Self-similarity for ergodic flows

Krzysztof Frączek

Nicolaus Copernicus University Toruń & IMPAN Warszawa

March 21 2010, Jurata

joint paper with M. Lemańczyk, Proc. London Math. Soc. 99 (2009), 658-696

• • = • • =

Self-similarity

Let us consider a measure-preserving flow $(T_t)_{t\in\mathbb{R}}$ on a probability standard Borel space (X, \mathcal{B}, μ) . The flow $\mathcal{T} = (T_t)_{t\in\mathbb{R}}$ is called **self-similar** if there exists $s \neq \pm 1$ such that the rescaled flow $\mathcal{T}_s = (T_t)_{st\in\mathbb{R}}$ is isomorphic to the original flow $\mathcal{T} = (T_t)_{t\in\mathbb{R}}$, this is there exists a measure-preserving automorphism $S : (X, \mathcal{B}, \mu) \to (X, \mathcal{B}, \mu)$ such that

$$S \circ T_t = T_{st} \circ S$$
 for all $t \in \mathbb{R}$.

If s=-1 then ${\mathcal T}$ is usually called **reversible**.

$$\mathcal{I}(\mathcal{T}):=\{s
eq \mathsf{0}:\mathcal{T} ext{ and } \mathcal{T}_s ext{ are isomorphic}\}$$

 $\mathcal{I}(\mathcal{T})$ is a multiplicative subgroup of \mathbb{R}^* .

$${\mathcal I}_{{\sf aut}}({\mathcal T}) := \{(t,t') \in {\mathbb R}^2: \ {\mathcal T}_t \ { ext{and}} \ {\mathcal T}_{t'} \ { ext{are}} \ { ext{isomorphic}} \}$$

Joining method

By a **joining** between flow $\mathcal{T} = (\mathcal{T}_t)_{t \in \mathbb{R}}$ on (X, \mathcal{B}, μ) and $\mathcal{S} = (S_t)_{t \in \mathbb{R}}$ on (Y, \mathcal{C}, ν) we mean any probability measure ρ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ such that

• ρ is $(T_t \times S_t)_{t \in \mathbb{R}}$ -invariant;

• the projections of ρ on X and Y are equal to μ and ν respectively.

 $\mu imes
u \in \mathcal{J}(\mathcal{T}, \mathcal{S}) :=$ the set of all joinings.

The flows \mathcal{T} , \mathcal{S} are called **disjoint** in the Furstenberg sense if $\mathcal{J}(\mathcal{T}, \mathcal{S}) = \{\mu \times \nu\}.$

 ${\mathcal T} \ {\sf and} \ {\mathcal S} \ {\sf disjoint} \ \Longrightarrow {\mathcal T}, \ {\mathcal S} \ {\sf are not} \ {\sf isomorphic}$

If $R : (X, \mu) \to (Y, \nu)$ is an isomorphism of \mathcal{T} and \mathcal{S} , i.e. $R \circ T_t = S_t \circ R$ then the graph measure μ_R (the image of μ via $X \ni x \mapsto (x, Rx) \in X \times Y$) is a joining. $\{\mu_{T_t} : t \in \mathbb{R}\}$ an important family of self-joinings of \mathcal{T} .

Operator approach - Vershik

Every joining $ho \in \mathcal{J}(\mathcal{T}, \mathcal{S})$ defines an operator $V_{
ho}: L^2(X, \mu) \to L^2(Y, \nu)$ by

$$L^{2}(X,\mu) \hookrightarrow L^{2}(X \times Y,\rho)$$

 $V_{\rho} \searrow \qquad \downarrow pr$
 $L^{2}(Y,\nu)$

 $V_
ho: L^2(X,\mu) o L^2(Y,
u)$ is an intertwining Makov operator

• $f \geqslant 0 \Longrightarrow V_{
ho}f \geqslant 0;$

•
$$V_{\rho}1 = 1, \ V_{\rho}^*1 = 1;$$

•
$$V \rho \circ T_t = S_t \circ V_{\rho}$$

 $\mathcal{T}_t: L^2(X,\mu)
ightarrow L^2(X,\mu)$ standard unitary Koopman operator

$$T_t(f)=f\circ T_t.$$

ρ

 $\rho \mapsto V_{\rho}$ gives a one-to-one correspondence between joinings and intertwining Markov operators (Vershik, Ryzhikov).

$$\begin{array}{rcl} \mu \times \nu & \longleftrightarrow & \int : L^2(X,\mu) \to L^2(Y,\nu), \\ & & (\int f)(y) = \int_X f \ \mu \\ & & \mu_{\mathcal{T}_t} & \longleftrightarrow & \mathcal{T}_t \\ & & & \text{ergodic joining } \rho & \longleftrightarrow & \text{indecomposable operator } V_\rho \\ & & & \text{is an ergodic measure for} \\ & & & & \text{the flow } (\mathcal{T}_t \times S_t)_{t \in \mathbb{R}} \end{array}$$

Obvious examples

- Positive entropy: Let $\mathcal{T} = (\mathcal{T}_t)_{t \in \mathbb{R}}$ be a measure-preserving flow such that $0 < h_{\mu}(\mathcal{T}) < +\infty$. Then $h_{\mu}(\mathcal{T}_s) = |s|h_{\mu}(\mathcal{T})$. Since entropy is an invariant for isomorphism of flows $\mathcal{I}(\mathcal{T}) \subset \{-1, 1\}$.
- Zero entropy: Let (h_t)_{t∈ℝ} be the horocycle flow on a compact surface of constant negative curvature M. (h_t)_{t∈ℝ} acts on the unit tangent bundle UT(M) and preserves a unique probability measure μ₀. If (g_s)_{s∈ℝ} stands for the geodesic flow then

$$g_s \circ h_t \circ g_s^{-1} = h_{te^{-2s}},$$

hence each s > 0 is a scale of self-similarity for $(h_t)_{t \in \mathbb{R}}$.

• Infinite entropy: Such flows can have also plenty of self-similarities.

Proposition (abstract)

Let (U_t) be a bounded C^0 -semigroup on a separable Banach space B ($||U_t|| \leq C$). Suppose that

 $B^0 \subset B^{\odot} (= \{x^* \in B^* : t \mapsto U_t^* x^* \text{ is strongly continuous}\}$

is a closed (U_t^*) -invariant separable subspace such that $0 \in B^0$ is the only fixed point for (U_t^*) on B^0 . Suppose that

$$U_{t_n}^* \to Q: B^0 \to B^*$$
 *-weakly.

Then there exists $E \subset \mathbb{R}$ of full Lebesgue measure such that if

$$A \circ U_{s}^{*} = U_{rs}^{*} \circ A$$

for some $r \in E$, $s \in \mathbb{R}$, $A : B^0 \to B^0$, then

Theorem

Let
$$\mathcal{T} = (T_t)_{t \in \mathbb{R}}$$
 be a weakly mixing flow such that

(*)
$$T_{t_n} \rightarrow Q = \alpha \int_{\mathbb{R}} T_s \, dP(s) + (1 - \alpha) J$$
 weakly in $L^2(X, \mu)$,

where $0 < \alpha \leq 1$, $P \in \mathcal{P}(\mathbb{R})$ and $J \in J(\mathcal{T})$. Then \mathcal{T} and \mathcal{T}_s are disjoint for a.e. $s \in \mathbb{R}$, moreover, T_s and T_t are disjoint for a.e. $(s, t) \in \mathbb{R}^2$.

Proof. We apply Abstract Proposition to $B = B^* = B^{\odot} = L^2(X, \mu)$, $U_t = T_{-t}$ and $U_t^* = T_t$. Let $B^0 := L_0^2(X, \mu)$. By ergodicity, zero is the only fixed point of (U_t^*) on B^0 . Suppose that $r \in E$. We will show that \mathcal{T} and \mathcal{T}_r are disjoint. Let $A : L^2(X, \mu) \to L^2(X, \mu)$ be a joining between \mathcal{T} and \mathcal{T}_r , then

$$A \circ T_s = T_{rs} \circ A$$
 for each $s \in \mathbb{R}$.

It follows that

$$0 = A \circ Q = A \circ (\alpha \int_{\mathbb{R}} T_s \, dP(s) + (1 - \alpha)J)$$

= $\alpha \int_{\mathbb{R}} A \circ T_s \, dP(s) + (1 - \alpha)A \circ J \text{ on } L^2_0(X, \mu),$

hence

$$lpha \int_{\mathbb{R}} A \circ T_s \, dP(s) + (1-lpha) A \circ J = \int \text{ on } L^2(X,\mu).$$

By the weak mixing of \mathcal{T} , $\mu \times \mu \in J(\mathcal{T})$ is ergodic, so \int is indecomposable. Consequently, $A \circ T_s = \int$ for *P*-a.e. *s*, and hence $A = \int \circ T_{-t} = \int$. \Box Abstract Proposition can be applied to the horocycle flow to prove

$$(h_t)_*\mu o \mu_0$$
 weakly in $\mathcal{P}(UTM)$.

This gives some new equidistribution results for horocyle flows.

Special flows

How to verify the property (*)? Special flow T^f built over $T : (X, \mu) \to (X, \mu)$ and a positive square integrable $f : X \to \mathbb{R}^+$.

Suppose that T is rigid, i.e. $T^{q_n} \to Id$. Suppose that $(f_0^{(n)})_{n \ge 1}$ is bounded in $L^2(X, \mu)$, where

$$f_0(x) = f(x) - \int f d\mu$$
, $f_0^{(n)}(x) = f_0(x) + f_0(Tx) + \ldots + f_0(T^{n-1}x)$

By Prokhorov's theorem $(f_0^{(q_n)})_*(\mu) \to P$ weakly in $\mathcal{P}(\mathbb{R})$.

Theorem (Fr.-Lem. 04)

$$T^f_{mq_n} o \int_{\mathbb{R}} T^f_s \, dP(s).$$

- If T is an irrational rotation by α on S¹ and (q_n) is the sequence of denominators of the continued fraction expansion of α then T^{q_n} → Id and by Denjoy-Koksma inequality ||f₀^(q_n)||_{sup} ≤ 2 Var f, whenever f ∈ BV. Hence (*) holds.
- Similar result holds for so called interval exchange transformations (which need not to be rigid).

Theorem (Fr.-Lem. 06)

If T is an ergodic IET and $f\in BV$ then there exists $a_n\to+\infty$ such that

$$T_{a_n}^f \to \alpha \int_{\mathbb{R}} T_s^f \, dP(s) + (1-\alpha) J$$

for some $0 < \alpha \leqslant 1$ and $P \in \mathcal{P}(\mathbb{R})$.

Abelian differentials

By a translation surface we mean any (M, ω) , where M is a compact Riemann surface and ω is a holomorphic 1-form (called also Abelian differential). For every direction θ ($\theta \in \mathbb{C}$ and $|\theta| = 1$) the Abelian differential determines the direction vector field $V_{\theta}: M \to TM$ so that $\omega(V_{\theta}) = \theta$ (except zeros of ω). The flow \mathcal{F}_{θ} associated to V_{θ} is called a translation flow in the direction θ . Each ergodic translation flow has a special representation over an ergodic IET and under a piecewise constant function.

Corollary

If \mathcal{F} is weakly mixing translation flow then \mathcal{F}_s and \mathcal{F} are disjoint for a.e. $s \in \mathbb{R}$, moreover, diffeomorphisms F_s and F_t are also disjoint for a.e. $(s, t) \in \mathbb{R}^2$.

Almost every translation flow is weakly mixing in the product of the moduli space of Abelian differentials and S^1 . [Avila, Forni 2007]

Theorem (Fr.-Lem. 09)

Let $\mathcal{T} = (\mathcal{T}_t)_{t \in \mathbb{R}}$ be an ergodic flow such that

- $T_{t_n}
 ightarrow \int_{\mathbb{R}} T_s \, dP(s)$ and \mathcal{T} is not rigid, or
- $T_{t_n} \to \alpha \int_{\mathbb{R}} T_s \, dP(s) + (1 \alpha) J \ (0 < \alpha \leq 1)$ and \mathcal{T} is not partially rigid.

Then for each $s \neq \pm 1$ the flows T and T_s are not isomorphic.

 \mathcal{T} is partially rigid if $T_{s_n} \to J \geqslant a \ Id$ with $0 < a \leqslant 1$.

Proof. Suppose that \mathcal{T} and \mathcal{T}_s are isomorphic for some 0 < |s| < 1. Then

$${\mathcal T}_{st}=S\circ {\mathcal T}_t\circ S^{-1}$$
 hence ${\mathcal T}_{s^mt}=S^m\circ {\mathcal T}_t\circ S^{-m}.$

It follows that

$$T_{s^{m}t_{n}} = S^{m} \circ T_{t_{n}} \circ S^{-m} \xrightarrow{n \to \infty} S^{m} \circ \int_{\mathbb{R}} T_{u} dP(u) \circ S^{-m}$$
$$= \int_{\mathbb{R}} S^{m} \circ T_{u} \circ S^{-m} dP(u) = \int_{\mathbb{R}} T_{s^{m}u} dP(u)$$
$$\xrightarrow{m \to \infty} \int_{\mathbb{R}} T_{0} dP(u) = Id.$$

Consequently, \mathcal{T} is rigid.

von Neumann flows are special flows built over irrational rotations on the circle and under piecewise C^1 -functions with non-zero sum of jumps. von Neumann proved that such flows are weakly mixing.

Theorem (Fr.-Lem. 06)

von Neumann flows are not partially rigid.

Corollary

von Neumann flows have no self-similarities.

Theorem (Fr.-Lem. 09)

von Neumann flows built over ergodic IETs have no self-similarities.

This approach works also roof functions with zero sum of jumps (piecewise constant). Such flows are partially rigid. For some Diophantine rotations and for a careful choice of discontinuities of the roof function the special flow is mild mixing, which implies the absence of rigidity [Lemańczyk, Lesigne, Frączek 2007].

Theorem (Fr. 2009)

If the genus of M is greater than 1 then for every stratum $\mathcal{H}_g(m_1, \ldots, m_\kappa)$ of the moduli space of Abelian differentials there exists a dense subset \mathcal{H} such that the vertical flow of each $\omega \in \mathcal{H}$ has no self-similarities.

Theorem (Kułaga 2009)

For every compact surface M with genus greater than 1 there exists a smooth flow with no self-similarities (zero entropy).

Problem: Give a classification of multiplicative subgroups of \mathbb{R}^* that can be obtained as $\mathcal{I}(\mathcal{T})$. Danilenko proved that $\mathcal{I}(\mathcal{T})$ is always a Borel subgroup. Recall $\mathcal{I}(\mathcal{T}) = \mathbb{R}^*$ for some horocycle flows. For each countable subgroup $G \subset \mathbb{R}^*$ there exists an ergodic flow such that $\mathcal{I}(\mathcal{T}) = G$.

Theorem (Danilenko-Lemańczyk,private communication)

There exist ergodic flows for which $\mathcal{I}(\mathcal{T})$ is uncountable and has zero Lebesgue measure.

Theorem (Danilenko, Ryzhikov independently)

The absence of self-similarity is generic in the set of measure preserving flows $Flow(X, B, \mu)$.

The distance $d_{\mathcal{F}}$ on $\operatorname{Flow}(X, \mathcal{B}, \mu)$ is given by

$$d_{\mathcal{F}}((S_t)_{t\in\mathbb{R}},(T_t)_{t\in\mathbb{R}})=\sup_{0\leqslant t\leqslant 1}d(S_t,T_t).$$