSSG0(α∈A Iα)/Γ
(0)

cs

is bounded with respect to the norm ‖ · ‖
L1(I )/Γ

(0)
cs

. Therefore, by the closed graph

theorem, the operator h is also bounded. Indeed, if ϕn → ϕ in LSSG0 and h(ϕn)→ h
in Γ (0)u ∩ Γ (0)0 then have both

P(0)ϕn → P(0)ϕ = ϕ − h(ϕ)+ Γ (0)cs ,

P(0)ϕn = ϕn − h(ϕn)+ Γ (0)cs → ϕ − h + Γ (0)cs ,

so from one hand h(ϕ)− h ∈ Γ (0)u ∩ Γ (0)0 and at the same time h(ϕ)− h ∈ Γ (0)cs , so
h = h(ϕ). Since the vector norm and the L1-norm are equivalent on Γ (0) by (4.1), we
get that the operator is bounded. Suppose now that h(ϕ) = 0. Then

ϕ = ϕ − h(ϕ) ∈ ϕ − h(ϕ)+ Γ (0)cs = P(0)(ϕ).

Now parts (1) and (2) of the Theorem follows directly from (4.16) and (4.17). This
concludes the proof. �

The following Lemma will be used several times in Sect. 6.3.

Lemma 4.3 If the cocycle ϕ ∈ BV0(α∈A Iα) is a measurable coboundary then
h(ϕ) = 0.

Proof Suppose that ϕ ∈ BV0(α∈A Iα) and ϕ = ξ − ξ ◦ T for a measurable function
ξ : I → R. Set h := h(ϕ). Since ϕ − h ∈ P(0)ϕ and the operator P(0) is an exten-
sion of the operator P(0) defined in [5], by Theorem C.6 in [5], there exists constants
C,M > 0 such that ‖ϕ(n) − h(n)‖sup ≤ C logM n. Moreover, as shown in Lemma 4.1
in [5], there exists δ > 0 such that for each α ∈ A and k > 0 there exists a mea-
surable set C (k)α ⊂ I such that Leb(C (k)α ) ≥ δ > 0 and h(Qα(k))(x) = ((At )kh)α for
all x ∈ C (k)α . Since ϕ is a coboundary, by Lusin’s theorem, there exist K > 0 and a
sequence (Bk)k≥0 of measurable sets with Leb(Bk) > 1− δ such that |ϕ(k)(x)| ≤ K
for all x ∈ Bk and k ≥ 0. Then taking x ∈ C (k)α ∩ BQα(k) 	= ∅, for all α ∈ A we get

|((At )kh)α| = |h(Qα(k))(x)|
≤ |ϕ(Qα(k))(x)| + C logM Qα(k) ≤ K + Ck M logM ‖A‖.

Therefore ‖(At )kh‖ ≤ K + Ck M logM ‖A‖ for k ≥ 1, so h ∈ Γ (0)cs ∩ Γ (0)u = {0}. �

4.2 Cohomological reduction

In this section we construct a correction operator for piecewise absolutely continuous
functions with derivative with logarithmic singularities and use it to prove the follow-
ing Proposition 4.1, which is both needed to complete the proof of Theorem 1.3 and
will be used also in the proof of Theorem 1.1.
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Proposition 4.1 Assume that T is of periodic type. Then every ϕ ∈ AC0(α∈A Iα)
with ϕ′ ∈ LSSG(α∈A Iα) is cohomologous (via a continuous transfer function) to a
cocycle ψ ∈ PL0(α∈A Iα) with s(ψ) = s(ϕ). In particular, if additionally s(ϕ) = 0
then ϕ is cohomologous (via a continuous transfer function) to h ∈ Γ (0)0 . Moreover,

if h ∈ Γ (0)s then h is a coboundary with continuous transfer function.

The rest of this section is devoted to the proof of Proposition 4.1. Denote by
ACs

0(α∈A I (0)α ) the subspace of ϕ ∈ AC0(α∈A I (0)α ) with ϕ′ ∈ LSSG0(α∈A I (0)α )

and h(ϕ′) = 0. In view of Theorem 4.1, for every ϕ ∈ ACs
0(α∈A I (0)α ) and k ≥ 1,

Var(S(k)ϕ) ≤ |I (k)|k M
(

C1L V (ϕ′)+ C2 Var ϕ/|I (0)|
)
. (4.23)

Denote by

Ũ (k) : AC0(α∈A I (k)α )→ AC0(α∈A I (k)α )/Γ
(k)

s

the projection on the quotient space. Since S(k, k′)Γ (k)s = Γ
(k′)

s we can define the
quotient linear transformation of S(k, k′),

S"(k, k
′) : AC0(α∈A I (k)α )/Γ

(k)
s → AC0(α∈A I (k

′)
α )/Γ (k

′)
s .

Then

S"(k, k
′) ◦ Ũ (k)ϕ = Ũ (k′) ◦ S(k, k′)ϕ for ϕ ∈ AC0(α∈A I (k)α ). (4.24)

Moreover, S"(k, k′) : Γ (k)/Γ (k)s → Γ (k
′)/Γ (k

′)
s is invertible. Since At on Γ (0)/Γ (0)s

is isomorphic to At on Γ (0)c ⊕ Γ (0)u , we get

‖(S"(k, k′))−1(h + Γ (k′)s )‖ ≤ C(k′ − k)M−1‖h + Γ (k)s ‖ if k′ > k. (4.25)

Lemma 4.4 The operator ΔP̃(k) : ACs
0(α∈A I (0)α )→ Γ (k)/Γ

(k)
s ,

ΔP̃(k) =
∑

r≥k

(S"(k, r + 1))−1 ◦ Ũ (r+1) ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)

is well defined and ‖ΔP̃(k)ϕ‖ ≤ K
(
C1|I (k)|L V (ϕ′)+ C2 Var ϕ

)
.

Proof In view of (4.23), for r ≥ k we have

‖P(r)0 ◦ S(k, r)(ϕ)‖sup ≤ Var(S(k, r)(ϕ))

≤ (r − k + 1)M
(

|I (r)|C1L V (ϕ′)+ |I
(r)|

|I (k)|C2 Var ϕ

)

.
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Since ‖Ũ (r+1)‖ ≤ 1, ‖C (r+1)‖ ≤ 1, ‖S(r, r + 1)‖ = ‖A‖ and |I (r)| = |I (k)|/ρr−k
1 ,

by (4.25),

‖(S"(k, r + 1))−1 ◦ Ũ (r+1) ◦ C (r+1) ◦ S(r, r + 1) ◦ P(r)0 ◦ S(k, r)(ϕ)‖
≤ (r + 1− k)M−1

ρr−k
1

‖A‖(r − k + 1)M
(

C1|I (k)|L V (ϕ′)+ C2 Var ϕ
)
.

It follows that ΔP̃(k) is well defined and

‖ΔP̃(k)ϕ‖ ≤ K
(

C1|I (k)|L V (ϕ′)+ C2 Var ϕ
)
,

where K =∑
j≥0( j + 1)2Mρ

− j
1 ‖A‖. This concludes the proof. �

Let P̃(k) : ACs
0(α∈A I (0)α )→ ACs

0(α∈A I (0)α )/Γ
(k)

s be given by

P̃(k) = Ũ (k) ◦ P(k)0 −ΔP̃(k).

Since ‖P(k)0 ◦ S(k)(ϕ)‖sup ≤ Var(S(k)(ϕ)) ≤ Var ϕ for ϕ ∈ BV(α∈A I (k)α ), by
Lemma 4.4, we get

‖P̃(k)ϕ‖
sup /Γ (k)s

≤ K C1|I (k)|L V (ϕ′)+ (K C2 + 1)Var ϕ. (4.26)

Following the arguments in the proof of Lemma 4.2 for all 0 ≤ k ≤ k′ and ϕ ∈
ACs

0(α∈A I (k)α ) we get

S"(k, k
′) ◦ P̃(k)ϕ = P̃(k

′) ◦ S(k, k′)ϕ, (4.27)

Lemma 4.5 Assume that T is of periodic type. If ϕ ∈ ACs
0(α∈A I (0)α ) and ϕ̂+Γ (0)s =

P̃(0)ϕ then ϕ̂ − ϕ ∈ Γ (0)0 and there exist C ′′′1 ,C
′′′
2 ,C

′′′
3 > 0

‖S(k)ϕ̂‖sup ≤ exp(−kθ−)(C ′′′1 L V (ϕ′)+ C ′′′2 Var ϕ + C ′′′3 ‖ϕ̂‖sup).

Proof For simplicity, assume that |I (0)| = 1. Since

Ũ (0)ϕ̂ = P̃(0)ϕ = Ũ (0) ◦ P(0)0 ϕ −ΔP̃(0)ϕ = Ũ (0)ϕ − Ũ (0) ◦ C (0)ϕ −ΔP̃(0)ϕ,

we have ϕ − ϕ̂ ∈ Ũ (0) ◦ C (0)ϕ +ΔP̃(0)ϕ ⊂ Γ (0)0 . In view of (4.24) and (4.27),

Ũ (k) ◦ S(k)ϕ̂ = S"(k) ◦ Ũ (0)ϕ̂ = S"(k) ◦ P̃(0)ϕ = P̃(k) ◦ S(k)ϕ.
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Therefore, by (4.26), (3.23) and (4.23), we have

‖Ũ (k) ◦ S(k)ϕ̂‖
sup /Γ (k)s

= ‖P̃(k)(S(k)ϕ)‖
sup /Γ (k)s

≤ K C1|I (k)|L V (S(k)(ϕ′))+ (K C2 + 1)Var(S(k)ϕ)

≤ max(1, k M )|I (k)|(C ′1L V (ϕ′)+ C ′2 Var(ϕ)).

It follows that for every k ≥ 0 there exists ϕk ∈ ACs
0(α∈A I (k)α ) and hk ∈ Γ (k)s such

that

S(k)ϕ̂=ϕk + hk , ‖ϕk‖sup≤max(1, k M )|I (k)| (C ′1L V (ϕ′)+ C ′2 Var ϕ
)
. (4.28)

As ϕk+1+ hk+1 = S(k+ 1)ϕ̂ = S(k, k+ 1)(S(k)ϕ̂) = S(k, k+ 1)ϕk + At hk , setting
Δhk+1 = hk+1 − At hk (Δh0 = h0) we have Δhk+1 = −ϕk+1 + S(k, k + 1)ϕk .
Moreover, by (4.28),

‖Δhk+1‖ = ‖ϕk+1 − S(k, k + 1)ϕk‖sup ≤ ‖ϕk+1‖sup + ‖S(k, k + 1)ϕk‖sup

≤ (1+ ‖A‖)(k + 1)M |I (k+1)| (C ′1L V (ϕ′)+ C ′2 Var ϕ
)

and ‖Δh0‖ = ‖ϕ̂ − ϕ0‖sup ≤ ‖ϕ̂‖sup + (C ′1L V (ϕ′)+ C ′2 Var ϕ).

Since hk =∑
0≤l≤k(A

t )k−lΔhl and Δhl ∈ Γ (k′)s , by (4.3),

‖hk‖ ≤
∑

0≤l≤k

‖(At )k−lΔhl‖ ≤
∑

0≤l≤k

Ce−θ−(k−l)‖Δhl‖

≤ Ce−θ−k (‖ϕ̂‖sup + (C ′1L V (ϕ′)+ C ′2 Var ϕ)
)

+
∑

1≤l≤k

Ce−θ−(k−l)−θ1l(1+ ‖A‖)l M (
C ′1L V (ϕ′)+ C ′2 Var ϕ

)

≤ e−θ−k(C ′′3‖ϕ̂‖sup + C ′′1 L V (ϕ′)+ C ′′2 Var ϕ).

In view of (4.28), it follows that

‖S(k)ϕ̂‖sup ≤ ‖ϕk‖sup + ‖hk‖
≤ e−θ−k(C ′′′1 L V (ϕ′)+ C ′′′2 Var ϕ + C ′′′3 ‖ϕ̂‖sup).

�
The following Proposition was proved in [26].

Proposition 4.2 For each bounded function ϕ : I → R, x ∈ I and n > 0 we have

|ϕ(n)(x)| ≤ 2
∑

l∈N

‖Z(l + 1)‖‖S(l)ϕ‖sup. (4.29)
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Proof of Proposition 4.1 Since ϕ′−Leb(ϕ′) ∈ LSSG0(α∈A Iα), setting h := h(ϕ′−
Leb(ϕ′)) ∈ Γ0, we have h(ϕ′ −Leb(ϕ′)−h) = 0. Choose ϕ1 ∈ AC0(α∈A Iα) so that
ϕ′1 = ϕ′ − Leb(ϕ′)− h. Then ϕ1 ∈ ACs

0(α∈A Iα). In view of Lemma 4.5, there exist
h1 ∈ Γ0 and C > 0 such that the function ϕ2 := ϕ1 + h1 ∈ AC0(α∈A Iα) satisfying

‖S(k)(ϕ2)‖sup ≤ C exp(−θ−k)(L V (ϕ′2)+ Var ϕ2 + ‖ϕ2‖sup).

Therefore, by Proposition 4.2, for every x ∈ I and n > 0,

|ϕ(n)2 (x)| ≤ 2
∑

l≥0

‖Z(l + 1)‖‖S(l)ϕ2‖sup

≤ 2‖A‖C
1− exp(−θ−) (L V (ϕ′2)+ Var ϕ2 + ‖ϕ2‖sup).

In view of Proposition 2.4, it follows that ϕ2 is a coboundary with a continuous transfer
function. Let ψ := ϕ − ϕ2 ∈ AC0(α∈A Iα).

ψ ′ = ϕ′ − ϕ′1 + (ϕ1 − ϕ2)
′ = ϕ′ − (ϕ′ − Leb(ϕ′)− h) = Leb(ϕ′)+ h ∈ Γ.

It follows that ψ ∈ PL0(α∈A Iα). Since h ∈ Γ0 and ψ ′ = Leb(ϕ′)+ h, we also get
s(ψ) = Leb(ψ ′) = Leb(ϕ′) = s(ϕ).

Suppose that h ∈ Γ (0)s . In view of Proposition 4.2 and (4.4), for every x ∈ I and
n > 0,

|h(n)(x)| ≤ 2
∑

l≥0

‖A‖‖S(l)h‖sup = 2
∑

l≥0

‖A‖‖(At )nh‖

≤ 2C‖A‖
∑

l≥0

e−lθ− <∞.

By Proposition 2.4, h is a coboundary with a continuous transfer function, which
completes the proof. �

5 Ergodicity

In this section we prove ergodicity for the corrected cocycle over IETs (Theorem 1.2).
Let h be the correction operator defined in Sect. 4.1.

Theorem 5.1 Let T : I → I be an IET of hyperbolic periodic type and ϕ ∈
LSSG0(α∈A Iα) such that h(ϕ) = 0. If L (ϕ) 	= 0 (i.e. not all constants C±α are
zero) then the skew product Tϕ is ergodic.

The proof is given at the end of Sect. 5.2. Theorem 5.1 implies Theorem 1.2:

Proof of Theorem 1.2 Given ϕ ∈ LSSG0(α∈A Iα) such that L (ϕ) 	= 0, let χ =
h(ϕ). By Theorem 4.1, χ is constant on each Iα , belongs to a g − 1 dimensional
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subspace of Γ (0) and since h(ϕ − χ) = 0, the skew product Tϕ−χ is ergodic by
Theorem 5.1. �

For the rest of this section, assume that T : I → I is an IET of hyperbolic peri-
odic type, |I | = 1 and ϕ is a cocycle in LSSG0(α∈A Iα) such that L (ϕ) 	= 0.
To prove Theorem 5.1, we will use the ergodicity criterion given by Proposition 2.3
in Sect. 2.1. In Sect. 5.1 we will construct the rigidity sets for Proposition 2.3 and
prove some preliminary Lemmas, while in Sect. 5.2 we will verify that they satisfy
the assumptions of Proposition 2.3.

5.1 Rigidity sets with large oscillations of Birkhoff sums

Katok proved in [20] that for any interval exchange transformation there exists a
sequence of Borel sets (Ξn) and an increasing sequence of numbers (qn) and δ > 0
such that

Leb(Ξn) ≥ δ, Leb(Ξn�T−1Ξn)→ 0 and sup
x∈Ξn

d(x, T qn x)→ 0. (5.1)

We call sequences (Ξn) and (qn) with the above property rigidity sets and rigidity
times respectively. We present here below a particular variation on the construction
of Katok, using Rauzy–Veech induction (Definition 5.1), which allows us to obtain
further properties (in particular Lemma 5.3) needed in the following sections.6

Notation Let α ∈ A be such that π0(α) = 1, i.e. Iα is the first of the intervals
exchanged by T . Notice that for each n ≥ 0 we have π(n)0 (α) = 1.

Lemma 5.1 For every ϕ ∈ LSG(α∈A Iα) with L (ϕ) 	= 0 there exists β0 ∈ A such
that for every integer n ≥ 2 there exists βn ∈ A and jn ∈ N so that at least one of the
following two cases holds:

– Case (R): C−β0
	= 0 and rβ0 = T̂ jn r (n)βn

,

– Case (L): C+β0
	= 0 and lβ0 = T jn l(n)βn

,

where in both cases, one has

Qα(n − 2) ≤ jn < Qβn (n). (5.2)

Moreover, in both cases the closures of the intervals T i I (n)βn
for Qβn (n) ≤ i ≤

Qβn (n)+ Qα(n − 2) do not contain any point of End(T ) = {rα, lα, α ∈ A}.
Proof Since L (ϕ) 	= 0, not all constants C±α are zero. If there exists at least one β
such that C−β 	= 0, pick as β0 one of these β. In this case let χ be the permutation

given by Lemma 3.1 applied to k = 0 and k′ = n and let βn := χ−1(β0). Then by

6 A different variant of Katok’s construction was also used by the second author in [39,40]. We remark
that the second property in (5.1) is not always required in the definition of rigidity sets (for example, it is
not assumed in [34,39,40]), but it is important for us for the proof of ergodicity.
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1338 K. Frączek, C. Ulcigrai

Lemma 3.3 there exists 0 ≤ jn < Qβn (n) such that (T̂ ) jn r (n)βn
= rβ0 , i.e. we have

Case (R). Consider now the case in which C−α = 0 for all α ∈ A. Since ϕ has singu-
larities of geometric type, at least one among C+

π−1
0 (1)

and C+
π−1

1 (1)
is zero. Thus, since

ϕ ∈ LSG satisfy the symmetry condition (1.3), there must exists β0 such that C+β0
	= 0

and β0 /∈ {π−1
0 (1), π−1

1 (1)}. In this case set βn = β0 for all n. By Lemma 3.3 there

exists 0 ≤ jn < Qβn (n) such that (T ) jn l(n)βn
= lβ0 , i.e. we have Case (L).

Remark that I (n−1) ⊂ I (n−2)
α , because, since Z(n − 2, n − 1) = A is a positive

matrix, each x ∈ I (n−1) has to visit I (n−2)
α before its first return time to I (n−1).

Repeating the argument one more time, we see that I (n) is strictly contained in I (n−2)
α

(since I (n) and I (n−2)
α share 0 as left endpoint, this means that the right endpoint of

I (n) is in the interior of I (n−2)
α ). Remark that the interiors of the intervals T j I (n−2)

α

for 0 ≤ j < Qα(n − 2) do not contain any point of End(T ). This remark implies
that, since in Case (L) we have βn 	= (π(n)0 )−1(1) (i.e. l(n)βn

	= 0), in both Cases one
has jn ≥ Qαn (n − 2) and concludes the proof that (5.2) holds in all Cases. Since
T Qβn (n) I (n)βn

⊂ I (n) � I (n−2)
α and, in Case (L), we also have βn 	= (π

(n)
1 )−1(1)

(i.e. T Qβn (n)l(n)βn
	= 0), this remark also shows that the last part of the lemma holds.

�

Definition 5.1 (Class of rigidity sets) For each n ∈ N, let β0, βn and jn be given by
Lemma 5.1, so that we have C−β0

	= 0 and T̂ jn rβn = rβ0 where Qα(n − 2) ≤ jn <

Qβn (n) (Case (R)), or C+β0
	= 0 and lβ0 = T jn l(n)βn

where Qα(n − 2) ≤ jn < Qβn (n)
(Case (L)). Set qn := Qβn (n) and pn := Qα(n − 2).

Let J (n)0 ⊂ I (n)βn
be any subinterval such that |J (n)0 | ≥ c|I (n)βn

| for some c independent

on n. For each 0 ≤ k < pn set J (n)k := T k J (n)0 and let

Ξn :=
pn−1⋃

k=0

J (n)k . (5.3)

Lemma 5.2 For any choice of J (n)k as in Definition 5.1, the sets (Ξn) defined by (5.3)
are rigidity sets with rigidity times (qn).

Proof From (2.9), (2.10) and from Qα(n) ≤ ‖A‖2 Qα(n − 2) it follows that

|Ξn| =
pn−1∑

k=0

|J (n)k | ≥ c Qα(n − 2)|I (n)βn
| ≥ c|I (0)|

dν(A)2‖A‖3 . (5.4)

It is easy to check that for all x ∈ Ξn, d(T qn x, x) ≤ |I (n)| (we refer to [39] for details)
and that sinceΞn is a tower over a subset of I (n)βn

, |ΞnΔT−1Ξn| ≤ |I (n)|, which tends
to zero by minimality of T . Thus the conditions in (5.1) hold. �
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We will now choose J (n)0 ⊂ I (n)βn
so that if we set J (n)k = T k J (n)0 , then for each

x ∈ J (n)k = T k J (n)0 , 0 ≤ k < pn , the Birkhoff sums (ϕ(qn))′′(x) are large, in the pre-
cise sense of Lemma 5.5 below. The rigidity sets (Ξn) used in the proof of ergodicity
(in Sect. 5.2) will be the ones obtained by Definition 5.1 from these subintervals J (n)k .

We will also show that for each 0 ≤ k < pn we can choose a subinterval J̃ (n)k ⊂ J (n)k

so that (ϕ(qn))′(x) is also large for x ∈ J̃ (n)k in the sense of Corollary 5.1 below. Since
the construction is basically symmetric in Case (R) and Case (L), we will give all the
details in Case (R) and only the definitions in Case (L).

Definition 5.2 Set [ak, bk) := T k I (n)βn
for 0 ≤ k < pn , where βn, pn are as in Defini-

tion 5.1. Recall that λ(n)βn
= |I (n)βn

|. Fix 0 ≤ c < 1/2 and set

J (n)k : =
(

bk − cλ(n)βn
, bk −

cλ(n)βn

2

)
in Case (R) ,

J (n)k : =
(

ak +
cλ(n)βn

2
, ak + cλ(n)βn

)
in Case (L).

(5.5)

Notice that since 0 < c < 1/2 we have the inclusions

J (n)k ⊂
(

ak +
λ
(n)
βn

2
, bk

)
in Case (R),

J (n)k ⊂
(

ak, ak +
λ
(n)
βn

2

)
in Case (L).

(5.6)

Lemma 5.3 In Case (R), if x ∈ J (n)k , for each 0 ≤ j < qn we have

(i) {T j x − lα} ≥ λ(n)βn
/2 for all α ∈ A;

(ii) {rα − T j x} ≥ λ(n)βn
/ν(A) for all α such that C−α 	= 0 and α 	= β0;

(iii) {rβ0 − T j x} ≥ λ
(n)
βn
/ν(A) with the only exception of j = jn − k, for which

cλ(n)βn
/2 ≤ {rβ0 − T jn−k x} ≤ cλ(n)βn

;

Moreover, for all x ∈ J (n)k ,
(iv) the minimum spacing of points in {T j x, 0 ≤ j < qn}, i.e. min{|T i x − T j x |,

for 0 ≤ i 	= j < qn}, is greater than λ(n)βn
.

Remark 5.1 In Case (L), one can state and prove a Lemma analogous7 to Lemma 5.3,
in which the role of {rα − T j x} and {T j x − lα} is reversed.

Proof Recall that J (n)0 is contained in I (n)βn
which is a continuity interval for T qn and

T qn I (n)βn
⊂ I (n) is contained in I (n−2)

α which is a continuity interval for each T k with

7 In the version for Case (L) the statement and the proof is actually simpler, since there is not need to
assume anything as α such that C−α 	= 0 in Part (ii).
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1340 K. Frączek, C. Ulcigrai

0 ≤ k < Qα(n−2). This implies that, for each 0 ≤ k < pn = Qα(n−2), the images
T j T k I (n)βn

for j = 0, . . . , qn − 1 do not contain any lα or rα in their interiors.

Thus, since J (n)k ⊂ T k I (n)βn
, for each x ∈ J (n)k , j = 0, . . . , qn − 1 and α ∈ A we

have that {T j x − lα} is at least the distance of x from the left endpoint of T k I (n)βn
. By

(5.6) this gives that {T j x − lα} ≥ λ(n)βn
/2, i.e. proves (i).

For any 0 ≤ k < pn , by Definition 5.1, since b0 = r (n)βn
, we have T̂ jn−kbk =

T̂ jn b0 = rβ0 and jn−k ≥ 0. If x ∈ J (n)k , by (5.6), cλ(n)βn
/2 ≤ bk− x ≤ cλ(n)βn

and since

T̂ jn−k is an isometry on the interval [x, bk], this gives cλ(n)βn
/2 ≤ rβ0−T jn−k x ≤ cλ(n)βn

,

which gives cλ(n)βn
/2 ≤ {rβ0 − T jn−k x} ≤ cλ(n)βn

in (iii).

Let us complete the proof of (iii) and prove (ii). Let x ∈ J (n)k and let us first consider

the case 0 ≤ j < qn−k. Remark that the images T̂ l Î (n)β for 0 ≤ l < Qβ(n) and β ∈ A
are disjoint and give a partition of Î , denoted by Pn . By Lemma 3.3, {rα, α ∈ A} are
contained in the orbits of the right endpoints of the intervals I (n)β , β ∈ A. Moreover,

there exists a unique β ′ such that the tower T̂ l Î (n)
β ′ , 0 ≤ l < Qβ ′(n) contains both rα1

and rα0 = T̂ rα1 .
By the Keane condition, since the T̂ -orbit of b0 = r (n)βn

contains rβ0 (recall that
by definition χ(βn) = β0), it does not contain any other rα but rβ0 , unless either rα
(which belongs to the orbit) or rβ0 are equal to |I |. In the latter case, the T̂ -orbit of

b0 = r (n)βn
contains rαυ (recall that αυ ∈ {π−1

0 (d), π−1
1 (d)}) and, again by Keane’s

condition, no other rα . Indeed, one either has αυ = π−1
1 (d) and T̂ (rαυ ) = |I | = rβ0

or αυ = π−1
0 (d) and T̂ rβ0 = rαυ = |I | with β0 = π−1

1 (d). Notice that in this case,

though, C−αυ = 0. Thus, if x ∈ J (n)k , for all 0 ≤ j < qn − k with the exception of
j = jn − k and all α for which C−α 	= 0, we have that {rα − T j x} is at least the
minimum length of an element of the partition Pn , which, by balance (2.9) of the
I (n)β , β ∈ A, is at least λ(n)βn

/ν(A).

Let us now consider qn−k ≤ j < qn . By the definition of return time qn, T̂ qn Î (n)βn
⊂

Î (n) � Î (n−2)
α . Thus, for all qn−k ≤ j < qn, T j J (n)k is contained in the Rohlin tower

T̂ l Î (n−2)
α , 0 ≤ l < pn = Qα(n − 2), which does not contain any rα, α ∈ A (see

Lemma 5.1). Therefore if x ∈ J (n)k then T j x belongs to an interval of the partition Pn

whose right endpoint is not of the form rα, α ∈ A. It follows that {rα−T j x} is at least
the minimum length of an element of the partition Pn , which is at least λ(n)βn

/ν(A).
This concludes the proof of (ii) and (iii).

Property (iv) follows from the fact already remarked that for each 0 ≤ k < pn the
intervals T i T k I (n)βn

for 0 ≤ i < qn are disjoint and T i is an isometry on T k I (n)βn
. �

Lemma 5.4 Let ϕ ∈ LSSG0(α∈A Iα). Then for each x ∈ J (n)0 and 0 ≤ m < pn we
have

|ϕ(qn)(x)− ϕ(qn)(T m x)| ≤ C2 := dν(A)(4d max(1/c, ν(A))+ M)L (ϕ),

where M > 0 is the constant in Corollary 3.1 and c the one in Definition 5.2.
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Proof Assume without loss of generality that |I | = 1. Consider the Case (R). First
note that, if [x, T qn x] denotes the interval with endpoints x and T qn x , we have

|ϕ(qn)(x)− ϕ(qn)(T m x)| = |ϕ(m)(x)− ϕ(m)(T qn x)|
≤

∫

[x,T qn x]
|(ϕ(m))′(y)| dy.

Fix y ∈ [x, T qn x] ⊂ I (n). As we mentioned before, the images T j I (n) for 0 ≤ j < pn

do not contain any lα or rα in their interiors. Therefore, for every 0 ≤ j < m

{T j y − lα} ≥ min({T j x − lα}, {T j T qn x − lα}),
{rα − T j y} ≥ min({rα − T j x}, {rα − T j T qn x})

for each α ∈ A. Since T j T qn x = T qn−1(T j+1x) with 0 < j + 1 ≤ m < pn , in view
of Lemma 5.3, applied to x ∈ J (n)0 and T j+1x ∈ J (n)j+1, we have {T j y − lα} ≥ λ(n)βn

/2

for all α ∈ A and {rα − T j y} ≥ cλ(n)βn
/2 if C−α 	= 0, where c = min(c, 1/ν(A)).

Therefore,

yl
α = min

0≤ j<m
(T j y − lα)

+ ≥ λ(n)βn
/2 for all α ∈ A,

yr
α = min

0≤ j<m
(rα − T j y)+ ≥ cλ(n)βn

/2 if C−α 	= 0.

In view of Corollary 3.1 applied to k = 0 and k′ = m and since c ≤ 1, it follows that

|(ϕ(m))′(y)| ≤
∑

α∈A

|C+α |
yl
α

+
∑

α∈A

|C−α |
yr
α

+ ML (ϕ)m ≤
(

4d

cλ(n)βn

+ Mqn

)

L (ϕ).

Therefore

|ϕ(qn)(x)− ϕ(qn)(T m x)| ≤ |x − T qn x |
(

4d

cλ(n)βn

+ Mqn

)

L (ϕ)

≤ |I (n)|
(

4d

cλ(n)βn

+ Mqn

)

L (ϕ)

≤ dν(A)|I (n)βn
|
(

4d

cλ(n)βn

+ Mqn

)

L (ϕ)

≤ dν(A)(4d/c + M)L (ϕ),

since λ(n)βn
= |I (n)βn

| and |I (n)βn
|qn = |I (n)βn

|Qβn (n) ≤ 1. The proof of Case (L) is similar.
�

For the next Lemma 5.5 and its Corollary 5.1, we will consider cocycles ψ ∈
LSSG0(α∈A Iα), with an additional assumption. We will consider ψ of the usual
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form, that, for |I | = 1, is

ψ(x) = −
∑

α∈A
C+α log{x − lα} −

∑

α∈A
C−α log{rα − x} + gψ(x), (5.7)

but in addition we will assume that gψ is a C 2-function on each Int Iα, α ∈ A and
g′ψ ∈ BV 1. This allows us to consider ψ ′′.

Lemma 5.5 Let ψ ∈ LSSG0(α∈A Iα) be such that gψ is a C 2-function on each

Int Iα, α ∈ A and g′ψ ∈ BV 1. Consider the intervals J (n)k defined in (5.5) with

c :=
(
|C±β0

|/(π2ν(A)2L (ϕ)+ ‖g′′ψ‖sup)
)1/2

. (5.8)

Then for each x ∈ J (n)k we have |(ψ ′′)(qn)(x)| ≥ c1/(λ
(n)
βn
)2 where the constant c1 > 0

is explicitly given by c1 := π2ν(A)2L (ψ)/3.

Proof Since g′ψ ∈ BV 1, we can differentiate (5.7) twice and get

ψ ′′(x) = −
∑

α∈A

C+α
{x − lα}2 −

∑

α∈A

C−α
{rα − x}2 + g′′ψ(x).

Assume that Case (R) holds and take x ∈ J (n)k . By Lemma 5.3, the minimum of

{T j x − lα} for α ∈ A and 0 ≤ j < qn is larger than λ(n)βn
/2 and the points {T j x, 0 ≤

j < qn} are at least λ(n)βn
-spaced, so we have the following upper bound:

∣
∣
∣
∣
∣
∣

∑

0≤ j<qn

C+α
{T j x − lα}2

∣
∣
∣
∣
∣
∣
≤

qn∑

j=1

|C+α |
j2(λ

(n)
βn
/2)2

≤ 4π2

6

|C+α |
(λ
(n)
βn
)2
.

Reasoning in the same way, from (ii) in Lemma 5.3, for each rα such that C−α 	= 0
and α 	= β0 we get an analogous estimate for

∣
∣
∣
∣
∣
∣

∑

0≤ j<qn

C−α
{rα − T j x}2

∣
∣
∣
∣
∣
∣
≤ π

2ν(A)2

6

|C−α |
(λ
(n)
βn
)2
.

Clearly, the estimate holds trivially also if C−α = 0, so it holds for all α 	= β0. Again

by (iii) in Lemma 5.3, we have that {rβ0 − T jn−k x} ≤ cλ(n)βn
, so that

∣
∣
∣
∣
∣

C−β0

{rβ0 − T jn−k x}2
∣
∣
∣
∣
∣
≥ |C−β0

|
c2(λ

(n)
βn
)2
.
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If we exclude T jn−k x , for the other points in the orbit {T j x, 0 ≤ j < qn, j 	= jn−k}
we can reason as above using the lower bound of (iii) in Lemma 5.3 on the minimal
value of {rβ0 − T j x} and the lower bound on the spacing in (iv) to get

∣
∣
∣
∣
∣
∣

∑

0≤ j<qn

C−β0

{rβ0 − T j x}2 −
C−β0

{rβ0 − T jn−k x}2

∣
∣
∣
∣
∣
∣

≤
qn−1∑

j=1

|C−β0
|

j2(λ
(n)
βn
/ν(A))2

≤ π
2ν(A)2

6

|C−β0
|

(λ
(n)
βn
)2
.

Remark that, since g′ψ ∈ BV 1,

|(g′′ψ)(qn)(y)| ≤ qn‖g′′ψ‖sup ≤ ‖g′′ψ‖sup/(λ
(n)
βn
)
2

for each y ∈ I

because λ(n)βn
qn = |I (n)βn

|Qβn (n) ≤ 1 and 1/λ(n)βn
≤ 1/(λ(n)βn

)
2
. Combining all the above

estimates and recalling that L (ψ) =∑
α(|C+α | + |C−α |), we get

|(ψ ′′)(qn)(x)| ≥
∣
∣
∣
∣
∣

∣
∣
∣

C−β0

{rβ0 − T jn−k x}2
∣
∣
∣−

∣
∣
∣(ψ ′′)(qn)(x)− C−β0

{rβ0 − T jn−k x}2
∣
∣
∣

∣
∣
∣
∣
∣

≥ |C−β0
|

c2
(
λ
(n)
βn

)2 −
2π2ν(A)2L (ψ)

3
(
λ
(n)
βn

)2 − ‖g′′ψ‖sup
(
λ
(n)
βn

)2 .

Recalling the definition (5.8) of c, this gives

|(ψ ′′)(qn)(x)| ≥ π2ν(A)2L (ψ)/3(λ(n)βn
)
2

and concludes the proof of the Lemma for the Case (R). The Case (L) is similar. �
Corollary 5.1 If gψ is a C 2-function on Int Iα, α ∈ A and g′ψ ∈ BV 1 then for every

0 ≤ k < pn there exists a subinterval J̃ (n)k ⊂ J (n)k such that | J̃ (n)k | ≥ |J (n)k |/3 and for

each x ∈ J̃ (n)k we have

|(ψ(qn))′(x)| ≥ c′qn, where c′ = π2ν(A)2cL (ψ)/36.

Proof By Lemma 5.5, the sign of (ψ(qn))′′ is constant on J (n)k , so assume without

loss of generality that (ψ(qn))′′ > 0, so that (ψ(qn))′ is increasing on J (n)k . Assume

we are in Case (R). Consider the value of (ψ(qn))′ at the middle point bk − 3cλ(n)βn
/4

of J (n)k . If (ψ(qn))′(bk − 3cλ(n)βn
/4) ≥ 0, let J̃ (n)k be the right third subinterval of

J (n)k , i.e. J̃ (n)k :=
[
bk − 2cλ(n)βn

/3, bk − cλ(n)βn
/2

]
. Since ψ ′ ◦ T i is continuous on

123



1344 K. Frączek, C. Ulcigrai

J (n)k for 0 ≤ i < qn , by mean value theorem and by monotonicity, there exists

ξ ∈ (bk − 3cλ(n)βn
/4, bk − 2cλ(n)βn

/3) such that for each x ∈ J̃ (n)k

(ψ(qn))′(x) ≥ (ψ(qn))′
(

bk −
2cλ(n)βn

3

)

= (ψ(qn))′
(

bk −
3cλ(n)βn

4

)

+ (ψ(qn))′′(ξ)
λ
(n)
βn

c

12
≥ cc1

12λ(n)βn

,

where the latter inequality follows from the positivity of (ψ(qn))′(bk − 3cλ(n)βn
/4) and

the lower bound (ψ(qn))′′(ξ) ≥ c1/(λ
(n)
βn
)
2

given by Lemma 5.5.

Similarly, if (ψ(qn))′(bk − 3cλ(n)βn
/4) ≤ 0, we can let J̃ (n)k be the left third subinter-

val of J̃ (n)k , i.e. J̃ (n)k :=
[
bk − cλ(n)βn

, bk − 5cλ(n)βn
/6

]
and reasoning as above we get

(ψ(qn))′(x) ≤ − c1c

12λ(n)βn

for all x ∈ J̃ (n)k . Recalling that λ(n)βn
qn ≤ 1 and the definition

of c1, this concludes the proof in Case (R). Case (L) is completely symmetric. �

5.2 Tightness and ergodicity

In this subsection we conclude the proof of Theorem 5.1. We will verify that the
assumption of the ergodicity criterion in Proposition 2.3 hold for the rigidity sets (Ξn)

and rigidity times (qn) constructed in the previous Sect. 5.1. The two following Prop-
ositions 5.1 and 5.2 each provide the proof of one of the assumptions of the ergodicity
criterium.

Proposition 5.1 Let T : I → I be an IET of periodic type. For every cocycle ϕ ∈
LSSG0(α∈A Iα) with h(ϕ) = 0 and L (ϕ) 	= 0 and for any rigidity sets (Ξn) and
rigidity times (qn) as in Definition 5.1 there exists C > 0 such that

∫

Ξn

|ϕ(qn)(x)|dx ≤ C for all n ≥ 1. (5.9)

Proof Let (Ξn) and (qn) by any rigidity sets and times as in Definition 5.1. Let us
first prove that there exists a constant C1 > 0 such that for any n ∈ N and for any
subinterval J ⊂ I (n)βn

∫

J

|ϕ(qn)(x)| dx ≤ C1|I (n)|. (5.10)

Recall that for x ∈ I (n)βn
we have S(n)(ϕ)(x) = ϕ(Qβn (n))(x) = ϕ(qn)(x). Hence

∫

J

|ϕ(qn)(x)| dx =
∫

J

|S(n)(ϕ)| dx ≤ ‖S(n)(ϕ)‖L1(I (n))
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Thus, (5.10) follows from Theorem 4.1.
Let us now fix any 0 ≤ k < pn . Given x ∈ J (n)k , let x = T k y for some y ∈ J (n)0 .

By Lemma 5.4, |ϕ(qn)(y)− ϕ(qn)(T k y)| ≤ C2, so

|ϕ(qn)(x)| ≤ |ϕ(qn)(T−k x)| + C2 for each x ∈ J (n)k .

Thus, by (5.10), it follows that

∫

J (n)k

|ϕ(qn)(x)|dx ≤
∫

J (n)k

|ϕ(qn)(T−k x)|dx + C2|J (n)k |

=
∫

J (n)0

|ϕ(qn)(x)|dx + C2|J (n)k | ≤ (C1 + C2)|I (n)|.

Consequently,

∫

Ξn

|ϕ(qn)| dx =
pn−1∑

k=0

∫

J (n)k

|ϕ(qn)| dx ≤ (C1 + C2)pn|I (n)|

≤ (C1 + C2)|I (n−2)
α |Qα(n − 2) ≤ C1 + C2,

which concludes the proof. �

Proposition 5.2 Let T : I → I be an IET of periodic type. For each ϕ ∈
LSSG0(α∈A Iα) such that L (ϕ) 	= 0 there exists rigidity sets (Ξn) and rigidity
times (qn) with limn→∞ Leb(Ξn) = δ > 0 and c > 0 such that for all s large enough
we have

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π isϕ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
≤ c < δ. (5.11)

Proof Since gϕ ∈ BV1(α∈A Iα), by Corollary 2.1, gϕ is cohomologous via a contin-
uous transfer function to a piecewise linear function. Thus, there exists a continuous
h : I → R such that ϕ = ψ + h ◦ T − h and gψ is piecewise linear. In particular,
g′ψ ∈ BV 1, so we can apply Corollary 5.1 toψ . Let (Ξn) and let (qn) be the sequences
of rigidity sets and times as in Definitions 5.1 and 5.2, where the constant c is given
by (5.8). In view of (5.4), passing to a subsequence if necessary, we can assume that
limn→∞ Leb(Ξn) = δ > 0.
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Since h is continuous and by the properties of rigidity sets d(T qn x, x) → 0, we
have

lim
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π is(ψ(qn )(x)+h(T qn x)−h(x)) dx −
∫

Ξn

e2π isψ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
= 0. (5.12)

In view of (5.12), since ϕ(qn) = ψ(qn) + h ◦ T qn − h, it is enough to prove (5.11)
for ψ . Since Ξn is the union of the intervals J (n)k for k = 0, . . . , pn − 1, we will

estimate the integral over each J (n)k := [ak, bk]. Let J̃ (n)k := [̃ak, b̃k] ⊂ J (n)k , for
k = 0, . . . , pn − 1, be the subintervals given by Corollary 5.1. We will first control
the integral over each J̃ (n)k . Since a.e. d

dx (ψ
(qn)) = ψ ′(qn) and |ψ ′(qn)| ≥ c′qn > 0 on

each J̃ (n)k (Corollary 5.1), using integration by parts we get

∣
∣
∣
∣
∣
∣
∣
∣

∫

J̃ (n)k

eisψ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

b̃k∫

ãk

d
dx (e

isψ(qn )(x))

isψ ′(qn)(x)
dx

∣
∣
∣
∣
∣
∣
∣

= 1

|s|

∣
∣
∣
∣
∣
∣
∣

[
eisψ(qn )(x)

ψ ′(qn)(x)

]b̃k

ãk

−
b̃k∫

ãk

eisψ(qn )(x) d

dx

(
1

ψ ′(qn)(x)

)

dx

∣
∣
∣
∣
∣
∣
∣
. (5.13)

Let us estimate each of the two terms in (5.13) separately. By Corollary 5.1,

∣
∣
∣
∣
∣
∣

[
eisψ(qn )(x)

ψ ′(qn)(x)

]b̃k

ãk

∣
∣
∣
∣
∣
∣
≤ 2

min
z∈ J̃ (n)k

|ψ ′(qn)(z)| ≤
2

c′qn
. (5.14)

Recall that for every C 1-function f : J → R we have Var( f )|J =
∫

J | f ′| dx and

that if | f | > 0 then Var(1/ f )|J ≤ Var( f )|J /(minJ f 2). Since ψ(qn) is C 1 on J̃ (n)k ,
using again Corollary 5.1 we estimate the second term by

∣
∣
∣
∣
∣
∣
∣

b̃k∫

ãk

eisψ(qn )(x) d

dx

( 1

ψ ′(qn)(x)

)
dx

∣
∣
∣
∣
∣
∣
∣
≤ Var

(
1

ψ ′(qn)

)∣∣
∣
∣

J̃ (n)k

≤ 1

c′2q2
n

Var
(
ψ ′(qn)

)∣∣
∣

J̃ (n)k

.

We can write

Var
(
ψ ′(qn)

)∣∣
∣

J̃ (n)k

= Var

⎛

⎝
qn−1∑

j=0

ψ ′ · T j

⎞

⎠
∣
∣
∣
∣

J̃ (n)k

≤
qn−1∑

j=0

Var
(
ψ ′

)∣∣
T j J̃ (n)k

.
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Assume without loss of generality that |I | = 1. Thus

ψ ′(x) = −
∑

α∈A

C+α
{x − lα} +

∑

α∈A

C−α
{rα − x} + g′ψ(x),

where g′ψ is of bounded variation. By Lemma 5.3, if we are in the Case (R) of
Definition 5.2 or by Remark 5.1, if we are in the Case (L), the minimum distance
of each T j J̃ (n)k from each lα, α ∈ A and rα , for all α ∈ A such that C−α 	= 0, is

at least cλ(n)βn
/2, where c := min(c, ν(A)−1) and λ(n)βn

= |I (n)βn
|. Since the intervals

T j J̃ (n)k , 0 ≤ j < qn are pairwise disjoint, it follows that

qn−1∑

j=0

Var

(
C+α

{x − lα}
)∣∣
∣
∣
T j J̃ (n)k

≤ Var

(
C+α
{x}

)∣∣
∣
∣[cλ(n)βn

/2,1]
≤ 2|C+α |

cλ(n)βn

,

qn−1∑

j=0

Var

(
C−α

{rα − x}
)∣∣
∣
∣
T j J̃ (n)k

≤ Var

(
C−α

{1− x}
)∣∣
∣
∣[0,1−cλ(n)βn

/2]
≤ 2|C−α |

cλ(n)βn

.

Moreover,

qn−1∑

j=0

Var
(

g′ψ
)∣∣
∣
T j J̃ (n)k

≤ Var
(

g′ψ
)∣∣
∣
I
.

Therefore

Var
(
ψ ′(qn)

)∣∣
∣

J̃ (n)k

=
qn−1∑

j=0

Var
(
ψ ′

)∣∣
T j J̃ (n)k

≤ 2L (ψ)

cλ(n)βn

+ Var
(

g′ψ
)∣∣
∣
I
. (5.15)

Using the estimates (5.14) and (5.15) in (5.13), for each k = 0, . . . , pn − 1 we get

∣
∣
∣
∣
∣
∣
∣
∣

∫

J̃ (n)k

eisψ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
∣

≤ 1

|s|

(
2

c′qn
+ 1

c′2q2
n

(
2L (ψ)

cλ(n)βn

+ Var
(

g′ψ
)∣∣
∣
I

))

≤ C

pn|s| ,

where C := 2/c′ + 1/c′2
(

2dν(A)2|I (0)|L (ψ)/c + Var
(

g′ψ
)∣∣
∣
I

)
, since pn ≤ qn and

λ
(n)
βn

qn = |I (n)βn
|Qβn (n) ≥ |I (0)|/dν2(A), by (2.10).
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As | J̃ (n)k | ≥ |J (n)k |/3 for all 0 ≤ k < pn , we have Leb(Ξn \ ⋃pn−1
k=0 J̃ (n)k ) ≤

2
3 Leb(Ξn), and hence

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

eisψ(qn )(x)dx

∣
∣
∣
∣
∣
∣
∣
≤ 2

3
Leb(Ξn)+

pn−1∑

k=0

∣
∣
∣
∣
∣
∣
∣
∣

∫

J̃ (n)k

eisψ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
∣

≤ 2

3
Leb(Ξn)+ C

|s| .

Consequently, whenever |s| ≥ 12C/δ,

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

eisψ(qn )(x)dx

∣
∣
∣
∣
∣
∣
∣
≤ 2

3
δ + C

|s| ≤
3

4
δ.

�
Corollary 5.2 Let T : I → I be an IET of periodic type. If ϕ ∈ LSSG0 is a cocycle
with L (ϕ) 	= 0 then ϕ is not a coboundary.

Proof Assume by contradiction that ϕ = h − h ◦ T for some measurable h : I → R,
so for any n ∈ N we have ϕ(qn) = h ◦ T qn − h. Since by Lusin’s theorem we can
approximate h by a uniformly continuous function on a set of measure tending to one
and by the properties of rigidity sets d(T qn x, x)→ 0, for every real s we have

lim sup
n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π isϕ(qn )(x) dx

∣
∣
∣
∣
∣
∣
∣
= lim sup

n→∞

∣
∣
∣
∣
∣
∣
∣

∫

Ξn

e2π is(h(T qn x)−h(x)) dx

∣
∣
∣
∣
∣
∣
∣

= lim
n→∞ Leb(Ξn) = δ,

which contradicts Proposition 5.2. Thus, ϕ cannot be a coboundary. �
Proof of Theorem 5.1 Consider the rigidity sets and times (Ξn), (qn), given by Prop-
osition 5.2. Since they belong to the class in Definition 5.1, they also satisfy Propo-
sition 5.1. Ergodicity of the skew product Tϕ : I × R → I × R now follows from
Proposition 5.1 and Proposition 5.2 by the criterion in Proposition 2.3. �

6 Reduction of locally Hamiltonian flows to skew products

In this section we prove Theorem 1.3 (all details are put in Appendix A) and Theo-
rem 1.1 (see Sect. 6.3). Let us first recall how to represent a locally Hamiltonian flow
(φt )t∈R as a special flow over an IET and set up the notation that we use in the rest of
this section.
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Ergodic properties of infinite extensions of area-preserving flows 1349

6.1 Special flow representation of locally Hamiltonian flows

Let (φt )t∈R be a locally Hamiltonian flow determined by a closed 1-form η on a sym-
plectic surface (S, ω). Recall that we assume that there are no saddle connections and
that the local Hamiltonian is a Morse function, so all zeros (elements of	) are simple
saddles. Let (F , νF ) be the measured foliation given by (φt )t∈R (see the Introduc-
tion). By a theorem of Katok (Proposition 9 in [19], see also § 3.9 in [46]), there
exists an Abelian differential α on S such that the vertical measured foliation of α
coincides with the measured foliation (F , νF ). Moreover, at each point z ∈ 	 the
Abelian differential α has zero with multiplicity 1. Denote by Xα : S \ 	 → T S
the vertical vector field, i.e. α(Xα) = i , and let (Fvt )t∈R stand for the corresponding
vertical flow on S \	. The vertical flow (Fvt )t∈R preserves the 2-form ωα = i

2α ∧ α
on S which vanishes on	. It follows that there exists a non-negative smooth function
W : S → R with zeros at 	, and such that ωα = Wω. Therefore, X = W Xα on
S \	. It follows that there exists a smooth time change function h : R× S → R such
that φt x = Fvh(t,x)x , or equivalently W (φt x) = ∂h

∂t (t, x) with h(0, x) = x .
We will consider so called regular adapted coordinates on S \	, this is coordinates

ζ relatively to which αζ = dζ . If p ∈ 	 is a singular point then we consider singular

adapted coordinates around p, this is coordinates ζ relatively to which αζ = id ζ
2

2 =
iζ dζ . Then all changes of regular coordinates are given by translations. If ζ ′ is a reg-
ular adapted coordinate and ζ is a singular adapted coordinate, then ζ ′ = iζ 2/2 + c.
Then for a regular adapted coordinate ζ we have ωα = d�ζ ∧ d�ζ, Xα(ζ ) = i
and Fvt ζ = ζ + i t . Moreover, for a singular adapted coordinate ζ we have ωα =
|ζ |2d�ζ ∧ d�ζ, ζ Xα(ζ ) = 1, and hence Xα(ζ ) = ζ

|ζ |2 . It follows that for a singular

adapted coordinate ζ = x + iy we have W (ζ ) = |ζ |2V (ζ ), where V is a smooth
positive function. Hence, X (ζ ) = V (ζ )ζ = V (x, y)(x,−y).

Let J ⊂ S \	 be a transversal smooth curve for (φt )t∈R such that the boundary of
J consists of two points situated on an incoming and an outgoing separatrix respec-
tively, and the segment of each separatrix between the corresponding saddle point and
the corresponding boundary point of J contains no intersection with the interior of J .
Let γ : [0, a] → J stand for the induced parametrization, i.e. νF (γ |[0,t]) = t for any
t ∈ [0, a], such that γ (0) lies on an incoming separatrix and γ (a) lies on an outgoing
separatrix. From now on we will identify the curve J ⊂ S with the interval [0, a) and,
by abuse the notation, we will denote by I both the interval [0, a) ⊂ R and the curve
J on S.

Denote by T : I → I the first-return map induced on I . In the induced param-
etrization, T : I → I is an interval exchange transformation and it preserves the
measure induced by the restriction of νF to I , which coincides with the Lebesgue
measure Leb on I . Moreover, T = T(π,λ), where π ∈ S0

A for some finite set A and
(π, λ) ∈ S0

A × RA+ satisfies the Keane condition, because by assumption (φt )t∈R

has no saddle connections. Recall that lα, α ∈ A stand for the left end points of the
exchanged intervals.

Lemma 6.1 If (φt )t∈R is of hyperbolic periodic type then the IET T can be chosen to
be of hyperbolic periodic type.

123



1350 K. Frączek, C. Ulcigrai

Proof Let Ψ : S → S be the diffeomorphism that fixes the flow foliation F and
rescales by ρ < 1 the transversal measure νF . Since Ψ fixes 	 (as a set) and sends
leaves to leaves, replacing Ψ by one of its powers, we can assume that there exists a
point z0 ∈ 	 such that Ψ (z0) = z0 and all separatrixes emanating from z0 are fixed.
Consider a transversal γ : [0, a] → S such that γ (0) = z0 and the endpoint γ (a)
is on an outgoing separatrix. Up to modification of Ψ by an isotopy which leaves
(F , νF ) invariant, one can also assume that Ψ (γ ) ⊂ γ (see for example §9 in [7]).
The first return map on γ in the induced parametrization, as seen above, gives an
IET T = T(π,λ) : I → I with I = [0, a). Moreover, as Ψ (νF ) = ρ νF , we have
Ψ (γ (x)) = γ (ρx) for every x ∈ [0, a]. Since Ψ (F ) = F and Ψ (γ ) ⊂ γ, γ (ρa)
still belongs to an outgoing separatrix and [0, ρa) is admissible in the sense defined
by Veech in §3 in [41]. This, as shown by Rauzy and Veech (see Theorem 23 in [33]
and Remark 8.1 in [43]), implies that [0, ρa) = I k for some k ≥ 1 (recall that I k is
the kth inducing interval of Rauzy–Veech induction) and that the first return map on
I k = [0, ρa) is Rk(T ).

Every discontinuity lα of T is such that γ (lα) is the first backward intersection of
one of the incoming separatrix with the interior of γ . Since γ (ρ lα) = Ψ (γ (lα)) and
Ψ (γ ) ⊂ γ , also γ (ρ lα) is the first backward intersection of an incoming separatrix
with the interior of Ψ (γ ). This shows that the IET induced by T on I k = [0, ρ a) has
data (π, ρ λ), hence Rk(T ) = T(π,ρλ). This shows that Θ(Rk T ) = Θ(T ) and thus
Θ(Rn+k T ) = Θ(RnT ) for n ≥ 0. Let A = Θ(Rk T ) be the period matrix. Since
the orbit of T under R is obviously infinite, Am is a positive matrix for some m ≥ 1,
by Lemma in §1.2.4 in [26]. It follows that replacing Ψ by its mth iteration, we can
assume A is a positive matrix. Therefore T is of period type.

Moreover, the action induced byΨ on H1(S,R) is isomorphic to the action of A on
R

A/ ker�π , and hence to the action of (At )−1 on Hπ (see §2 and §7 in [46]). Thus,
the assumption that (φt )t∈R is of hyperbolic periodic type is equivalent to T being of
hyperbolic periodic type.

Finally we want to choose a transversal γ as in the construction before Lemma 6.1,
i.e. such that γ ([0, a]) ⊂ S \ 	 and γ (0) lies on an incoming separatrix and γ (a)
lies on an outgoing separatrix. One can obtain such a transversal by homotoping γ
slightly along the leaves of F to a new γ ′ so that γ ′(0) now belongs to an incoming
separatrix for z0. If the homotopy is small enough so that 	 is not hit, the first return
on γ ′ is still given by the same IET T . �

Set α = π−1
1 (1) ∈ A. Denote by τ : I → R+ the first-return time map of the

flow (φt )t∈R to I . This map is well defined and smooth on the interior of each inter-
val Iα, α ∈ A, and τ has a singularity of logarithmic type at each point lα, α ∈ A
(see [22]) except for the right-side of lα; here the one-sided limit of τ from the left
exists.8 The precise nature of these singularities is analyzed in Theorem 6.1 below. The
considerations so far show that the measure-preserving flow (φt )t∈R on (S, ν) is mea-

8 We remark that this is due to our convention of choosing γ (0) on an incoming separatrix and γ (a) on
an outgoing one. If we had chosen γ (0) on an outgoing separatrix and γ (a) on an incoming one, the finite
one-sided limit from the right would be at lα where α = π−1

0 (1) ∈ A.
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Ergodic properties of infinite extensions of area-preserving flows 1351

sure-theoretically isomorphic to the special flow T τ . An isomorphism is established
by the map Γ : I τ → S, Γ (x, s) = φsγ (x).

Remark 6.1 Conversely, given an IET T : I → I of hyperbolic periodic type, it is
possible to construct functions τ : I → R

+ (which belong to LSSG) so that the
special flow T τ is measure-theoretically isomorphic to a locally Hamiltonian flow of
periodic type (we refer to [5], § 7.1). This construction hence gives explicit examples
of such flows.

6.2 Extensions as special flows

Let us now consider an extension (Φ f
t )t∈R given by a C 2+ε-function f : S → R.

Let us consider its transversal submanifold I × R ⊂ S × R. Note that every point
(γ (x), y) ∈ γ (Int Iα) × R returns to I × R and the return time is τ̂ (x, y) = τ(x).
Denote by ϕ f :⋃α∈A Int Iα → R the C 2+ε-function

ϕ f (x) = F(τ (x), γ (x)) =
τ(x)∫

0

f (φsγ (x))ds, for x ∈
⋃

α∈A
Int Iα. (6.1)

Notice that

Leb(ϕ f ) =
∫

I

ϕ f (x) dx =
∫

S

f dν = ν( f ). (6.2)

Let us consider the skew product Tϕ f : (I ×R, LebI × LebR)→ (I ×R, LebI ×
LebR), Tϕ f (x, y) = (T x, y + ϕ f (x)) and the special flow (Tϕ f )

τ̂ built over Tϕ f and
under the roof function τ̂ : I ×R→ R+ given by τ̂ (x, y) = τ(x). Thus, by standard
arguments, this show the following.

Lemma 6.2 The special flow (Tϕ f )
τ̂ is measure-theoretically isomorphic to the flow

(Φ
f

t ) on (S × R, ν × LebR). �
Recall that ϕ f is C 2+ε in the interior of each interval Iα, α ∈ A. The following Propo-
sition provides further properties of the singularities of ϕ f at the endpoints of Iα, α ∈
A and their symmetry properties. Recall that α = π−1

1 (1) and set α = π−1
0 (d).

Theorem 6.1 For every C 2+ε-function f : S → R there exist C±α , α ∈ A, with
C+α = C−α = 0, and g ∈ AC(α∈A Iα) such that

ϕ f (x) = −
∑

α∈A

(

C+α log

(

|I |
{

x − lα
|I |

})

+ C−α log

(

|I |
{

rα − x

|I |
}))

+ g(x).

Moreover, ϕ f ∈ LSSG(α∈A Iα) and g = g1 + g2 with g1, g2 ∈ AC(α∈A Iα) sat-
isfying g′1 ∈ LSSG(α∈A Iα) and g′2 ∈ AC(α∈A Iα). There exists a constant C > 0
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such that

C−1
∑

z∈	
| f (z)| ≤ L (ϕ f ) ≤ C

∑

z∈	
| f (z)| and ‖g‖BV ≤ C‖ f ‖C 2 (6.3)

for every f ∈ C 2+ε(S). In particular, the linear operator

C 2+ε(S) � f �→ ϕ f ∈ LSSG(α∈A Iα)

is bounded.

The proof of this Theorem is presented in Appendix A. In Appendix A we also prove
the following Proposition:

Proposition 6.1 If f (z) = 0 for each z ∈ 	 then ϕ f ∈ AC(α∈A Iα) and O(ϕ f ) = 0
for every O ∈ 	(π).

Collecting together all these statements and Proposition 4.1 (proved in Sect. 4.2)
we get the proof of Theorem 1.3.

Proof of Theorem 1.3 The first part of the Theorem 1.3 follows by combining
Lemma 6.2 and Theorem 6.1 and the second part using also Lemma 6.1 and Prop-
osition 4.1 and recalling that special flows with cohomologous roof functions are
measure-theoretically isomorphic. �

6.3 The dichotomy for extensions

In this section we prove Theorem 1.1. We will use the following Lemma which exploits
the special flow representation in Sect. 6.2.

Lemma 6.3 The flow (Φ f
t )t∈R is ergodic if and only if the skew product Tϕ f is ergo-

dic. For every9 f ∈ C 2+ε(S, 	) the flow (Φ f
t )t∈R is reducible if and only if ϕ f is a

coboundary with a continuous transfer function.

The proof is standard apart from the continuity of the transfer function. We include it
for completeness in Appendix B.

Proof of Theorem 1.1 Let (φt )t∈R be a locally Hamiltonian flow of hyperbolic peri-
odic type on S. Let us split the proof in several steps.

Step 1: Definition of the space K

Let us first define a bounded linear operator on C 2+ε(S), and then use it to define K
as its kernel. Let ν( f ) := ∫

S f dν and f0 := f −ν( f ). By Theorem 6.1 the extension

(Φ
f

t )t∈R is measure-theoretically isomorphic to a special flow built over the skew

9 This Lemma holds more generally for any f ∈ C 1(S, 	), even if we need it only for f ∈ C 2+ε(S, 	).
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Ergodic properties of infinite extensions of area-preserving flows 1353

product Tϕ f with ϕ f ∈ LSSG(α∈A Iα). In view of (6.2), Leb(ϕ f0) = ν( f0) = 0, so
ϕ f0 ∈ LSSG0(α∈A Iα). Consider the operator h : LSSG0(α∈A Iα) → Γ given by
Theorem 4.1. Let κ = #	 = 2(g − 1) and let

H : C 2+ε(S)→ R× Γ and L : C 2+ε(S)→ R
κ

stand for the operators

H( f ) = (ν( f ), h(ϕ f0)), L( f ) = ( f0(z))z∈	.

Since the operators f �→ ν( f ), f �→ ϕ f (by Theorem 6.1) and h (by Theorem 4.1)
are linear and bounded, H is a bounded linear operator as well. This shows that the
kernel K of H is a closed space. Moreover, the image of H has dimension g since by
Theorem 4.1 the image of h has dimension g − 1. Thus, K has codimension g.

Step 2: Invariance of K

Let us show that the operator H is (φt )t∈R-invariant, i.e. H( f ◦ φt ) = H( f ) for every
t ∈ R. Since φt preserves ν, we get ν( f ◦ φt ) = ν( f ), so it suffices to prove that
h(ϕ f ◦φt ) = h(ϕ f ) for each t ∈ R and f ∈ C 2+ε(S). Note that

ϕ f ◦φt (x) =
τ(x)∫

0

f (φt+sγ (x))ds =
t+τ(x)∫

t

f (φsγ (x))ds

=
τ(x)∫

0

f (φsγ (x))ds −
t∫

0

f (φsγ (x))ds +
t+τ(x)∫

τ(x)

f (φsγ (x))ds.

Let us consider the C 2-function ξ : I → R, ξ(x) = ∫ t
0 f (φsγ (x))ds and observe

that

t+τ(x)∫

τ(x)

f (φsγ (x))ds =
t∫

0

f (φs ◦ φτ(x)γ (x))ds

=
t∫

0

f (φsγ (T x))ds = ξ(T x),

so ϕ f ◦φt = ϕ f + ξ ◦ T − ξ and ϕ f− f ◦φt = ξ − ξ ◦ T . As ( f ◦ φt − f )(z) = 0
for each z ∈ 	, by Proposition 6.1, ϕ f− f ◦φt ∈ AC0(α∈A Iα). Since we showed that
ϕ f ◦φt− f is a coboundary, Lemma 4.3 implies that h(ϕ f ◦φt− f ) = 0. Thus, by linearity,
h(ϕ f ◦φt ) = h(ϕ f ), which completes the proof of invariance of H. In particular, it
follows that the kernel K is (φt )t∈R-invariant.
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Step 3: Ergodicity

We need to prove that if f belongs to K ⊂ C 2+ε and
∑

z∈	 | f0(z)| 	= 0, then the

flow (Φ
f

t )t∈R on S × R is ergodic. Since f ∈ K , we know that H( f ) = 0. In
particular we have Leb(ϕ f ) = ν( f ) = 0, h(ϕ f ) = 0 and since f = f0, ‖L( f )‖ =∑

z∈	 | f0(z)| 	= 0. By Lemma 6.3, it suffices to show the skew product Tϕ f : I×R→
I × R is ergodic.

In view of Theorem 6.1, the function ϕ f ∈ LSSG0(α∈A Iα) can be decomposed
as (ϕ f − g1) + g1 where we can choose g1 ∈ AC0(α∈A Iα) and ϕ f − g1 ∈
LSSG0(α∈A Iα), while g′1 ∈ LSSG(α∈A Iα). By Proposition 4.1, g1 is cohomol-
ogous via a continuous transfer function to a function in PL0(α∈A Iα), which is in
particular BV 1. Thus, ϕ f can be decomposed as ϕ̃ f + g with ϕ̃ f ∈ LSSG0(α∈A Iα)
and g ∈ AC0(α∈A Iα) is a coboundary. Next, by Lemma 4.3, h(g) = 0, so
h(ϕ̃ f ) = h(ϕ f ) = 0. Since by (6.3) we have L (ϕ̃ f ) = L (ϕ f ) ≥ ‖L( f )‖/C > 0,
the skew product Tϕ̃ f is ergodic by Theorem 5.1. Since ϕ̃ f and ϕ f are cohomologous,
Tϕ̃ f and Tϕ f are metrically isomorphic, so also Tϕ f is ergodic. This completes the
proof of the first case of the dichotomy.

Step 4: Reducibility

Let us now prove that if f ∈ K and
∑

z∈	 | f0(z)| = 0 then the flow (Φ
f

t )t∈R on
S × R is reducible. Since f ∈ K , ν( f ) = 0 and f = f0, so from (6.2) we have
Leb(ϕ f ) = 0 and from (6.3) we have L (ϕ f ) = 0. It follows from Theorem 6.1 that
ϕ f ∈ AC0 and ϕ′f ∈ LSSG. Moreover, Proposition 6.1 also gives that O(ϕ f ) = 0 for
each O ∈ 	(π). Summing over O ∈ 	(π), by (2.29), this shows that s(ϕ f ) = 0.
Moreover, since by assumption f ∈ K , h(ϕ f ) = 0. Let us show that this implies that
ϕ f is a coboundary with a continuous transfer function.

By Proposition 4.1, there exist h ∈ Γ0 such that ϕ f −h is a coboundary with a con-
tinuous transfer function, that is ϕ f −h = g−g ◦T and g : I → R is continuous. Let
us show that then O(ϕ f −h) = 0 for every O ∈ 	(π). It is proved in [5] that for each
ϕ ∈ AC(α∈A Iα) and k ≥ 1 we have O(S(k)ϕ) = O(ϕ) and |O(ϕ)| ≤ 2d‖ϕ‖sup.
Thus,

|O(ϕ f − h)| = |O(S(k)(ϕ f − h))| ≤ 2d ‖S(k)(ϕ f − h)‖sup

≤ 2d sup
α∈A

sup
x∈I (k)α

|g(x)− g(T Qα(k)x)| ≤ 2d sup
x,x ′∈I (k)

|g(x)− g(x ′)|

and the latter supremum tends to zero as k → ∞, hence O(ϕ f − h) = 0. It follows
that O(h) = O(ϕ f ) = 0 for every O ∈ 	(π), and hence h ∈ Hπ by Remark 2.6.
Moreover, since ϕ f − h is a coboundary, by Lemma 4.3, h(ϕ f − h) = 0 and since
h(ϕ f ) = 0 (because f ∈ K ), this gives by linearity that also h(h) = 0. In view of
(4.22), it follows that h ∈ Γcs ∩Hπ = Γs . Thus, by Proposition 4.1, h is a coboundary
with a continuous transfer function as well. Therefore ϕ f = (ϕ f − h) + h is a sum
of coboundaries with continuous transfer functions. By Lemma 6.3, this implies that
the reducibility of (Φ f

t )t∈R.
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Step 5: Decomposition

It is proved in [5] (see Lemma 7.4), for every h ∈ Hπ there exists a function f ∈
C 2+ε(S, 	)with ϕ f = h. Since h(h) = h for each h ∈ Γu ∩Γ0 ⊂ Hπ , it follows that
for every v ∈ R and h ∈ Γu ∩Γ0 there exists f ∈ C 2+ε(S, 	) such that ν( f ) = v and
h(ϕ f0) = h(h) = h, hence H( f ) = (ν( f ), h(ϕ f0)) = (v, h). Therefore, there exists a
g-dimensional subspace H ⊂ C 2+ε(S, 	) such that H :H → R

g is a linear isomor-
phism. Given f ∈ C 2+ε(S, 	), let f	 ∈H be the preimage of H( f ) by this isomor-
phism. Then if we set fK := f − f	 then H( fK ) = H( f )−H( f	) = 0, i.e. f ∈ K .
This gives the claimed decomposition f = fK + f	 and concludes the proof. �

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A

In this Appendix we prove Theorem 6.1 and Proposition 6.1. The following Lemma
will be used in the proof.

Lemma A.1 Let g : [−1, 1] × [−1, 1] → R be a C 2+ε-function. Then the function
ξ := ξ g : (0, 1] → R,

ξ g(s) =
1∫

s

g
(

u,
s

u

) 1

u
du

is of the form

ξ(s) = −g(0, 0) log s + ξ̃ (s) with ξ̃ (s) = −gxy(0, 0)s log s + ξ0(s),
where ξ0 : [0, 1] → R is an absolutely continuous function whose derivative is abso-
lutely continuous and ‖̃ξ‖BV ≤ C‖g‖C 2 . If additionally g(0, 0) = 0, then

lim
s→0+

ξ(s) =
1∫

0

(g (u, 0)+ g (0, u))
1

u
du. (A.1)

Proof First note that

ξ(s) =
1∫

√
s

g
(

u,
s

u

) 1

u
du +

1∫

√
s

g
( s

u
, u

) 1

u
du. (A.2)

Thus

ξ ′(s) =
1∫

√
s

gx
( s

u , u
)+ gy

(
u, s

u

)

u2 du − g(
√

s,
√

s)

s
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and

ξ ′′(s) =
1∫

√
s

gxx
( s

u , u
)+ gyy

(
u, s

u

)

u3 du

− gx (
√

s,
√

s)+ gy(
√

s,
√

s)

s
√

s
+ g(

√
s,
√

s)

s2 .

First suppose that g(0, 0) = 0, g′(0, 0) = 0 and g′′(0, 0) = 0. Then

|g(x, y)| ≤ min
(
‖g‖C 2(|x |2 + |y|2), ‖g‖C 2+ε (|x |2+ε + |y|2+ε)

)
,

‖g′(x, y)‖ ≤ min
(
‖g‖C 2(|x | + |y|), |g‖C 2+ε (|x |1+ε + |y|1+ε)

)
,

‖g′′(x, y)‖ ≤ ‖g‖C 2+ε (|x |ε + |y|ε).

It follows that

|ξ(s)| ≤ 3‖g‖C 2 , |ξ ′(s)| ≤ ‖g‖C 2(3− 2 log s) and |ξ ′′(s)| ≤ 8‖g‖C 2+ε
s1−ε/2 .

Since ξ ′ and ξ ′′ are integrable on [0, 1], ξ and ξ ′ are absolutely continuous. Moreover,

‖ξ‖BV = ‖ξ‖sup +
1∫

0

|ξ ′(s)| ds ≤ 8‖g‖C 2 .

For an arbitrary g we use the following decomposition

g(x, y) = g(0, 0)+ gx (0, 0)x + gy(0, 0)y

+ 1

2
gxx (0, 0)x

2 + gxy(0, 0)xy + 1

2
gyy(0, 0)y

2 + g0(x, y).

Then g0 is a C 2+ε-function such that g0, g′0 and g′′0 vanish at (0, 0) and ‖g0‖C 2 ≤
5‖g‖C 2 . As we have already proved, the function ξ g0 and its derivative are absolutely
continuous and ‖ξ g0‖BV ≤ 8‖g0‖C 2 . By straightforward computation, we also have

ξ1(s) = − log s, ξ x (s) = ξ y(s) = 1− s,

ξ x2
(s) = ξ y2

(s) = 1− s2

2
, ξ xy(s) = −s log s.

Hence

ξ(s) =− g(0, 0) log s + (
gx (0, 0)+ gy(0, 0)

)
(1− s)− gxy(0, 0)s log s

+ (
gxx (0, 0)+ gyy(0, 0)

) 1− s2

4
+ ξ g0(s).
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Ergodic properties of infinite extensions of area-preserving flows 1357

It follows that ξ0 and its derivative are absolutely continuous and

‖̃ξ‖BV ≤ 2‖g‖C 2 + ‖ξ g0‖BV ≤ 42‖g‖C 2 .

Assume additionally that g(0, 0) = 0. Since g is Lipschitz continuous with Lips-
chitz constant ‖g‖C 1 , we have

∣
∣
∣
∣
∣
∣
∣

1∫

0

g(u, 0)
1

u
du −

1∫

√
s

g(u, s/u)
1

u
du

∣
∣
∣
∣
∣
∣
∣

≤
√

s∫

0

|g(u, 0)− g(0, 0)| 1

u
du +

1∫

√
s

|g(u, 0)− g(u, s/u)| 1

u
du

≤ ‖g‖C 1

⎛

⎜
⎝

√
s∫

0

du +
1∫

√
s

s

u2 du

⎞

⎟
⎠ = ‖g‖C 1

(
2
√

s − s
)→ 0

as s → 0. The symmetric reasoning together with (A.2) finally gives (A.1). �
Proof of Theorem 6.1 For every δ > 0 and z ∈ 	 denote by B(z, δ) the closed ball of
radius δ and centered at z in singular adapted coordinates. Next choose δ > 0 so that
intervals [lα − δ2, lα + δ2], α ∈ A are pairwise disjoint and B(z, δ) ∩ I = ∅ for all
z ∈ 	. For every z ∈ 	 denote by Oz the corresponding orbit in	(π). For simplicity
assume that |I | = 1.

We split the proof into several cases. In each of them we will assume that f is
supported on a part of the surface S. Then we will collect together all cases to prove
the theorem in full generality.

Non-triviality of f on a neighborhood of a singularity

First fix z ∈ 	 and assume that f : S → R is a C 2+ε function which vanishes on
S \ B(z, δ). Recall that each point lα, α 	= α = π−1

1 (1) corresponds to the first back-
ward intersection with I of an incoming separatrix of a fixed point, this fixed point
will be denoted by zlα ∈ 	.

Regular case

Now suppose that z 	= zl
π
−1
0 (1)

. Then there exist two distinct elements α0, α1 ∈ A
such that z = zlα0

= zlα1
and Oz = {π0(α0) − 1, π0(α1) − 1}. Let ζ = x + iy be

the singular adapted coordinate around z. Then there exists a positive C∞-function
V : [−δ, δ] × [−δ, δ] → R such that X (ζ ) = V (x, y)(x,−y) and ω = dx∧ dy

V (x,y) on
[−δ, δ] × [−δ, δ]. Moreover,

γ v±, γ h± : [−δ2, δ2] → S, γ h±(s) = (±s/δ,±δ), γ v±(s) = (±δ,±s/δ)

123



1358 K. Frączek, C. Ulcigrai

establishes an induced parameterization of the boundary of the square [−δ, δ] ×
[−δ, δ]. Let us consider the functions τ±α : [−δ2, 0) ∪ (0, δ2] → R+ such that τ±α (s)
is the exit time of the point (±s/δ,±δ) for the flow (φt ) from the set [−δ, δ]×[−δ, δ].
Since the positive orbit of lαε , ε = 0, 1, hits the square [−δ, δ] × [−δ, δ] at
((−1)εδ, 0) and f vanishes on S \ ([−δ, δ] × [−δ, δ]), the function ϕ f vanishes
on I \ ([lα0 − δ2, lα0 + δ2] ∪ [lα1 − δ2, lα1 + δ2]) and

ϕ f (s + lαε ) =
τ
(−1)ε
αε (s)∫

0

f (φt ((−1)εs/δ, (−1)εδ)) dt

for all s ∈ [−δ2, δ2] and ε = 0, 1. Fix ε ∈ {0, 1} and then let (xt , yt ) =
φt ((−1)εs/δ, (−1)εδ). Then

(
d

dt
xt ,

d

dt
yt

)

= X (xt , yt ) = V (xt , yt )(xt ,−yt ),

and hence

d

dt
(xt · yt ) = yt

d

dt
xt + xt

d

dt
yt = 0.

Therefore

xt yt = x0 y0 = s.

Since s 	= 0, it follows that xt 	= 0 for all t ∈ R. By using the substitution u = xt , we
obtain du = d

dt xt dt = V (xt , s/xt )xt dt and

ϕ f (s + lαε ) =
τ
(−1)ε
αε (s)∫

0

f (xt , yt )dt =
τ
(−1)ε
αε (s)∫

0

f

(

xt ,
s

xt

)

dt

=
(−1)ε sgn(s)δ∫

(−1)εs/δ

f
(
u, s

u

)

V
(
u, s

u

)
du

u
=

1∫

|s|/δ2

f

V

(
(−1)ε sgn(s)δu,

|s|/δ2

(−1)εδu

)du

u
.

In view of Lemma A.1,

ϕ f (s) = −Cαε log |s − lαε | + ξ̃ε(s), ξ̃ε(s) = −Kαε (s − lαε ) log |s − lαε | + ξε(s)

where ξε : [lαε −δ2, lαε +δ2]\{lαε } → R is a function which is absolutely continuous
with absolutely continuous derivative,

Var ξ̃ε |[lαε−δ2,lαε )
+ Var ξ̃ε |(lαε ,lαε+δ2] ≤ CV ‖ f ‖C 2
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Ergodic properties of infinite extensions of area-preserving flows 1359

and

Cαε = Cz := f (0, 0)

V (0, 0)
, Kαε = Kz := ∂

2( f/V )

∂x ∂y
(0, 0).

Therefore

ϕ f (x) =− Cz

∑

ε=0,1

(
log{x − lαε } + log{lαε − x})+ g(x), where

g(x) =− Kz

∑

ε=0,1

({x − lαε }(log{x − lαε } − 1)

− {lαε − x}(log{lαε − x} − 1)
)+ g0(x)

and g0 : I → R is absolutely continuous with absolutely continuous derivative on
I \{lα0 , lα1}, so g0, g′0 ∈ AC(α∈A Iα). Moreover, g ∈ AC(α∈A Iα) and g(x) is equal
to

Cz

∑

ε=0,1

(
log{x − lαε } + log{lαε − x})

if x ∈ I \⋃ε=0,1[lαε − δ2, lαε + δ2],

Cz
(
log{lαε − x} + log{x − lα1−ε } + log{lα1−ε − x})+ ξ̃ε(x)

if x ∈ [lαε , lαε + δ2] and

Cz
(
log{x − lαε } + log{x − lα1−ε } + log{lα1−ε − x})+ ξ̃ε(x)

if x ∈ [lαε − δ2, lαε ]. For ε = 0, 1. It follows that

Var g ≤4|Cz |Var(log)|[δ2,1] +
∑

ε=0,1

(
Var ξ̃ε |[lαε−δ2,lαε )

+ Var ξ̃ε |(lαε ,lαε+δ2]
)

≤4
‖ f ‖C 0

V (z)
log δ−2 + 2CV ‖ f ‖C 2 ≤ Cδ,V ‖ f ‖C 2 .

Finally note that ϕ f and g can be represented as follows

ϕ f (x) = −
∑

π0(α)−1∈Oz

C+α log{x − lα} −
∑

π0(α)∈Oz

C−α log{rα − x} + g(x),
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where

g(x) = g0(x)−
∑

π0(α)−1∈Oz

K+
α {x − lα}(log{x − lα} − 1)

+
∑

π0(α)∈Oz

K−
α {rα − x}(log{rα − x} − 1)

with C+α = Cz, K+
α = Kz ifπ0(α)−1 ∈ Oz and C−α = Cz, K−

α = Kz ifπ0(α) ∈ Oz .
It follows that (2.14) is valid for O = Oz . For O 	= Oz the condition (2.14) holds
trivially.

Exceptional case

Now assume that z = zl
π
−1
0 (1)

. Denote by α0 	= π−1
0 (1) an element of the alphabet for

which z = zα0 . Then Oz = {0, π0(α0) − 1, π0(α) − 1}. Since l
π−1

0 (1) and lα lie on
the same incoming separatrix of z, similar arguments to those used in the regular case
show that there exists g0∈AC(α∈A Iα) with g′0 ∈ AC(α∈A Iα) such that

ϕ f (x) = −Cz
(
log{x} + log{lα − x} + log{x − lα0} + log{lα0 − x})+ g(x)

= −
∑

π0(α)−1∈Oz

C+α log{x − lα} −
∑

π0(α)∈Oz

C−α log{rα − x} + g(x),

where

g(x) = g0(x)− Kz
({x}(log{x} − 1)− {lα − x}(log{lα − x} − 1)

+ {x − lα0}(log{x − lα0} − 1)− {lα0 − x}(log{rα0 − x} − 1)
)

= g0(x)−
∑

π0(α)−1∈Oz

K+
α {x − lα}(log{x − lα} − 1)

+
∑

π0(α)∈Oz

K−
α {rα − x}(log{rα − x} − 1),

with C+α = Cz, K+
α = Kz if α 	= α and π0(α) − 1 ∈ Oz ; C+α = K+

α = 0;
C−α = Cz, K−

α = Kz if π0(α) ∈ Oz ; and Var g ≤ Cδ,V ‖ f ‖C 2 .

Vanishing around singularities

We will now deal with the case where f vanishes on each ball B(z, δ/2), z ∈ 	. For
every α ∈ A denote by hα > 0 the first return time of points in Iα to I for the vertical
flow (Fvt )t∈R and set h̄ = (hα)α∈A. Since φt x = Fvh(t,x)x and W (φt x) = ∂h

∂t (t, x),
we have h(τ (x), x) = hα for each x ∈ Iα . Then using the substitution s = h(t, x),
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Ergodic properties of infinite extensions of area-preserving flows 1361

for each x ∈ Iα we get

ϕ f (x) =
τ(x)∫

0

f (φt (x)) dt =
hα∫

0

f (Fvs (x))

W (Fvs (x))
ds.

The function W : S → R is positive C∞ with zeros only at 	. Therefore cδ :=
min

{
W (x) : x ∈ S \⋃z∈	 B(z, δ/2)

}
> 0. Moreover, f/W : S → R is a C∞-func-

tion with

‖ f/W‖C 0 ≤ c−1
δ ‖ f ‖C 0 and ‖ f/W‖C 1 ≤ c−2

δ ‖W‖C 1‖ f ‖C 1 .

It follows that ϕ f can be extended to a C∞-function on each I α, α ∈ A,

‖ϕ f ‖C 0 ≤ max{hα : α ∈ A}‖ f/W‖C 0 ≤ ‖h̄‖c−1
δ ‖ f ‖C 0

and

Var ϕ f =
∫

I

|ϕ′f (u)| du =
∑

α∈A

∫

Iα

∣
∣
∣
∣
∣
∣

hα∫

0

∂

∂y
( f/W )(Fvs (x)) ds

∣
∣
∣
∣
∣
∣

du

≤ 〈λ, h̄〉c−2
δ ‖W‖C 1‖ f ‖C 1 .

Hence ϕ f , ϕ
′
f ∈ AC(α∈A Iα) and there exists a positive constant C∗ such that

‖ϕ f ‖BV ≤ C∗‖ f ‖C 1 for each f : S → R vanishing on
⋃

z∈	 B(z, δ/2). Since ϕ
has no logarithmic singularities, the condition (2.14) holds trivially.

General case

Let us consider a C∞-partition of unity {ρz : z ∈ 	 ∪ {∗}} of S such that ρz vanishes
on S \ B(z, δ) for all z ∈ 	 and ρ∗ vanishes on

⋃
z∈	 B(z, δ/2). Since the balls

B(z, δ), z ∈ 	 are pairwise disjoint, ρz ≡ 1 on B(z, δ/2) for each z ∈ 	. Let us
decompose ϕ f as follows ϕ f = ∑

z∈	 ϕρz · f + ϕρ∗· f . In view of all facts that have
been proved until now for all z ∈ 	 we get

ϕρz · f (x) = −
∑

π0(α)−1∈Oz

C+α log{x − lα}

−
∑

π0(α)∈Oz

C−α log{rα − x} + gz(x), (A.3)
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where

gz(x) = gz,0(x)−
∑

π0(α)−1∈Oz

K+
α {x − lα}(log{x − lα} − 1)

+
∑

π0(α)∈Oz

K−
α {rα − x}(log{rα − x} − 1), (A.4)

with gz,0, g′z,0 ∈ AC(α∈A Iα) and

‖gz‖BV ≤ Cδ,V ‖ρz · f ‖C 2 ≤ Cδ,V ‖ρz‖C 2‖ f ‖C 2 .

Moreover, ϕρ∗· f , ϕ′ρ∗· f ∈ AC(α∈A Iα) and

‖ϕρ∗· f ‖BV ≤ C∗‖ρ∗ · f ‖C 2 ≤ C∗‖ρ∗‖C 2‖ f ‖C 2 .

Let

g :=
∑

z∈	
gz + ϕρ∗· f , g2 :=

∑

z∈	
gz,0 + ϕρ∗· f , g1 = g − g2 and C−α = K−

α = 0.

Then g1, g2, g′2 ∈ AC(α∈A Iα) and

‖g‖BV ≤
(
∑

z∈	
Cδ,V ‖ρz‖C 2 + C∗‖ρ∗‖C 2

)

‖ f ‖C 2 .

Since

⊔

z∈	
{α : π0(α)− 1 ∈ Oz} = A and

⊔

z∈	
{α : π0(α) ∈ Oz} = A \ {α},

summing up (A.3) and (A.4) over z ∈ 	, we get

ϕ(x) =−
∑

α∈A

(
C+α log{x − lα} + C−α log{rα − x})+ g(x)

g′1(x) =−
∑

α∈A

(
K+
α log{x − lα} + K−

α log{rα − x}) .

Since the condition (2.14) holds for each function ϕρz · f and ϕρ∗· f has no logarithmic
singularities, (2.14) is valid also for ϕ f . The same applies to g′1. Moreover, C+α =
C−α = 0 and

C+α = ( f/V )(z) if α 	= α, π0(α)− 1 ∈ Oz and C−α = ( f/V )(z) if π0(α) ∈ Oz .
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Ergodic properties of infinite extensions of area-preserving flows 1363

Therefore,

L (ϕ f ) =
∑

α∈A
(|C−α | + |C+α |) = 4

∑

z∈	

| f (z)|
V (z)

.

Since V takes only positive values, it follows that

4

max{V (z) : z ∈ 	}
∑

z∈	
| f (z)| ≤ L (ϕ f ) ≤ 4

min{V (z) : z ∈ 	}
∑

z∈	
| f (z)|.

�
Proof of Proposition 6.1 By Theorem 6.1, ϕ f ∈ AC(α∈A Iα). For every two points
x1, x2 ∈ S such that x1 = φu x0 and x2 = φvx0 for some −∞ ≤ u ≤ v ≤ +∞ and
x0 ∈ S \ 	 let I (x1, x2) =

∫ v
u f (φs x0) ds. In view of (A.1), analysis similar to that

in the proof of Theorem 6.1 shows that

lim
s→l+α

ϕ f (s) =
{

I (lα, zlα )+ I (zlα , T lα) if π1(α) 	= 1
I (lα, T lα) if π1(α) = 1

lim
s→r−α

ϕ f (s) =
{

I (rα, zrα )+ I (zrα , T̂ rα) if π0(α) 	= d
I (rα, T̂ rα) if π0(α) = d.

Therefore, for every α ∈ A with π1(α) 	= 1 and π0(α) 	= 1, d we have

lim
s→l+α

ϕ f (s)− lim
s→l−α

ϕ f (s) = I (zlα , T lα)− I (zlα , T̂ lα).

Take O = Oz which does not contain 0 and d. Let α0, α1 be distinct elements of
the alphabet for which zlα0

= zlα1
= z. Then O = {π0(α0) − 1, π0(α1) − 1} and

T lαε = T̂ lα1−ε for ε = 0, 1. In view of (2.28), it follows that

O(ϕ f ) =
∑

ε=0,1

(
lim

s→l−αε
ϕ f (s)− lim

s→l+αε
ϕ f (s)

)

=
∑

ε=0,1

(
I (z, T̂ lαε )− I (z, T lαε )

)
= 0.

Similar arguments to those above show also that O(ϕ f ) = 0 if 0 ∈ O or d ∈ O. �

Appendix B

In this Appendix we include for completeness the proof of Lemma 6.3.

Proof of Lemma 6.3 The first part of the lemma is an obvious consequence of
Lemma 6.2, since ergodicity is preserved by a measurable isomorphism and a special
flow is ergodic if and only if the base transformation is ergodic.
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1364 K. Frączek, C. Ulcigrai

Recall that the flow (Φ f
t )t∈R is reducible if it is measure-theoretically isomorphic

to the flow (Φ0
t )t∈R via the map S × R � (x, y) �→ (x, y + G(x)) ∈ S × R, where

G : S → R is a continuous function. Reducibility is equivalent to the existence of a
continuous function G : S → R such that

F(t, x) =
t∫

0

f (φs x) ds = G(x)− G(φt x) for all t ∈ R and x ∈ S. (B.1)

Then for each x ∈ I we have

ϕ f (x) = F(τ (x), γ (x)) = G(γ (x))− G(φτ(x)γ (x)) = G ◦ γ (x)− G ◦ γ (T x).

It follows that g : I → R, g = G ◦ γ is continuous and ϕ = g − g ◦ T .
Suppose that g : I → R is a continuous function such that ϕ f = g− g ◦ T . Recall

that for every x ∈ S \	 the (φt )t∈R orbit of x is dense and intersects the cross section
I . If φt x ∈ I for some t ∈ R then set

G(x) := g(φt x)+ F(t, x) = g(φt x)+
t∫

0

f (φs x) ds.

Notice that the function G : S \	→ R is well defined. Indeed, if φt1 x, φt2 x ∈ I with
t1 < t2 then t2 − t1 = τ (m)(φt1 x) and T mφt1 x = φt2 x . Therefore,

F(t2, x)− F(t1, x) = F(t2 − t1, φt1 x) = F(τ (m)(φt1 x), φt1 x)

= ϕ(m)f (φt1 x) = g(φt1 x)− g(T mφt1 x) = g(φt1 x)− g(φt2 x).

Thus g(φt1 x)+ F(t1, x) = g(φt2 x)+ F(t2, x).
Note that by the definition of G for every x ∈ S \ 	 and t ∈ R we have G(x) −

G(φt x) = F(t, x).
In order to prove that G : S \ 	 → R is continuous and can be extended to a

continuous G : S → R, let us consider the oscillation function ω : S → R+ defined
at each x ∈ S by

ω(x) = lim
ε→0

sup{|G(y)− G(y′)| : y, y′ ∈ B(x, ε) \	}.

Since G(φs x) = G(x)− F(s, x), F is continuous and φs is a diffeomorphism on S,
we have ω(φs x) = ω(x) for every x ∈ S and s ∈ R. Let x ∈ S \ 	. Since the orbit
of x is dense and ω is upper semi-continuous, it follows that ω(y) ≥ ω(x) for every
y ∈ S. By the definition of G, each interior point y of I is a continuity point of G.
Therefore, ω(x) ≤ ω(y) = 0, so G is continuous at each x ∈ S \	.

To show that G can be continuously extended to S, let us prove that ω(z) = 0 for
all z ∈ 	. Since f (z) = 0 for all z ∈ 	, (B.1) will be trivially valid for all z ∈ 	.
Fix z0 ∈ 	 and let ζ = x + iy be the singular adapted coordinate around z0. Let
δ > 0 and V : [−δ, δ] × [−δ, δ] → R+ be as in the proof of Theorem 6.1 and set
K := sup{‖( f/V )′(z)‖ : z ∈ [−δ, δ] × [−δ, δ]}. Since G is continuous on S \ 	,
for every ε′ > 0 there exists 0 < ε < δ such that |G(s,±δ) − G(s′,±δ)| < ε′ and
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Ergodic properties of infinite extensions of area-preserving flows 1365

|G(±δ, s)− G(±δ, s′)| < ε′ for all s, s′ ∈ [−ε2/δ, ε2/δ]. We will prove that

|G(z1)− G(z2)| ≤ 3ε′ + 18K ε (B.2)

for all z1, z2 ∈ ([−ε, ε] × [−ε, ε]) \ {(0, 0)}, which yields ω(z0) = 0.
By the proof of Theorem 6.1, if (x1, y1), (x2, y2) ∈ ([−ε, ε] × [−ε, ε]) \ {(0, 0)}

and (x2, y2) = φt (x1, y1) for some t ∈ R then x1 y1 = x2 y2 = s and

G(x1, y1)− G(x2, y2) =
t∫

0

f (φv(x1, y1)) dv =
y2∫

y1

( f/V )
( s

u
, u

)du

u
. (B.3)

It follows that for every |s| ≤ ε we have

G(s, ε) = G(sε/δ, δ)+
δ∫

ε

( f/V )(sε/u, u)
du

u
.

Hence if s, s′ ∈ [−ε, ε] then

|G(s, ε)− G(s′, ε)|

≤
∣
∣
∣G

( sε

δ
, δ

)
− G

( s′ε
δ
, δ

)∣∣
∣+

δ∫

ε

∣
∣
∣

f

V

( sε

u
, u

)
− f

V

( s′ε
u
, u

)∣∣
∣
du

u

≤ ε′ +
δ∫

ε

K
|s − s′|ε

u2 du ≤ ε′ + K |s − s′| ≤ ε′ + 2K ε. (B.4)

Let D+± = {(x, y) : 0 < |x | ≤ ±y ≤ ε} and D−± = {(x, y) : 0 < |y| ≤ ±x ≤ ε}.
If (x, y) ∈ D++ then, by (B.3) and ( f/V )(0, 0) = 0,

∣
∣
∣G(x, y)− G

( xy

ε
, ε

)∣∣
∣ ≤

ε∫

y

∣
∣
∣

f

V

( xy

u
, u

)∣∣
∣
du

u
≤ K

ε∫

y

( |xy|
u2 + 1

)
du ≤ 2K ε.

In view of (B.4), for all (x, y), (x ′, y′) ∈ D++ we have

|G(x, y)− G(x ′, y′)| ≤
∣
∣
∣G(x, y)− G

( xy

ε
, ε

) ∣
∣
∣+

∣
∣
∣G

( xy

ε
, ε

)
− G

(
x ′y′

ε
, ε

) ∣
∣
∣

+
∣
∣
∣G(x ′, y′)− G

(
x ′y′

ε
, ε

) ∣
∣
∣ ≤ ε′ + 6K ε.

The same applies to D+−, D−+ and D−− . This proves (B.2) and the proof is complete.
�
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