# Self-similarity for ergodic flows 

Krzysztof Frączek<br>Nicolaus Copernicus University Toruń \& IMPAN Warszawa

March 21 2010, Jurata
joint paper with M. Lemańczyk, Proc. London Math. Soc. 99 (2009), 658-696

## Self-similarity

Let us consider a measure-preserving flow $\left(T_{t}\right)_{t \in \mathbb{R}}$ on a probability standard Borel space $(X, \mathcal{B}, \mu)$. The flow $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$ is called self-similar if there exists $s \neq \pm 1$ such that the rescaled flow $\mathcal{T}_{s}=\left(T_{t}\right)_{s t \in \mathbb{R}}$ is isomorphic to the original flow $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$, this is there exists a measure-preserving automorphism $S:(X, \mathcal{B}, \mu) \rightarrow(X, \mathcal{B}, \mu)$ such that

$$
S \circ T_{t}=T_{s t} \circ S \text { for all } t \in \mathbb{R}
$$

If $s=-1$ then $\mathcal{T}$ is usually called reversible.

$$
\mathcal{I}(\mathcal{T}):=\left\{s \neq 0: \mathcal{T} \text { and } \mathcal{T}_{s} \text { are isomorphic }\right\}
$$

$\mathcal{I}(\mathcal{T})$ is a multiplicative subgroup of $\mathbb{R}^{*}$.

$$
\mathcal{I}_{\text {aut }}(\mathcal{T}):=\left\{\left(t, t^{\prime}\right) \in \mathbb{R}^{2}: T_{t} \text { and } T_{t^{\prime}} \text { are isomorphic }\right\}
$$

## Joining method

By a joining between flow $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$ on $(X, \mathcal{B}, \mu)$ and
$\mathcal{S}=\left(S_{t}\right)_{t \in \mathbb{R}}$ on $(Y, \mathcal{C}, \nu)$ we mean any probability measure $\rho$ on $(X \times Y, \mathcal{B} \otimes \mathcal{C})$ such that

- $\rho$ is $\left(T_{t} \times S_{t}\right)_{t \in \mathbb{R}}$-invariant;
- the projections of $\rho$ on $X$ and $Y$ are equal to $\mu$ and $\nu$ respectively.

$$
\mu \times \nu \in \mathcal{J}(\mathcal{T}, \mathcal{S}):=\text { the set of all joinings. }
$$

The flows $\mathcal{T}, \mathcal{S}$ are called disjoint in the Furstenberg sense if $\mathcal{J}(\mathcal{T}, \mathcal{S})=\{\mu \times \nu\}$.
$\mathcal{T}$ and $\mathcal{S}$ disjoint $\Longrightarrow \mathcal{T}, \mathcal{S}$ are not isomorphic
If $R:(X, \mu) \rightarrow(Y, \nu)$ is an isomorphism of $\mathcal{T}$ and $\mathcal{S}$, i.e. $R \circ T_{t}=S_{t} \circ R$ then the graph measure $\mu_{R}$ (the image of $\mu$ via $X \ni x \mapsto(x, R x) \in X \times Y)$ is a joining.
$\left\{\mu_{T_{t}}: t \in \mathbb{R}\right\}$ an important family of self-joinings of $\mathcal{T}$.

## Operator approach - Vershik

Every joining $\rho \in \mathcal{J}(\mathcal{T}, \mathcal{S})$ defines an operator $V_{\rho}: L^{2}(X, \mu) \rightarrow L^{2}(Y, \nu)$ by

$$
\begin{array}{ccc}
L^{2}(X, \mu) & \hookrightarrow & L^{2}(X \times Y, \rho) \\
& V_{\rho} \searrow & \downarrow p r \\
& & L^{2}(Y, \nu)
\end{array}
$$

$V_{\rho}: L^{2}(X, \mu) \rightarrow L^{2}(Y, \nu)$ is an intertwining Makov operator

- $f \geqslant 0 \Longrightarrow V_{\rho} f \geqslant 0$;
- $V_{\rho} 1=1, V_{\rho}^{*} 1=1$;
- $V \rho \circ T_{t}=S_{t} \circ V_{\rho}$.
$T_{t}: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ standard unitary Koopman operator

$$
T_{t}(f)=f \circ T_{t}
$$

## Operator approach

$\rho \mapsto V_{\rho}$ gives a one-to-one correspondence between joinings and intertwining Markov operators (Vershik, Ryzhikov).

$$
\begin{aligned}
\mu \times \nu \longleftrightarrow & \int: L^{2}(X, \mu) \rightarrow L^{2}(Y, \nu) \\
& \left(\int f\right)(y)=\int_{X} f \mu \\
\mu_{T_{t}} \longleftrightarrow & T_{t}
\end{aligned}
$$

ergodic joining $\rho \longleftrightarrow$ indecomposable operator $V_{\rho}$
$\rho$ is an ergodic measure for the flow $\left(T_{t} \times S_{t}\right)_{t \in \mathbb{R}}$

## Obvious examples

- Positive entropy: Let $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$ be a measure-preserving flow such that $0<h_{\mu}(\mathcal{T})<+\infty$. Then $h_{\mu}\left(\mathcal{T}_{s}\right)=|s| h_{\mu}(\mathcal{T})$. Since entropy is an invariant for isomorphism of flows $\mathcal{I}(\mathcal{T}) \subset\{-1,1\}$.
- Zero entropy: Let $\left(h_{t}\right)_{t \in \mathbb{R}}$ be the horocycle flow on a compact surface of constant negative curvature $M$. $\left(h_{t}\right)_{t \in \mathbb{R}}$ acts on the unit tangent bundle $U T(M)$ and preserves a unique probability measure $\mu_{0}$. If $\left(g_{s}\right)_{s \in \mathbb{R}}$ stands for the geodesic flow then

$$
g_{s} \circ h_{t} \circ g_{s}^{-1}=h_{t e}-2 s
$$

hence each $s>0$ is a scale of self-similarity for $\left(h_{t}\right)_{t \in \mathbb{R}}$.

- Infinite entropy: Such flows can have also plenty of self-similarities.


## Abstract result

## Proposition (abstract)

Let $\left(U_{t}\right)$ be a bounded $C^{0}$-semigroup on a separable Banach space $B\left(\left\|U_{t}\right\| \leqslant C\right)$. Suppose that

$$
B^{0} \subset B^{\odot}\left(=\left\{x^{*} \in B^{*}: t \mapsto U_{t}^{*} x^{*} \text { is strongly continuous }\right\}\right.
$$

is a closed $\left(U_{t}^{*}\right)$-invariant separable subspace such that $0 \in B^{0}$ is the only fixed point for $\left(U_{t}^{*}\right)$ on $B^{0}$. Suppose that

$$
U_{t_{n}}^{*} \rightarrow Q: B^{0} \rightarrow B^{*} * \text {-weakly }
$$

Then there exists $E \subset \mathbb{R}$ of full Lebesgue measure such that if

$$
A \circ U_{s}^{*}=U_{r s}^{*} \circ A
$$

for some $r \in E, s \in \mathbb{R}, A: B^{0} \rightarrow B^{0}$, then

$$
A \circ Q=0 \text { on } B^{0}
$$

## Theorem

Let $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$ be a weakly mixing flow such that

$$
(*) T_{t_{n}} \rightarrow Q=\alpha \int_{\mathbb{R}} T_{s} d P(s)+(1-\alpha) J \text { weakly in } L^{2}(X, \mu)
$$

where $0<\alpha \leqslant 1, P \in \mathcal{P}(\mathbb{R})$ and $J \in J(\mathcal{T})$. Then $\mathcal{T}$ and $\mathcal{T}_{s}$ are disjoint for a.e. $s \in \mathbb{R}$, moreover, $T_{s}$ and $T_{t}$ are disjoint for a.e. $(s, t) \in \mathbb{R}^{2}$.

Proof. We apply Abstract Proposition to
$B=B^{*}=B^{\odot}=L^{2}(X, \mu), U_{t}=T_{-t}$ and $U_{t}^{*}=T_{t}$. Let $B^{0}:=L_{0}^{2}(X, \mu)$. By ergodicity, zero is the only fixed point of $\left(U_{t}^{*}\right)$ on $B^{0}$. Suppose that $r \in E$. We will show that $\mathcal{T}$ and $\mathcal{T}_{r}$ are disjoint. Let $A: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ be a joining between $\mathcal{T}$ and $\mathcal{T}_{r}$, then

$$
A \circ T_{s}=T_{r s} \circ A \text { for each } s \in \mathbb{R}
$$

It follows that

$$
\begin{aligned}
0 & =A \circ Q=A \circ\left(\alpha \int_{\mathbb{R}} T_{s} d P(s)+(1-\alpha) J\right) \\
& =\alpha \int_{\mathbb{R}} A \circ T_{s} d P(s)+(1-\alpha) A \circ J \text { on } L_{0}^{2}(X, \mu),
\end{aligned}
$$

hence

$$
\alpha \int_{\mathbb{R}} A \circ T_{s} d P(s)+(1-\alpha) A \circ J=\int \text { on } L^{2}(X, \mu) .
$$

By the weak mixing of $\mathcal{T}, \mu \times \mu \in J(\mathcal{T})$ is ergodic, so $\int$ is indecomposable. Consequently, $A \circ T_{s}=\int$ for $P$-a.e. $s$, and hence $A=\int \circ T_{-t}=\int$.


Abstract Proposition can be applied to the horocycle flow to prove

$$
\left(h_{t}\right)_{*} \mu \rightarrow \mu_{0} \text { weakly in } \mathcal{P}(U T M)
$$

This gives some new equidistribution results for horocyle flows.

How to verify the property $(*)$ ?
Special flow $T^{f}$ built over $T:(X, \mu) \rightarrow(X, \mu)$ and a positive square integrable $f: X \rightarrow \mathbb{R}^{+}$.


Suppose that $T^{T \times}$ is rigid, i.e. $T^{q_{n}} \rightarrow I d$. Suppose that $\left(f_{0}^{(n)}\right)_{n \geqslant 1}$ is bounded in $L^{2}(X, \mu)$, where
$f_{0}(x)=f(x)-\int f d \mu, f_{0}^{(n)}(x)=f_{0}(x)+f_{0}(T x)+\ldots+f_{0}\left(T^{n-1} x\right)$

By Prokhorov's theorem $\left(f_{0}^{\left(q_{n}\right)}\right)_{*}(\mu) \rightarrow P$ weakly in $\mathcal{P}(\mathbb{R})$.

## Theorem (Fr.-Lem. 04)

$$
T_{m q_{n}}^{f} \rightarrow \int_{\mathbb{R}} T_{s}^{f} d P(s)
$$

- If $T$ is an irrational rotation by $\alpha$ on $S^{1}$ and $\left(q_{n}\right)$ is the sequence of denominators of the continued fraction expansion of $\alpha$ then $T^{q_{n}} \rightarrow I d$ and by Denjoy-Koksma inequality $\left\|f_{0}^{\left(q_{n}\right)}\right\|_{\text {sup }} \leqslant 2 \operatorname{Var} f$, whenever $f \in B V$. Hence $(*)$ holds.
- Similar result holds for so called interval exchange transformations (which need not to be rigid).


## Theorem (Fr.-Lem. 06)

If $T$ is an ergodic IET and $f \in B V$ then there exists $a_{n} \rightarrow+\infty$ such that

$$
T_{a_{n}}^{f} \rightarrow \alpha \int_{\mathbb{R}} T_{s}^{f} d P(s)+(1-\alpha) J
$$

for some $0<\alpha \leqslant 1$ and $P \in \mathcal{P}(\mathbb{R})$.

## Abelian differentials

By a translation surface we mean any $(M, \omega)$, where $M$ is a compact Riemann surface and $\omega$ is a holomorphic 1 -form (called also Abelian differential). For every direction $\theta(\theta \in \mathbb{C}$ and $|\theta|=1)$ the Abelian differential determines the direction vector field $V_{\theta}: M \rightarrow T M$ so that $\omega\left(V_{\theta}\right)=\theta$ (except zeros of $\omega$ ). The flow $\mathcal{F}_{\theta}$ associated to $V_{\theta}$ is called a translation flow in the direction $\theta$. Each ergodic translation flow has a special representation over an ergodic IET and under a piecewise constant function.

## Corollary

If $\mathcal{F}$ is weakly mixing translation flow then $\mathcal{F}_{s}$ and $\mathcal{F}$ are disjoint for a.e. $s \in \mathbb{R}$, moreover, diffeomorphisms $F_{s}$ and $F_{t}$ are also disjoint for a.e. $(s, t) \in \mathbb{R}^{2}$.

Almost every translation flow is weakly mixing in the product of the moduli space of Abelian differentials and $S^{1}$. [Avila, Forni 2007]

## Absence of self-similarity

Theorem (Fr.-Lem. 09)
Let $\mathcal{T}=\left(T_{t}\right)_{t \in \mathbb{R}}$ be an ergodic flow such that

- $T_{t_{n}} \rightarrow \int_{\mathbb{R}} T_{s} d P(s)$ and $\mathcal{T}$ is not rigid, or
- $T_{t_{n}} \rightarrow \alpha \int_{\mathbb{R}} T_{s} d P(s)+(1-\alpha) J(0<\alpha \leqslant 1)$ and $\mathcal{T}$ is not partially rigid.
Then for each $s \neq \pm 1$ the flows $\mathcal{T}$ and $\mathcal{T}_{s}$ are not isomorphic.
$\mathcal{T}$ is partially rigid if $T_{s_{n}} \rightarrow J \geqslant a l d$ with $0<a \leqslant 1$.


## Absence of self-similarity

Proof. Suppose that $\mathcal{T}$ and $\mathcal{T}_{s}$ are isomorphic for some $0<|s|<1$. Then

$$
T_{s t}=S \circ T_{t} \circ S^{-1} \text { hence } T_{s^{m} t}=S^{m} \circ T_{t} \circ S^{-m}
$$

It follows that

$$
\begin{aligned}
T_{s^{m} t_{n}} & =S^{m} \circ T_{t_{n}} \circ S^{-m} \xrightarrow{n \rightarrow \infty} S^{m} \circ \int_{\mathbb{R}} T_{u} d P(u) \circ S^{-m} \\
& =\int_{\mathbb{R}} S^{m} \circ T_{u} \circ S^{-m} d P(u)=\int_{\mathbb{R}} T_{s^{m} u} d P(u) \\
& \xrightarrow{m \rightarrow \infty} \int_{\mathbb{R}} T_{0} d P(u)=I d .
\end{aligned}
$$

Consequently, $\mathcal{T}$ is rigid.
von Neumann flows are special flows built over irrational rotations on the circle and under piecewise $C^{1}$-functions with non-zero sum of jumps. von Neumann proved that such flows are weakly mixing.
Theorem (Fr.-Lem. 06)
von Neumann flows are not partially rigid.

## Corollary

von Neumann flows have no self-similarities.
Theorem (Fr.-Lem. 09)
von Neumann flows built over ergodic IETs have no self-similarities.

This approach works also roof functions with zero sum of jumps (piecewise constant). Such flows are partially rigid.
For some Diophantine rotations and for a careful choice of discontinuities of the roof function the special flow is mild mixing, which implies the absence of rigidity [Lemańczyk, Lesigne, Frączek 2007].

## Theorem (Fr. 2009)

If the genus of $M$ is greater than 1 then for every stratum $\mathcal{H}_{g}\left(m_{1}, \ldots, m_{\kappa}\right)$ of the moduli space of Abelian differentials there exists a dense subset $\mathcal{H}$ such that the vertical flow of each $\omega \in \mathcal{H}$ has no self-similarities.

## Theorem (Kułaga 2009)

For every compact surface $M$ with genus greater than 1 there exists a smooth flow with no self-similarities (zero entropy).

Problem: Give a classification of multiplicative subgroups of $\mathbb{R}^{*}$ that can be obtained as $\mathcal{I}(\mathcal{T})$.
Danilenko proved that $\mathcal{I}(\mathcal{T})$ is always a Borel subgroup. Recall $\mathcal{I}(\mathcal{T})=\mathbb{R}^{*}$ for some horocycle flows.
For each countable subgroup $G \subset \mathbb{R}^{*}$ there exists an ergodic flow such that $\mathcal{I}(\mathcal{T})=G$.

## Theorem (Danilenko-Lemańczyk, private communication)

There exist ergodic flows for which $\mathcal{I}(\mathcal{T})$ is uncountable and has zero Lebesgue measure.

## Theorem (Danilenko, Ryzhikov independently)

The absence of self-similarity is generic in the set of measure preserving flows $\operatorname{Flow}(X, \mathcal{B}, \mu)$.

The distance $d_{\mathcal{F}}$ on $\operatorname{Flow}(X, \mathcal{B}, \mu)$ is given by

$$
d_{\mathcal{F}}\left(\left(S_{t}\right)_{t \in \mathbb{R}},\left(T_{t}\right)_{t \in \mathbb{R}}\right)=\sup _{0 \leqslant t \leqslant 1} d\left(S_{t}, T_{t}\right)
$$

